Propagation of Partially Coherent Bessel Gaussian Beams Carrying Optical Vortices in Non Kolmogorov Turbulence 2014 Optics and Laser Technology

Embed Size (px)

Citation preview

  • 7/22/2019 Propagation of Partially Coherent Bessel Gaussian Beams Carrying Optical Vortices in Non Kolmogorov Turbulence

    1/7

    Propagation of partially coherent BesselGaussian beams carrying

    optical vortices in non-Kolmogorov turbulence

    Zhiyuan Qin, Rumao Tao, Pu Zhou, Xiaojun Xu, Zejin Liu n

    College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China

    a r t i c l e i n f o

    Article history:

    Received 2 April 2013

    Received in revised form15 July 2013

    Accepted 3 August 2013

    Keywords:

    Propagation

    BesselGaussian beams

    Non-Kolmogorov turbulence

    a b s t r a c t

    The analytical formulae for the average intensity of the propagation of partially coherent BesselGaussian

    beams (BGBs) with optical vortices in non-Kolmogorov turbulence have been derived based on using a

    coherence superposition approximation of decentered Gaussian beams and the extended Huygens

    Fresnel principle. The influences of optical vortices, partially coherence and the non-Kolmogorov

    turbulence on irradiance distributions are investigated by numerical examples. Numerical results reveal

    that the vortex characteristics of the partially coherent BGBs are less affected by the turbulence with

    larger topological charge. It is shown that the characteristic of the existence of vortex in the irradiance

    distribution has been lost and the doughnut beam spot becomes a circularly Gaussian beam spot during

    propagation. The propagation of the beam is different from that in the case of Kolmogorov turbulence

    and the propagation properties of partially coherent BGBs in non-Kolmogorov turbulence are closely

    related to the beam parameters and the turbulence parameters. The spreading effects due to diffraction

    and coherence of initial beams can be neglected after long distance propagation.

    & 2013 Elsevier Ltd. All rights reserved.

    1. Introduction

    In the past decades, due to its important applications, such as infree-space optical communication, remote sensing of atmosphere,

    and target tracking, the propagation of laser beams through a

    turbulent atmosphere has attracted considerable theoretical and

    practical interest [1,2]. Various types of laser beams propagating

    through turbulent atmosphere have been investigated [311].

    However, these studies above cited have been mainly restricted to

    the beams without optical vortices and to the case of the ideal

    atmospheric turbulence, such as the Kolmogorov model.

    Recent experiment results revealed that, in the real atmosphere,

    turbulence in some portions of the atmosphere, such as in the

    troposphere and the stratosphere, deviates from Kolmogorov's

    model, and in the case of laser propagation along the vertical

    direction, the turbulence also indicates strongly a non-Kolmogorov

    character [1216]. Then a non-Kolmogorov model is presented [17],

    which is more general and reduces to the Kolmogorov model only

    for the generalized exponent 11/3. It has been reported that,based on this non-Kolmogorov spectrum, laser beams provide a

    different property when propagating in non-Kolmogorov turbu-

    lence [1216]. On the other hand, laser beams possessing wave-

    front singularities known as optical vortices, have become the focus

    of many investigations because of their interesting properties as

    well as because of their potential applications [1823].

    As is well known, Bessel beams are one of the typical examples

    of singularity beams and, due to its nondiffracting property in free

    propagation and its advantages over other hollow light beams forguiding or trapping atoms, has attracted a lot of attention [2429].

    The properties of BGB in turbulent atmosphere have been studied

    [3032] and it was both theoretically and experimentally demon-

    strated that spatially partially coherent beams are less affected by

    turbulence than fully coherent ones [2,3335]. However, the pro-

    pagation of partially coherent BGBs in non-Kolmogorov turbulence

    has not been examined until now. In this manuscript, our aims are

    to investigate the propagation of partially coherent BGBs in non-

    Kolmogorov turbulence. Analytical formulas for averaged intensity

    distribution are derived and some useful results are found.

