Project Two Report

Embed Size (px)

Citation preview

  • 8/8/2019 Project Two Report

    1/43

    ProjectTwoSingle degree of freedom analysisAaronCanning

    ScottHarrison

    StephenShew

    DavidSteele

    JacksonSupit

    NathanMcCosker

    8/3/2009

  • 8/8/2019 Project Two Report

    2/43

  • 8/8/2019 Project Two Report

    3/43

    Projectoverview

    Thisreportisananalysisoftheperformanceofasimpleboxtrailerssuspensionsystem.Theanalysis

    willbebasedonthetrailerbeingviewedasamechanicalsystemwithasingledegreeoffreedomfor

    anymovement. Itwillbeassumed that the towbarof the trailer isconnected toa singlevertical

    slider,henceeliminatinganyrollorpitch.Thustherewillonlybeverticalmotioninthesystem.

    The systemwillbeanalysed inmanydifferentsituations including freevibration, forcedand road

    surfaceforcedscenarios.Allofwhich,willbeanalysedregardingresonance,transmissibilityfactoras

    wellasbeingmodelledinsimulink.

  • 8/8/2019 Project Two Report

    4/43

    Listofassumptions

    Forthewholesystem

    The Maximum displacement of the trailer in the vertical direction is 0.2m. Hence theamplitude,X,is0.2

    Critical dampening is designed to occur when the trailer is fully loaded (2000kg). This isassumedbecausegenerallymoreloadmeansmoreobjectswillbecarriedandhencethere

    willbemoreprotectionneeded.

    Thetrailerisstationaryonlevelgrounduntiltheroadsurfaceanalysis. Thespringsactasoneinthesystemandareviewedasasinglespringanddampener.

    Engineforcedvibration

    The eccentric mass of the skid mounted compressor it 100grams with an eccentricity of10cm. It isassumed the imbalance isdue to the rotationof thecrankshaftaswellas the

    movementofpistons.Theengineisverybadlymaintained.

    Thecompressorhasbeenmounteddirectlyovertheaxleofthetrailertodirectthemotionoftheeccentricmassthroughthesystemandsimplifythecalculation.

    Theengineiscompletelyfixedtothebackofthetrailerwithnoloosemovement. Themassesofthetrailerandengineareusedtogetherasonemass.

    RoadInductedVibrations

    Roadsurfaceismodelledbyasinewavetosimulatethetrailerbeingpulledacrosscorrugations.

    Corrugationshave:o Amplitudeof0.1mo Wavelengthof2m

    Thevelocityofthetrailerisfrom0120km/hr Thetireonthetrailerremainsincontactwiththeroadatalltimes

  • 8/8/2019 Project Two Report

    5/43

    DerivationofFreevibrationresponse

    Asthereisalimitontheamountofinformationwehaveonthetraileranditsload,furtherresearch

    and analysis was conducted to gain all the information that was needed to describe the free

    vibrationresponse.ThisinformationcanbeseenonthefreebodydiagraminappendixB.Itconsists

    ofthecombinedspringconstants,Kofthetwoleafsprings,thedampeningsuppliedbythesystem

    andthemassoftheloadtobecarried(theskidmountedenginepoweredaircompressor).

    Equationoffreevibrationresponse;

    (t)=0The weight of the trailer is known skid mounted engine, research was conducted to establish a

    suitable device to use with the trailer. It was found that a___________ weighing approximately

    500kgwasaviableoptionconsideringitssizeandmass.Thismeansthatthemassofthetrailerwill

    varyfrom400kg(empty)to900kg(compressormounted).

    Forthespringconstant,Kitwasagreedthatitshouldbedesignedforatraileratmaximumloadto

    withstand the stressesapplied to the system.Hence,when calculating the spring constant itwas

    assumedthattheMwasthegrossweightofthetrailer,M=2000kg.Usingequation1.4(Hookslaw)

    inappendixBandamaximumdisplacement/amplitudeof0.2mitwasfoundthatK=98000N/m.

    Tofindthevalueofthedampeningconstant itwasassumedthatthetrailerwasatfullcapacityas

    that iswhen critical dampeningwillbemostdesirable.Therefore thedampening constantof the

    systemwasfound(usingequations1.1,1.2and1.3)tobe28000N.sec/m.

    With all the values of the free body diagram found they can be formed into an equation and

    modelledinsimulinktobegraphedaccordingly.Thefreevibrationequationsandthegraphscanbe

    foundinappendixBaswellasthesimulinkmodelinappendixF.

