6
Propane Propane [1] Identifiers CAS number 74-98-6 PubChem 6334 ChemSpider 6094 UNII T75W9911L6 EC number 200-827-9 UN number 1978 KEGG D05625 ChEBI CHEBI:32879 ChEMBL CHEMBL135416 RTECS number TX2275000 Beilstein Reference 1730718 Gmelin Reference 25044 Jmol-3D images Image 1 (http://chemapps.stolaf.edu /jmol/jmol.php?model=CCC) Properties [2] Molecular formula C 3 H 8 Molar mass 44.10 g mol 1 Appearance Colorless gas Odor Odorless Propane From Wikipedia, the free encyclopedia (Redirected from Propan) Propane (/ ˈ p r oʊ p eɪ n/) is a three-carbon alkane with the molecular formula C 3 H 8 , normally a gas, but compressible to a transportable liquid. A by-product of natural gas processing and petroleum refining, it is commonly used as a fuel for engines, oxy-gas torches, barbecues, portable stoves, and residential central heating. Propane is one of a group of liquefied petroleum gases (LP gases). The others include butane, propylene, butadiene, butylene, isobutylene and mixtures thereof. Propane containing too much propene (also called propylene) is not suited for most vehicle fuels. HD-5 is a specification which establishes a maximum concentration of 5% propene in propane. Propane and other LP gas specifications are established in ASTM D-1835. [3] All propane fuels include an odorant, almost always ethanethiol, so that people can easily smell the gas in case of a leak. Propane as HD-5 was originally intended for use as vehicle fuel. HD-5 is currently being used in all propane applications. Contents 1 History 2 Sources 3 Properties and reactions 3.1 Energy content 3.2 Density 4 Uses 4.1 Domestic and industrial fuel 4.2 Refrigeration 4.2.1 In motor vehicles 4.3 Motor fuel 4.4 Improvised Explosive Device 4.5 Other uses 5 Propane risks and alternate gas fuels 6 Retail cost 6.1 United States 7 See also 8 References 9 External links History Propane was first identified as a volatile component in gasoline by Walter O. Snelling of the U.S. Bureau of Mines in 1910. The volatility of these lighter hydrocarbons caused them to be known as "wild" because of the high vapor pressures of unrefined gasoline. On March 31, the New York Times reported on Snelling's work with liquefied gas and that "...a steel bottle will carry enough gas to light an ordinary home for three weeks." [4] It was during this time that Snelling, in cooperation with Frank P. Peterson, Chester Kerr, and Arthur Kerr, created ways to liquefy the LP gases during the refining of natural gasoline. Together they established American Gasol Co., the first commercial marketer of propane. Snelling had produced relatively pure propane by 1911, and on March 25, 1913, his method of processing and producing LP gases was issued patent #1,056,845. [5] A separate method of producing LP gas through compression was created by Frank Peterson and patented [ citation needed] in 1912. IUPAC name SMILES InChI Propane - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Propan 1 6 0 7 : 06 10/03/ 2 01 4 ﻦﻣ مPDF created with pdfFactory Pro trial version www.pdffactory.com

Propane - Wikipedia, The Free Encyclopedia

  • Upload
    zidaaan

  • View
    25

  • Download
    6

Embed Size (px)

DESCRIPTION

Propane

Citation preview

  • Propane

    Propane[1]

    IdentifiersCAS number 74-98-6

    PubChem 6334

    ChemSpider 6094

    UNII T75W9911L6

    EC number 200-827-9

    UN number 1978

    KEGG D05625

    ChEBI CHEBI:32879

    ChEMBL CHEMBL135416

    RTECS number TX2275000

    BeilsteinReference

    1730718

    GmelinReference

    25044

    Jmol-3D images Image 1(http://chemapps.stolaf.edu/jmol/jmol.php?model=CCC)

    Properties[2]

    Molecular formula C3H8Molar mass 44.10 g mol1

    Appearance Colorless gas

    Odor Odorless

    PropaneFrom Wikipedia, the free encyclopedia (Redirected from Propan)

    Propane (/propen/) is a three-carbon alkane with the molecular formula C3H8, normally a gas, but compressible to a transportable liquid. A by-product ofnatural gas processing and petroleum refining, it is commonly used as a fuel for engines, oxy-gas torches, barbecues, portable stoves, and residentialcentral heating. Propane is one of a group of liquefied petroleum gases (LP gases). The others include butane, propylene, butadiene, butylene, isobutyleneand mixtures thereof.

