34
Propylene Polymerization using Ziegler Propylene Polymerization using Ziegler-Natta Catalysts Natta Catalysts Mathematical Modeling, Polymerization Kinetics and Mathematical Modeling, Polymerization Kinetics and Mathematical Modeling, Polymerization Kinetics and Mathematical Modeling, Polymerization Kinetics and Polymer Characterization Study Polymer Characterization Study Institute for Polymer Research Symposium May 10, 2011 Ui it fW t l University of Waterloo Waterloo, Ontario Ahmad Alshaiban and João B. P. Soares Department of Chemical Engineering University of Waterloo Waterloo, Ontario, Canada IPR 2011

Propylene Polymerization using ZieglerPropylene ......A. Alshaiban and J.B.P. Soares, Macromol. React. Eng., 5, 96 (2011) IPR 2011 Polymerization Experiments Polymerization Experiments

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

  • Propylene Polymerization using ZieglerPropylene Polymerization using Ziegler--Natta Catalysts Natta Catalysts Mathematical Modeling, Polymerization Kinetics andMathematical Modeling, Polymerization Kinetics andMathematical Modeling, Polymerization Kinetics and Mathematical Modeling, Polymerization Kinetics and

    Polymer Characterization StudyPolymer Characterization Study

    Institute for Polymer Research Symposium May 10, 2011

    U i it f W t lUniversity of WaterlooWaterloo, Ontario

    Ahmad Alshaiban and João B. P. Soares

    Department of Chemical Engineeringp g gUniversity of Waterloo

    Waterloo, Ontario, Canada

    IPR

    2011

  • Outline

    Background Background Polypropylene Ziegler-Natta Catalysts and Electron Donors

    Results Modeling Polymerization Experiments: Kinetic Polymerization Experiments: KineticReactor SetupEstimation of Kinetic Constants

    Polymerization Experiments: Characterization Polymerization Experiments: CharacterizationMolecular Weight / GPCTacticity / 13C NMRCrystallinity / CEF

    2 Conclusions

    IPR

    2011

  • PolypropyleneBackground

    Isotactic

    CH3 CH3 CH3 CH3 CH3

    PropyleneCHCH

    CH2 CH2 CH2CH2

    CH

    CH2

    CH

    CH2

    CH

    CH

    Atactic CHCH CH

    CH3

    CH

    CH3

    CH

    CH3CH3CH3CH2CH

    CH3

    CHCH

    CH2 CH2 CH2CH2

    CH

    CH2

    CH

    CH2

    CH

    Syndiotactic CHCH

    CH3

    CH

    CH3

    CH CH

    CH3CH3 CH3

    3

    CH2 CH2 CH2CH2 CH2 CH2

    IPR

    2011

  • BackgroundZiegler‐Natta Catalyst

    • Electron Donor Functionality 

    Donor :D

    DDonor :D

    DDonor :D

    DDonor :DDonor :D

    D

    Low isotactic Inactive

    :D

    Low isotactic Inactive

    :D

    Low isotactic Inactive

    :D

    Low isotactic Inactive

    :D

    Ti PolymerVacancyMg ClTi PolymerVacancyMg ClTi PolymerVacancyMg ClTi PolymerVacancyMg ClTi PolymerVacancyMg ClTi PolymerVacancyMg Cl

    Donor :D :DDonor :DDonor :D :DDonor D

    Atactic Highly isotactic

    Donor DDonor D

    Atactic Highly isotactic

    4Active site models for MgCl2·TiCl4 (Kakugo et al., 1988)

    Ti PolymerVacancyMg ClTi PolymerVacancyMg ClTi PolymerVacancyMg ClTi PolymerVacancyMg Cl

    IPR

    2011

  • BackgroundIsotacticity and MWD

    • Polypropylene tacticity and MWD have a significant effect on its properties.

    • Electron donors control polypropylene tacticity.

    5(Chadwick et al, 2001)

    IPR

    2011

  • ModelingResults

    Mathematical Modeling

    6

    IPR

    2011

  • Modeling ModelingResults

    Site Transformation:

    Electron Donor D D

    Atactic

    Ti PolymerVacancyMg Cl

    isotactic

    Propagation: Ti + Ti

    Termination: Ti + TiH H H +

    trRP tfR

    PpR

    P7

    tftrp

    trtr RRR

    P

    tftrp

    ftf RRR

    P

    tftrp

    pp RRR

    P

    IP

    R 20

    11

  • Dynamic Solution Simulation ModelingResults

    4 O ll M l l W i h Ti

    20

    25

    x 10 4 Overall : Molecular Weights vs. Time

    Normal

    2 [M]

