Propagation of Airy Related Beams Generated From Flat Topped Gaussian Beams Through a Chiral Slab 2014 Optics and Lasers in Engineering

Embed Size (px)

Citation preview

  • 7/27/2019 Propagation of Airy Related Beams Generated From Flat Topped Gaussian Beams Through a Chiral Slab 2014 Opti

    1/6

    Propagation of Airy-related beams generated from flat-toppedGaussian beams through a chiral slab

    Zhirong Liu a,b, Daomu Zhao a,n

    a Department of Physics, Zhejiang University, Hangzhou 310027, Chinab School of Basic, East China Jiaotong University, Nanchang 330013, China

    a r t i c l e i n f o

    Article history:

    Received 30 March 2013Received in revised form

    12 July 2013

    Accepted 13 July 2013Available online 9 August 2013

    Keywords:

    ABCD transforms

    Chiral media

    Laser beam shaping

    Propagation

    a b s t r a c t

    We derived the analytical expression for the propagation of Airy-related beams generated from flat-

    topped Gaussian beams through an ABCD optical system, and use it to study the propagation of this typeof beams through a chiral slab. Several influence factors, such as the optical beams order Nand the chiral

    parameter of the chiral medium, on the beam propagation properties both in near- and far-zones are

    discussed in detail. It is shown that the Airy tails of high order beams decay more quickly than those of

    low order beams in the chiral medium; the constructive interference effect between the LCP

    (left-circularly polarized) and RCP (right-circularly polarized) beams becomes more significant as the

    chiral parameter increases; the LCP and RCP beams are not separated in the near-zone, while the two

    beams are obviously separated in the far-zone, and accordingly the interference peaks decrease as the

    propagation distance increases in the chiral slab.

    & 2013 Elsevier Ltd. All rights reserved.

    1. Introduction

    Non-spreading or non-diffraction (also named diffraction-free)beams are by definition localized optical wave packets that remain

    invariant during propagation. Due to their novel features this

    intriguing class of wave packets have received sustained attention

    [19]. In 1979, Scholars Berry and Balazs made an important

    observation within the context of quantum mechanics: they

    theoretically demonstrated that the Schrdinger equation describ-

    ing a free particle can exhibit a non-spreading Airy wave packet

    solution [1]. Bessel beams, initially predicted theoretically and

    demonstrated experimentally by Durnin et al. in 1987, is perhaps

    the best known example of diffraction-free wave [2]. In 2007,

    a finite-energy Airy beam is first introduced theoretically and

    demonstrated experimentally by extending Berry and Balazss

    infinite-energy Airy model by Siviloglou and Christodoulides

    [3,4]. Owing to their non-diffraction properties, Airy beams haveability to reconstruct themselves during propagation even though

    parts of the beams are distorted or obstructed [5]. The Airy beams

    have been identified for unique features, such as weak diffraction,

    transverse acceleration [3,4], and self-healing [5]. And over very

    recent years, Airy beams have attracted a great deal of interest in

    applications such as optical clearing micro-particles [6], plasma

    physics [7], optical micro-manipulation [8,9] and other fields.

    In general, the finite energy Airy beam can be generated from the

    fundamental Gaussian beam through a Fourier transformation pro-

    vided that a cubic phase is imposed [4]. Meanwhile, many Airy-related beams have been proposed or generated by making some

    changes in the methods of generating Airy beams [1016]. For

    example, using the partially coherent Gaussian beam as the incident

    beam, a broadband white light Airy beam can be generated, and its

    decay parameter depends on the spatial coherence of the incident

    beam [10]; by adding a special apodization mask in the light path, a

    reduced side-lobe Airy beam can be generated that has an effectively

    enhanced central lobe, and the side lobe is reduced compared with

    the common Airy beam [11].

    It is known that chirality can lift the degeneracy of two circular

    polarizations [17]. When a linearly polarized beam is incident

    normally upon a chiral slab, it will be split into two circularly

    polarized beams (left-circularly polarized and right-circularly polar-

    ized beams) at the interface with different phase velocity propagat-ing in the chiral slab. This circular birefringence of the chiral medium

    is of crucial importance in the fields of biochemistry, chemistry, and

    medicine. In this work, we investigate the propagation of Airy-

    related beam, which is generated from Airy transform from flat-

    topped Gaussian beams [18], through a chiral slab [1925].