    2. Analysis of theory

    By adopting the Gaussian exponential expansion, A BGB withcharge n can be quite well approximated as a combination of M

    decentered Gaussian beams (dGBs), that is [30]

    E r!; 0 JnR

    w20

    !exp

    2

    w20 in

    !exp ik

    2

    2F

    % 1Min

    exp R2

    4w20

    !exp ikx

    2 y22F

    M1

    m 0exp xi=2R cosm

    2 yi=2R sin m2w20

    im" #

    1

    Contents lists available at ScienceDirect

    journal homepage: www.elsevier.com/locate/optlastec

    Optics & Laser Technology

    0030-3992/$- see front matter & 2013 Elsevier Ltd. All rights reserved.

    http://dx.doi.org/10.1016/j.optlastec.2013.08.002

    n Corresponding author. Tel.: 86 731 4573763 8111; fax: 86 731 84514127.E-mail addresses: [email protected] , [email protected] (R. Tao),

    [email protected] (Z. Liu).

    Optics & Laser Technology 56 (2014) 182188

    http://www.sciencedirect.com/science/journal/00303992http://www.elsevier.com/locate/optlastechttp://dx.doi.org/10.1016/j.optlastec.2013.08.002mailto:[email protected]:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.optlastec.2013.08.002http://dx.doi.org/10.1016/j.optlastec.2013.08.002http://dx.doi.org/10.1016/j.optlastec.2013.08.002http://dx.doi.org/10.1016/j.optlastec.2013.08.002http://dx.doi.org/10.1016/j.optlastec.2013.08.002http://dx.doi.org/10.1016/j.optlastec.2013.08.002mailto:[email protected]:[email protected]:[email protected]://crossmark.dyndns.org/dialog/?doi=10.1016/j.optlastec.2013.08.002&domain=pdfhttp://crossmark.dyndns.org/dialog/?doi=10.1016/j.optlastec.2013.08.002&domain=pdfhttp://crossmark.dyndns.org/dialog/?doi=10.1016/j.optlastec.2013.08.002&domain=pdfhttp://dx.doi.org/10.1016/j.optlastec.2013.08.002http://dx.doi.org/10.1016/j.optlastec.2013.08.002http://dx.doi.org/10.1016/j.optlastec.2013.08.002http://www.elsevier.com/locate/optlastechttp://www.sciencedirect.com/science/journal/00303992
  • 7/22/2019 Propagation of Partially Coherent Bessel Gaussian Beams Carrying Optical Vortices in Non Kolmogorov Turbulence

    2/7

    where (j r!j ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

    x2 y2p

    ,) is the polar coordinates and r!(x, y).

    m nm0, 0 2=M, m m0, while n is a integer termed as aspiral number or topological charge. F is the phase front radius of

    curvature. Here, F40 represents a convergent beam and Fo0

    represents a divergent beam. Carefully adjusting the parameters n,

    M, and R, the results evaluated by Eq. (1) and directly by the BGB

    may be quite well consistent. For example, for M12, R4w0 andn1, 2, 3 and 4, over 99% of the optical energy is converted into a

    BGB with charge n.By introducing a Gaussian term of the spectral degree of

    coherence, the fully coherent BG beam can be extended to the

    partially coherent one [3638]. With the help of Eq. (1), cross-

    spectral density function of the partially coherent BGBs at the

    source plane z0 can be written as

    W r!1; r!2; 0

    1M2

    exp

    x

    21 x22y21 y22

    w20x1x2

    2 y1y222s20

    ikx21 y21x22 y22

    2F

    M1

    p 0

    M1

    q 0expinpq0

    exp

    iRx1 cos p0x2 cos q0 iRy1 sin p0y2 sin q0

    w20" #

    2In Eq. (2) s0 is the spatial correlation length of the partially

    coherent BGB, and k is the wave number related to the wave

    length by k 2=.The average intensity distribution on the z plane can be

    calculated by using extended HuygensFresnel diffraction integral

    incorporating random inhomogeneous media as follows [511]

    I r!;z k2z

    2 Z11

    Z11

    Z11

    Z11

    dr10!dr20

    !Wr10

    !; r2

    0!; 0

    exp

    ik

    2z r!r1

    !2 r!r2

    !2

    exp r!; r

    1!n r!; r2! 3

    where r1!; r1!

    is the complex phase function that depends on theproperties of the turbulence medium. denotes the average over

    the ensemble of the turbulent medium, and

    exp r!; r1!

    n r!; r2!

    exp 42k2zZ1

    0

    Z10

    ddn;1J0jr2!

    r1!

    j( )

