Projects IIST 4 Sept'2010

Embed Size (px)

Citation preview

  • 8/8/2019 Projects IIST 4 Sept'2010

    1/60

    http://numericalmethods.eng.usf.edu1

    Projects ???

  • 8/8/2019 Projects IIST 4 Sept'2010

    2/60

    http://numericalmethods.eng.usf.edu2

    Interpolants Polynomials are the most

    common choice of interpolants

    because they are easy to:

    EvaluateDifferentiate, andIntegrate.

  • 8/8/2019 Projects IIST 4 Sept'2010

    3/60

    http://numericalmethods.eng.usf.edu3

    Newtons Divided

    Difference Method

  • 8/8/2019 Projects IIST 4 Sept'2010

    4/60

    http://numericalmethods.eng.usf.edu4

    f two data points are availablee as {x0,f(x0)}and {x1,f(x1)}, the points can be connected

    by a straight line to obtain the simplest formof interpolation,namely,linear interpolation.(see Fig.5.4.)The formula for linearinterpolation can be derived by considering

    the similar triangles ADE and ABC, which giveDE BC f1(x) f(x0) f(x1) f(x0)

    = , or =

    AE AC x x0 x1 x0

    Newtons Divided Difference

    Method

  • 8/8/2019 Projects IIST 4 Sept'2010

    5/60

    http://numericalmethods.eng.usf.edu5

    Newtons Divided Difference

    MethodLinear interpolation: Given pass

    a linear interpolant through the data

    where

    ),,( 00 yx ),,( 11 yx

    )()( 0101 xxbbxf +=

    )( 00 xfb =

    01

    011

    )()(

    xx

    xfxfb

    =

  • 8/8/2019 Projects IIST 4 Sept'2010

    6/60

  • 8/8/2019 Projects IIST 4 Sept'2010

    7/60

    http://numericalmethods.eng.usf.edu7

    Linear Interpolation

    5 0 5 107.08

    7.1

    7.12

    7.14

    7.16

    7.18

    7.27.2

    7.1

    y s

    f range( )

    f x desired( )

    x s1

    10+x s0

    10 x s range, x desired,

    )()( 010 xxbbxy +=

    ,00.20

    =x 2.7)(0

    =xy

    ,25.41 =x 1.7)( 1 =xy

    )( 00 xyb = 2.7=

    01

    011 )()(

    xxxyxyb = 00.225.4 2.71.7 =

    04444.0=

  • 8/8/2019 Projects IIST 4 Sept'2010

    8/60

    http://numericalmethods.eng.usf.edu8

    Linear Interpolation

    (contd)

    5 0 5 107.08

    7.1

    7.12

    7.14

    7.16

    7.18

    7.27.2

    7.1

    y s

    f range( )

    f x desired( )