    It is also is noted that from equation 1.1 the resonant frequencies of the unloaded and loaded

    trailersare15.65rad/secand10.43rad/sec.Therefore,withoutsufficientdampeninganyexcitation

    forcewithsimilarfrequenciescouldpotentiallycauseresonancetooccur.

  • 8/8/2019 Project Two Report

    6/43

    Forcedvibrationadditionandaffectonsystem

    To analyse forced vibration on the system, a 500Kg internal combustion compressor has been

    mountedonto thebackof the trailer.Thecompressorconsistsof four straightcylinders.The isa

    mild imbalancewithintheenginewhich isrepresentedbyaneccentricmasswithavalueof0.1Kg

    andaneccentricityof0.1m.

    Equationofthenewsystem

    Where

    sinTherefore

    sinWiththevaluesforallthevariablesenteredintotheequation;

    900 28000 98000 0.1 sinWhereisproportionaltotheenginespeed.Thisfunctionwasmodelledinsimulinkandgraphedoverasetperiodtoanalysetheresponseofthesystemtotheengine.ThesimulinkmodelcanbefoundinappendixFandthegraphsinappendixC.

    Itcanbe seenby thegraphs inappendixC thatundercriticaldampening theexcitation from the

    engine causes little or no super positioning of the system at all. However when the damping

    constantisreducedtolessthancriticaltheeffectsbecomesmoreobservable.Thetransfersystemis

    very apparent initially and with less damping can be observed longer before a steady state is

    achieved.

    Itcanalsobeseenbythegraphsthatvaryingenginespeedsdoaffectthesystemduehoweverthey

    onlybecome considerablearoundnof the system.Byuseofequation2.1, thenondimensional

    steady state canbe foundandmodelledagainst the ratioofengine frequency, to the systemsnaturalfrequency,.HencetheresonanceofthewholesystemcanbeanalysedasinappendixCtorevealwhatenginespeedcauseresonanceinthesuspensiontooccur.ThisallowstheRPMvalue

    oftheenginewhichcausesresonancetobefound.

  • 8/8/2019 Project Two Report

    7/43

    From the results found inappendixC, theengineonlybegins to resonatewith the suspensionat

    110RPM. The engine itself like any typical four cylinder internal combustion system operates

    between3006000RPMandhasan idlespeedof300 700RPMapproximately.Theonlytimewhen

    theenginewillbeoperatingaround110RPMisduringtheignitionphasewhenitisatthatspeedfor

    onlyaninstant.Thereforeevenwithoutthedampeningofthesuspensiontheenginewouldnotbe

    abletoachieveresonanceintimetocauseanyseriousissues.

  • 8/8/2019 Project Two Report

    8/43

    Roadforcedvibrationadditionandaffectonsystem

    Tomodela trailerbeing towedacrossacorrugated roadbetween the speedsof0120km/hr, the

    abovesystemwillbeusedtoanalysethedisplacementofthewheelhubwithtime. Thecorrugated

    roadwillberepresentedbyasinewavewithawavelengthof5mandanamplitudeof0.1m. The

    vibrationsofthesystemisexcitedbythemotionofthesystemoverthecorrugations. Thusknowing

    thespringconstant,dampingcoefficientandfrequency(duetothetrailer'svelocity),agraphcanbe

    plottedtodetermineresonancecharacteristics. Thiscanbeachievedbyplottingthetransmissibility

    factorVSFrequencyratio(ascanbeseeninAppendixD).

    M

    kc

    V

  • 8/8/2019 Project Two Report

    9/43

    Equationofmotion:

    TheNonDimensionalsteadystatesolutionofthesystem

    And

    tan It can be seen from the graphs in appendix D, that when the system is critically damped the

    suspension response is very minimal. When critically damped the trailer simply follows the

    undulationsofthecorrugatedroad. Howeverwhenthedampingconstantisloweredtheeffectsof

    thecorrugatedroadbecomemuchmorenoticeable. Withnodampingthemaximumdisplacement

    spicksover0.15m(anadditional30%ofmovementcomparedtocritical).

  • 8/8/2019 Project Two Report

    10/43

    Additionalnon-linearities

    Whataresomepossiblenon-linearities ofthetrailer?