    4

    where is the magnitude of two-dimensional spatial frequency, J0is the Bessel function of the first kind and zero order, and n;denotes the spatial power spectrum of the refractive-index fluc-

    tuations of the atmosphere turbulence. Including both the inner-

    and outer-scale effects, the non-Kolmogorov spectrum is definedas [12,13]

    n; HeC2nexp2=2m2 20=2;0ro1; 3oo4;

    5

    where H 1d cos =2=42,d denotes the Gammafunction, 0 2=L0 and m c=l0, in which c f5=2dHd2=3g1=5, l0 and L0 are the inner- andouter-scale, respectively. The term eC2n is the generalized structureparameter with units m3

    . Applying Eq. (5) into (4), one obtains

    [39]

    exp r!; r!1n r!; r!2atmosphere exp 1

    32k2zT r

    !1 r!2j2

    o;

    6a

    where the expression of T can be written as

    TZ1

    0

    3nd

    HeC2n

    2

    2m exp20=2m2=2; 20=2m2402 6b

    22022m 2m, and d;d denotes the incomplete Gammafunction.

    Upon substituting Eqs. (2), (4) and (5) into Eq. (3), one canobtain that

    I r!;z k2zM

    2

    M1

    p 0

    M1

    q 0expinpq0

    Z11

    Z11

    Z11

    Z11

    dr10!dr20

    !

    exp x21 x22 y21 y22

    w20x

    1x22 y1y222s20

    (

    ikx21 y21 x22 y22

    2F

    exp iRx

    1 cos p0x2 cos q0 iRy1 sin p0y2 sin q0w20

    " #

    exp( ik2z r!r1!2 r!r2!2)exp 132k2zTr1!r2!2( )7

    which can be rewritten as

    I r!;z 1M2

    M1

    p 0

    M1

    q 0expinpq0Ixx;zIyy;z 8

    with

    I;z k

    2z

    Z11

    Z11

    d1d

    2

    exp 21 22

    w20

    1222s20

    ik21 22 2F

    ( )

    expiR

    1cos p

    0

    2cos q

    0w20" #exp ik

    2z

    h1222

    i ; x;y

    exp 132k2zT122

    9

    Eq. (9) can be rewritten as

    I;z k

    2z

    Z11

    d2exp ik

    2z1z

    F

    1

    w20 1

    2s201

    32k2zT

    " #22

    (

    2 iR cos q0w20

    ik2z

    !2

    )

    Z11

    d

    1exp ik2z 1zF 1w20 12s20 132k2zT" #21(2 1

    2s201

    32k2zT

    !2

    iR cos p0w20

    ik2z

    " #1

    )10

    Recalling the integral formulaZ11

    expC2x2 Dxdx ffiffiffiffi

    p

    Cexp

    D2

    4C2

    !11

    after very tedious but straightforward integral calculations, Eq.

    (10) can be written as

    Ixx;z 1

    exp A1

    G21 G22w2

    02

    z2i

    4b1

    k2b22b23 !

    Z. Qin et al. / Optics & Laser Technology 56 (2014) 182188 183

  • 7/22/2019 Propagation of Partially Coherent Bessel Gaussian Beams Carrying Optical Vortices in Non Kolmogorov Turbulence

    3/7

    exp 1w20

    22x2 2G1 G2

    z2w20i

    kb2b3

    x

    ( )12a

    Iyy;z 1

    exp A2

    G23 G24w20

    2 z

    2i

    4b1k2b24b25

    !