    x s1 10+x s0 10 x s range, x desired,

    )()( 010 xxbbxy +=

    ),00.2(04444.02.7 = x 25.400.2 x

    4=x)00.200.4(04444.02.7)00.4( =x

    .1111.7 in=

  • 8/8/2019 Projects IIST 4 Sept'2010

    9/60

    http://numericalmethods.eng.usf.edu9

    xamp e: n va ue o x =e . x results to estimate the value of f at

    x=1

    x0=0 and x1= 2f(x0)= f(0) = e0 =1.0

    f(x1) = f(2) = e1.0= 2.718282

    f1(x) = b0 + a1 (x-x0)a0=f(x0) = 1.0

    f(x1)-f(x0) 2.718282 1.0

    a1 = =

    x1 x0 2.0 0.0

    a1=0.859141

  • 8/8/2019 Projects IIST 4 Sept'2010

    10/60

    http://numericalmethods.eng.usf.edu10

    . results to estimate the value of f at

    x=1x

    0

    =0 and x1

    = 2

    f1(x) = 1.0 + 0.859141x

    X=1.0

    f1(1) = 1.0 + 0.859141(1) =1.859141

    exect value :f(1) = e0.5 = 1.648721

  • 8/8/2019 Projects IIST 4 Sept'2010

    11/60

    http://numericalmethods.eng.usf.edu11

    Quadratic Interpolation

  • 8/8/2019 Projects IIST 4 Sept'2010

    12/60

    http://numericalmethods.eng.usf.edu12

    Quadratic Interpolation

    Given

    ),,( 00 yx ),,( 11 yx ),,( 22 yx

    ))(()()( 1020102 xxxxbxxbbxf ++=

    )( 00 xfb =

    01

    011

    )()(

    xx

    xfxfb

    =

    02

    01

    01

    12

    12

    2

    )()()()(

    xx

    xx

    xfxf

    xx

    xfxf

    b

    =

  • 8/8/2019 Projects IIST 4 Sept'2010

    13/60

    http://numericalmethods.eng.usf.edu13

    ExampleThe path of a rapid laser is given by these specifications.If the laser is traversing from x = 2 to x = 4.25 to x=5.25 using aquadratic path, find the value of y at x = 4 using the Newtons Divideddifference polynomial method.

    Path of a robot

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 5 10 15

    X

    Y

    x (m) y (m)

    2 7.2

    4.25 7.1

    5.25 67.81 5

    9.2 3.5

    10.6 5

  • 8/8/2019 Projects IIST 4 Sept'2010

    14/60

    http://numericalmethods.eng.usf.edu14

    Quadratic Interpolation

    (contd)

    2 2.5 3 3.5 4 4.5 5 5.56

    6.5

    7

    7.5

    87.56258

    6

    y s

    f range( )

    f x desired( )

    5.252 x s range, x desired,

    ))(()()( 102010 xxxxbxxbbxy ++=

    ,00.20 =x 2.7)( 0 =xy

    ,25.41 =x 1.7)( 1 =xy

    ,25.52 =x 0.6)( 2 =xy

  • 8/8/2019 Projects IIST 4 Sept'2010

    15/60

    http://numericalmethods.eng.usf.edu15

    Quadratic Interpolation

    (contd))( 00 xyb =

    2.7=

    01

    011 )()(

    xxxyxyb

    = 00.225.42.71.7

    =

    04444.0=

    02

    01

    01

    12

    12

    2

    )()()()(

    xxxx

    xyxy

    xx

    xyxy

    b

    =00.225.5

    00.225.4

    2.71.7

    25.425.5

    1.70.6

    =

    25.3

    04444.01.1 +=

    32479.0=

  • 8/8/2019 Projects IIST 4 Sept'2010

    16/60

    http://numericalmethods.eng.usf.edu16

    Quadratic Interpolation

    (contd)))(()()( 102010 xxxxbxxbbxy ++=

    ),25.4)(00.2(32479.0)00.2(04444.02.7 = xxx 25.500.2 x

    ,4=x)25.400.4)(00.200.4(32479.0)00.200.4(04444.02.7)00.4( =y

    .2735.7 in=

    a

    1002735.7

    1111.72735.7

    =a

    %2327.2=

  • 8/8/2019 Projects IIST 4 Sept'2010

    17/60

    http://numericalmethods.eng.usf.edu17

    General Form))(()()( 1020102 xxxxbxxbbxf ++=

    where

    Rewriting

    ))(](,,[)](,[][)( 1001200102 xxxxxxxfxxxxfxfxf ++=

    )(][ 000 xfxfb ==

    01

    01

    011

    )()(],[

    xx

    xfxfxxfb

    ==

    02

    01

    01

    12

    12

    02

    0112

    0122

    )()()()(

    ],[],[],,[xx

    xx

    xfxf

    xx

    xfxf

    xxxxfxxfxxxfb

    ===

  • 8/8/2019 Projects IIST 4 Sept'2010

    18/60

    http://numericalmethods.eng.usf.edu18

    General Form

    Given

    )1( +n ( ) ( ) ( ) ( )nnnn yxyxyxyx ,,,,......,,,, 111100 ))...()((....)()( 110010 +++= nnn xxxxxxbxxbbxf

