40
Propulsor Related Research at DLR - CROR Blade Optimization and Cycle Analysis Forum AE Technology Meeting Fuel Burn & CO 2 Mitigation Technology Workshop ESPCI Paris Tech July 1 st and 2 nd 2014 www.DLR.de Chart 1 Rainer Schnell German Aerospace Center (DLR) Institute of Propulsion Technology > Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014

Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Propulsor Related Research at DLR - CROR Blade Optimization and Cycle Analysis

Forum AE Technology Meeting Fuel Burn & CO2 Mitigation Technology Workshop ESPCI Paris Tech July 1st and 2nd 2014

www.DLR.de • Chart 1

Rainer Schnell

German Aerospace Center (DLR)

Institute of Propulsion Technology

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014

Page 2: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Motivation and Background

Overview CROR Efforts at DLR

DREAM Rationale

CROR Method Validation and Benchmark

Blade Shape Optimization: Strategy and Results

Cycle Analysis

Outlook and Future Work

Outline

www.DLR.de • Chart 2 > Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014

Page 3: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Motivation and Background

Overview CROR Efforts at DLR

DREAM Rationale

CROR Method Validation and Benchmark

Blade Shape Optimization: Strategy and Results

Cycle Analysis

Outlook and Future Work

Outline

www.DLR.de • Chart 3 > Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014

Page 4: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Context and Motivation

Source: DREAM DoW

CRTF

Advanced Turbofan

www.DLR.de • Chart 4

Noise reduction Sf

c im

prov

emen

t

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014

Page 5: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Consideration of all potential future propulsor concepts

Integrated effort from conceptual studies at pre-design level up to dedicated rig designs

Assessment up to system level including mission analysis

CRISP (MTU/DLR) DREAM CROR V2.0

DLR-UHBR & Silencer CRTF2b VITAL

Context and Motivation: ACARE/H2020 Objectives Propulsion Related Efforts at DLR

www.DLR.de • Chart 5 > Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014

Page 6: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Example: Global Trend Studies SRF vs CRTF

CRTF: Prelimenary 1D,

2D and studies and

Optimizations

VITAL WP2.4 (CRTF2b)

CRISP2

DLR-UHBR Fa

n pr

essu

re ra

tio

Axial Mach number

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 www.DLR.de • Folie 6

Page 7: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

> ASME > T. Lengyel-Kampmann • GT2014-26008 > 20.06.2014 DLR.de • Chart 7

Results – 3D-optimization for the SR- and the CR-fan CR SR

ηis-ηref [%] -4 -3 -2 -1 0

ηmax ηmax

Axial Mach number Axial Mach number

Fan

pres

sure

ratio

- =

-> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 7

Page 8: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Motivation and Background

Overview CROR Efforts at DLR DREAM Rationale

CROR Method Validation and Benchmark

Blade Shape Optimization: Strategy and Results Cycle Analysis

Outlook and Future Work

Outline

www.DLR.de • Chart 8 > Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014

Page 9: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

This document and the information contained are the property of the DREAM Consortium and shall not be copied in any form or disclosed to any party outside the Consortium without the written permission of the DREAM Management Committee

9

CROR Optimization - Rationale

V1.1 - Snecma 2009 design based on V0 ● Optimization setup ● Evaluate potential

V2.0 - Optimized Version / New Reference

● Respect geometric feasibility + mechanics ● Refined constraints

x [m]

rad

ius

[m]

0 0.5 1 1.5

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x [m]

rad

ius

[m]

0 0.5 1 1.5

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Pressure350003300031000290002700025000230002100019000170001500013000

V1.1 DLR Memb2652 New Baseline:

V2.0 (SN/DLR)

Numerical setup, benchmarks etc.

V0 - 80’s State of the Art

Page 10: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

This document and the information contained are the property of the DREAM Consortium and shall not be copied in any form or disclosed to any party outside the Consortium without the written permission of the DREAM Management Committee

10

URANS (TRACE): Source Region - UnsteadyAero

Perturbation Nearfield

Aeroacoustic code: APSIM P-FW-H and FW-H - Acoustic far field -

Blade Pressure

– EA+Surrogate Modelling –

3D-RANS TRACE + FEM CalculiX Objectives:

Efficiency - ToC Acoustics - T/O

Selected individuals

+

+

+

+++

+++

++

+

+

+++

+ ++

++

++

++

+++

++++++++

++

+

++

+++

+++++

++++

++++++

++++ ++

+++

+++++

+++++

+++++++

+++

+

+

+++

+++

+++

+

+

++++

++

+

+++

++++

++++++

+

++

+

+ +

++

++

+++

+

++

+++

+

+

+

+

++

++

+++++++

++

+

+

+

+

++

++

+

+

++

+

+

+

++

+

+

++

+

+

+

+

++

++

+ ++

+ +

+

+

+

++

++

+

+

+

++

+

+ +

+

+

+

+ +

+

+

+

+ ++

+

+

+

++

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

++

+

+

+

+ +

+

++

+

+

+

+

+

++

+

++

+

+

+

+

+

+++

+

++

+

+

+

+

++

+

+

+

+

+

++

+

+

+ +

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

++

+

+

+ +

+

+

+

+++

+

++

+

+

+

+

++

+ +

+

++

+

+

+

+

+

+

+

+

+

+

+

++

+

++ ++

+

+

+++

+++

+

+

+

++

+++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

++

+

++

+

+

++

+

+

++

+

++

+

+

++

+

+

+

+

+

+

++

+

+++

+

+

++ +

+

+

+++

+

++

+

+

+

+

+ ++

+

+

+

+ ++

+

++

+

+

+

+

+

+

+

+ +

+

++

+

+

+ ++

+ +

+

+

+

+

+

+

++

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

++

++

++

+

+

+

+

+++

+

+

++

+

+

+

++

++

+

++

+

+

+

+

+

+

+

+

+

+

++

+

+

+

++

+

+

+

+

++

+

+

+

+++

+

+

+

+

+

++

+

+

+++

+

+

+

+

+

+

+

+

++

+

+

+

++

+

+

++

+

+ +

+

+

++

+

+

+

++

+

+

+

+

+

+++

+

++

+

++

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

++

++

+

+

+++

++++

+

++

+

+ +

++

+

++

++

+

++++

+

+

++

+

+

+

+

++

+

+

++

+

++

+

+

+

+

+

++

+

+

+

+

+

+

+

++

+

+

+ ++

++

++

++

+

+

+

+

+

++

+

+

+

+

+

++

++

+

+

+

++

++

++

+

+

+

++ +

+

+

+

+

+

+

++

+ +

++

+

+

+

+

++

+

+

++

+

+

+

++

+

+

+

+

+

++

+

+

++

+

+

+

+

+

++

+

++

+

+

+

+

++

+

+

++

+

+

+

+

++

++

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

++

++

+

+

+

+

+

+

+

++

++

++

++

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

++

+

+

+

+

+++

++

+

++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

++++

+

+

+

+

+

+

+

+ +

+

+

+

+

+

++

+

+ +

+

++

+

++

++

+

+

+

+

+

+

+

++

+

+ +

+

+

+

+

+

+

+

++

+

++

+ +++

+

+

+

+

++

+

++

+

+

+

+

+

++

+

+

+

+

+

++

+

+

+

+

+

+

+

+++

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

++

+

++

++

+

+

+ ++

+

++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

++

+

+

+++

+

+

+

+

+

++

+

+

+

+

+

++ +

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

++

+

+

+

++

+

+

++

+

++

+

+

+

+

+

++

++

+

++

++

+ +

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

++

++

+

+

+

+

+

+

+ +

+

++

+

++

+

+

+

+

+

+

+

++

+

++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+ +

+

+

+

+

++

+

+

+

+

+++

+

+

+

+

+ +

+

+

+

+

++

+ +

+

+

+

+

+

+

+

+

+

+

+

+

++

+

++

+

+

++

+

+

++

++

+

+

+

+

+

+

+

++

+

++

+

+

+

+

+ +

++

+

+

+

++

+

++

+

++

+

+ +

+

+

+

+

+

+

+

+

+

+ +

+

+

+

++

+

+

+ ++

++

+

+

+

++ +

+ +

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+ +

+

+

+

++

+

+

+

+

+

+

++

+

+

+

++

+

+

efficiency [%]

acou

stic

cost

func

tion

[dB

]

80

85

90

95

100

105

110

115

120

125

130

135

140

Memb2652∆η=10%

Initial

Memb2652∆η=10%

Initial

Memb2652∆η=10%

Initial

Multi-Objective (MO) Optimization - AutoOpti -

CROR Optimization – DLR Approach

Page 11: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

This document and the information contained are the property of the DREAM Consortium and shall not be copied in any form or disclosed to any party outside the Consortium without the written permission of the DREAM Management Committee