    Nonlinearities can occur if the force exerted by the leaf spring is a nonlinear function of thedisplacement.Areal lifeexampleofthis is ifthewheelbecomesairbornor ifthespringbecomes

    fullycompressed,whenreferringtoasuspensionsystemsuchasonthetrailer itcanbesaidthat

    thesuspensionhasbeenbottomedout.Oncethespringcannotcompressanymorenonlinearities

    occurs.Asforifthetyrebecomesairbornthedisplacementofthespringovertimewouldnotbeina

    linearform,duetothecharacteristicsandnatureofthekinematicequation.Inadditiontothisthe

    spring could be stretched to yield by the means of the mass of axel and wheel rims tyres etc.

    Howeverinthisparticularmodelthiswasnotexamined.

    Inamorecomplexmodel rather thanthespringhavingaconstantkvalue itchangesthroughout

    eachleafspring.ThiscanbeseeninthebelowFEAsimulations1

    1Source:2002ABAQUSUsersConference

  • 8/8/2019 Project Two Report

    11/43

    Simulinkmodelincludingnon -linearities

    ThesimulinkmodelandinputvaluescanbefoundonAppendixF.Asitcanbeseenfromthebelowgraphthatinitialythemodelisoutofanacceptablerangewitha

    peakat1.5mobviouslytheleafspringsshouldnottravelthesetypesofdistances.Howeveraftera

    periodof time it settlesdown toabout100125mmwhichwould thenbe inanacceptable range

    beforebeingcompressed.Aftermuchtweakingofthemodelithasbecomeapparentthattherange

    valueswhichareentered into themodelmustbe furtherexamined.Although, itappearsthat the

    modelisactuallysimulatingcorrectlyresultinginatrueresponseandoutput.Errorscanoccursuch

    as identifying that the response is in metres and not in centre metres and the range values are

    correct.

  • 8/8/2019 Project Two Report

    12/43

    Accelerometer

    Anaccelerometer isan instrument thatmeasures theaccelerationofavibratingbody.When the

    natural frequency of the device is high compared to that of the vibration to be measured, the

    instrumentindicatesacceleration.

    An accelerometer based on spring mass system has been designed to measure the measure the

    verticalmotionofthetrailer.Theconfigurationhasamaximumerrorof0.01%withinthefrequency

    rangeof0to20Hz.

    Model:

    Specifications:

    Mass,m=5grams

    Springstiffness,k=4500N/m

    Dampingcoefficient,c=6.64Nm/s

    Dampingfactor=0.7

    Assumptions:

    Accelerometerisfirmlymountedonthechassisofthetrailer

    Themaximumfrequencyoftheroadsurfacetobedrivenonis18Hz

    m

    k

    x

    a

    m

    k

    x

    a

  • 8/8/2019 Project Two Report

    13/43

    Theaccelerometerresponseisameasureofthemovementorvibrationofthedevice.Tocalculate

    theaccelerometerresponse,thefollowingequationisused

    Thegraphofresponseshowsthattheinstrumentisfunctionalatlowfrequencyandthusitisan

    accelerometer.Infact,ifthemeasuredfrequenciesarehigherthatthenaturalfrequencyofthe

    accelerometer,theamplituderesponsebecomesflat.

    Theusefulrangeoftheaccelerometer,theaccelerometererror,canbecalculatedusingthe

    equation

    11 2

    Theerror in theaccelerometer isnegligiblewithin the frequency rangeof0 to20Hz.The reading

    accuracydecreasesifthedeviceisusedoutsideofthisrange.Thegraphbelow,accelerationerrorvs

    frequency with as a parameter, shows that 0.7 is an ideal damping factor. In addition, = 0.7

    extendstheusefulfrequencyrangeandalsopermitstogettheleastamplitudedistortion.

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    IZ/YI

    /n

    AccelerometerResponse

    0

    0.7

    Damping

    Factor

  • 8/8/2019 Project Two Report

    14/43

  • 8/8/2019 Project Two Report

    15/43

    Reflection

    -Realandidealisedmodels

    TheImportance ofconsidering non-linearities

    Nonlinearitiesofthesystemshouldbeconsideredtoincreasetheaccuracyofthesimulinkmodelso

    thatitreasonblesthatofareallifesituation.

