44
Property Measurement for Fuel Research: Th D l t fP t T bl S t The Development of Property T unable Surrogate Mixture Models Thomas J. Bruno Thermophysical Properties Division National Institute of Standards and Technology Boulder, CO

Property Measurement for Fuel Research - NIST · 2012. 5. 8. · 840 800 820 kg/m 780 3 Jet-A-3638 Jet-A-4658 Je-tA-3638 model Je-tA-4658 model 760 ... LMO WBU DEN FNL APA 3602 3638

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Property Measurement for Fuel Research: Th D l t f P t T bl S tThe Development of Property Tunable Surrogate

    Mixture Models

    Thomas J. BrunoThermophysical Properties Division

    National Institute of Standards and Technology

    Boulder, CO

  • Why Surrogates?We all know the reasons‐

    • Aviation fuels are made of hundreds of componentscomponents– Must meet general specifications,b t an infinite n mber of ombinations an do sobut an infinite number of combinations can do so

  • Why Surrogates?We all know the reasons‐

    • Aviation fuels are made of hundreds ofAviation fuels are made of hundreds of components– Must meet general specifications– Must meet general specifications,but an infinite number of combinations can do so

    For well controlled measurements and modeling, a more defined composition is requiredmore defined composition is required.

  • Why Surrogates?We all know the reasons‐

    • Aviation fuels are made of hundreds ofAviation fuels are made of hundreds of components– Must meet general specifications– Must meet general specifications,but an infinite number of combinations can do so

    For well controlled measurements and modeling, a more defined composition is requiredmore defined composition is required.

    ‐repeatability

    tractability‐tractability

  • “Surrogate”Surrogate  means different 

    things tothings to different people

  • “Surrogate”Surrogate  means different 

    things tothings to different people

    Operational Surrogates:

    kineticskineticsflame characteristicssafety characteristics

  • “Surrogate”Surrogate  means different 

    things tothings to different people

    Thermophysical propertyproperty

    predictive surrogates

  • Results• For a specific sample (POSF 4658) regressed IBT, full ADC,

    density, viscosity, sound speed, thermal conductivity and cetane number to obtain an 8 component surrogate mixturecetane number to obtain an 8 component surrogate mixture capable of representing – the density to within 0.2% at atm. p, – sound speed 3.5%,sound speed 3.5%, – viscosity 3%, – thermal conductivity 4% – cetane number within 1 cetane number.cetane number within 1 cetane number. – The distillation curve is represented to within about 1K.

    • For a second sample (POSF 3638) the same procedure wasFor a second sample (POSF 3638) the same procedure was applied and a different 7 component surrogate was obtained, with similar performance.

  • But,

    • POSF 4658 and POSF 3638 are very different:different:

    – 4658 was a composite of 5 batches prepared at AFRL– 4658 was a composite of 5 batches, prepared at AFRL– 3638 was an oddball, in spec but with low aromatics

  • Different how???

  • Different how???

    520

    530

    500

    510

    K

    480

    490

    mpe

    ratu

    re, K

    460

    470Tem

    Jet-A-3638

    Jet-A-4658

    440

    450

    Jet-A-3638 model

    Jet-A-4658 model

    0 0.2 0.4 0.6 0.8 1Volume fraction

  • Different how???

    520

    530

    500

    510

    K

    ADC Curves 10 – 30 oC apart

    480

    490

    mpe

    ratu

    re, K

    apart

    460

    470Tem

    Jet-A-3638

    Jet-A-4658

    440

    450

    Jet-A-3638 model

    Jet-A-4658 model

    0 0.2 0.4 0.6 0.8 1Volume fraction

  • Different how???

    840

    800

    820

    780

    800

    kg/m

    3

    Jet-A-3638

    Jet-A-4658

    Jet-A-3638 model

    Jet-A-4658 model

    760

    ρ,

    Densities

    720

    740Densities were 1.5 % 

    apart720

    250 270 290 310 330 350 370 390

    Temperature, K

  • Different how??? Viscosities wereViscosities were between 4 and 20 % apart

    3000

    3500

    2000

    2500

    uPa.

    s

    Jet-A-3638

    1000

    1500

    Visc

    osity

    ,

    Jet-A-4658

    Jet-A-3638 model

    Jet-A-4658 model

    500

    1000

    0250 270 290 310 330 350 370 390

    Temperature, K

  • A similar problem with RP‐1, RP‐2:A similar problem with RP 1, RP 2:

    • Exactly how variable is RPExactly how variable is RP,• And how good is the Refprop model?