11

CROR Optimization - Specification

Objectives: Maximization of propulsive efficiency at Top of Climb (ToC) Minimization of an acoustic cost function (acf) at Takeoff (TO)

Constraints (aerodynamical, mechanical, geometric feasibility):

Thrust requirements (both OP) Outflow angle (TO) Torque/Power split (ToC and both OP) Front rotor tip vortex reduction (TO) Streamline contraction (TO) Limit max. van Mises stresses (rig scale) simplified flutter criteria LE/TE/max thicknesses chord limitations

Phase I+II

Phase I

Page 12: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

www.DLR.de • Chart 12

design space > 100 parameters • 2D profiles (x5) • 3D blade shape (stacking) • Hub contour • Aft-rotor clipping • Variable pitch between OP

2D Profiles @ given streamlines

* R. Schnell, J. Yin, S. Funke, H. Siller; Aerodynamic and basic acoustic optimization of a contra rotating open rotor with experimental verification, AIAA 2012-2127. * R. Schnell, J. Yin, C. Voss, E. Nicke; Assessment and Optimization of the Aerodynamic and Acoustic Characteristics of a Counter Rotating Open Rotor, ASME Journal of Turbomachinery Vol. 134, Nov. 2012.

Design capabilities: aeroacoustic optimisation Parameterisation

3D Blade Shape Variation

www.DLR.de • Chart 12

Page 13: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

This document and the information contained are the property of the DREAM Consortium and shall not be copied in any form or disclosed to any party outside the Consortium without the written permission of the DREAM Management Committee

13

0.1

0.2

0.3

0.4

0.5

1.10 1.20 1.30 1.40 1.50 1.60 1.70

J [-]

thru

st c

oeffi

cien

t Ct [

-]

V1.1 TsAGi - CFDTRACEExperiments WT104

0.1

0.2

0.3

0.4

0.5

1.10 1.20 1.30 1.40 1.50 1.60 1.70

J [-]

thru

st c

oeffi

cien

t Ct [

-]

V1.1 TsAGi - CFDTRACEExperiments WT104

Front Rotor Aft Rotor

60

65

70

75

80

85

1.10 1.20 1.30 1.40 1.50 1.60 1.70

J [-]

effic

ienc

y [%

]

V1.1 TsAGi - CFDTRACEExperiments WT104

60

65

70

75

80

85

1.10 1.20 1.30 1.40 1.50 1.60 1.70

J [-]

effic

ienc

y [%

]

V1.1 TsAGi - CFDTRACEExperiments WT104

0.1 0.1

5% 5%

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.9500 1.0000 1.0500 1.1000 1.1500

Pt_norm [-]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.00 0.10 0.20 0.30 0.40 0.50

Ma [-]

Comparison PSP Data/CFD

Radial traverses downstream aft rotor: comparison CFD/Experiment

Overall performance – Comparison CFD/Experiment CROR Rig at TsAGI/Moscow

CROR CFD Validation (Aerodynamics)

Page 14: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

This document and the information contained are the property of the DREAM Consortium and shall not be copied in any form or disclosed to any party outside the Consortium without the written permission of the DREAM Management Committee

14

extensive code-to-code comparison with other partners (Cenaero, Onera, SN) detailed assessment of numerical influences (grid, solver, modelling etc.) steady-state MxPl results in good agreement (aero) optimization trends always confirmed with other CFD method acoustics (uRANS+FfW-H) in good agreement if RANS solution comparable

CROR Far Field Acoustic Results

Comparison elsA vs TRACE

CROR Performance Results – elsA vs TRACE

CROR CFD Verification/Benchmarking

Page 15: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

This document and the information contained are the property of the DREAM Consortium and shall not be copied in any form or disclosed to any party outside the Consortium without the written permission of the DREAM Management Committee

15

Optimization Results - Pareto Front

Δη=2%

V2.0

surrogate model activiation

Phase I Phase II

power split @ TakeOff not limited only few geometric constraints no stress limitations

Parateo ranked 1 members (blue squares) fullfilling all geometrical requirements (including stress limitations)