    Byconsideringthenonlineraritesofthesystemcanalsopreventanddetectdesign flaws for the

    operation of the component or object. When modelling in simulink the input and output is

    determinedonthestructuringofthemodelasaresult ifthemodeldoesntaccommodateforany

    nonlineraties(onlyconsiderslinear)thesystemmaybecomeunstableinreallifewhichmaycausea

    faultundercertainoperationalconditions,however thecomputermodelmay reasonablea stable

    outputresult.

    Thekeypointwhencomparingrealandidealisedmodelsisyouonlygetwhatyouputin,forother

    wordsifyouputincorrectvaluesintothesystemorthesimulinksystemisnotdesignforthoseinput

    valuesobvisalyonlyincorrectsolutionswillbereturnedtotheoutput.

    Sometimesitisnearimpossibletosimulatethereallifemodel,howevertheidealisedmodelmay

    becloseenoughandbeintherangethatitdoesntmatterthateverysinglevariablehasbeentaken

    into account. Such as for the trailer the leaf springs has been modelled in ABAQUS and it was

    discovered that for the leaf arrangement which would be very simulink to the trailer that force

    displacementissoclosetolinearitcanbeassumedtobelinear2,howeverthesystemwouldbeina

    nonlinear formdependingon thedesired trend line.So this leaves twooptions;make themodel

    morecomplexandincludenonlinearitiesresultinginmorechancestomakeaprogrammingmistake

    ortakethesecondoptionofjustusinglineararrangementwhichwouldbelessproblematicandgive

    suchthesameoutputresultoftheotheroption.

    Howeverthetruthis,ifyouhavetomakethemodelasrealisticaspossibletoreflectthebehaviour

    ofthecomponentorobjectnonlinearitesmustbeconsidered.

    -Differences/advantagesoffrequencydomainanalysis

    Thedifferencebetween frequencydomainanalysisandtimedomainanalysis includesthemethod

    forgraphing thedata.Frequencydomainanalysisplotsthe frequency ratioofagainstthenon

    2RefertoAppendixIoutsourced2002ABAQUSUsersConference

  • 8/8/2019 Project Two Report

    16/43

    dimensionalamplitudeMX,amtheresultinggraphwillshowthe largeinfluencethatthedamping

    hasoverthesystemwhennearresonance.Through inspectionoffrequencydomainanalysisplots,

    the inertia and damping forces can be observed to be large, small, or balanced by other forces,

    dependingonvaluesof .Whenthe

    valueissmall,boththeinertiaanddampingforcesaresmall.Whenthevalueis1,

    the larger inertia force is balanced by the spring force, and the damping force is overcome by

    impressedforces.Whenthevalueofislargertheimpressedforceisexpendedalmostentirelyin

    overcomingthelargeinertiaforce.

    There are some advantages to using time domain over frequency domain analysis. It is easier to

    identifyandfixproblemsorinconsistenciesinthedesign,andthroughtheuseofSimulinkitisalso

    easiertocreateandefficientsystemandmakechangesinthedesignsoitsuitstheconditionsitwill

    beappliedto.

    The disadvantages include not being able to accurately reflect on the physical properties of the

    system, and relying on the skills and knowledge of the operator using the Simulink program to

    effectivelyapplythephysicalmodeltotheprogram.

    -Briefinvestigationofthealternativemodellingapproachie.Rotational

    movement

    Thespringsoftheboxtrailerare inthesimplestformofasingledegreefreedommodel.Theycan

    eitherbemodelledmovingtranslationalongonedirection(vertically)orcanrotateaboutoneaxis

    (rotationalmotion)whichwillbediscussedbrieflyshowingthedifference inequationsandhow it

    wouldaffecttheresonanceofthesprings.Theequationsbelowarethemost importantequations

    thatwereusedinthecompletionofourspringmodellingthereforetheycanbeviewedagainstone

    another.

  • 8/8/2019 Project Two Report

    17/43

    Vertical Motion Rotational Motion

    Wn = 2 (Sqre root k/m)

    (O) + c/m (O) + 4k/m (O)

    Cc=c/4(sqrtrootk.m)

    X=M(F0/K) (;)=M(M0/K0)

    Resonanceofamechanicalsystemisthestateofthesysteminwhichanabnormallylargevibration

    isproducedinresponsetoanexternalstimulus,occurringwhenthefrequencyofthestimulusisthe

    same, or nearly the same, as the natural vibration frequency of the system. The comparison of

    resonance from theverticalmotion to thatof the rotationalmotion canbeviewedbelowas the

    responsetimesadifferent.