    ][ 00 xfb =

    ],[ 011 xxfb =

    ],,[ 0122 xxxfb =

    ],....,,[ 0211 xxxfb nnn =

    ],....,,[ 01 xxxfb nnn =

  • 8/8/2019 Projects IIST 4 Sept'2010

    19/60

    http://numericalmethods.eng.usf.edu19

    General form

    The third or

    ),,( 00 yx ),,( 11 yx ),,( 22 yx ),,( 33 yx

    ))()(](,,,[))(](,,[)](,[][)(

    2100123

    1001200103

    xxxxxxxxxxfxxxxxxxfxxxxfxfxf

    + ++=

    0b

    0x )( 0xf 1b

    ],[ 01 xxf 2b

    1x )( 1xf ],,[ 012 xxxf 3b

    ],[ 12 xxf ],,,[ 0123 xxxxf

    2x )( 2xf ],,[ 123 xxxf

    ],[ 23 xxf

    3x )( 3xf

  • 8/8/2019 Projects IIST 4 Sept'2010

    20/60

    http://numericalmethods.eng.usf.edu20

  • 8/8/2019 Projects IIST 4 Sept'2010

    21/60

    http://numericalmethods.eng.usf.edu21

    Example The path of a rapid laser is given by thesespecifications. Find the path traversed by the laserusing the Newtons Divided Difference Polynomial

    method.Path of a robot

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 5 10 15

    X

    Y

    x (m) y (m)

    2 7.2

    4.25 7.1

    5.25 67.81 5

    9.2 3.5

    10.6 5

  • 8/8/2019 Projects IIST 4 Sept'2010

    22/60

    http://numericalmethods.eng.usf.edu22

    Example

    The value of))()()()(())()()((

    ))()(())(()()(

    43210532104

    2103102010

    xxxxxxxxxxbxxxxxxxxb

    xxxxxxbxxxxbxxbbxy

    ++

    +++=

    ,00.20 =x 2.7)( 0 =xy ,25.41 =x 1.7)( 1 =xy

    ,25.52 =x 0.6)( 2 =xy ,81.73 =x 0.5)( 3 =xy

    ,20.94 =x 5.3)( 4 =xy ,60.105 =x 0.5)( 5 =xy

    0b 2.7= 1b 04444.0= 2b 32479.0=

    3b 090198.0= 4b 023009.0= 5b 0072922.0=

  • 8/8/2019 Projects IIST 4 Sept'2010

    23/60

    http://numericalmethods.eng.usf.edu23

    ExampleHence

    ))()()()(())()()((

    ))()(())(()()(

    43210532104

    2103102010

    xxxxxxxxxxbxxxxxxxxb

    xxxxxxbxxxxbxxbbxy

    ++

    +++=

    )2.9)(81.7)(25.5)(25.4)(2(0072922.0

    )81.7)(25.5)(25.4)(2(023009.0

    )25.5)(25.4)(2(090198.0

    )25.4)(2(32479.0)2(04444.02.7

    +

    +

    =

    xxxxx

    xxxx

    xxx

    xxx

    6.102,0072922.023091.07862.2855.15344.41898.30)( 5432 +++= xxxxxxxy

  • 8/8/2019 Projects IIST 4 Sept'2010

    24/60

    http://numericalmethods.eng.usf.edu24

    Example

    6.102,0072922.023091.07862.2855.15344.41898.30)( 5432 +++= xxxxxxxy

    Path of a robot

    7.2 7.1

    6

    5

    3.5

    5

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 2 4 6 8 10 12

    X

    Y

  • 8/8/2019 Projects IIST 4 Sept'2010

    25/60

    http://numericalmethods.eng.usf.edu25

    Newton-Gregory forwardinterpolation formula

    The general Newtons interpolationformula can be simplified when the

    data points are equally spacedalong x-axis. The resulting formulasare also known as Newton-Gregoryformulas. fh denotes the intervalbetween any two concecutivevalues of xi(xi+1 -xi=h) ve can write

    xi

    =x0

    + ih , i=1,2,.,n.

