80
Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz). 3.Encoding and Decoding in the Auditory System (Izzett Burak Yildiz). 4.Quadratic programming of tuning curves: a theory for tuning curve shape (Ralph Bourdoukan). 5.The Bayesian synapse: A theory for synaptic short term plasticity (Sophie Deneve).

Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Embed Size (px)

Citation preview

Page 1: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Projects:

1. Predictive coding in balanced spiking networks (Erwan Ledoux).

2. Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz).

3. Encoding and Decoding in the Auditory System (Izzett Burak Yildiz).

4. Quadratic programming of tuning curves: a theory for tuning curve shape (Ralph Bourdoukan).

5. The Bayesian synapse: A theory for synaptic short term plasticity (Sophie Deneve).

Page 2: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Projects:

1. Choose a project. Send email to [email protected]

2. Once project assigned, take appointment with advisor ASAP (before April 17).

3. Plan another meeting with advisor (mid-May). 4. Prepare Oral presentation (June 5). Pedagogy, context, clarity, results not so important.

Page 3: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

The efficient coding hypothesis

Predicting sensory receptive fields

Page 4: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Schematics of the visual system

Page 5: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

The retina

Page 6: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Center-surround RFs

Page 7: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Hubel and Wiesel

Page 8: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

V1 orientation selective cell

Page 9: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Hubel and Wiesel model

Page 10: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

How are receptive fields measured?

Page 11: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

How are receptive fields measured?

Page 12: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

How are receptive fields measured?

Page 13: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

How are receptive fields measured?

Page 14: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

It is a linear regression problem

Page 15: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)
Page 16: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)
Page 17: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

It is a linear regression problem

Solution: 1T Tw ss sr

Page 18: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Receptive fields of V1 simple cells

Page 19: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Optimal sensory coding?

Page 20: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

The notion of surprise

Page 21: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

The entropy of a distribution

Page 22: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Minimal and maximal entropy

Page 23: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Maximizing information transfer

| |x A

H Y X p x H Y X x

Conditional entropy H(Y|X): Surprise about Y when one knows X

Or more shortly:

| | log |y B

H Y X x p y x p y x

With:

,

| , log |x A y B

H Y X p x y p y x

Page 24: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Maximizing information transfer

| |x A

H Y X p x H Y X x

Conditional entropy H(Y|X): Surprise about Y when one knows X

Mutual information between X and Y:

, |I X Y H X H X Y

|H Y H Y X

Page 25: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Maximizing informationMutual information between x and y:

Maximize…or…

Minimize

Interesting!

Boring! |p x y

|p x y

X Y

Unreliable!

Precise!

, |I X Y H X H X Y

Page 26: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Sensory system as information channel

Page 27: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Maximizing information transfer

Mutual information between x and r:

, |I r s H s H s r

|H r H r s

Fixed (no noise)Maximize

Generative models

Analysis models

Page 28: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Maximizing information transfer

Page 29: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Distribution of responses

Page 30: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Entropy maximization

Page 31: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Infomax activation function

Page 32: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

An example in the fly

Page 33: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

But: neurons cannot have any activation function!

Page 34: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Information maximization

Page 35: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Information maximization

Page 36: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Information maximization

Page 37: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Two neurons

Page 38: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Each neuron maximizing its own entropy

Page 39: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Entropy of a 2D distribution

Page 40: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Two neurons

Page 41: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Entropy maximization = Independent component analysis

Page 42: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Entropy maximization, 2 neurons

Page 43: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Independent component analysis, N neurons

Page 44: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Application: visual processing

Page 45: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Transformation of the visual input

Page 46: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Entropy maximization

Page 47: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Entropy maximization

Page 48: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Weights learnt by ICA (image patch)

Page 49: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

The distribution of natural images

Page 50: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Geometric interpretation of ICA

Page 51: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

First stages of visual processing

Page 52: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

The efficient coding hypothesis

Page 53: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Limitations of ICA

Works only once…

Great!

Page 54: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Limitations of ICA

Works only once…

… and then what?

Great!

Page 55: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)
Page 56: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Limitations of ICA

Complete basis. Number of features = Number of pixels

Page 57: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Limitations of ICA

Bottleneck

Number optic nerve fibers << Number of retinal receptors

Page 58: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Maximizing information transfer

Mutual information between x and r:

, |I r s H s H s r

|H r H r s

Fixed MinimizeReconstruction error

Fixed (no noise)Maximize

Generative models

Analysis models

Page 59: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Maximizing informationMutual information between x and y:

, |I r s H s H s r

Fixed Minimize

|p s r

|p s r

s r

Unreliable!