    Propane containing too much propene (also called propylene) is not suited for most vehicle fuels. HD-5 is a specification which establishes a maximumconcentration of 5% propene in propane. Propane and other LP gas specifications are established in ASTM D-1835.[3] All propane fuels include an odorant,almost always ethanethiol, so that people can easily smell the gas in case of a leak. Propane as HD-5 was originally intended for use as vehicle fuel. HD-5 iscurrently being used in all propane applications.

    Contents1 History2 Sources3 Properties and reactions

    3.1 Energy content3.2 Density

    4 Uses4.1 Domestic and industrial fuel4.2 Refrigeration

    4.2.1 In motor vehicles4.3 Motor fuel4.4 Improvised Explosive Device4.5 Other uses

    5 Propane risks and alternate gas fuels6 Retail cost

    6.1 United States7 See also8 References9 External links

    HistoryPropane was first identified as a volatile component in gasoline by Walter O. Snelling of the U.S. Bureau of Mines in 1910. The volatility of these lighterhydrocarbons caused them to be known as "wild" because of the high vapor pressures of unrefined gasoline. On March 31, the New York Times reported onSnelling's work with liquefied gas and that "...a steel bottle will carry enough gas to light an ordinary home for three weeks."[4]

    It was during this time that Snelling, in cooperation with Frank P. Peterson, Chester Kerr, and Arthur Kerr, created ways to liquefy the LP gases during therefining of natural gasoline. Together they established American Gasol Co., the first commercial marketer of propane. Snelling had produced relatively purepropane by 1911, and on March 25, 1913, his method of processing and producing LP gases was issued patent #1,056,845.[5] A separate method ofproducing LP gas through compression was created by Frank Peterson and patented[citation needed] in 1912.

    IUPAC name

    SMILES

    InChI

    Propane - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Propan

    1 6 07: 06 10/03/201 4 PDF created with pdfFactory Pro trial version www.pdffactory.com

  • Density 2.0098 mg mL1 (at 0 C,101.3 kPa)

    Melting point 187.7 C; 305.8 F; 85.5 K

    Boiling point 42.25 to 42.04 C; 44.05to 43.67 F; 230.90 to231.11 K

    Solubility in water 40 mg L1 (at 0 C)

    log P 2.236

    Vapor pressure 853.16 kPa (at 21.1 C)

    kH 15 nmol Pa1 kg1

    ThermochemistrySpecificheat capacity C

    73.60 J K1 mol1

    Std enthalpy offormation fHo298

    105.2104.2 kJ mol1

    Std enthalpy ofcombustioncHo298

    2.21972.2187 MJ mol1

    HazardsMSDS External MSDS

    GHS pictograms

    GHS signal word DANGERGHS hazardstatements

    H220

    GHSprecautionarystatements

    P210

    EU Index 601-003-00-5

    EU classificationF+

    R-phrases R12

    S-phrases (S2), S16

    NFPA 704

    Flash point 104 C; 155 F; 169 K

    Autoignitiontemperature

    540 C; 1,004 F; 813 K

    Explosive limits 2.379.5%

    Related compounds

    The 1920s saw increased production of LP gas, with the first year of recorded production totaling 223,000 US gallons (840 m3) in 1922. In 1927, annualmarketed LP gas production reached 1 million US gallons (3,800 m3), and by 1935, the annual sales of LP gas had reached 56 million US gallons(210,000 m3). Major industry developments in the 1930s included the introduction of railroad tank car transport, gas odorization, and the construction of localbottle-filling plants. The year 1945 marked the first year that annual LP gas sales reached a billion gallons. By 1947, 62% of all U.S. homes had beenequipped with either natural gas or propane for cooking.[5]