    Verticalresonance

    400 28000 98000 0 (unloaded)900 28000 98000 0 (loaded)Resonantfrequenciesoftheunloadedandloadedtrailersare15.65rad/secand

    10.43rad/sec.

  • 8/8/2019 Project Two Report

    18/43

    Rotationalresonance

    400 28000 98000 0 (unloaded)

    900 28000 98000 0 (loaded)

    Resonantfrequenciesoftheunloadedandloadedtrailersare31.30rad/secand

    20.85rad/sec.There isa larger time frameof resonancebetween theunloadedand loaded trailer

    when looking at the spring of thebox trailer from a rotational motion view. The response times

    differconsiderably,theloadedtrailerbeing10.4rad/secandtheunloadedtrailer15.65rad/sec.The

    responsetimesaredoublethatoftheverticalmotiontimes

  • 8/8/2019 Project Two Report

    19/43

    Appendix -A - Listofgiveninformation

    Specifications

    Type: ElCheapo

    Mass:(Tare) 400kg

    Mass:(Gross) 2000kg

    ChassisDimensions:

    Overalllength: 3600mm

    OverallWidth: 1700mm

    OverallHeight: 800mm

    BoxLength: 2100mm

    Boxwidth: 1200mm

    Boxheight: 400mm

    Axleposition: 1100mmfromthefrontofthetrailer

    Tyres: 185mmx355mm(Rimdiameter)

  • 8/8/2019 Project Two Report

    20/43

    Appendix -BFreevibrationmodellingandfreebodydiagrams

    Layoutanddimensionsofthetrailer

    Freebodydiagram Functionaldiagram

  • 8/8/2019 Project Two Report

    21/43

    Equationsusedtoderivethemodellingequation

    Equation1.1 Equation1.2 2Equation1.3 = 1Critical)Equation1.4 Hookslaw,

    Fromdiagram,thefollowingequationcanbeformed;

    0Usingtheinformationfound,theequationfortheunloadedtraileris;

    400 28000 98000 0andfortheloadedtraileris;

    900 28000 98000 0Thegraphson the followingpagehavebeenmade toshowwhat theequation representsand to

    display it in different situations primarily focusing on different values of C. They show the

    displacement of the trailers axle in metres (centre point of the wheel) with respect to time in

    seconds.

    Note:Theempty (M=400kg)and loaded (M=900kg)systemswere inputted intosimulinkhowever

    theonlynotable changedetectedwas inamplitudewhere the loaded system rangedhigherbya

    verysmallamount.Withthissmalldifferencedetectedallfurtheranalysiswillbeconductedwiththe

    loadedtrailerduetothevariationbeingfoundinthisinitialtest.

  • 8/8/2019 Project Two Report

    22/43

    Unloaded Loaded

    Underdampened Criticaldampening

    NoDampening OverDamped

    Theeffectsofdifferentdampingvaluesonthesystemcanbeobserved.

  • 8/8/2019 Project Two Report

    23/43

    Appendix -CForcedvibration,unbalancedengine

    Diagramofengineaffectingthetrailer

    Equationsusedintheanalysis

    Equation2.1,frompage54ofTheoryofvibrationwithapplications5thedition,

    1 2

    Wherethedampingratioisrepresentedby . Equationofsystemwhenloaded;

    sin sin900 28000 98000 0.1 sin sin FortheLaplacetransform;

    LetX(s)=x,Therefore;

    Forthetransferfunction;

  • 8/8/2019 Project Two Report

    24/43

    Simulinkgraphsdisplayingdampeningandenginespeedeffectsonthesystem

    Nodampingwithforceatresonancefrequency Forcedvibrationwithcriticaldampingresonancefrequency

    Forcedvibrationwithverylittledampingatresonancefrequency Littledampingwithengineat3000RPM

  • 8/8/2019 Project Two Report

    25/43

    Littleafterresonantfrequencywithlittledamping Littlebeforeresonantfrequencywithlittledamping

    Plotsofforcedvibrationwithrotatingunbalance(dampingconstant=(1/2.8)

    Fromabove itcanbe seen thatat resonance the frequency ratio isabout1.1.Considering thata

    systemwithnodampingwouldhavearatioof1,theeffectofthedamping issomewhatevident.

    Withoutsuchafunctionthetrailerssuspensionwouldreachresonanceataratioof1causinglarge

    excitationofthesystempotentiallydamagingthetrailer.