    B d l l– Based on only one sample

  • A similar problem with RP‐1, RP‐2:A similar problem with RP 1, RP 2:

    • Exactly how variable is RPExactly how variable is RP,• And how good is the Refprop model?

    B d l l– Based on only one sample

    Which we regarded as if it were brought 

    down the mountain by Mel Brooks, I mean, 

    Moses.

  • A similar problem with RP‐1, RP‐2:A similar problem with RP 1, RP 2:

    • Exactly how variable is RPExactly how variable is RP,• And how good is the Refprop model for it?

    B d l l– Based on only one sample– 2009 workshop at NIST‐Boulder pointed out need to determine variabilityto determine variability

    AFRL EAFB f l t th O th l El– AFRL‐EAFB formulates the Orthogonal Eleven

  • • 11 separate formulations• 11 separate formulations– Individually mixed from blending stocksAll i– All are in spec

    – All are possible deliverables

    • Composition, ADC, ρ, µ, ss, etc.d l• Model comparisons

    • Experimental part is done:• Lovestead, T.M., Windom, B.C., Rigge, J.R., Nickell, C, Bruno, T.J., Assessment of the 

    C iti l V i bilit f RP 1 d RP 2 ith th Ad d Di till ti CCompositional Variability of RP‐1 and RP‐2 with the Advanced Distillation Curve Approach,  Energy Fuels 2010, 24, 5611–5623

  • Approach for JP‐8/Jet‐A:Approach for JP 8/Jet A:

    • Obtain all JP‐8 and Jet‐A Jet‐A1 we can getObtain all JP 8 and Jet A, Jet A1 we can get– Composition, ADC, ρ, µ, ss, etc.

    At the same time, 

    • Develop a “tunable” Refprop model p p p

    Both jobs are about half done!Both jobs are about half done!

  • For the Measurement Campaign:For the Measurement Campaign:

    • We obtained 18 “orthogonal” samples of Jet‐AWe obtained 18  orthogonal  samples of Jet A and JP‐8– 5 from local airports– 5 from local airports– 13 from AFRL‐WPAFB (Tim)

  • 210

    Vapor Rise Temperature (IBT) Variability of Jet‐A 

    200.3 

    204.8 

    199.0  198 1200

    205

    210

    192.0  190.6 

    194.7 

    189.7 191.0  190.5 

    193.1 193.6 

    196.5 198.1 

    190

    195

    200

    , Tk (˚C)

    184.2 

    186.9  187.7 

    179.6 

    182.7 

    180

    185

    190

    emep

    ature,

    170

    175

    180Te

    165

    170

    Jet‐A

  • 210

    Vapor Rise Temperature (IBT) Variability of Jet‐A 

    200.3 

    204.8 

    199.0  198 1200

    205

    210

    192.0  190.6 

    194.7 

    189.7 191.0  190.5 

    193.1 193.6 

    196.5 198.1 

    190

    195

    200

    , Tk (˚C)

    184.2 

    186.9  187.7 

    179.6 

    182.7 

    180

    185

    190

    emep

    ature,

    170

    175

    180Te

    165

    170

    Jet‐A

  • 210

    Vapor Rise Temperature (IBT) Variability of Jet‐A 

    200.3 

    204.8 

    199.0  198 1200

    205

    210

    192.0  190.6 

    194.7 

    189.7 191.0  190.5 

    193.1 193.6 

    196.5 198.1 

    190

    195

    200

    , Tk (˚C)

    184.2 

    186.9  187.7 

    179.6 

    182.7 

    180

    185

    190

    emep

    ature,

    170

    175

    180Te

    165

    170

    Jet‐A

  • 280LMO WBU DEN FNL

    APA 3602 3638 4597

    260APA 3602 3638 4597

    4598 4599 4600 4658

    4877 5237 5245 5677

    5916 6407

    220

    240

    ure, T

    k (˚C)