Δacf=10dB

Page 16: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

www.DLR.de • Chart 16

Aft rotor blade pressure amplitudes (SS)

from front rotor wake/blade interaction Bf+Ba

and far field directivity (right)

uRANS Near- and Far Field Acoustic Results

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014

Initial V1.1 Optimized V2.0

θ°

Soun

dP

ress

ure

Leve

l(dB

)

60 80 100 120 140 160

Sum Interaction V2.0Sum Interaction V1.1

∆=2.5 dB

Measured directivity (TsAGI): Sum Interaction V1.1 vs V2.0

Rig Scale – Sideline conditions

Page 17: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

www.DLR.de • Chart 17

Design capabilities: trailing-edge serrations Broadening of the wake

Reduction of interaction tones

C. Weckmüller, S. Guérin; On the influence of trailing-edge serrations on open-rotor tonal noise, AIAA 2012-2124.

sound power level font-rotor wake

baseline serrated TE

www.DLR.de • Chart 17

Page 18: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Motivation and Background

Overview CROR Efforts at DLR DREAM Rationale

CROR Method Validation and Benchmark

Blade Shape Optimization: Strategy and Results

Cycle Analysis

Outlook and Future Work

Outline

www.DLR.de • Chart 18 > Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014

Page 19: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Overview CROR Performance Analysis Methods

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 19

• DLR offers the ability to perform multi-disciplinary analysises of preliminary engine designs

• Available assessment methods at DLR: • Preliminary aircraft design (VampZero) • Thermodynamic performance analysis (GTlab) • Preliminary flow path analysis (Gtlab) • Mission analysis (VarMission)

• The following slides present a CROR cycle

optimization including engine installation effects (weight and drag) [ISABE-2013-1720]

Page 20: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Airframe and Engine Configurations

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 20

Parameter Unit Value Number PAX [-] 150 Design range [km] 4465 CR Altitude [ft] 35000 CR speed [Mach] 0.78

TOFL [m] 2000 MTOW [kg] 77000

Turbofan CROR Advanced-GTF

Page 21: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

• The reference engine is a two-shaft turbofan similar to the IAE-V2500-A5 engine family.

• The thermodynamic engine model was aligned to test data recorded on engine repair tests of DLRs research aircraft A320-232 "D-ATRA".

• Resulting performance data was validated against

certification data taken from the ICAO Engine Emission Databank and EASA/FAA TCDS.

• The reference flight deck has been cross checked with flight mission analysis for the A320-200 configuration.

Reference Engine

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 21

Page 22: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Engine Design Methodology Overview

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 22

Thrust Requirements

Engine Performance

Drag&Weight Estimation

Flow Path Design

Corrections to Aircraft Weight & Aerodynamic Performance

Optimization Cyc

le D

esig

n Pa

ram

eter

s

Cru

ise

Fuel

C

onsu

mpt

ion

Page 23: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

• Three operating points have been considered for engine design:

• Aircraft aerodynamic performance calculated on basis of high and low speed characteristics for the reference airframe

• Drag adjustments were carried out as modifications to the zero-lift drag coefficient of the corresponding aircraft polar

• Estimated weight deltas add up to the aircraft total weight

Engine Design Methodology Thrust Requirements

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 23

0.0

5.0

10.0

15.0

20.0

0.0 0.5 1.0 1.5 2.0 2.5

L/D

CL

150PAX Airliner Low Speed L/D

Config 1 LG upConfig 2 LG upConfig 3 LG upConfig 4 LG upConfig 10 LG upConfig 1 LG downConfig 2 LG downConfig 3 LG downConfig 4 LG downConfig 10 LG down

5

10

15

20

0.2 0.3 0.4 0.5 0.6 0.7 0.8

L/D

CL

150PAX Airliner High Speed L/D at FL350

0.84

0.83

0.82

0.81

0.8

0.78

0.76

0.72

Parameter Unit CR TOC EOF Altitude [m] 10668 10668 0

Mach No. [-] 0.78 0.78 0.2 DTISA [K] 10 10 15

HP-PWX [kW] 142.5 142.5 127.5

Page 24: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

• Performance analysis by means of DLRs in-house gas turbine synthesis code GTlab-Performance

• Predetermined principal engine layout: 2-shaft core + power turbine and PDG

• Correlation based component efficiency

estimation

• Component characteristics estimated by automatically scaled performance maps

• Cooling air requirements iteratively adjusted to turbine conditions at EOF

Engine Design Methodology Engine Performance

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 24

Poly

trop

ic e

ffici

ency

Corrected Mass Flow [kg/s]