    In 1950, 1,000 propane-fueled buses were ordered by the Chicago Transit Authority, and by 1958, sales in the U.S. had reached 7 billion US gallons(26,000,000 m3) annually. In 2004 it was reported to be a growing $8-billion to $10-billion industry with over 15 billion US gallons (57,000,000 m3) of propanebeing used annually in the U.S.[6]

    The "prop-" root found in "propane" and names of other compounds with three-carbon chains was derived from "propionic acid".[7]

    SourcesPropane is produced as a by-product of two other processes, natural gas processing and petroleum refining. The processing of natural gas involves removalof butane, propane, and large amounts of ethane from the raw gas, in order to prevent condensation of these volatiles in natural gas pipelines. Additionally,oil refineries produce some propane as a by-product of cracking petroleum into gasoline or heating oil. The supply of propane cannot easily be adjusted tomeet increased demand, because of the by-product nature of propane production. About 90% of U.S. propane is domestically produced.[citation needed] TheUnited States imports about 10% of the propane consumed each year, with about 70% of that coming from Canada via pipeline and rail. The remaining 30%of imported propane comes to the United States from other sources via ocean transport.

    After it is produced, North American propane is stored in huge salt caverns. Examples of these are Fort Saskatchewan, Alberta; Mont Belvieu, Texas andConway, Kansas. These salt caverns were hollowed out in the 1940s,[8] and they can store 80,000,000 barrels (13,000,000 m3) or more of propane. Whenthe propane is needed, much of it is shipped by pipelines to other areas of the United States. Propane is also shipped by truck, ship, barge, and railway tomany U.S. areas.[9]

    Properties and reactionsPropane undergoes combustion reactions in a similar fashion to other alkanes. In the presence of excess oxygen, propane burns to form water and carbondioxide.

    C3H8 + 5 O2 3 CO2 + 4 H2O + heatpropane + oxygen carbon dioxide + water

    When not enough oxygen is present for complete combustion, incomplete combustion occurs when propane burns and forms water, carbon monoxide, andcarbon dioxide.

    C3H8 + 4.5 O2 2 CO2 + CO + 4 H2O + heat

    Propane + Oxygen Carbon dioxide + Carbon monoxide + Water

    Unlike natural gas, propane is heavier than air (1.5 times as dense). In its raw state, propane sinks and pools at the floor. Liquid propane will flash to a vaporat atmospheric pressure and appears white due to moisture condensing from the air.

    When properly combusted, propane produces about 50 MJ/kg of heat.[10] The gross heat of combustion of one normal cubic meter of propane is around91 megajoules.[11]

    Propane is nontoxic; however, when abused as an inhalant it poses a mild asphyxiation risk through oxygen deprivation. Commercial products contain

    Propane - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Propan

    2 6 07: 06 10/03/201 4 PDF created with pdfFactory Pro trial version www.pdffactory.com

  • Related alkanes EthaneEthyl iodiden-Propyl iodideIsopropyl iodideButaneButyl iodide

    Relatedcompounds

    Diiodohydroxypropane

    Supplementary data pageStructure andproperties

    n, r, etc.

    Thermodynamicdata

    Phase behaviourSolid, liquid, gas

    Spectral data UV, IR, NMR, MS

    (verify) (what is: / ?)Except where noted otherwise, data are givenfor materials in their standard state (at 25 C

    (77 F), 100 kPa)

    Infobox references

    hydrocarbons beyond propane, which may increase risk. Commonly stored under pressure at room temperature, propane and its mixtures expand and coolwhen released and may cause mild frostbite.

    Propane combustion is much cleaner than gasoline combustion, though not as clean as natural gas combustion. The presence of CC bonds, plus themultiple bonds of propylene and butylene, create organic exhausts besides carbon dioxide and water vapor during typical combustion. These bonds alsocause propane to burn with a visible flame.