    5916 6407

    200

    220

    Tempe

    ratu

    180

    1600 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

    Distillate Volume Fraction (%)

  • 280LMO WBU DEN FNL

    APA 3602 3638 4597

    260APA 3602 3638 4597

    4598 4599 4600 4658

    4877 5237 5245 5677

    5916 6407

    220

    240

    ure, T

    k (˚C)

    5916 6407

    200

    220

    Tempe

    ratu

    50 oC

    180

    50  C

    1600 10 20 30 40 50 60 70 80 90 100

    25 oC

    0 10 20 30 40 50 60 70 80 90 100Distillate Volume Fraction (%)

  • 280Average LMO WBUDEN FNL APA

    260

    DEN FNL APA3602 3638 45974598 4599 46004658 4877 52375245 5677 5916

    240

    re, T

    k (˚C)

    5245 5677 59166407

    200

    220

    Tempe

    ratur

    180

    200T

    The average

    1600 10 20 30 40 50 60 70 80 90 100

    The average

    0 10 20 30 40 50 60 70 80 90 100Distillate Volume Fraction (%)

  • 280Average LMO WBU

    260

    DEN FNL APA3602 3638 45974598 4599 46004658 4877 5237

    240

    e, T

    k (˚C)

    5245 5677 59166407

    200

    220

    empe

    rature

    180

    200Te

    The standard deviation

    1600 10 20 30 40 50 60 70 80 90

    The standard deviation

    0 10 20 30 40 50 60 70 80 90Distillate Volume Fraction (%)

  • Tunable Model DevelopmentTunable Model Development

    • Work was concurrent with the measurementsWork was concurrent with the measurements on Jet‐A, JP‐8

  • Tunable Model DevelopmentTunable Model Development

    • Work was concurrent with the measurementsWork was concurrent with the measurements on Jet‐A, JP‐8

    • Efforts were keptindependent

  • Tunable Model DevelopmentTunable Model Development

    • Work was concurrent with the measurementsWork was concurrent with the measurements on Jet‐A, JP‐8

    • Only used 4658, 3638 (the model bases) and 3602 ( hi h i ) 3773 ( fli h li JP 8)3602 (a high aromatic), 3773 (a flightline JP‐8)

  • Tunable Model DevelopmentTunable Model Development

    • Work was concurrent with the measurementsWork was concurrent with the measurements on Jet‐A, JP‐8

    • Only used 4658, 3638 (the model bases) and 3602 ( hi h i ) 3773 ( fli h li JP 8)3602 (a high aromatic), 3773 (a flight line JP‐8)

    • It had to be simple!– Then, we can refine it with the larger data set, g

  • • How do you “tune” the model to characterize the fuel?the fuel?– Possibilities: 

    • points on the distillation curve• points on the distillation curve, • heat of combustion, • a single density, g y,• viscosity,• refractive index, • the cetane number??? 

  • “Recipe” for SurrogateRecipe for Surrogate

    • Capture volatility• Capture volatility – use IBT (from ADC) to characterize the fuel

    • assume ideal solution and apply Raoult’s Law

    • you will need an expression for the vapor pressure of each constituent fluid at the IBT of the fuel

  • “Recipe” for SurrogateRecipe for Surrogate

    use 85% point on distillation curve to capture the variation of the– use 85% point on distillation curve to capture the variation of the distillation curve

    • empirical relationship that relies on the fact that for a mixture of n-dodecane n-tetradecane propylcyclohexane and 1 3-dodecane, n tetradecane, propylcyclohexane and 1,3diisopropylbenzene, at 85% it is due almost entirely to the C12 and C14 present

    i th T i t f th ADC• requires the T85 point from the ADC

  • “Recipe” for SurrogateRecipe for Surrogate

    use the cetane number to characterize the fuel– use the cetane number to characterize the fuel• for mixtures, typically a volume fraction average is used

    – approximate the volume fraction using molar volumes of the constituent fluids at a fixed temperature (where they all areconstituent fluids at a fixed temperature (where they all are liquid) and assume no change on mixing

    • requires molar volume of constituents at a fixed temperature, and the cetane number of the mixture and the constituents

  • “Recipe” for SurrogateRecipe for Surrogate

    sum of the mole fractions must equal one– sum of the mole fractions must equal one

  • “Recipe” SummaryRecipe Summary– Now have 4 equations {IBT, T85, cetane, sum mole fractions}, 4

    unknowns {x1 x2 x3 x4}unknowns {x1,x2,x3,x4}

    – Slate: n-dodecane, n-tetradecane, propylcyclohexane,1,3-diisopropylbenzene

    l it!– solve it!