    exp

    1

    w2022y2

    2G3

    G4

    z2w20i

    k b4

    b5

    y ( )12b

    with

    A1 z2R2 cos p0 cos q02

    k22w20

    z2

    2

    3T;zz

    T;zF

    1zs20

    !224 z

    w20

    3T;zz

    T;zF

    1zs20

    ! 1

    w20T;z 1

    2s20

    !#13a

    A2 z2R2 sin p0 sin q02

    k22w2

    0

    z2

    2

    3T;zz

    T;zF

    1zs2

    0 !2

    24

    zw20

    3T;zz

    T;zF

    1zs20

    ! 1

    w20T;z 1

    2s20

    !#13b

    G1 z2R

    2k

    2cos p0zw20

    3T;zz

    T;zF

    1zs20

    ! cos p0 cos q0

    " #13c

    G2 z2R

    2k

    2cos q0zw20

    3T;zz

    T;zF

    1zs20

    ! cos p0 cos q0

    " #13d

    G3 z2R

    2k

    2sin p0zw20

    3T;zz

    T;zF

    1zs20

    ! sin p0 sin q0

    " #13e

    G4 z2R

    2k

    2sin q0zw20

    3T;zz

    T;zF

    1zs20

    ! sin p0 sin q0

    " #13f

    b1 2T;z

    w20zk

    212z3

    13g

    b2 kR

    w20z2

    1 cos p0 244

    cos p0 cos q0

    13h

    b3 kR

    w20z2

    1 cos q0 244

    cos p0 cos q0

    13i

    b4 kR

    w20z2

    1 sin p0 244

    sin p0 sin q0

    13j

    b5 kR

    w20z2

    1 sin q0 244

    sin p0 sin q0

    13k

    1 1z

    F; 2

    2z

    kw20; 3

    2z

    kw0s0; 4

    ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi8z2T;z

    k2

    w20

    s13l

    Fig. 1. Normalized intensity profiles of BGBs for different n with 3.33. (a) n1, (b) n2, (c) n3 and (d) n4.

    Z. Qin et al. / Optics & Laser Technology 56 (2014) 182188184

  • 7/22/2019 Propagation of Partially Coherent Bessel Gaussian Beams Carrying Optical Vortices in Non Kolmogorov Turbulence

    4/7

    2 21 22 23 24 13m

    T;z 132k2Tz 13n

    with 22022m 2m and d;d denoting the incompleteGamma function. The parameters 1, 2, 3, and 4 describe theinfluence of the geometrical magnification, diffraction, coherence

    of initial beams and turbulence, respectively. Here we employed a

    quadratic approximation of the 5/3 power law for Rytov's phase

    structure function, which has been shown to be a good approximation

    for the second-order moments for practical situations [4042], and has

    been used widely [513]. Because this paper only concerns the average

    intensity, the quadratic approximation is suitable.

    Eq. (8) with Eqs. (12) and (13) is the main results of the

    manuscript, which provide a useful and reliable tool to study the

    propagation properties of BGBs with optical vortices in the non-

    Kolmogorov turbulence.

    Fig. 2. Normalized 3D intensity profiles of BGB at several propagation distance.

    Z. Qin et al. / Optics & Laser Technology 56 (2014) 182188 185

  • 7/22/2019 Propagation of Partially Coherent Bessel Gaussian Beams Carrying Optical Vortices in Non Kolmogorov Turbulence

    5/7

    3. Numerical calculation and analysis

    For the sake of simplicity, we assume that the BGB emitting

    from the transmitter is collimated, namely, F 1. The normalizedaverage intensity is defined as

    INormalized r!;z I r!;z

    P014

    where P0 is the total power at initial plane and is given as

    P0 Z1

    1I r!; 0d2 r!

    w20

    2M2

    M1

    p 0

    M1

    q 0expinpq0exp

    R2

    4w201 cos pq0

    ( )15

    The normalized transversal average intensity distributions at

    several propagation distances for four different values of topolo-

    gical charge n are shown in Fig.1 with 1 m, w0 0.2 m, M12,R4w0 and s0 0.5 m. The parameters for the non-Kolmogorovturbulence is l0 0.001 m, L0 5 m, 3.33 and eC2n 1 1014m3To learn about the structure of the intensity distribution of a partially

    coherent BGBs, we also calculated in Fig. 2 the normalized 3D-irradiance distribution and the corresponding contour graph at

    several propagation distances in non-Kolmogorov turbulence with

    3.33. One sees from Figs. 1 and 2 that the doughnut beam profiledisappears gradually and the on-axis irradiance increases during

    propagation within certain propagation distance, the beam spot with

    flat-topped profiler can be formed at certain propagation distance and

    the doughnut beam spot becomes a circularly solid beam spot in the

    far field, which means the characteristic of the existence of vortex in

    the irradiance distribution has been lost during propagation, and can

    be explained by the fact that the atmospheric turbulence degrades

    the coherence of the beam, which results in the interesting irradiance

    distribution during propagation. One also finds from Fig. 1 that, for

    smaller values of the topological charge, such annihilation occurs

    earlier (at around 2.5 km for n1), as opposed to n4 case whichoccurs at longer propagation distance (at around 4.5 km). This means

    that vortex characteristic of the partially coherent BGBs with largertopological charge is less affected by the turbulence.