Source: Grieb

Page 25: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

• Thermodynamic cycle defines mass flows, total pressures and temperatures at engine stations

• Flow path defined by:

• Axial in- and outflow Mach numbers

• Hub to tip ratios or „radius rules“

• constant hub / mean / tip radius

• Fixed radius

• Compressor and propeller tip speeds

• Average stage loadings

• Aspect ratio distributions and axial spacings

• Resulting component annulus approximations assembled to overall bare engine flow path

Engine Design Methodology Conceptual Flow Path Design

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 25

Page 26: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

• Geometry and speed information taken from annulus computations

• Weight estimations for the standard jet engine components performed by use of the statistical method presented by Sagerser

• Gearbox weight estimation was performed by use of NASA

correlations

• Open rotor propeller weight estimation was based on empirical data from open literature

• Nacelle weight correlated to engine length

Engine Design Methodology Weight Estimation

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 26

Source: NASA

Source: NASA

Page 27: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

• Nacelle drag was estimated for all considered engines by means of the component build up methodology proposed by Raymer

• Exact (measured) nacelle geometry taken from the ATRA research aircraft (A320)

• For the novel engine concepts the maximum nacelle diameter, overall nacelle length and wetted area stem from nacelle preliminary design.

• Resulting deltas between the computed zero-lift coefficients for the novel concepts and the reference engine have been used as corrections to the aircraft’s Mach-number-dependent lift-to-drag characteristics

Engine Design Methodology Drag Estimation

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 27

ref

wetfd S

SIFFFCC

⋅⋅⋅=0,

+=

ldFF 35,01

65,058,210 ²)144,01()(log

455,0MR

C f +⋅=

Page 28: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

• Optimization was carried out by means of the process integration software ModelCenter

• Variation of the cruise design parameters

• Consideration of technological constraints

Engine Design Methodology Optimization

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 28

Parameter Limit Max T3@EOF 930 K Max T4@EOF 1820 K Max Tmetal 1220 K Min HPC Bld. Height 13.5 mm

Max AN2 1.35x104

Concept Parameter Unit Min Max

GTF

LPC PR [-] 2.0 5.0 HPC PR [-] 5.0 15.0 TET [K] 1500 1600 BPR [-] 10 16

CROR LPC PR [-] 5.0 10 HPC PR [-] 5.0 10 TET [K] 1550 1650

Page 29: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

• Core design limited by assumed temperature levels

• With increasing bypass ratio, working line control (VAN) becomes more important

• Efficiency improvements constrained by Nacelle Drag and Weight

Performance and Flow Path Results GTF

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 29

Component Parameter Unit GTF

Fan Diameter [m] 2.06 PR [-] 1.383 η (CR) [-] 0.921

LPC PR [-] 3.02 Stages [-] 4 ηis [-] 0.907

HPC PR [-] 11.4 Stages [-] 8 ηis [-] 0.891

HPT Stages [-] 2 ηis [-] 0.897

IPT Stages [-] n/a ηis [-] n/a

LPT Stages [-] 3 ηis [-] 0.94

Overall Parameter Unit GTF OPR [-] 46.98 BPR@TO [-] 14.2 TSFC [g/kNs] 13.67 Gear Ratio [-] 3.1 Bare Engine Length [m] 3.36 Nacelle Area [m2] 31.1 Engine POD Weight [kg] 3201

Page 30: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

CROR Performance and Flow Path Results

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 30

Overall Parameter Unit CROR OPR [-] 43.43 TSFC [g/kNs] 12.11 Gear Ratio [-] 9.5 Bare Engine Length [m] 4.42 Nacelle Wetted Area [m2] 19.3

Engine POD Weight [kg] 4097

Component Parameter Unit CROR LPC PR [-] 5.57

Stages [-] 5 ηis [-] 0.899

HPC PR [-] 7.9 Stages [-] 5 ηis [-] 0.896

HPT Stages [-] 1 ηis [-] 0.893

IPT Stages [-] 1 ηis [-] 0.898

LPT Stages [-] 3 ηis [-] 0.94

Propeller Diameter [m] 4.27 PR [-] n/a η (CR) [-] 0.853

• Core design limited by HPC blade height • Lower OPR than GTF

Page 31: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 31

Performance Results Figure of Merit

--12%

Advanced GTF

Page 32: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

NOx-relevant Performance Data

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 32

Page 33: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

• Flight mission assessment by means of DLR’s aircraft performance tool VarMission

• VarMission aircraft models are represented by characteristic aircraft weights and Mach-number-dependent lift-to-drag characteristics.