  • ResultsPOSF 3602(High aromatic)

    POSF 3638 POSF 3773(Flightline)

    POSF 4658(composite)

    d d 0 111 0 282 0 137 0 038n-dodecane 0.111 0.282 0.137 0.038n-tetradecane 0.174 0.046 0.176 0.281propylcyclohexane 0.261 0.353 0.405 0.2991,3-diisopropylbenzene 0.454 0.319 0.282 0.382

  • ResultsResults• for sample “4658” (the

    “composite” sample) 260 0composite sample)– density at 288 K to within

    ~1% 240.0250.0

    260.0

    °C

    – cetane number within 1– heat of combustion w/in

    0.5%210 0

    220.0

    230.0

    mpe

    ratu

    re, °

    – index of refraction w/in 0.3%

    – viscosity at 288 K w/in 5% 190.0200.0

    210.0

    Tem

    4658 experimental data4658 new surrogate

    – thermal conductivity w/in 10%

    – sound speed w/in 3%

    180.00 0.2 0.4 0.6 0.8 1

    Distillate Volume Fractionp %

  • ResultsResults• for sample “3638” (the

    “low aromatic” sample) 230low aromatic sample)– density at 288 K to within

    ~0.5%215220225230

    °C

    – cetane number within 1– heat of combustion w/in

    1.5% 200205210215

    mpe

    ratu

    re, °

    – index of refraction w/in 0.4%

    – viscosity at 288 K w/in 7% 185190195Te

    m

    3638 experimental data3638 new surrogate

    – thermal conductivity w/in 8%

    – sound speed w/in 3 %

    1800 0.2 0.4 0.6 0.8 1

    Distillate Volume Fractionp %

  • ResultsResults• for sample “3602” (the

    “high aromatic” sample) 250high aromatic sample)– density at 288 K to within

    ~1.9% 230

    240

    250

    – cetane number within 1 cetane number

    – heat of combustion –no data 210

    220

    atur

    e, °C

    – index of refraction w/in 0.1%– viscosity at 288 K w/in 6%– thermal conductivity w/in

    190

    200

    Tem

    pera

    3602 experimental data3602 new surrogate

    t e a co duct ty /10%

    – sound speed w/in 4 %

    1800 0.2 0.4 0.6 0.8 1

    Distillate Volume Fraction

  • ResultsResults• for sample “3773” (the

    “flightline” sample)250

    flightline sample)– density at 288 K to within

    ~1% 230

    240

    e, °C

    – cetane number within 1– heat of combustion w/in

    0.4% 210

    220

    empe

    ratu

    re

    – index of refraction w/in 0.2%

    – viscosity at 288 K –no data190

    200Te

    3773 experimental data

    3773 new surrogate

    – thermal conductivity w/in 4%

    – sound speed w/in 3%

    1800 0.2 0.4 0.6 0.8 1

    Distillate Volume Fractionp %

  • ResultsResults

    • “Full” fitting procedure • Shortie “recipe” procedure• Full fitting procedure– requires full models for VLE,

    transport, a distillation algorithm, nonlinear

    • Shortie recipe procedure– requires only the 4 equations

    along with very limited data (IBT, T85, cetane number), a go , o ea

    regression algorithm, etc and appropriate data

    – Typically has ~8 components

    ( , 85, ce a e u be ),and nonlinear fitter

    – 4 components– Represents

    – Represents• density ~0.2 % (at atm.p)• IBT within ~1 K

    di till ti ithi 1K

    • density ~ 2 % (at atm. p)• IBT within ~ 5 K• distillation curve within ~7 K

    %• distillation curve within ~ 1K• cetane number ~3%• sound speed ~3.5%• viscosity ~3%

    • cetane number ~3%• sound speed ~3.5 %• viscosity ~7 %• thermal conductivity ~10 %viscosity 3%

    • thermal conductivity 4%• thermal conductivity 10 %