22
Project: IEEE 802.11bb Task Group Submission Title: IEEE 802.11bb Reference Channel Models for Vehicular Communications Date Submitted: July 06, 2018 Source: Murat Uysal (Ozyegin University), Farshad Miramirkhani (Ozyegin University), Tuncer Baykas (Istanbul Medipol University), Emrah Kinav (Ford Otosan), and Omer Rustu Ergen (Ford Otosan). Address: Ozyegin University, Nisantepe Mh. Orman Sk. No:34-36 Çekmekoy 34794 Istanbul, Turkey Voice: +90 (216) 5649329, Fax: +90 (216) 5649450, E-Mail: [email protected] Abstract: This contribution proposes LiFi reference channel models for vehicular communications. Purpose: To introduce reference channel models for the evaluation of different PHY proposals. Notice: This document has been prepared to assist the IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by 802.11. 1 July 2018 doc.: IEEE 11-18-1237-01-00bb Submission M. Uysal, F. Miramirkhani, T. Baykas, et al.

Project: IEEE 802.11bb Task Group · Abstract:This contribution proposes LiFi reference ... performance of vehicularvisible light communications,” IEEE 87th Vehicular Technology

Embed Size (px)

Citation preview

Project: IEEE 802.11bb Task Group

Submission Title: IEEE 802.11bb Reference Channel Models for Vehicular Communications

Date Submitted: July 06, 2018

Source: Murat Uysal (Ozyegin University), Farshad Miramirkhani (Ozyegin University),Tuncer Baykas (Istanbul Medipol University), Emrah Kinav (Ford Otosan), and Omer RustuErgen (Ford Otosan).

Address: Ozyegin University, Nisantepe Mh. Orman Sk. No:34-36 Çekmekoy 34794Istanbul, TurkeyVoice: +90 (216) 5649329, Fax: +90 (216) 5649450, E-Mail: [email protected]

Abstract: This contribution proposes LiFi reference channel models for vehicularcommunications.

Purpose: To introduce reference channel models for the evaluation of different PHYproposals.

Notice: This document has been prepared to assist the IEEE 802.11. It is offered as a basis fordiscussion and is not binding on the contributing individual(s) or organization(s). Thematerial in this document is subject to change in form and content after further study. Thecontributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes theproperty of IEEE and may be made publicly available by 802.11.

1

July 2018 doc.: IEEE 11-18-1237-01-00bb

Submission M. Uysal, F. Miramirkhani, T. Baykas, et al.

IEEE 802.11bb Reference Channel Models for

Vehicular Communications

2

July 2018

Submission M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

Outline

3

July 2018

Submission

o Introduction

• Overview of Channel Modeling Methodology• Modeling of the Outdoor Environment• Headlamp Modeling• Modeling of Weather Conditions (Clear Weather, Rainy Weather and Foggy Weather)

o Vehicular Scenario under Consideration

• Channel Impulse Responses (CIRs)• Effective Channel Responses• Channel Characteristics

o Conclusions

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

Overview of Channel Modeling Methodology[1]

4

July 2018

Submission

[1] M. Elamassie, M. Karbalayghareh, F. Miramirkhani, R. C. Kizilirmak, and M. Uysal, “Effect of fog and rain on theperformance of vehicular visible light communications,” IEEE 87th Vehicular Technology Conference (VTC2018-Spring), Porto, Portugal, Jun. 2018.

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

Modeling of the Outdoor Environment

5

July 2018

Submission

o Creation of 3D outdoor environment in Zemax® involves the selection of

• Dimension and shape of the outdoor environment

• CAD objects within the environment (buildings, cars, roads etc)

• Position and type of transmitters and receivers

• Type and properties of materials

Class Road Surface Composition Mode of Reflectance

R1 Asphalt with aggregate including a minimum of

15% artificial brightener aggregate

Mostly diffuse

R2 Asphalt with aggregate including a minimum of

60% gravel sized larger than 10 mm

Asphalt with aggregate including a minimum of

10-15% artificial brightener aggregate

Mixed diffuse and specular

R3 Asphalt with dark aggregate-the surface

becomes rough after several months of use

Slightly specular

R4 Very smooth asphalt Mostly specular

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

Headlamp Modeling

6

July 2018

Submission

400 450 500 550 600 650 7000

10

20

30

40

50

60

70

80

90

100

Wavelength (nm)

Re

lativ

e R

adia

nt

Po

wer

(%)