    2. Propagation characteristics of the Airy-related beam

    through a chiral slab

    Matrix optics is a powerful and analytical method to deal with

    the beam propagation problem. For a beam through a chiral slab,

    Contents lists available at ScienceDirect

    journal homepage: www.elsevier.com/locate/optlaseng

    Optics and Lasers in Engineering

    0143-8166/$- see front matter & 2013 Elsevier Ltd. All rights reserved.

    http://dx.doi.org/10.1016/j.optlaseng.2013.07.011

    n Corresponding author. Tel.: +86 571 888 63887; fax: +86 571 879 51328.

    E-mail address: [email protected] (D. Zhao).

    Optics and Lasers in Engineering 52 (2014) 1318

    http://www.sciencedirect.com/science/journal/01438166http://www.elsevier.com/locate/optlasenghttp://dx.doi.org/10.1016/j.optlaseng.2013.07.011mailto:[email protected]://dx.doi.org/10.1016/j.optlaseng.2013.07.011http://dx.doi.org/10.1016/j.optlaseng.2013.07.011http://dx.doi.org/10.1016/j.optlaseng.2013.07.011http://dx.doi.org/10.1016/j.optlaseng.2013.07.011mailto:[email protected]://crossmark.dyndns.org/dialog/?doi=10.1016/j.optlaseng.2013.07.011&domain=pdfhttp://crossmark.dyndns.org/dialog/?doi=10.1016/j.optlaseng.2013.07.011&domain=pdfhttp://crossmark.dyndns.org/dialog/?doi=10.1016/j.optlaseng.2013.07.011&domain=pdfhttp://dx.doi.org/10.1016/j.optlaseng.2013.07.011http://dx.doi.org/10.1016/j.optlaseng.2013.07.011http://dx.doi.org/10.1016/j.optlaseng.2013.07.011http://www.elsevier.com/locate/optlasenghttp://www.sciencedirect.com/science/journal/01438166
  • 7/27/2019 Propagation of Airy Related Beams Generated From Flat Topped Gaussian Beams Through a Chiral Slab 2014 Opti

    2/6

    the corresponding transfer matrix of the optical system can be

    written as [26]

    AL BL

    CL DL

    " # 1 z=n

    L

    0 1

    " #;

    AR BR

    CR DR

    " # 1 z=n

    R

    0 1

    " #: 1

    In Eq. (1), nL n0=1 n0k0; nR n0=1n0k0 denote therefractive indices of the left-circularly polarized (LCP) and right-

    circularly polarized (RCP) beams, respectively. n0 and represent

    the original refractive index and the chiral parameter of the chiral

    slab, respectively. k0 2=0 is the wave number of the opticalwave with 0 being the wavelength of the Airy-related beam in

    vacuum. Thus, the wave number of the left-circularly polarized

    and right-circularly polarized Airy-related beams in the chiral slab

    is kJ nJk0, where J L,R.Here, we investigate the dynamics of one-dimensional (1D)

    Airy-related beam through a chiral slab. A symmetric 2D case can

    be obtained by replacing the coordinate x with y, and multiplying

    the two scalar fields together. The electric field profile of Airy-

    related beams generated from flat-topped Gaussian beams can be

    expressed as [18]

    E1x1;z 0 2ffiffiffi

    pA0

    N

    n 1

    1n1 ffiffiffiffiffianpN

    N

    n

    exp

    2a3n3

    Ai

    x1 a2n

    exp

    anx1

    :

    2In Eq. (2), Ai indicates the Airy function, x1= represents adimensionless transverse coordinate, denotes an arbitrary trans-

    verse scale, an w20=4n2 represents the modulation parameterso as to ensure containment of the infinite Airy tail, A0 is a

    constant related with the beam power, N denotes the order of

    the Airy-related beams,N

    n

    is a binomial coefficient, and w0 is

    the waist size of fundamental Gaussian beam with N 1. It is clearfrom Eq. (2) that the Airy-related beams generated from flat-

    topped Gaussian beams can be considered as a finite sum ofcommon finite energy Airy beams, and Eq. (2) becomes the

    common finite energy Airy beam when N 1.To visualize the shape of Airy-related beams characterized by Eq.