    Energy content

    The enthalpy of combustion of propane gas is (2219.2 0.5) kJ/mol or (50.33 0.01) MJ/kg.[10]

    Density

    The density of liquid propane at 25 C (77 F) is 0.493 g/cm3, which is equivalent to 4.11 pounds per U.S. liquid gallon or 493 kg/m3. Propane expands at1.5% per 10 F. Thus, liquid propane has a density of approximately 4.2 pounds per gallon (504 kg/m3) at 60 F (15.6C).

    UsesPropane is a popular choice for barbecues and portable stoves because the low boiling point of 42 C (44 F) makes it vaporize as soon as it is releasedfrom its pressurized container. Therefore, no carburetor or other vaporizing device is required; a simple metering nozzle suffices. Propane powers somelocomotives, buses, forklifts, taxis and ice resurfacing machines and is used for heat and cooking in recreational vehicles and campers. Since it can betransported easily, it is a popular fuel for home heat and backup electrical generation in sparsely populated areas that do not have natural gas pipelines.

    Propane is generally stored and transported in steel cylinders as a liquid with a vapor space above the liquid. The vapor pressure in the cylinder is a function of temperature. When gaseous propane isdrawn at a high rate, the latent heat of vaporisation required to create the gas will cause the bottle to cool. (This is why water often condenses on the sides of the bottle and then freezes). In addition, thelightweight, high-octane compounds vaporize before the heavier, low-octane ones. Thus, the ignition properties change as the cylinder empties. For these reasons, the liquid is often withdrawn using adip tube. Propane is used as fuel in furnaces for heat, in cooking, as an energy source for water heaters, laundry dryers, barbecues, portable stoves, and motor vehicles.

    Commercially available "propane" fuel, or LPG, is not pure. Typically in the United States and Canada, it is primarily propane (at least 90%), with the rest mostly ethane, propylene, butane, and odorantsincluding ethyl mercaptan.[12][13] This is the HD-5 standard, (Heavy Duty-5% maximum allowable propylene content, and no more than 5% butanes and ethane) defined by the American Society forTesting and Materials by its Standard 1835 (http://hd5propane.com) for internal combustion engines. Not all products labeled "propane" conform to this standard however. In Mexico, for example, wheremuch of the bottled liquefied gas sold is, in fact, butane, gas labeled "propane" may actually consist of 60% propane and 40% butane.[14]

    Domestic and industrial fuel

    Propane use is growing rapidly in non-industrialized areas of the world. Propane is replacing wood and other traditional fuel sources in such places, where it is now sometimes called "cooking gas." The"propane" sold outside North America is actually a mixture of propane and butane. The warmer the country, the higher the butane content, commonly 50/50 and sometimes reaching 75% butane. Usageis calibrated to the different-sized nozzles found in non-U.S. grills.[citation needed] Americans who take their grills overseas such as military personnel can find U.S.-specification propane at AAFESmilitary post exchanges.

    North American industries using propane include glass makers, brick kilns, poultry farms and other industries that need portable heat.

    In rural areas of North America, as well as northern Australia and some parts of southern India propane is used to heat livestock facilities, in grain dryers, and other heat-producing appliances. Whenused for heating or grain drying it is usually stored in a large, permanently placed cylinder which is recharged by a propane-delivery truck. As of 2007, 9.7 million American households use propane astheir primary heating fuel.[15]

    In North America, local delivery trucks with an average cylinder size of 3,000 US gallons (11,000 L), fill up large cylinders that are permanently installed on the property, or other service trucks exchangeempty cylinders of propane with filled cylinders. Large tractor-trailer trucks, with an average cylinder size of 10,000 US gallons (38,000 L), transport the propane from the pipeline or refinery to the localbulk plant. The bobtail and transport are not unique to the North American market, though the practice is not as common elsewhere, and the vehicles are generally called tankers. In many countries,

    Propane - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Propan

    3 6 07: 06 10/03/201 4 PDF created with pdfFactory Pro trial version www.pdffactory.com

  • Pyrometry of a propane flameusing thin-filament velocimetry.Red=greater than 1,750 K(1,480 C), Orange=1,700 K(1,430 C), Yellow=1,600 K(1,330 C), Green=1,350 K(1,080 C), Teal=1,100 K (830 C),Blue=875 K (602 C),Violet=750 K (477 C)

    propane is delivered to consumers via small or medium-sized individual cylinders, while empty cylinders are removed for refilling at a central location.