Precise!

Page 60: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Maximizing informationMutual information between x and y:

, |I r s H s H s r

Fixed Minimize

|p s r

|p s r

s r

Unreliable!

Precise!

r must predict the sensory input as well as possible

Page 61: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Generative model

1h 2h 4h 5h3h

1s 2s 3s

i ij jj

s h Noise Generate

Independent, prior p h

Page 62: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Generative model

1h 2h 4h 5h3h

1s 2s 3s

i ij jj

s h Noise Generate

Independent, prior p h

, |I H H s h s s h

Page 63: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Generative model

1h 2h 4h 5h3h

1s 2s 3s

i ij jj

s h Noise Generate

Independent, prior p h

Find the dictionary of features, , minimizing |H s h

, |I H H s h s s h

Page 64: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

The Gaussian Distribution

Minimize mean squared error

Page 65: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Generative model, recognition model

1h 2h 4h 5h3h

1s 2s 3s

20,i ij j

j

s h N Generate

Recognize

1 1r h 2 2r h3r 4r 5r

Independent, prior p h

ˆ reconstruction errori ij j ij

s r s

Minimize entropy

Minimize expected reconstruction error

Page 66: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Separate the problem in two:

• Given current sensory input , and dictionary estimate the hidden state

• Given the current state estimates and sensory input update the to minimize reconstruction error.

• Repeat until convergence.

r

*

s *

r s

• Start with some random dictionary *

Page 67: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

How to estimate r= h?

1h 2h 4h 5h3h

1s 2s 3s

arg max | ,p h

r h s

Generate

Recognize

1r 2r 3r 4r 5r

Maximum a-posteriori (MAP)

Page 68: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

How to estimate r= h?

1h 2h 4h 5h3h

1s 2s 3s

Generate

Recognize

1r 2r 3r 4r 5r

arg max log | ,p p h

r s h h

arg max log | , logp p h

r s h h

| ,| ,

p pp

p

s h hh s

s

Bayes rule:

Page 69: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Reconstruction error and MAP

2| N ,i ij jj

p s h

h logk kh p h

Normal distribution

Variance of pixel noise

2

2

1log | , i ij j k

i j k

p s h h

h s

Minus log posterior equivalent to reconstruction error with cost:

PriorCost

Page 70: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Minimize reconstruction error

i ij jj

s r Reconstructed sensory input Neural responses

Dictionary of features

2ˆarg min i i k

r i k

s s r r

Reconstruction error Penalty or cost

Page 71: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

1h 2h 4h 5h3h

1s 2s 3s

T T

t

rr

s rr

Generate

Recognize

1r 2r 3r 4r 5r

T

How to estimate r= h?

T

'

2ˆj i i k

i kj

r s s rr

Maximize log posterior probability:

Page 72: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

1h 2h 4h 5h3h

1s 2s 3s

Generate

Recognize

1r 2r 3r 4r 5r

T

T

'

How to update the dictionary

2ˆij i iiij

s s

ˆij j i ir s s

Minimize mean-squared error:

Page 73: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Generative model, recognition model

1h 2h 4h 5h3h

1s 2s 3s

Generate

Recognize

1r 2r 3r 4r 5r

1. Find

2. Update to minimize MSE

most probable hidden states

Page 74: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

What prior to use? Sparse coding

Cost = number of neurons with non-zero responses

Good! Bad!

Many cortical neurons are near-silent…

p h

p h

h h

Page 75: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Sparse responses of an edge detector

… …

ir

ir

expk kp h h

Sparse prior:

Page 76: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Elementary features found by sparse coding

hp h e

Page 77: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Limitation of the sparse coding approach applied to sensory RFs

1h 2h 4h 5h3h

1s 2s 3s

Generate

Recognize

1r 2r 3r 4r 5r

“Predictive fields”

“Receptive fields”

Different!

ˆ r ws

ˆ s h

Page 78: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Receptive fields depend on stimulus type

Page 79: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

Receptive fields depend on stimulus type

Carandini et al, JNeurosci 2005

Page 80: Projects: 1.Predictive coding in balanced spiking networks (Erwan Ledoux). 2.Using Canonical Correlation Analysis (CCA) to analyse neural data (David Schulz)

f

t

Responses to natural scene are poorly predicted by the RF.

STRF:

Machens CK, Wehr MS, Zador AM. J Neurosci. 2004