    Fig. 3 shows the normalized intensity profiles for different

    beam parameters and turbulence parameters at z6 km. One canfind from Figs. 1 and 3 that the beam spot spreads more rapidly for

    a larger n, eC2n and smaller s0, . One can also find that thepropagation of the partially coherent BGBs in non-Kolmogrov

    turbulence is different from that in the case of Kolmogorov

    turbulence, that is, 11/3E3.67. As shown in Fig. 3(c),Fig. 4 shows the normalized on-axis irradiance distribution of a

    partially coherent BGB along z in a turbulent atmosphere for

    different beam parameters and turbulence parameters. It is

    revealed that the on-axis irradiance of a partially coherent BGB

    increases gradually during propagation until its value reaches its

    maximal at certain propagation distance. As z increases further,

    the value of on-axis irradiance decreases due to the spreading of

    the beam spot. The increase of the on-axis irradiance means that

    the light energy concentrating into the central part of the beam

    from the outer ring during propagation. On the other hand, due to

    the spreading of the beam spot, the on-axis energy decreases. It

    also shows that the conversion from a doughnut beam spot to a

    circularly solid beam spot becomes quicker for a smaller n, s0,

    Fig. 3. Normalized intensity profiles of BGBs for different beam parameters and turbulence parameters with z6 km. (a) s0 0.05 m, 3.33, eC2

    n 1 1014m3

    (b) n3, 3.33, eC2n 1 1014m3 (c) n3, s0 0.05 m, eC2n 1 1014m3 and (d) n3, s0 0.05 m, 3.33.

    Z. Qin et al. / Optics & Laser Technology 56 (2014) 182188186

  • 7/22/2019 Propagation of Partially Coherent Bessel Gaussian Beams Carrying Optical Vortices in Non Kolmogorov Turbulence

    6/7

    and larger eC2n. From aforementioned discussions, one comes to theconclusion that the propagation properties of partially coherent

    BGBs in non-Kolmogorov turbulence are closely related to the

    beam parameters and the turbulence parameters.

    Because a BGB can be regarded as a superposition of dGB, the

    spreading of a BGB can be reflected by the change of the waist

    width (see Eq. (13m)). The variation of , 2, 3 and 4 with

    propagation distance is shown in Fig. 5. From Fig. 5 and Eq. (13m)

    we can see that the variation ofis much small when 2, 3 and 4are much less than unity, and is mainly determined by 4(turbulence) when the propagation distance is larger than 15 km.

    This can be understood easily from Eqs. (13l)(13n), because 2and 3 are proportional to z, and 4 is proportional to z

    3/2, the

    effects due to diffraction and coherence of initial beams can be

    neglected if z is larger enough.

    4. Conclusions

    BGBs are one of the typical examples of singularity beams and,

    by representing the BGB as the combination of the dGBs, its

    propagation in non-Kolmogorov turbulence is studied analytically

    based on the extended HuygensFresnel diffraction integral. In

    comparison with [30], where the propagation of BGBs throughKolmogorov atmospheric turbulence, and the spreading and direc-

    tion of BGBs through non-Kolmogorov atmospheric turbulence

    were investigated, in our paper, the effect of non-Kolmogorov

    power spectrum on the propagation and the average intensity

    and vortex evolution has been studied in detail. In patircular,

    our results have been interpreted physically by examining the

    nonmonotonic variation of on-axis irradiance distribution of a

    partially coherent BGB for different beam parameters and turbu-

    lence parameters. We have derived the analytical propagation

    formulae for the average irradiance of a partially coherent BGB,

    and investigated the irradiance and spreading of a partially

    coherent BGB with optical vortices in non-Kolmogorov turbulence.

    Our results show that the characteristic of the existence of vortex

    in the irradiance distribution has been lost and the doughnut

    Fig. 4. Normalized on-axis irradiance of a partially coherent BGB along zin non-Kolmogorov turbulence for different values of beam parameters and turbulence parameters.

    (a) s0 0.05 m, 3.33, eC2n 1 1014m3 (b) n3, 3.33, eC2n 1 1014m3 (c) n3, s0 0.05 m, eC2n 1 1014m3 and (d) n3, s0 0.05 m, 3.33.