    Refrigeration

    Propane is also instrumental in providing off-the-grid refrigeration, usually by means of a gas absorption refrigerator.

    Blends of pure, dry "isopropane" (R-290a) (isobutane/propane mixtures) and isobutane (R-600a) have negligible ozone depletion potential and very low GlobalWarming Potential (having a value of 3.3 times the GWP of carbon dioxide) and can serve as a functional replacement for R-12, R-22, R-134a, and otherchlorofluorocarbon or hydrofluorocarbon refrigerants in conventional stationary refrigeration and air conditioning systems.[16]

    In motor vehicles

    Such substitution is widely prohibited or discouraged in motor vehicle air conditioning systems, on the grounds that using flammable hydrocarbons in systemsoriginally designed to carry non-flammable refrigerant presents a significant risk of fire or explosion.[17][18][19][20][21][22][23][24]

    Vendors and advocates of hydrocarbon refrigerants argue against such bans on the grounds that there have been very few such incidents relative to the number ofvehicle air conditioning systems filled with hydrocarbons.[25][26]

    Motor fuel

    Main article: Autogas

    Propane is also being used increasingly for vehicle fuels. In the U.S., over 190,000 on-road vehicles use propane, and over 450,000 forklifts use it for power. It is thethird most popular vehicle fuel in America, behind gasoline and Diesel fuel. In other parts of the world, propane used in vehicles is known as autogas. In 2007,approximately 13 million vehicles worldwide use autogas.[27]

    The advantage of propane in cars is its liquid state at a moderate pressure. This allows fast refill times, affordable fuel cylinder construction, and price ranges typicallyjust over half that of gasoline. Meanwhile it is noticeably cleaner (both in handling, and in combustion), results in less engine wear (due to carbon deposits) withoutdiluting engine oil (often extending oil-change intervals), and until recently was a relative bargain in North America. Octane rating of propane is relatively high at 110. Inthe United States the propane fueling infrastructure is the most developed of all alternative vehicle fuels. Many converted vehicles have provisions for topping off from "barbecue bottles". Purpose-builtvehicles are often in commercially owned fleets, and have private fueling facilities. A further saving for propane fuel vehicle operators, especially in fleets, is that pilferage is much more difficult than withgasoline or Diesel fuels.

    Propane is also used as fuel for small engines, especially those used indoors or in areas with insufficient fresh air and ventilation to carry away the more toxic exhaust of an engine running on gasoline orDiesel fuel. More recently, there have been lawn care products like string trimmers, lawn mowers and leaf blowers intended for outdoor use, but fueled by propane to reduce air pollution.[citation needed]

    Improvised Explosive Device

    Propane and propane cylinders have been used in attacks and attempted attacks against schools and terrorist targets such as the Columbine High School massacre, 2012 Brindisi school bombing,the Discovery Communications headquarters hostage crisis and in car bombs.

    Other uses

    Propane is used as a feedstock for the production of base petrochemicals in steam cracking.Propane is the primary fuel for hot air balloons.It is used in semiconductor manufacture to deposit silicon carbide.Propane is commonly used in theme parks and in the movie industry as an inexpensive, high-energy fuel for explosions and other special effects.Propane is used as a propellant for Paintball and Airsoft guns, relying on the expansion of the gas to fire the projectile. It does not ignite the gas. The use of a liquefied gas gives more shots percylinder, compared to a compressed gas.Propane is used as a propellant for household air freshener sprays.

    Propane - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Propan

    4 6 07: 06 10/03/201 4 PDF created with pdfFactory Pro trial version www.pdffactory.com

  • A 20 lb (9.1 kg) steel propanecylinder. This cylinder is fitted withan overfill prevention device(OPD) valve, as evidenced by thetrilobular handwheel.