    10

    15

    20

    eigh

    t (g/

    mol

    )

    Normal Conditions 2 [Do]

    2 [H2]Mw

    0

    5

    Mol

    ecul

    ar W Mn

    1 2 3 4 5 6 7 8

    -5

    Ti "S "

    8

    x 10 4Time "Sec"

    A. Alshaiban and J. B. P. Soares, Macromol. Symp., 285, 8 (2009)

    A. Alshaiban and J.B.P. Soares, Macromol. React. Eng., 5, 96 (2011)

    IPR

    2011

  • Monte Carlo Simulations ModelingResults

    I i (79 9 %) St bl kI i (79 9 %) St bl k

    1.00

    1.50

    dW /

    d lo

    g(M

    W)

    Isotactic (91.5 %)

    Atactic (2.1 %)

    Stereoblocks (6.4 %)

    Atactic

    IsotacticStereoblock

    0 50

    1.00

    1.50

    dW /

    d lo

    g(M

    W)

    Isotactic (79.9 %)

    Atactic (13.0 %)

    Stereoblocks (7.1 %)

    Atactic

    Isotactic

    Stereoblock

    1.00

    1.50

    dW /

    d lo

    g(M

    W)

    Isotactic (91.5 %)

    Atactic (2.1 %)

    Stereoblocks (6.4 %)

    Atactic

    IsotacticStereoblock

    0 50

    1.00

    1.50

    dW /

    d lo

    g(M

    W)

    Isotactic (79.9 %)

    Atactic (13.0 %)

    Stereoblocks (7.1 %)

    Atactic

    Isotactic

    Stereoblock

    0.00

    0.50

    1 2 3 4 5 6

    log(MW)

    d

    0.00

    0.50

    1 2 3 4 5 6

    log(MW)

    0.00

    0.50

    1 2 3 4 5 6

    log(MW)

    d

    0.00

    0.50

    1 2 3 4 5 6

    log(MW)

    0.5 x Do

    Do

    2 x Do

    919.0019.5020.0020.5021.0021.5022.0022.5023.0023.50ppm downfield TMS

    A. Alshaiban and J.B.P. Soares, Macromol. React. Eng., 5, 96 (2011)IP

    R 20

    11

  • PolymerizationExperiments

    Polymerization Experiments 

    10

    IPR

    2011

  • Reactor Set‐up PolymerizationExperiments

    PCPCPC

    Kinetic

    rpmcontrol TIC

    PI

    FIPropylenerpm

    control TICPI

    FIPropylene

    Cooling Water Cooling WaterCooling Water Cooling Water

    Elect. HeatElect. Heat

    Level-1 Level-2

    Do/Ti (mol/mol) 1.5 0DCPDMS (D-Donor)

    11

    H2 (psi) 16 0

    T (oC) 60 70

    DCPDMS (D-Donor)Di cyclo pentyl di methoxy silane

    IPR

    2011

  • Estimation of Kinetic Constants PolymerizationExperimentsKinetic

    k

    Propylene Uptake Mathematical Formulation

    tMVR Expp d

    d, Vk

    eeMCkR

    tkKktK

    pp

    dad

    a

    1)1(

    0tdK

    ka

    d1

    2,2 ][min pExppkKk

    RRa

    p

    12

    *

    kdIP

    R 20

    11

  • Polymerization Experiments PolymerizationExperiments

    60oCF t I II III IV

    Kinetic

    Factor I II III IV

    Al/Ti (mol/mol) 900 (± 7.1%) 900 (± 16%) 900 (± 7.7%) 900 (± 7.2%)

    Do/Ti (mol/mol) 1.5 (± 7.1%) 0 1.5 (± 9.6%) 0

    H (psi) 0 0 16 (± 10%) 16 (± 10%)H2 (psi) 0 0 16 (± 10%) 16 (± 10%)

    Yield  (g‐PP∙g‐cat−1∙min−1) 7.6 (±15%) 6.1 (±15%) 17.3 (±2.5%) 8.4 (±6.5%)

    0.0460 I 36

    0 02

    0.03

    l/min)

    60_I_36

    60_I_37

    60_I_40

    0.01

    0.02

    R p (m

    o

    13

    *

    0.00

    0 5 10 15 20 25 30 35

    Time (min)

    IPR

    2011

  • Polymerization Experiments PolymerizationExperiments

    Rp Experimental vs. Calculated at 60ºC 

    Kinetic

    (D, —)

    (—, —)

    0.08 60_I_exp

    60 II exp ( , )

    (D, H)