    Fig. 5. The variation of, 2, 3 and 4 with propagation distance where 11, n3,3.67, eC2n 1 1014m3.

    Z. Qin et al. / Optics & Laser Technology 56 (2014) 182188 187

  • 7/22/2019 Propagation of Partially Coherent Bessel Gaussian Beams Carrying Optical Vortices in Non Kolmogorov Turbulence

    7/7

    beam spot becomes a circularly Gaussian beam spot during

    propagation. The vortex characteristics of the partially coherent

    BGBs are less affected by the turbulence with larger topological

    charge. The propagation properties are different from that in the

    case of Kolmogorov turbulence; that is, 3.67. The propagationproperties of partially coherent BGBs in non-Kolmogorov turbu-

    lence are closely related to the beam parameters and the turbu-

    lence parameters. The effects due to diffraction and coherence of

    initial beams can be neglected after long distance propagation.These should be taken into consideration for designing and

    evaluating the performance of vortex beam propagation in a real

    environment.

    References

    [1] Andrews, LC, Phillips RL, Laser Beam Propagation through Random Media,SPIE, 1998.

    [2] Gbur G, Wolf E. Spreading of partially coherent beams in random media.Journal of the Optical Society of America A 2002;19:15928.

    [3] Cai Y, Chen Y, Eyyuboglu HT, Baykal Y. Propagation of laser array beams in aturbulent atmosphere. Applied Physics B 2007;88:46775.

    [4] Li X, Ji X, Eyyuboglu HT, Baykal Y. Turbulence distance of radial GaussianSchell-model array beams. Applied Physics B 2010;98:55765.

    [5] Cai Y. Propagation of various flat-topped beams in a turbulent atmosphere.Journal of Optics A 2006;8:53745.

    [6] L B, Zhang B. Propagation and focusing of laser beams with amplitudemodulations and phase fluctuations. Optics Communications 1997;135:3618.

    [7] Ji X, Li X. Propagation properties of apertured laser beams with amplitudemodulations and phase fluctuations through atmospheric turbulence. AppliedPhysics B 2011;104:20713.

    [8] Chu X, Liu Z, Wu Y. Propagation of a general multi-Gaussian beam in turbulentatmosphere in a slant path. Journal of the Optical Society of America A2008;25(1):749.

    [9] Zhou P, Liu Z, Xu X, Chu X. Propagation of phase-locked partially coherentflattened beam array in turbulent atmosphere. Optics and Lasers in Engineer-ing 2009;47:12548.

    [10] Zhu Y, Zhao D, Du X. Propagation of stochastic Gaussian-Schell model arraybeams in turbulent atmosphere. Optics Express 2008;6:1843742.

    [11] Liu X, Pu J. Investigation on the scintillation reduction of elliptical vortexbeams propagating in atmospheric turbulence. Optics Express 2011;19:2644450.

    [12] Wu G, Guo H, Yu S, Luo B. Spreading and direction of Gaussian-Schell modelbeam through a non-Kolmogorov turbulence. Optics Letters 2010;35:7157.

    [13] Zhou P, Ma Y, Wang X, Zhao H, Liu Z. Average spreading of a Gaussian beamarray in non-Kolmogorov turbulence. Optics Letters 2010;35:10435.

    [14] Korotkova1, Shchepakina E. Color changes in stochastic light fields propagat-ing in non-Kolmogorov turbulence. Optics Letters 2010;35:37724.

    [15] Cang J, Liu X. Average capacity of free-space optical systems for a partiallycoherent beam propagating through non-Kolmogorov turbulence. OpticsLetters 2011;36:33357.

    [16] Tang H, Ou B, Luo B, Guo H, Dang A. Average spreading of a radial Gaussianbeam array in non-Kolmogorov turbulence. Journal of the Optical Society ofAmerica A 2011;28:101621.

    [17] Toselli I, Andrews LC, Phillips RL, Ferrero V. Angle of arrival fluctuations forfree space laser beam propagation through non kolmogorov turbulence.Proceedings of SPIE 2007;6551:65510E.