    (2), a preliminary demonstration is shown in Fig. 1(a) for the flat-

    topped Gaussian beams, and (b) for the Airy-related beams gener-

    ated from flat-topped Gaussian beams of different orders, respec-

    tively. All of the curves in Fig. 1 have been normalized to the peak

    intensity value. It is apparent from Fig. 1(a) that the irradiance

    profile becomes flat-topped when N41, and the flat zone occupies

    a larger fraction of the beam profile when the value of N increases.

    And it is also clearly seen from Fig. 1(b) that the Airy-related beams

    generated from flat-topped Gaussian beams N41 possess profilessimilar to those of the Airy beam generated from the fundamental

    Gaussian beamN

    1, and the Airy tails of higher order beams

    decay more quickly than that of lower order beams. Furthermore,

    the peak of the first lobe is a little shifted in the positive x-direction

    when the value of N increases, which can be inferred from the Airy

    function in Eq. (2). So the Airy-related beams can be modulated by

    varying the beam order N.

    Within the framework of paraxial approximation, the propaga-

    tion of a beam through the first order ABCD optical system is

    described by the generalized HuygensFresnel diffraction integral,

    which is known as Collins formula [27,26]

    EJx;z ffiffiffiffiffiffiffiffiffiffiffiffi

    ik0

    2BJ

    s Z11

    exp ik02BJ

    AJx212x1x DJx2

    E1x1;z 0dx1

    3In Eq. (3) the superscripts J L,R denote LCP and RCP, respectively.To calculate this integral, the Airy function can be written in terms

    of the integral representation [28]

    Aix 12

    Z11

    expiu3

    3 ixu

    du: 4

    On substituting Eqs. (2) and (4) into Eq. (3), after tedious integral

    calculations, one obtains the expression of Airy-related beamsfield distribution in an arbitrary plane z40:

    EJx;z

    2A0ffiffiffiffiffiffiffiAJ

    p Nn 1

    1

    n1 ffiffiffiffiffiffiffiffianpN

    N

    n

    exp ik0C

    Jx2

    2AJ" #

    Airy xAJ

    BJ2

    44k20AJ2

    iBJanAJk02

    a2n !

    exp anxAJ

    anBJ2

    2AJ2k204 iB

    J3

    8AJ3k306

    "

    ia2nB

    J

    AJk02 iB

    Jx

    2AJ2k03 iB

    J

    62k0AJ

    2a3n3

    #: 5

    In Eq. (5) AJ, BJ, CJ and DJ are elements of the optical transfermatrix for the LCP and RCP beams in the chiral slab, respectively.

    When the Airy-related beam propagates along the z-direction, the

    optical field is split into two components, e.g., the LCP and RCP

    beams. And the total field profile in the chiral slab is given by

    Ex ELx ERx: 6

    Thus, the total intensity of Airy-related beam in the plane z40 can

    be expressed as

    I jELxj2 jERxj2 Iint; 7

    with

    Iint ELxERnx ERxELnx; 8

    where Iint

    denotes the interference term, and n indicates the

    complex conjugation. By complex but straightforward deduction,

    Fig. 1. The normalized intensity distribution of (a) flat-topped Gaussian beams and (b) Airy-related beams generated from flat-topped Gaussian beams of different orders N.

    Z. Liu, D. Zhao / Optics and Lasers in Engineering 52 (2014) 131814

  • 7/27/2019 Propagation of Airy Related Beams Generated From Flat Topped Gaussian Beams Through a Chiral Slab 2014 Opti

    3/6

    one can find that the interference intensity satisfies the following

    relation

    Iintexp 2a0x

    x0

    exp a0

    z21 n20k202k

    20x

    40n

    20

    " #: 9

    Eq. (9) indicates that Iint is sensitive to the propagating distance z

    and the chiral parameter of the medium. Eqs. (5)(9) are the

    main analytical results obtained in this paper, which are conve-

    nient for studying the propagation characteristics of Airy-relatedbeams in a chiral slab.

    3. Numerical simulation and analysis

    Without loss of generality, in the following simulations we

    choose the parameters of the Airy-related beam as: 0 532 nm, 100 m, w0 50 m; and the original refractive index n0 3.On substituting from Eqs. (1) and (5) into Eq. (7), one can obtain

    the analytical expression for the Airy-related beam in the chiral

    slab. The propagation of the Airy-related beams of different orders,

    which are generated from Gaussian beams and flat-topped Gaus-

    sian beams, respectively, in the chiral slab with the chiral para-

    meter 0:16=k0 is shown in Fig. 2(a)(d) for N 1, and(e)(h) for N 10, respectively.