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 2 4 6 8 10 12

    MX/me

    w/wn

    MX/meVsw/wn

  • 8/8/2019 Project Two Report

    26/43

    Dampeningfactorof1,hencecriticaldampening

    Inthisgraphthesystemisatcriticaldampeningwhichmakesdetermininganapproximatepointof

    resonancefromitimpossible.Thisistheperfectsettingforthetrailerasthedampeningnullifiesa

    largeamountofimpactandstopedthesystemfromresonating.

    FromThefirstgraphofMX/meVs thefrequencyratiowasdeterminedtobeatapproximately1.1whenthesystemtentedtowardsresonance.Fromthistheenginespeedcanbedeterminedand

    accommodatedfor.

    =1.1,Were

    10.43rad/sec

    from equation 1.1

    WhereM=massofentiresystem=900Kg(notethemassoftheentiresystemandnottheeccentric

    masswastaken)

    K=98000N/m

    and C=10000

    Therefore=11.48rad/secand109.61RPM

  • 8/8/2019 Project Two Report

    27/43

    Fromthisitcanbesaidthatforasystemdampedpartially,theenginewillstarttoresonatewiththe

    suspensionat100 110RPM.Tostopthisfromhappening,thetrailerhasbeendampedsufficiently

    asinthesecondgraphwhereitcanbeseenastheengineapproachesapproximately110RPM(value

    changeswithadifferentC)resonanceisnotexistent.

    A smallobservation thatwasmadewas that the resonance frequency increaseswithdampening.

    Withnodampeningthesystemreachesresonanceat100RPM,withC=10000thesystemresonates

    at110RPMasabove.

  • 8/8/2019 Project Two Report

    28/43

    Appendix -DRoadsurfacevibration

    NoDampening

    Underdamped

  • 8/8/2019 Project Two Report

    29/43

    Critical

  • 8/8/2019 Project Two Report

    30/43

    SimulinkModel:RoadSurfaceinducedVibration

  • 8/8/2019 Project Two Report

    31/43

    ResonanceInductedbyRoad

    Knowing the spring constant, damping coefficient and frequency (due to the trailer's velocity), a

    graphcanbeplottedtodetermineresonancecharacteristics. Thiscanbeachievedbyplottingthe

    transmissibilityfactorVSFrequencyratioascanbeseenbelow.

    SpringConstantof28000Ns/m(criticaldamping)

    At 28 000Ns/m the system is critically damped and doesn't allow the system to resonate at any

    speed. Thisiswhythisdampeningconstantwaschosenforthedampenerinourtrailerbecause it

    wouldpreventanyunexpectedresonancethatcouldmakethetrailerbounceviolentlyovertheroad

    under the right conditions. Yet thedampener is still softenough toabsorbany impactand then

    returntothesystemstoitsnaturalposition.

    ResonanceInducedbyRoad

  • 8/8/2019 Project Two Report

    32/43

    SpringConstantof15000Ns/m(underdamped)

    Forillustrativepurposes,itcanseenthatwithareduceddampingconstantof15000Ns/mresonance

    occurswhenthefrequencyratio isapproximately0.8. Asthedampingconstantapproaches0,the

    frequency ratio at which resonance will occur will approach 1. (with no damping resonance will

    occurat1.)Thespeedatwhichresonancewilloccurcanthenbecalculated.

    0.8 7rad/sfromequaton1.1

    0.8x7

    5.6/FindFrequency

    2 2

    0.89

    0.000

    0.200

    0.400

    0.600

    0.800

    1.000

    1.200

    1.400

    1.600

    1.800

    0.

    00

    0.

    10

    0.

    20

    0.

    30

    0.

    40

    0.50

    0.

    60

    0.70

    0.

    80

    0.

    90

    1.

    00

    1.

    10

    1.

    20

    1.

    30

    1.

    40

    1.50

    1.

    60

    1.70

    1.

    80

    1.

    89

    1.

    99

    2.

    09

    2.

    19

    2.

    29

    2.

    39

    2.

    49

    TransmissibilityX/y

    TransmissibilityVSFrequencyRatioResonanceInducedbyRoad

  • 8/8/2019 Project Two Report

    33/43

    FindVelocity

    0.89x5 4.45/ 16/Thereforeat16km/hrandadampingconstantof15000Ns/mthetrailerwillbeatresonance.