    (—, H)0.04

    0.06

    mol/m

    in)

    60_II_exp

    60_III_exp

    60_IV_exp

    60 I cal

    0.02

    R p (m

    60_I_cal

    60_II_cal

    60_III_cal

    60 IV cal0

    0 5 10 15 20 25 30 35

    Time (min)

    60_IV_cal

    14

    IPR

    2011

  • Polymerization Experiments Results

    Rp Experimental vs. Calculated at 70ºC 

    0.08 70_I_exp

    70 II exp

    (D, —)

    (—, —)

    0.04

    0.06

    mol/m

    in)

    70_II_exp

    70_III_exp

    70_IV_exp

    70 I cal

    ( , )

    (D, H)

    (—, H)

    0.02

    R p (m

    70_I_cal

    70_II_cal

    70_III_cal

    70 IV cal0

    0 5 10 15 20 25 30

    Time (min)

    70_IV_cal

    15

    IPR

    2011

  • Polymerization Experiments PolymerizationExperiments

    Group  II (D, —) 2C70,C60,2 ])()[(min pExpppExppkKk

    RRRRa

    p

    Kinetic

    kd

    0.030

    0.040

    min)

    60_II_exp

    60_II_cal

    70_II_exp

    70_II_cal

    0.010

    0.020

    R p (m

    ol/

    60 70 E

    0.000

    0 5 10 15 20 25 30 35

    Time (min)

    60oC

    70oC

    E kcal/mol

    Ka(min)–1 0.33 0.89 22.8

    k (L mol–1 min–1) 1 7x103 2 5x103 8 6

    16

    kp (L·mol 1· min 1) 1.7x103 2.5x103 8.6

    kd (min)–1 0.010 0.041 31.8 *

    IPR

    2011

  • Polymerization Experiments PolymerizationExperimentsKinetic

    30

    35

    l‐1)

    EA Ep Ed

    20

    25

    ergy

     (kcal.m

    o

    5

    10

    15

    Activation En

    e

    0

    I (D, −) II (−, −) III (D, H) IV (−, H)

    A

    17*

    IPR

    2011

  • Summary of the Estimated Kinetic Constants PolymerizationExperiments

    K increases as T increases

    Kinetic

    Ka increases as T increases.Ka increases by adding H2 in absence of Do.

    Ka get’s the highest value at the presence of H2only (IV).

    Kp increases as T increases. kp get’s the highest value at the presence of kp get s the highest value at the presence of Do & H2 (III).

    kp increases by adding H2 (III) & (IV).

    kd increases as T increases.kd increases by adding H2 in absence of Do (IV).

    18*

    IPR

    2011

  • Conclusion Conclusion

    Developed a detailed mathematical model that describes

    Kinetic

    Developed a detailed mathematical model that describespropylene polymerization kinetics and polypropylenemicrostructure, taking in consideration the effect of externalelectron donors.(*)

    Estimated the activation energies of activation, propagation, anddeactivation of a commercial heterogeneous Ziegler Nattacatalyst for propylene polymerization in order to be integratedwith the commercial process simulator.

    A. Alshaiban and J. B. P. Soares, Macromol. Symp., 285, 8 (2009)(*)

    19

    A. Alshaiban and J.B.P. Soares, Macromol. React. Eng., 5, 96 (2011)IP

    R 20

    11

  • PolymerizationExperiments

    Characterization

    GPC A l iGPC Analysis

    IPR

    2011

  • GPC Analysis PolymerizationExperiments

    Mn decreases with H2 at

    Characterization

    Mn decreases with H2 at the same T.

    Mn increases with T in the presence of Do andthe presence of Do and vice versa.

    PDI decreases with H2.2

    PDI decreases with increasing T.

    IPR

    2011

  • GPC Analysis PolymerizationExperimentsCharacterization

    0 15

    0.2

    0.25

    0.3

    0.35

    2

    IIIIIIIV

    (donor, no H2)(no donor, no H2)

    (donor, H2)(no donor, H2)

    0 15

    0.2

    0.25

    0.3

    0.35

    2

    IIIIIIIV

    0 15

    0.2

    0.25

    0.3

    0.35

    2

    IIIIIIIV

    (donor, no H2)(no donor, no H2)

    (donor, H2)(no donor, H2)

    0.6

    0.7

    0.8Exp.# 0395 Site Types

    2= 0.00496 0

    0.05

    0.1

    0.15

    2 3 4 5 6 70

    0.05

    0.1

    0.15

    2 3 4 5 6 70

    0.05

    0.1

    0.15

    2 3 4 5 6 7

    0 3

    0.4

    0.5

    W/d

    (log

    MW

    )