• Assumptions and Modifications for the present study:

• MTOW and MFC of the aircraft were kept constant for all aircraft-engine combinations.

• Differences in engine weight influence the aircraft’s OEW. Assuming that MZFW remains unchanged, MPL is also affected by changes in engine weight.

• Engine-specific and Mach-number-dependent modifications to the aircraft’s lift-to-drag characteristics have been applied in order to account for increased drag by larger engines.

Mission Analysis Methodology

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 33

Page 34: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

• Mission A (typical) • Distance 1650km

• Constant cruise altitude at FL350

• Climb/Cruise Mach numbers Mach 0.78

• Payload 15t (150 passengers at 100kg per PAX)

• Mission B (design mission): • Distance 4465km

• Cruise altitudes FL350-370 (mid-cruise step climb)

• Cruise Mach number 0.78

• Payload of 18t

Mission Analysis

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 34

0

2000

4000

6000

8000

10000

12000

14000

16000

0

100

200

300

400

00 1,000 2,000 3,000 4,000 5,000

Fuel

Bur

n [k

g]

Flig

ht L

evel

[100

ft]

Distance [km]

Altitude Profile and Fuel Burn vs. Distance (Mission 2)

Altitude

Fuel Burn

B)

Page 35: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Mission Analysis Results

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 35

Page 36: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

• A multi-disciplinary approach to preliminary counter rotating open rotor performance assessments was shown.

• Compared to a 1990s baseline configuration, the fuel burn advantages are predicted to lie in the range of and 27-30% for an upcoming CROR-engine and 17-19% for an Advanced GTF-configuration.

• Because of the high lapse rate of both high bypass ratio engines, the core

engine of the concepts run on non-dimensionally high power levels for cruise and top of climb compared to take-off conditions. This leads to high ratios of:

• Combustor outlet temperatures CR/TO

• Combustor inlet pressures CR/TO

Summary

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 DLR.de • Chart 36

Page 37: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Motivation and Background

Overview CROR Efforts at DLR

DREAM Rationale

CROR Method Validation and Benchmark

Blade Shape Optimization: Strategy and Results

Cycle Analysis

Outlook and Future Work

Outline

www.DLR.de • Chart 37 > Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014

Page 38: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Ongoing and future CROR Efforts

Refine acoustic prediction methods (pre-design, optimization)

CFD based CROR performance maps for improved cycle analysis

General Propulsor related efforts

Refine concpetual studies at cycle/module level (weight, noise etc.)

Strong focus on engine integration and coupled fan/intake design distortion tolerant fan design for highly integrated UHBR engines (OWA, BWB etc.)

Outlook

www.DLR.de • Chart 38

V2500 fan under

x-wind conditions

Ground vortex

Ingestion and fan

Interaction

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014

Page 39: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Cycle Considerations: Richard-Gregor Becker (AT-TRW) [email protected] Jianping Yin, Arne Stürmer (DLR-AS) Tom Otten, Andreas Döpelheuer (DLR AT-TRW) Eberhard Nicke, Christian Voss (DLR AT-FUV) Sebastien Guerin, Christian Weckmüller, Antoine Moreau, Lars Enghardt (DLR AT-TRA) European Union, Safran/Snecma, AIRBUS, TsAGI, CIAM, Onera

Acknowledgements

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014 www.DLR.de • Chart 39

Page 40: Propulsor Related Research at DLR - CROR Blade Optimization … · 2020. 6. 12. · 1.2 1.4 1.6 1.8 2 2.2 x [m] r a d u s [m 0 0.5 1 1.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Pre sur 35 0 3

Propulsor Related Research at DLR - CROR Blade Optimization and Cycle Analysis

Forum AE Technology Meeting Fuel Burn & CO2 Mitigation Technology Workshop ESPCI Paris Tech July 1st and 2nd 2014

www.DLR.de • Chart 40

Rainer Schnell [email protected]

Thank you !

> Open Rotor – Blade optimization & Cycle Analysis > R. Schnell > July, 2nd, 2014