  • 8/8/2019 Projects IIST 4 Sept'2010

    26/60

    http://numericalmethods.eng.usf.edu26

    Newton-Gregory forwardinterpolation formula

    In this case, the coefficients of the interpolationpolynominal a0,a1,.,an can be expressed as,

    0f0

    a0=f(x0) =h0

    1f0 0f0

    a1 = =h1 h0

  • 8/8/2019 Projects IIST 4 Sept'2010

    27/60

    http://numericalmethods.eng.usf.edu27

    Newton-Gregory forward

    interpolation formulanf0

    an =

    n!hnjf0 is thejth-order forward difference(j=1,2,,n)

    Using these relations we can write the nth-order

    Newtons interpolation polynominal as; f0 2f0fn(x) =f(x0) + (x-x0) + (x-x0)(x-x0-h) +.

    h 2!h2

  • 8/8/2019 Projects IIST 4 Sept'2010

    28/60

    http://numericalmethods.eng.usf.edu28

    Interpolation using Splines ,Why

    Splines ?2251

    1)(

    xxf

    +=

    Table : Six equidistantly spaced points in [-1, 1]

    Figure : 5th order polynomial vs. exact function

    x 22511x

    y+

    =

    -1.0 0.038461

    -0.6 0.1

    -0.2 0.5

    0.2 0.5

    0.6 0.1

    1.0 0.038461

  • 8/8/2019 Projects IIST 4 Sept'2010

    29/60

    http://numericalmethods.eng.usf.edu29

    Why Splines ?

    Figure : Higher order polynomial interpolation is a bad idea

    Original

    Function

    16th Order

    Polynomial

    8th Order

    Polynomial

    4thOrder

    Polynomial

  • 8/8/2019 Projects IIST 4 Sept'2010

    30/60

    http://numericalmethods.eng.usf.edu30

  • 8/8/2019 Projects IIST 4 Sept'2010

    31/60

    http://numericalmethods.eng.usf.edu31

  • 8/8/2019 Projects IIST 4 Sept'2010

    32/60

    http://numericalmethods.eng.usf.edu32

  • 8/8/2019 Projects IIST 4 Sept'2010

    33/60

    http://numericalmethods.eng.usf.edu33

  • 8/8/2019 Projects IIST 4 Sept'2010

    34/60

    http://numericalmethods.eng.usf.edu34

  • 8/8/2019 Projects IIST 4 Sept'2010

    35/60

    http://numericalmethods.eng.usf.edu35

    Linear InterpolationGiven ( ) ( ) ( )( )nnnn yxyxyxyx ,,,......,,,, 111100 , fit linear splines to the data. This simply involvesforming the consecutive data through s traight lines. So if the above data is given in an ascending

    order, the linear splines are given by ( ))( ii xfy =

    Figure : Linear splines

  • 8/8/2019 Projects IIST 4 Sept'2010

    36/60

  • 8/8/2019 Projects IIST 4 Sept'2010

    37/60

    http://numericalmethods.eng.usf.edu37

    Example The path of a rapid laser is given by these specifications.If the laser is traversing from x = 2 to x = 4.25 in a linear path,find the value of y at x = 4 using the linear spline interpolation

    method.

    Path of a robot

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 5 10 15

    X

    Y

    x (m) y (m)

    2 7.2

    4.25 7.1

    5.25 67.81 5

    9.2 3.5

    10.6 5

  • 8/8/2019 Projects IIST 4 Sept'2010

    38/60

    http://numericalmethods.eng.usf.edu38

    Linear Interpolation

    5 0 5 107.08

    7.1

    7.12

    7.14

    7.16

    7.18

    7.27.2

    7.1

    y s

    f range( )

    f x desired( )

    x s1

    10+x s0

    10 x s range, x desired,

    ,00.20 =x

    2.7)( 0 =xy

    ,25.41 =x 1.7)( 1 =xy

    )()()()()( 001

    010 xx

    xx

    xyxyxyxy +=

    )00.2(00.225.4

    2.71.72.7

    += x

    )00.2(04444.02.7)( = xxy

    ,4=x

    )00.200.4(04444.02.7)00.4( =y

    .1111.7 in=

  • 8/8/2019 Projects IIST 4 Sept'2010

    39/60

    http://numericalmethods.eng.usf.edu39

    Linear Interpolation

    (contd)