    MagnificationFactor

    Themagnificationfactorisanondimensionalexpressionfortheamplitudeofoscillation. Thisis

    determinedfrom:

    11 2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 1.99 2.19 2.39

    MagnificationFactor

    MagnificationFactorVsFrequencyRatio

    15000Ns/m

    28000Ns/m

  • 8/8/2019 Project Two Report

    34/43

    Itcanbeseenfromthegraphabovethatwithadampingconstantsof15000Ns/mtheamplitudeof

    oscillationisalwaysgreaterthanthatofthechosendamperof28000Ns/m. Onceagainthisiswhya

    dampingconstantof28000Ns/mwasusedtodampenthetrailersdisplacement.

    DerivingtheTransferFunction

    Equationofmotion

    LaplaceIntegralTransform

    ThereforeTransferFunction

    Matlabcannowusedtographabodeplotforthesystem.

  • 8/8/2019 Project Two Report

    35/43

    BodePlot:RoadInductedVibrations

  • 8/8/2019 Project Two Report

    36/43

    The above bode plot shows that at very low frequencies and frequencies just below 10 the

    suspensionresponseofthetrailerisminimal.Aroundafrequencyratioof10thesuspensionsystem

    isshowntobe inaccurate.Afterthispointthefrequencyoftheroadsurfacebecomessohighthat

    the trailer feels little impact from the roads surface. This isbecause the trailer wheel no longer

    followstheprofileoftheroad'ssurfaceandliftoffoccurs.

    MatlabCode

    num=[2800098000]

    den=[20002800098000]

    sys=tf(num,den)

    bode(sys)

    margin(sys)

  • 8/8/2019 Project Two Report

    37/43

    Appendix -FSimulinkdiagramsusedinproject

    Freevibrationresponse

    Engineforcedvibration

  • 8/8/2019 Project Two Report

    38/43

    Non-linearities

  • 8/8/2019 Project Two Report

    39/43

  • 8/8/2019 Project Two Report

    40/43

  • 8/8/2019 Project Two Report

    41/43

    Appendix -HExtraResonancecalculation

    EXTRA Eccentricmassusedforengine

    UsingthesameworkingasappendixCandthecriticaldampeningconstantof28000,

    n=989.95rad/sec

    Fromthegraph,resonanceisapproachedatapprox1.1.

    Thereforew=1088.94rad/sec=10398.65RPM.

    The RPM value for the eccentric mass to reach resonance with the dampener and spring of the

    trailerwasfoundtobe10400RPM.WhichliketheappendixCresultsisalsooutsideoftheoperating

    rangeoftheengine.

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    MX/me

    w/wn

    MX/meVsw/wn

  • 8/8/2019 Project Two Report

    42/43

    Appendix -IForceVsDisplacement:LeafSpring

  • 8/8/2019 Project Two Report

    43/43

    References

    WilliamT.Thomson&MarieDillonDahleh,Theoryofvibrationwithapplications5thEdition,PrenticeHall,UppersaddleriverNJ,published1998

    CharlesM.Close,DeanKFrederick,JonathanC.Newell,ModellingandAnalysisoddynamicsystems3

    rdEdition,JohnWiley&SonsInc.published2002

    WelcometoVibrationDataLaplaceTransformTable,TomIrvine,VibrationData(searchengineandtutorialsite),viewed31/07/09

    http://www.vibrationdata.com/Laplace.htm Gillespie,T.D.,FundamentalsofVehicleDynamics,SocietyofAutomotiveEngineers,Inc,

    1992.

    Liu,W.,NonlinearAnalysisTheoryofSingleLeafSteelSprings,SAEPaper881744,1988. SAE,ManualonDesignandApplicationofLeafSpring,SAEHS788,APR80. SAE,SpringDesignManual,SAEAE21,1996 SAEStandard,LeafSpringsforMotorVehicleSuspensionMadetoCustomaryU.S.Units

    SAE

    J510NOV92,SAEHandbook,Vol.2,p20.09,1998.

    Tavakkoli,S,Aslani,F.,andRohweder,D,AnalyticalPredictionofLeafSpringBushingLoads

    UsingMSC/NASTRANandMDI/ADAMS,MSCWorldUsersConference,1996. Wachtel,D.W.,Adkins,D.E.,May,J.M.,andHohnstadt,W.E.,AdvancesintheDesign,

    Analysis,andManufacturingofSteelLeafSprings,SAEPaper872256,1987.