    The propagation of Airy-related beams of different order in the

    chiral slab with 0:16=k0 is shown in Fig. 2(a)(d). From thenormalized intensity distributions of the LCP and RCP beams [see

    from Fig. 2(a) and (b)], one can see that the circularly polarized Airy

    beams of opposite handedness propagate along two different curved

    trajectories in the chiral slab. And one can also see from Fig. 2(c) that

    the interference pattern between LCP and RCP beams is quite different

    from the situation of independent propagation of each beam. Due to

    the strong interference effect, the total field is greatly distorted in the

    overlapping areas of the two beams [see from Fig. 2(d)]. For the

    convenience of comparison, the case for N 10 is shown in Fig. 2(e)(h), and one can find from Fig. 2(a) and (e) that both the LCP and

    RCP beams of high order have a shorter nonspreading distance, in

    which distance the beam can maintain its original intensity distribu-

    tion with no measurable spreading. Meanwhile, one can also see from

    Fig. 2(c) and (g) that the interference fringes of lower order LCP and

    RCP beams is clearer than that of higher order beams, which indicates

    that the interference effect between lower order LCP and RCP beams is

    stronger than that between higher order beams.

    The case of the chiral parameter 0:28=k0 is shown in Fig. 3.

    Other parameters are the same as those in Fig. 2. Comparing Fig. 2(c) and Fig. 3(c), or Fig. 2(g) and Fig. 3(g), one can find that the

    constructive interference effect between the LCP and RCP beams

    becomes more significant as the chiralitys parameter increases.

    Fig. 4(a)(j) shows the intensity distribution of Airy-related

    beams at the near-zone with z 200 mm. The chiral parameter inFig. 4(a)(e) is 0:16=k0, and in Fig. 4(f)(j) 0:28=k0, andother parameters are the same. It is clearly seen from Fig. 4(a) and

    (f) that the LCP and RCP beams of the same order are not

    separated, and nearly overlapped together at the near-zone, so

    the interference between them is fairly strong [see Fig. 4(d) and

    (i)], and accordingly the oscillating intensity curves can be seen in

    Fig. 4(e) and (j).

    Fig. 5(a)(j) shows the intensity distribution of Airy-related

    beams in the far-zone with z

    800 mm. Other parameters are

    same as Fig. 4(a)(j). Obviously, one can see from Fig. 5(a) and

    (f) that the LCP and RCP beams of the same order are separated

    and not overlapped at the far-zone, for the two beams propagate

    along different curved trajectories in the chiral slab. The amplitude

    of oscillation decreases as the propagation distance increases, so

    interference between them becomes weaker and more compli-

    cated [see Fig. 5(d) and (i), and Fig. 5(e) and (j)].

    4. Conclusion

    In conclusion, we have investigated the propagation of Airy-

    related beams generated from flat-topped Gaussian beams through

    Fig. 2. The propagation of the Airy-related beams of different order in the chiral slab with 0:16=k0; (a) and (e) the LCP beam; (b) and (f) the RCP beam; (c) and (g) theinterference term Iint; (d) and (h) the total intensity; (a)(d) for N 1, and (e)(h) for N 10; respectively.

    Z. Liu, D. Zhao / Optics and Lasers in Engineering 52 (2014) 1318 15

  • 7/27/2019 Propagation of Airy Related Beams Generated From Flat Topped Gaussian Beams Through a Chiral Slab 2014 Opti

    4/6

    Fig. 3. The evolution of the Airy-related beams of different orders propagating through the chiral medium with 0:28=k0; (a)(d) N 1, and (e)(h) N 10:

    Fig. 4. The normalized intensity distribution of Airy-related beams of different orders propagating through the chiral media when z 200 mm with (a)(e) 0:16=k0and (f)(j) 0:28=k0:

    Z. Liu, D. Zhao / Optics and Lasers in Engineering 52 (2014) 131816

  • 7/27/2019 Propagation of Airy Related Beams Generated From Flat Topped Gaussian Beams Through a Chiral Slab 2014 Opti

    5/6

    a chiral slab by using the Matrix Optics. And we have discussed

    several influence factors, such as the optical beam order N and thechiral parameter of the chiral slab, on the beam propagation

    properties both in near- and far-zones in detail. It is shown that the

    Airy tails of high order beams decay more quickly than those of low

    order beams in the chiral slab; the constructive interference effect

    between the LCP and RCP beams becomes more significant as the

    chiral parameter increases; the LCP and RCP beams are not

    separated in the near-zone, while the two beams are obviously

    separated in the far-zone, and accordingly the interference peaks

    decrease as the propagation distance increases.