    The linear sp),00.2(04444.02.7)( = xxy 25.400.2 x

    ),25.4(1.11.7)( = xxy 25.525.4 x

    ),25.5(390625.00.6)( = xxy 81.725.5 x

    ),81.7(07914.10.5)( = xxy 20.981.7 x

    ),20.9(07143.15.3)( += xxy 60.1020.9 x

    Find the path of the robot if it follows linear splines.

  • 8/8/2019 Projects IIST 4 Sept'2010

    40/60

    http://numericalmethods.eng.usf.edu40

    Linear Interpolation

    (contd)Find the length of the path traversed by therobot following linear splines.

    The length of the robots path can be found by simply adding the length

    of the line segments together. The length of a straight line from one point

    ),( 00 yx to another point ),( 11 yx is given by2

    01

    2

    01 )()( yyxx + .

    Hence, the length of the linear splines from x = 2.00 to x = 10.60 is

    22

    2222

    2222

    )5.30.5()20.960.10(

    )0.55.3()81.720.9()0.60.5()25.581.7(

    )1.70.6()25.425.5()2.71.7()00.225.4(

    ++

    ++++

    +++=L

    L=10.584 m

  • 8/8/2019 Projects IIST 4 Sept'2010

    41/60

    http://numericalmethods.eng.usf.edu41

    Exemple: find a linear spline to fit

    the following data :i

    0

    12

    3

    4

    xi

    2.0

    3.0

    6.5

    8.0

    12.0

    f(xi)

    14.0

    20.017.0

    16.0

    23.0

    Use the results toestimate the value of fat x= 7.0.

  • 8/8/2019 Projects IIST 4 Sept'2010

    42/60

    http://numericalmethods.eng.usf.edu42

    solutionThe data points can be joined by straightlines to linear spline.since x=7.0 lies inthe interval (6.5 to 8.0) we can findthe equation of the straight linebetween x=6.5 and x=8.0 as

    f(x3) f(x2)

    f3(x) = f(x2) + (x-x2)x3 x2

  • 8/8/2019 Projects IIST 4 Sept'2010

    43/60

    http://numericalmethods.eng.usf.edu43

    Solution(con)f3(x) = 17.0 +((16.0 17.0) / (8.0 -6.5)) (x-6.5)

    = 21.3333 0.6667xThe value of f at x=7.0 can be estimated as

    f(7.0)=21.3333-0.6667(7.0) = 16.6664

  • 8/8/2019 Projects IIST 4 Sept'2010

    44/60

    Q d i I l i

  • 8/8/2019 Projects IIST 4 Sept'2010

    45/60

    http://numericalmethods.eng.usf.edu45

    Quadratic Interpolation(contd)

    Each quadratic spline goes through two consecutive data points

    )( 01012

    01xfcxbxa =++

    )(1111

    2

    11xfcxbxa =++ .

    .

    .

    )(11

    2

    1 =++ iiiiii xfcxbxa

    )(2

    iiiiii xfcxbxa =++ .

    .

    .

    )(11

    2

    1 =++ nnnnnn xfcxbxa

    )(2

    nnnnnn xfcxbxa =++

    This condition gives 2n equations

  • 8/8/2019 Projects IIST 4 Sept'2010

    46/60

    http://numericalmethods.eng.usf.edu46

    Quadratic Splines (contd)The first derivatives of two quadratic splines are continuous at the interior points.