    Domestic spherical steelpressure vessel forpropane storage in theUnited States, designed inthe 1980s, with pressureregulator.

    A local delivery truck, behind thepickup truck

    Retail sale of propane in theUnited States

    Propane risks and alternate gas fuelsPropane is denser than air. If a leak in a propane fuel system occurs, the gas will have a tendency to sink into any enclosed area and thusposes a risk of explosion and fire. The typical scenario is a leaking cylinder stored in a basement; the propane leak drifts across the floor tothe pilot light on the furnace or water heater, and results in an explosion or fire. This property makes propane generally unsuitable as afuel for boats.

    Propane is bought and stored in a liquid form (LPG), and thus fuel energy can be stored in a relatively small space. Compressed NaturalGas (CNG), largely methane, is another gas used as fuel, but it cannot be liquefied by compression at normal temperatures, as these arewell above its critical temperature. As a gas, very high pressure is required to store useful quantities. This poses the hazard that, in anaccident, just as with any compressed gas cylinder (such as a CO2 cylinder used for a soda concession) a CNG cylinder may burst withgreat force, or leak rapidly enough to become a self-propelled missile. Therefore, CNG is much less efficient to store, due to the largecylinder volume required. An alternative means of storing natural gas is as a cryogenic liquid in an insulated container as Liquefied NaturalGas (LNG). This form of storage is at low pressure and is around 3.5 times as efficient as storing it as CNG. Unlike propane, if a spilloccurs, CNG will evaporate and dissipate harmlessly because it is lighter than air. Propane is much more commonly used to fuel vehiclesthan is natural gas because the equipment required costs less. Propane requires just 1,220 kilopascals (177 psi) of pressure to keep itliquid at 37.8 C (100 F).[28]

    Retail cost

    United States

    As of October 2013, the retail cost of propane was approximately $2.37 per gallon, or roughly $12.64 per 1 million BTUs.[29] This means that filling a 500-gallonpropane tank, which is what households who use propane as their main source of energy usually require, costs $1185, a 7.5% increase on the 20122013 winterseason average US price.[30] However, propane costs per gallon change significantly from one state to another: the Energy Information Administration quotes a $2.995per gallon average on the East Coast for October 2013,[31] while the figure for the Midwest was $1.860 for the same period.[32]

    See alsoBlau gasDimethyl etherNational Propane Gas Association

    Isopropyl alcoholPropargyl alcohol

    References

    ^ "Propane Compound Summary" (http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=6334&loc=ec_rcs). PubChem Compound. USA: National Centerfor Biotechnology Information. 27 March 2005. Identification and Related Records.Retrieved 8 December 2011.

    1.

    ^ Record of Propane (http://gestis-en.itrust.de/nxt/gateway.dll?f=id$t=default.htm$vid=gestiseng:sdbeng$id=010020) in the GESTISSubstance Database from the IFA

    2.

    ^ ASTM D-1835 (http://www.astm.org/Standards/D1835.htm)3.^ "GAS PLANT IN STEEL BOTTLE.; Dr. Snelling's Process Gives Month's Supply inLiquid Form." (http://query.nytimes.com/gst/abstract.html?res=9C04E3DB1F31E233A25752C0A9629C946396D6CF). TheNew York Times. April 1, 1912. p. 9. Retrieved 2007-12-22.

    4.

    ^ a b National Propane Gas Association. "The History of Propane"(http://web.archive.org/web/20110111065134/http://www.npga.org/i4a/pages/index.cfm?pageid=634). Retrieved 2007-12-22.

    5.

    ^ Propane Education and Research Council. "Fact Sheet The History of Propane"(http://web.archive.org/web/20040216021025/http://www.propanecouncil.org/newsroom/fact_sheetsDetail.cfv?id=5). Retrieved 2007-12-22.

    6.

    ^ "Online Etymology Dictionary entry for propane" (http://www.etymonline.com/index.php?term=propane). Etymonline.com. Retrieved 2010-10-29.

    7.