    Acknowledgments

    This work was supported by the National Natural Science

    Foundation of China (11274273 and 11074219), the Jiangxi Provin-

    cial Natural Science Foundation of China (20132BAB212007), the

    East China Jiaotong University Startup Outlay for Doctor Scientific

    Research (09132007), and the East China Jiaotong University

    Foundation (11JC02 and 10JC01).

    References

    [1] Berry MV, Balazs NL. Nonspreading wave packets. Am J Phys 1979;47(3):2647.

    [2] Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory. J Opt SocAm A 1987;4(4):6514 (Cited by);Durnin J, Miceli Jr JJ, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987;58

    (15):1499501.

    [3] Siviloglou GA, Christodoulides DN. Accelerating finite energy Airy beams. Opt

    Lett 2007;32(8):97981.

    [4] Siviloglou GA, Broky J, Dogariu A, Christodoulides DN. Observation of accel-

    erating Airy beams. Phys Rev Lett 2007;99(21):2139014.

    [5] Broky J, Siviloglou GA, Dogariu A, Christodoulides DN. Self-healing properties

    of optical Airy beams. Opt Express 2008;16(17):1288091.

    [6] Baumgartl J, Mazilu M, Dholakia K. Optically mediated particle clearing using

    Airy wavepackets. Nat Photonics 2008;2(11):6758.

    [7] Polynkin P, Kolesik M, Moloney JV, Siviloglou GA, Christodoulides DN. Curved

    plasma channel generation using ultraintense Airy beams. Science 2009;324

    (5924):22932.

    [8] Cheng H, Zang W, Zhou W, Tian J. Analysis of optical trapping and propulsion

    of Rayleigh particles using Airy beam. Opt Express 2010;18(19):2038494.

    [9] Zheng Z, Zhang B, Chen H, Ding J, Wang H. Optical trapping with focused Airy

    beams. Appl Opt 2011;50(1):439.

    [10] Morris JE, Mazilu M, Baumgartl J, Cimr T, Dholakia K. Propagation char-

    acteristics of Airy beams: dependence upon spatial coherence and wave-

    length. Opt Express 2009;17(15):1323645.

    [11] Barwick S. Reduced side-lobe Airy beams. Opt Lett 2011;36(15):2827

    9.[12] Carvalho MI, Faco M. Propagation of Airy-related beams. Opt Express 2010;18

    (21):2193849.

    [13] Chong A, Renninger WH, Christodoulides DN, Wise FW. AiryBessel wave

    packets as versatile linear light bullets. Nat Photonics 2010;4(2):1036.

    [14] Efremidis NK, Christodoulides DN. Abruptly autofocus-ing waves. Opt Lett

    2010;35(23):40457.

    [15] Dai H, Liu Y, Luo D, Sun X. Propagation dynamics of an optical vortex imposed

    on an Airy beam. Opt Lett 2010;35(23):40757.

    [16] Bandres MA, Gutirrez-Vega JC. Airy-Gauss beams and their transformation by

    paraxial optical systems. Opt Express 2007;15(25):1671928.

    [17] Fukushima K, Kharzeev DE, Warringa HJ. Chiral magnetic effect. Phys Rev D

    2008;78(7):074033 (14).

    [18] Jiang Y, Huang K, Lu X. Airy-related beam generated from flat-topped Gaussian

    beams. J Opt Soc Am A 2012;29(7):14126.

    [19] Pendry JB. A chiral route to negative refraction. Science 2004;306(5700):13535.

    [20] Bassiri S, Papas CH, Engheta N. Electromagnetic wave propagation through a

    dielectric-chiral interface and through a chiral slab. J Opt Soc Am A 1988;5

    (9):14509.