    Number of Site TypeNumber of Site TypeNumber of Site Type

    0.1

    0.2

    0.3dW

    02 3 4 5 6 7 8 9

    log MW

    IPR

    2011

  • GPC Analysis PolymerizationExperiments

    60oC

    Characterization

    ParameterI

    (D, —)II

    (—, —)III

    (D, H)

    IV

    (—, H)

    Mn (g∙mol−1) 30.1 x 103 22.5 x 103 18 x 103 19 x 103

    Mw (g∙mol−1) 151.6 x 103 140.3 x 103 82.9 x 103 77.3 x 103

    PDI 5.0 6.2 4.6 4.1

    Number of site types (n) 5 5 5 5

    70oC

    ParameterI

    (D, —)II

    (—, —)III

    (D, H)

    IV

    (—, H)

    M (g∙mol−1) 84 1 x 103 13 7 x 103 27 5 x 103 9 4 x 103Mn (g∙mol ) 84.1 x 103 13.7 x 103 27.5 x 103 9.4 x 103

    Mw (g∙mol−1) 499.4 x 103 72.5 x 103 95.5 x 103 32.6 x 103

    PDI 5.9 5.3 3.5 3.5

    Number of site types (n) 5 5 4 4Number of site types (n) 5 5 4 4IP

    R 20

    11

  • PolymerizationExperiments

    Characterization

    13C NMR Analysis

    IPR

    2011

  • 13C NMR Analysis PolymerizationExperiments

    19.868

    19.943

    20.090

    20.166

    20.299

    20.329

    20.605

    20.858

    21.061

    21.181

    21.357

    21.594

    21.675

    21.699

    21.714

    21.730

    21.738

    21.746

    21.754

    21.762

    21.770

    21.778

    21.786

    21.794

    21.851

    21.884

    21.892

    21.900

    21.908

    21.916

    21.924

    21.932

    Characterization

    19.867

    19.946

    20.090

    20.169

    20.298

    20.342

    20.691

    20.857

    20.898

    20.936

    21.060

    21.182

    21.371

    21.593

    21.632

    21.674

    21.698

    21.729

    21.737

    21.745

    21.753

    21.761

    21.769

    21.777

    21.785

    21.793

    21.850

    21.883

    21.891

    21.899

    21.907

    21.915

    1919202020202020212121212121212121212121212121212121212121212121

    17.518.018.519.019.520.020.521.021.522.022.5 ppm

    1.052

    0.873

    0.904

    1.258

    1.841

    2.252

    56.443

    1.000

    III (D, H)

    IV ( H)

    17.518.018.519.019.520.020.521.021.522.022.5 ppm

    849

    805

    051

    622

    948

    207

    101

    170

    000

    IV (—, H)

    1.8

    1.8

    2.0

    3.6

    3.9

    5.2

    0.1

    59.11.0

    IPR

    2011

  • 13C NMR Analysis PolymerizationExperiments

    Seq.# Range ( d )* I(D, —)

    II(—, —)

    III(D, H)

    IV(—, H)

    1 mmmm 22.0 − 21.7 83.78 61.25 93.77 76.46

    Characterization

    1 mmmm 22.0 21.7 83.78 61.25 93.77 76.46

    2 mmmr 21.7 − 21.4 3.73 9.51 3.06 6.73

    3 rmmr 21.4 − 21.2 0.53 1.87 0.00 0.00

    4 mmrr 21.2 − 21.0 4.17 7.76 2.48 4.96

    5 mmrm + rmrr 21.0 − 20-7 2.01 6.38 0.00 4.60

    6 rmrm 20.7 − 20.5 0.00 1.67 0.00 0.00

    7 rrrr 20.5 − 20.25 2.90 3.55 0.00 2.61

    8 rrrm 20.25 − 20.0 1.67 5.18 0.00 2.29

    9 mrrm 20.0 − 19.7 1.21 2.82 0.69 2.35

    •Range of d reported by Busico et al.(2001) IP

    R 20

    11

  • 13C NMR Analysis: Simulated H2 effect on polypropylene tacticityPolymerizationExperiments

    Characterization

    1/2 x H2

    12.70%4.28%

    H2

    7.19%6.04%

    2 x H2

    3.90%7.45%

    83.01% 86.77% 88.65%

    Isotactic chains in wt% Atactic chains in wt% Stereoblock chains in wt%

    A. Alshaiban and J. B. P. Soares, Macromol. Symp., 285, 8 (2009)A. Alshaiban, 2008, MASc. Thesis, University of WaterlooA. Alshaiban and J. B. P. Soares, Macromol. Symp., 285, 8 (2009) A. Alshaiban and J.B.P. Soares, Macromol. React. Eng., 5, 96 (2011)