    [18] Paterson C. Atmospheric turbulence and orbital angular momentum of single

    photons for optical communication. Physical Review Letters 2005;94:153901 .[19] Simpson NB, Dholakia K, Allen L, Padgett MJ. Mechanical equivalence of spin

    and orbital angular momentum of light: an optical spanner. Optics Letters

    1997;22:524.[20] Lee WM, Yuan X-C, Cheong WC. Optical vortex beam shaping by use of highly

    efficient irregular spiral phase plates for optical micromanipulation. Optics

    Letters 2004;29:17968.[21] Vinotte A, Berg L. Femto second optical vortices in air. Physical Review Letters

    2005;95:193901 .

    [22] Bouchal Z. Resistance of nondiffracting vortex beam against amplitude andphase perturbations. Optics Communications 2002;210:15564.[23] Vasnetsov MV, Marienko IG, Soskin MS. Self-reconstruction of an optical

    vortex. JETP Letters 2000;71:1303.[24] Gori F, Guattari G, Padovani C. BesselGaussian beams. Optics Communica-

    tions 1987;64:4915.[25] Mcgloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemporary

    Physics 2005;46:1528.[26] Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory. Journal

    of the Optical Society of America A 1987;4:6514.[27] Durnin J, Miceli JJ, Eberly JH. Diffraction-free beams. Physical Review Letters

    1987;58:1499501.[28] Chavez-Cerda S. A new approach to Bessel beams. Journal of Modern Optics

    1999;46:92330.[29] Arlt J, Hitomi T, Dholakia K. Atom guiding along Laguerre-Gaussian and Bessel

    light beams. Applied Physics B 2000;71:54954.[30] Zhu K, Zhou G, Li X, Zheng X, Tang H. Propagation of Bessel-Gaussian beams

    with optical vortices in turbulent atmosphere. Optics Express 2008;16:

    2131520.[31] Zhu K, Li S, Tang Y, Yu Y, Tang H. Study on the propagation parameters of

    BesselGaussian beams carrying optical vortices through atmospheric turbu-

    lence. Journal of the Optical Society of America A 2012;29:2517.[32] Eyyuboglu HT. Propagation of higher order BesselGaussian beams in turbu-

    lence. Applied Physics B, Laser and Optics 2007;88(2):25965.[33] Wu J. Propagation of a Gaussian-Schell beam through turbulent media. Journal

    of Modern Optics 1990;37:67184.[34] Shirai T, Dogariu A, Wolf E. Mode analysis of spreading of partially coherent

    beams propagating through atmospheric turbulence. Journal of the Optical

    Society of America A 2003;20:1094102.[35] Dogariu A, Amarande S. Propagation of partially coherent beams: turbulence-

    induced degradation. Optics Letters 2003;28:102.[36] Li X, Chen X, Ji X. Influence of atmospheric turbulence on the propagation of

    superimposed partially coherent HermiteGaussian beams. Optics Commu-

    nication 2009;282:713.[37] Zhou P, Ma Y, Wang X, Ma H, Xu X, Liu Z. Average intensity of a partially

    coherent rectangular flat-topped laser array propagating in a turbulent

    atmosphere. Applied Optics 2009;48:52518.[38] Ji X, Zhang T, Jia X. Beam propagation factor of partially coherent Hermite-

    Gaussian array beams. Journal of Optics A: Pure and Applied Optics 2009;11:

    105705.[39] Xu H, Cui Z, Qu J. Propagation of elegant LaguerreGaussian beam in non-

    Kolmogorov turbulence. Optics Express 2011;19:21163.[40] Leader JC. Atmospheric propagation of partially coherent radiation. Journal of

    the Optical Society of America 1978;68(2):17585.[41] Wang SCH, Plonus MA. Optical beam propagation for a partially coherent

    source in the turbulent atmosphere. Journal of the Optical Society of America

    1979;69(9):1297304.[42] Ji X, Li X. Directionality of Gaussian array beams propagating in atmospheric

    turbulence. Journal of the Optical Society of America A 2009;26(2):23643.