    Fig. 5. The normalized intensity distribution of Airy-related beams of different orders propagating through the chiral slab when z 800 mm with (a)(e) 0:16=k0 and(f)(j) 0:28=k0 :

    Z. Liu, D. Zhao / Optics and Lasers in Engineering 52 (2014) 1318 17

    http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref1http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref1http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref1http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref1http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref1http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref2http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref2http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref2http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref2http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref2http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref3http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref3http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref3http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref3http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref3http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref4http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref4http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref4http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref4http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref4http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref4http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref4http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref5http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref5http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref5http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref5http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref5http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref6http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref6http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref6http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref6http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref6http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref7http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref7http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref7http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref7http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref7http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref8http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref8http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref8http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref8http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref8http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref8http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref9http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref9http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref9http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref9http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref9http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref10http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref10http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref10http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref10http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref10http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref11http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref11http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref11http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref11http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref11http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref11http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref11http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref11http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref12http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref12http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref12http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref12http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref13http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref13http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref13http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref13http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref13http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref14http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref14http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref14http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref14http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref14http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref14http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref14http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref15http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref15http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref15http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref15http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref15http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref16http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref16http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref16http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref16http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref16http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref17http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref17http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref17http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref17http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref17http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref18http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref18http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref18http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref19http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref19http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref19http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref19http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref19http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref19http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref19http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref20http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref20http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref20http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref20http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref21http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref21http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref21http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref21http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref21http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref21http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref21http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref21http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref21http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref20http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref19http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref19http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref18http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref18http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref17http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref17http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref16http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref16http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref15http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref15http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref14http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref14http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref13http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref13http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref12http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref11http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref11http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref11http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref10http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref10http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref9http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref9http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref8http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref8http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref8http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref7http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref7http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref6http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref6http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref5http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref5http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref4http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref4http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref3http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref3http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref2http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref2http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref1http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref1
  • 7/27/2019 Propagation of Airy Related Beams Generated From Flat Topped Gaussian Beams Through a Chiral Slab 2014 Opti

    6/6

    [21] Zhou J, Dong J, Wang B, Koschny T, Kafesaki M, Soukoulis CM. Negativerefractive index due to chirality. Phys Rev B 2009;79(12):121104 (121104).

    [22] Bahar E. Relationships between optical rotation and circular dichroism andelements of the Mueller matrix for natural and artificial chiral materials. J OptSoc Am B 2008;25(2):21822.

    [23] Bahar E. Characterization of natural and artificial optical activity by theMueller matrix for oblique incidence, total internal reflection, and Brewsterangle. J Opt Soc Am B 2008;25(8):1294302.

    [24] Bahar E. Road maps for the use of Mueller matrix measurements to detect andidentify biological and chemical materials through their optical activity: potential

    applications in biomedicine, biochemistry, security, and industry. J Opt Soc Am B

    2009;26(2):36470.

    [25] Zhuang F, Du X, Ye Y, Zhao D. Evolution of Airy beams in a chiral medium. Opt

    Lett 2012;37(11):18713.

    [26] Wang S, Zhao D. Matrix optics. CHEP-Springer, Beijing; 2000.

    [27] Collins SA. Lens-system diffraction integral written in terms of matrix optics. J

    Opt Soc Am 1970;60(9):116877.

    [28] Valle O, Soares M. Airy functions and applications to physics. Imperial College

    Press, London; 2004.

    Z. Liu, D. Zhao / Optics and Lasers in Engineering 52 (2014) 131818

    http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref22http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref22http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref22http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref23http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref23http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref23http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref23http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref23http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref23http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref23http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref23http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref24http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref24http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref24http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref24http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref24http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref24http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref24http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref24http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref24http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref24http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref25http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref25http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref25http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref25http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref25http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref25http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref25http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref26http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref26http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref26http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref26http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref26http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref27http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref27http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref28http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref28http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref28http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref28http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref28http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref29http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref29http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref29http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref29http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref29http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref28http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref28http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref27http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref26http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref26http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref25http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref25http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref25http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref25http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref24http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref24http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref24http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref23http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref23http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref23http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref22http://refhub.elsevier.com/S0143-8166(13)00226-1/sbref22