    For example, the derivative of the first spline

    11

    2

    1

    cxbxa

    ++is

    11

    2 bxa

    +

    The derivative of the second spline

    22

    2

    2 cxbxa ++ is 222 bxa +

    and the two are equal at1

    xx = giving

    21211122 bxabxa +=+

    022212111 =+ bxabxa

  • 8/8/2019 Projects IIST 4 Sept'2010

    47/60

    http://numericalmethods.eng.usf.edu47

    Quadratic Splines (contd)Similarly at the other interior points,022 323222 =+ bxabxa

    .

    .

    .

    022 11 =+ ++ iiiiii bxabxa

    .

    .

    .

    022 1111 =+ nnnnnn bxabxa

    We have (n-1) such equations. The total number of equations is )13()1()2( =+ nnn .

    We can assume that the first spline is linear, that is 01 =a

  • 8/8/2019 Projects IIST 4 Sept'2010

    48/60

    http://numericalmethods.eng.usf.edu48

    Quadratic Splines (contd)This gives us 3n equations and 3n unknowns. Once we find the 3n constants,we can find the function at any value of x using the splines,

    ,)( 112

    1 cxbxaxf ++= 10 xxx

    ,222

    2 cxbxa ++= 21 xxx

    .

    .

    .

    ,2 nnn cxbxa ++= nn xxx 1

  • 8/8/2019 Projects IIST 4 Sept'2010

    49/60

    http://numericalmethods.eng.usf.edu49

    ExampleThe path of a rapid laser is given by thesespecifications in Cartesian co-ordinates. Find thelength of the path traversed by the robot using

    quadratic splines.Path of a robot

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 5 10 15

    X

    Y

    x (m) y (m)

    2 7.2

    4.25 7.1

    5.25 67.81 5

    9.2 3.5

    10.6 5

  • 8/8/2019 Projects IIST 4 Sept'2010

    50/60

    http://numericalmethods.eng.usf.edu50

    Solution

    2 4 6 8 10 123

    4

    5

    6

    7

    87.2

    3.5

    y

    10.62 x

    Since ther

    fi d

    ,)( 1121 cxbxaxy ++= 25.400.2 x

    ,222

    2 cxbxa ++= 25.525.4 x

    ,332

    3 cxbxa ++= 81.725.5 x

    ,4424 cxbxa ++= 20.981.7 x

    ,552

    5 cxbxa ++= 60.1020.9 x

  • 8/8/2019 Projects IIST 4 Sept'2010

    51/60

    http://numericalmethods.eng.usf.edu51

    Solution (contd)Setting up the eq

    Each quadratic s

    11

    2

    1cxbxa ++

    2.7)00.2()00.2( 112

    1 =++ cba

    1.7)25.4()25.4( 112

    1 =++ cba

    Similarly,

    1.7)25.4()25.4( 222

    2 =++ cba

    0.6)25.5()25.5( 222

    2 =++ cba

    0.6)25.5()25.5( 332

    3 =++ cba

    0.5)81.7()81.7( 332

    3 =++ cba

    0.5)81.7()81.7( 442

    4 =++ cba

    5.3)20.9()20.9( 442

    4 =++ cba

    5.3)20.9()20.9( 552

    5 =++ cba

    0.5)60.10()60.10( 552

    5 =++ cba

  • 8/8/2019 Projects IIST 4 Sept'2010

    52/60

    http://numericalmethods.eng.usf.edu52

    Solution (contd)

    Quadratic spline

    At x = 4.25

    0)25.4(2)25.4(2 2211 =+ baba

    0)25.5(2)25.5(2 3322 =+ baba

    0)81.7(2)81.7(2 4433 =+ baba

    0)20.9(2)20.9(2 5544 =+ baba

    11

    2

    1 cxbxa ++

    01 =a

    2 2.5 3 3.5 4 4.5 5 5.56

    6.5

    7

    7.5

    87.56258

    6

    y s

    f range( )

    f x desired( )

    5.252 x s range, x desired,

  • 8/8/2019 Projects IIST 4 Sept'2010

    53/60

    http://numericalmethods.eng.usf.edu53

    Solution (contd)