    IPR

    2011

  • PolymerizationExperiments

    CEF Analysis

    Characterization

    CEF Analysis

    Injection Crystallization Elution

    F

    Injection Crystallization Elution

    FFE

    TfTiTfTi

    TREFFE

    TfTiTfTi

    TREF

    FEFcCEF

    FEFcCEF

    IPR

    2011

  • CEF Analysis PolymerizationExperimentsCharacterization

    30

    35 A_70_I_158 A_70_I_159 A_70_II_157 A_70_II_147

    (D, —) (—, —)

    ( D H) ( H)

    20

    25

    30

    dT

    A_70_III_154 A_70_III_155 A_70_IV_151 A_70_IV_153( D, H) (—, H)

    10

    15dW/d

    0

    5

    18 38 58 78 98 118

    Temperature (oC)

    IPR

    2011

  • CEF Analysis PolymerizationExperimentsCharacterization

    20 A_60_I A_60_II A_60_III A_60_IV(D, —) (—, —) ( D, H) (—, H)

    15

    W/dT

    5

    10dW

    0

    18 38 58 78 98 11818 38 58 78 98 118

    Temperature (oC)

    IPR

    2011

  • CEF Analysis PolymerizationExperiments

    15

    20

    A 60 I A 70 I

    116.7°C

    Group I (D, —)

    Characterization

    5

    10dW/dT

    A_60_I A_70_I

    112.1°CMn

    g/mol

    PDI mmmm

    %

    30.1 x 103 5.0 83.78

    30

    0

    5

    18 38 58 78 98 118

    T (oC)

    84.1 x 103 5.9 95.5

    20

    25

    30Temperature (oC)

    Group II (—, —)

    5

    10

    15

    dW/dT

    A_60_II A_70_II

    109.9°C110.8°C

    Mn g/mol

    PDI mmmm

    %

    22.5 x 103 6.2 61.25

    13 7 x 103 5 3 63 00

    0

    5

    18 38 58 78 98 118

    Temperature (oC)

    13.7 x 103 5.3 63.00IP

    R 20

    11

  • CEF Analysis PolymerizationExperiments

    15116.3°C

    Group III (D, H)

    Characterization

    5

    10

    dW/dT

    A_60_III A_70_III114.9°C Mn

    g/mol

    PDI mmmm

    %

    18 x 103 4.6 93.77

    0

    18 38 58 78 98 118

    27.5 x 103 3.5 96.90

    Temperature (oC)

    15

    20

    T

    Group IV (—, H)

    M PDI mmmm

    5

    10dW/dT

    A_60_IV A_70_IV111.5°C 111.9°C

    Mn g/mol

    PDI mmmm

    %

    19 x 103 4.1 76.46

    9.4 x 103 3.5 74.85

    0

    18 38 58 78 98 118

    Temperature (oC)

    9.4 x 10 3.5 74.85IP

    R 20

    11

  • Conclusion Conclusion

    Conducted a systematic polymerization kinetics and microstructural studies forpolypropylene produced using 4th generation ZN catalyst and compared thehydrogen effect with the simulation results obtained from the developedhydrogen effect with the simulation results obtained from the developedmathematical model.

    Adding Do increases Mn; and at Do presence, Mn increases with T as in groups I(D,—) & III (D,H).( , ) ( , )

    Mn decreases with H2 at the same T as we go from II (—, —) to IV(—, H) and from I(D,—) to III (D,H)

    Number of site types decreased by one at high T in the presence of H Number of site types decreased by one at high T in the presence of H2.

    No significant change in pentad assignments with T except for group I (Do, —)

    Introducing H2 tends to increase the tacticity [ I (D,—)III (D,H) ] and [ II (—, —)IV( H) ] hi h i i t ith i l ti f th d l d th ti l(—, H) ] which is in agreement with our simulation of the developed mathematicalmodel.

    Group III (D, H) shows the highest crystallization peak temperature.

    Crystallinity increases with T in the presence of Do, I (D,—) & III (D,H).

    A. Alshaiban and J. B. P. Soares, Macromol. Symp., AcceptedA. Alshaiban and J. B. P. Soares, Macromol. Symp., 285, 8 (2009)

    A. Alshaiban and J. B. P. Soares, Macromol. React. Eng., 5, 96 (2011)

    IPR

    2011

  • The End

    IPR

    2011