    Z. Qin et al. / Optics & Laser Technology 56 (2014) 182188188

    http://refhub.elsevier.com/S0030-3992(13)00291-0/othref0005http://refhub.elsevier.com/S0030-3992(13)00291-0/othref0005http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref1http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref1http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref1http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref1http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref1http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref2http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref2http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref2http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref2http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref2http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref3http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref3http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref3http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref3http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref3http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref4http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref4http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref4http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref4http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref4http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref4http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref4http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref5http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref5http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref5http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref5http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref5http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref5http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref5http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref6http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref6http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref6http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref6http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref6http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref6http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref6http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref6http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref7http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref7http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref7http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref7http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref7http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref7http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref8http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref8http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref8http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref8http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref8http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref8http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref8http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref9http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref9http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref9http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref9http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref9http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref10http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref10http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref10http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref10http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref10http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref10http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref11http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref11http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref11http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref11http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref11http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref12http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref12http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref12http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref12http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref12http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref13http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref13http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref13http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref13http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref13http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref13http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref13http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref14http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref14http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref14http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref14http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref14http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref14http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref15http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref15http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref15http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref15http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref15http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref15http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref16http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref16http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref16http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref16http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref16http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref16http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref17http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref17http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref17http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref18http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref18http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref18http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref18http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref18http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref18http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref19http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref19http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref19http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref19http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref19http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref19http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref19http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref19http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref20http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref20http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref20http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref21http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref21http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref21http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref21http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref21http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref22http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref22http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref22http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref22http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref22http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref23http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref23http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref23http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref23http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref23http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref23http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref23http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref24http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref24http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref24http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref24http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref24http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref25http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref25http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref25http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref25http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref25http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref26http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref26http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref26http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref26http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref26http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref27http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref27http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref27http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref27http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref27http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref28http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref28http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref28http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref28http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref28http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref29http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref29http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref29http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref29http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref29http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref29http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref30http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref30http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref30http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref30http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref30http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref30http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref30http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref30http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref31http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref31http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref31http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref31http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref31http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref31http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref31http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref32http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref32http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref32http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref32http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref32http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref33http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref33http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref33http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref33http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref33http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref33http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref34http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref34http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref34http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref34http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref34http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref35http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref35http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref35http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref35http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref35http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref35http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref35http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref35http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref35http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref35http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref36http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref36http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref36http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref36http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref36http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref36http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref36http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref36http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref37http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref37http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref37http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref37http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref38http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref38http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref38http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref38http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref38http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref39http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref39http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref39http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref39http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref39http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref40http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref40http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref40http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref40http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref40http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref40http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref41http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref41http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref41http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref41http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref41http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref41http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref41http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref40http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref40http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref40http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref39http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref39http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref38http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref38http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref37http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref37http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref37http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref36http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref36http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref36http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref35http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref35http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref35http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref34http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref34http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref33http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref33http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref33http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref32http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref32http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref31http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref31http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref30http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref30http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref30http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref29http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref29http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref29http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref28http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref28http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref27http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref27http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref26http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref26http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref25http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref25http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref24http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref24http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref23http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref23http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref22http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref22http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref21http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref21http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref20http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref20http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref19http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref19http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref19http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref18http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref18http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref18http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref17http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref17http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref16http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref16http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref16http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref15http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref15http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref15http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref14http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref14http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref14http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref13http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref13http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref12http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref12http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref11http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref11http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref10http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref10http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref10http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref9http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref9http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref8http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref8http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref8http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref7http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref7http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref7http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref6http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref6http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref6http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref5http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref5http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref4http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref4http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref3http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref3http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref2http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref2http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref1http://refhub.elsevier.com/S0030-3992(13)00291-0/sbref1http://refhub.elsevier.com/S0030-3992(13)00291-0/othref0005http://refhub.elsevier.com/S0030-3992(13)00291-0/othref0005