    ^ Argonne National Laborator (1999). "Salt Cavern Information Center"(http://web.ead.anl.gov/saltcaverns/uses/hcstorage/index.htm). Retrieved 2007-12-22.

    8.

    ^ Propane Education and Research Council. "History of Propane"(http://www.propanecouncil.org/what-is-propane/history/). Retrieved 22 May 2012.

    9.

    ^ a b Propane (http://webbook.nist.gov/cgi/cbook.cgi?ID=C74986&Units=SI&10.

    Propane - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Propan

    5 6 07: 06 10/03/201 4 PDF created with pdfFactory Pro trial version www.pdffactory.com

  • Mask=1#Thermo-Gas). NIST Standard Reference Data referring toPittam, D. A.; Pilcher, G. (1972). "Measurements of heats ofcombustion by flame calorimetry. Part 8.Methane, ethane,propane, n-butane and 2-methylpropane". Journal of the ChemicalSociety, Faraday Transactions 1: Physical Chemistry in CondensedPhases 68: 2224. doi:10.1039/f19726802224 (http://dx.doi.org/10.1039%2Ff19726802224). and Rossini, F.D. (1934)."Calorimetric determination of the heats of combustion of ethane,propane, normal butane, and normal pentane" (https://archive.org/details/calorimetricdete12673ross). J. Res. NBS 12: 735750.^ Bossel, Ulf (2003) Well-to-Wheel Studies, Heating Values, and theEnergy Conservation Principle (http://web.archive.org/web/20120717085922/http://www.efcf.com/reports/E10.pdf),Proceedings of Fuel Cell Forum.

    11.

    ^ Amerigas. "Amerigas Material Safety Data Sheet for OdorizedPropane" (http://www.amerigas.com/pdfs/safe_eng.pdf). Retrieved2011-10-24.

    12.

    ^ Suburban Propane. "Suburban Propane Material Safety DataSheet for Commercial Odorized Propane"(http://www.suburbanpropane.com/safety/pdf/propane/SAF%205152%20MATERIAL%20SAFETY%20DATA%20SHEET.pdf). Retrieved 2011-10-24.

    13.

    ^ Mexican Ministry of Energy. "Liquefied Petroleum Gas MarketOutlook 2008 2017" (http://www.energia.gob.mx/res/PE_y_DT/pub/LPG%20Outlook%202008-2017.pdf). Mexican Ministry ofEnergy. Retrieved 2012-05-17.

    14.

    ^ Sloan, Michael and Meyer, Richard. "2009 Propane MarketOutlook" (http://www.propanecouncil.org/uploadedFiles/Ad/Propane%20Market%20Outlook%20_%20Full%20Report.pdf).Propane Education and Research Council. Retrieved 28 May 2012.

    15.

    ^ "European Commission on retrofit refrigerants for stationaryapplications" (http://web.archive.org/web/20090805150605/http://ec.europa.eu/environment/ozone/pdf/hcfc_technical_meeting_summary.pdf) (PDF). Retrieved2010-10-29.

    16.

    ^ "U.S. EPA hydrocarbon-refrigerants FAQ" (http://www.epa.gov/ozone/snap/refrigerants/hc12alng.html). Epa.gov. Retrieved2010-10-29.

    17.

    ^ Compendium of hydrocarbon-refrigerant policy statements,October 2006 (http://web.archive.org/web/20080719055123/http://www.vasa.org.au/pdf/memberlibrary/hydrocarbons/hc_white_paper.pdf). vasa.org.au

    18.

    ^ "MACS bulletin: hydrocarbon refrigerant usage in vehicles"(http://www.autoacforum.com/MACS/HCwarning.pdf) (PDF).Retrieved 2010-10-29.

    19.

    ^ "Society of Automotive Engineers hydrocarbon refrigerantbulletin" (http://www.sae.org/news/releases/05hydrocarbon_warning.htm). Sae.org. 2005-04-27. Retrieved2010-10-29.

    20.

    ^ "Shade Tree Mechanic on hydrocarbon refrigerants"(http://www.shadetreemechanic.com/cc_hydrocarbon_refrigerants.htm). Shadetreemechanic.com.2005-04-27. Retrieved 2010-10-29.