    =

    0

    0

    0

    0

    0

    0.5

    5.3

    5.3

    0.5

    0.5

    0.6

    0.6

    1.7

    1.7

    2.7

    000000000000001

    014.18014.18000000000

    0000162.150162.15000000

    000000015.10015.10000

    000000000015.8015.8

    16.1036.112000000000000

    12.964.84000000000000

    00012.964.84000000000

    000181.7996.60000000000

    000000181.7996.60000000

    000000125.5563.27000000

    000000000125.5563.27000

    000000000125.4063.18000

    000000000000125.4063.18

    000000000000124

    5

    5

    5

    4

    4

    4

    3

    3

    3

    2

    2

    2

    1

    1

    1

    c

    b

    a

    c

    b

    a

    c

    b

    a

    c

    b

    a

    c

    b

    a

  • 8/8/2019 Projects IIST 4 Sept'2010

    54/60

    http://numericalmethods.eng.usf.edu54

    Solution (contd)

    Solving theia ib ic

  • 8/8/2019 Projects IIST 4 Sept'2010

    55/60

    http://numericalmethods.eng.usf.edu55

    Solution (contd),2889.704444.0)( += xxy 25.400.2 x

    ,777.119278.80556.1 2 += xx 25.525.4 x

    ,319.363945.968943.0 2 += xx 81.725.5 x

    ,40.113945.287651.1 2 += xx 20.981.7 x

    ,34.314042.642886.3 2 += xx 60.1020.9 x

  • 8/8/2019 Projects IIST 4 Sept'2010

    56/60

    http://numericalmethods.eng.usf.edu56

    Solution (contd)

    2 4 6 8 100

    2

    4

    6

    88

    0

    y

    fquadratic range( )

    111.5 x range,

    The length of a cu

    )(xfy =

    +=b

    a

    dxdx

    dyL

    2

    1

    ( ),2889.704444.0 += xdx

    d

    dx

    dy25.400.2 x

    ( ),777.119278.80556.1 2 += xxdx

    d25.525.4 x

    ( ),319.363945.968943.0 2 += xxdxd 81.725.5 x

    ( ),40.113945.287651.1 2 += xxdx

    d20.981.7 x

    ( ),34.314042.642886.3 2 += xxdx

    d60.1020.9 x

  • 8/8/2019 Projects IIST 4 Sept'2010

    57/60

    http://numericalmethods.eng.usf.edu57

    Solution (contd)

    ++

    ++

    ++

    ++

    +=

    60.10

    20.9

    220.9

    81.7

    281.7

    25.5

    225.5

    25.4

    225.4

    00.2

    2

    11111dx

    dy

    dx

    dy

    dx

    dy

    dx

    dydx

    dx

    dyL

    ( ) ( ) ( )

    ( ) ( )

    +++++

    ++++++=

    60.10

    20.9

    220.9

    81.7

    2

    81.7

    25.5

    225.5

    25.4

    225.4

    00.2

    2

    042.645772.61945.285302.31

    3945.93788.119278.81111.2104444.01

    dxxdxx

    dxxdxxdx

    8080.36067.26596.35499.12522.2 ++++=

    876.13=

  • 8/8/2019 Projects IIST 4 Sept'2010

    58/60

    http://numericalmethods.eng.usf.edu58

    ComparisonCompare the answer from part (a) to linearspline result and fifth order polynomial result.

    We can find the

    6.102,0072923.023091.07862.2855.15344.41898.30)(5432 +++= xxxxxxxy

    +=b

    a

    dxdxdyL

    2

    1

    ( ) +++=60.10

    00.2

    432036461.092364.03586.8710.31344.411 dxxxxx

    133.13=

  • 8/8/2019 Projects IIST 4 Sept'2010

    59/60

    http://numericalmethods.eng.usf.edu59

    C programming#include/* interpolation using splines */int main(void){

    int n,i,i1,i2;float x[30],fx[30],xx,ffx,a,b;printf("Enter number of datapoints\n");scanf("%d",&n);printf("enter data points (values of x) \n");

    for( i=0;i

  • 8/8/2019 Projects IIST 4 Sept'2010

    60/60