    21.

    ^ "Saskatchewan Labour bulletin on hydrocarbon refrigerants invehicles" (http://www.labour.gov.sk.ca/Default.aspx?DN=2fb5ac24-d90e-4408-bf40-559793bd8e96). Labour.gov.sk.ca. 2010-06-29.Retrieved 2010-10-29.

    22.

    ^ VASA on refrigerant legality & advisability (http://web.archive.org/web/20080719134349/http://www.vasa.org.au/content/refriggas/index.php#Bookmark%202). vasa.org.au

    23.

    ^ "Queensland (Australia) government warning on hydrocarbonrefrigerants" (http://web.archive.org/web/20081217150006/http://www.energy.qld.gov.au/zone_files/petroleum_pdf/safety_alert025.pdf). Energy.qld.gov.au. Retrieved 2010-10-29.

    24.

    ^ "New South Wales (Australia) Parliamentary record, 16 October1997" (http://www.parliament.nsw.gov.au/prod/parlment/HansArt.nsf/V3Key/LA19971016015). Parliament.nsw.gov.au. 1997-10-16.Retrieved 2010-10-29.

    25.

    ^ "New South Wales (Australia) Parliamentary record, 29 June2000" (http://www.parliament.nsw.gov.au/prod/parlment/hansart.nsf/V3Key/LC20000629051). Parliament.nsw.gov.au. Retrieved2010-10-29.

    26.

    ^ Propane Education & Research Council. "Autogas"(http://web.archive.org/web/20120626204314/http://www.propanecouncil.org/propane-as-fuel/). PERC. Retrieved2012-05-17.

    27.

    ^ "Propane Vapor Pressure" (http://www.engineeringtoolbox.com/propane-vapor-pressure-d_1020.html). The Engineering ToolBox.2005. Retrieved 2008-07-28.

    28.

    ^ US Energy Information Administration (November 12, 2013)."Heating Oil and Propane Prices" (http://www.eia.gov/dnav/pet/pet_pri_wfr_dcus_nus_m.htm).

    29.

    ^ Propane Deal (November 12, 2013). "Current Propane Prices"(http://propanedeal.com/prices/current-propane-prices).

    30.

    ^ US Energy Information Administration (November 12, 2013)."East Coast Heating Oil and Propane Prices" (http://www.eia.gov/dnav/pet/pet_pri_wfr_dcus_R10_m.htm).

    31.

    ^ US Energy Information Administration (November 12, 2013)."Midwest Heating Oil and Propane Prices" (http://www.eia.gov/dnav/pet/pet_pri_wfr_dcus_R20_m.htm).

    32.

    External linksCanadian Propane Association (http://www.propane.ca)Direct synthesis of propane from synthesis gas (syngas) (http://cat.inist.fr/?aModele=afficheN&cpsidt=19971197)International Chemical Safety Card 0319 (http://www.inchem.org/documents/icsc/icsc/eics0319.htm)National Propane Gas Association (U.S.) (http://www.npga.org/i4a/pages/index.cfm?pageid=1)NIOSH Pocket Guide to Chemical Hazards (http://www.cdc.gov/niosh/npg/npgd0524.html)Propane Education & Research Council (U.S.) (http://www.propanecouncil.org)Propane Properties Explained (http://www.propane101.com/aboutpropane.htm) Descriptive Breakdown of Propane CharacteristicsUKLPG: Propane and Butane in the UK (http://www.uklpg.org)US Energy Information Administration (http://www.eia.gov/)World LP Gas Association (WLPGA) (http://www.worldlpgas.com)

    Retrieved from "http://en.wikipedia.org/w/index.php?title=Propane&oldid=597141556"Categories: Alkanes Aerosol propellants Refrigerants Fuel gas Hydrocarbons Industrial gases

    This page was last modified on 10 March 2014 at 02:20.Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy.Wikipedia is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

    Propane - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Propan

    6 6 07: 06 10/03/201 4 PDF created with pdfFactory Pro trial version www.pdffactory.com