Relative Spectral Power Distribution

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

30

60

90

120

150

180

-151

-120

-90

-60

-30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

30

60

90

120

150

180

-151

-120

-90

-60

-30

Relative spectral power distribution of Philips LUXEON Rebel

Relative intensity distributions of high-beam headlamp

Relative intensity distributions of low-beam headlamp

Spatial distribution of low-beam headlamp Spatial distribution of high-beam headlamp

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

Modeling of Weather Conditions

7

July 2018

Submission

o To model the interaction of rays with the air, Mie scattering is used to modelrainy and foggy weather conditions with different visibilities.

o “Bulk scatter” method in the Zemax software allows providing the inputparameters

• “Particle index” (the refractive index of particles)

• “Size” (the radius of the spherical particles)

• “Density” (the density of particles). The characteristics of various weather types are listed in Table below.

Particle Index Size (μm) Density (cm-3)

Clear 1.000277 10-4 1019

Rain 1.33 100 0.1

Fog, 1.33 10 124.6

Fog, 1.33 10 622.6

50 mV

10mV

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

o Based on Monte Carlo Ray Tracing.

o Sobol sampling is used for speeding up ray tracing.

o The Zemax® non-sequential ray-tracing tool generates an output file, whichincludes all the data about rays such as the detected power and path lengths foreach ray.

o The data from Zemax® output file is imported to MATLAB® and using theseinformation, the multipath CIR is expressed as

Pi = the power of the ith ray

τi = the propagation time of the ith rayδ(t) = the Dirac delta functionNr = the number of rays received at the detector

1

rN

i ii

h t P t

Channel Impulse Response (CIR)

8

July 2018

Submission M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

Effect of LED Response

o In addition to the multipath propagation environment, the low-passcharacteristics of the LED sources should be further taken into account inchannel modelling.

9

July 2018

Submission

LED

cut-off

1

1

H ff

jf

2

cut-off

ln 2

LED

f

fH f e

LED Model 1 [2]

cut-offf : 3 dB cut-off frequency of the LED

LED Model 2 [3]

[2] L. Grobe, and K. D. Langer, “Block-based PAM with frequency domain equalization in visible light communications,”In IEEE Globecom Workshops (GC Wkshps), pp. 1070-1075, 2013.[3] M. Wolf, S. A. Cheema, M. Haardt, and L. Grobe, “On the performance of block transmission schemes in opticalchannels with a Gaussian profile,” In 16th International Conference on Transparent Optical Networks (ICTON), pp. 1-8,2014.

0 5 10 15 20-3

-2.5

-2

-1.5

-1

-0.5

0

Frequency [MHz]

|HL

ED(f

)|2 [

dB

]

LED Model 1

LED Model 2

fcut-off

=5 MHz

fcut-of f

=10 MHz

fcut-of f

=20 MHz

fcut-off

=15 MHz

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

o We assume that the two vehicles are separated from each other initially at a distance of10 meter.

10

Simulation Scenario

July 2018

Submission

TX1 TX2

PD

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

Simulation Parameters

11

July 2018

Submission

Transmitter specifications Type: High-beam headlamp

Brand: Philips Luxeon Rebel white LED

Power: 1 Watt per each headlamp

Receiver specifications Area: 1 cm2

FOV: 180º

Coating material of vehicle Black gloss paint

Road type R2

Weather types Clear

Rainy

Foggy with visibilities of 50 m and 10 mV

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

CIR Results (Clear Weather)

12

July 2018

Submission

30 32 34 36 38 400

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =10 m

30 32 34 36 38 400

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =11 m

35 37 39 41 43 450

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =12 m

35 37 39 41 43 450

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =13 m

45 47 49 51 53 550

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =14 m

45 47 49 51 53 550

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =15 m

50 52 54 56 58 600

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =16 m

50 52 54 56 58 600

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =17 m

55 57 59 61 63 650

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =18 m

60 62 64 66 68 700

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =19 m

60 62 64 66 68 700

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =20 m

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

Effective Channel Responses (Clear Weather)

13

July 2018

Submission

0 2 4 6 8 10 12 14 16 18 20-110

-108

-106

-104

-102

-100

-98

-96

-94

-92

-90

Frequency [MHz]

|Heff

(f)|

2 [

dB

]

d=10 m

d=11 m

d=12 m

d=13 m

d=14 m

d=15 m

d=16 m

d=17 m

d=18 m

d=19 m

d=20 m

M. Uysal, F. Miramirkhani, T. Baykas, et al.

o For the effective channel responses, the “LED Model 1” with cut-off frequencyof 20 MHz is considered.

doc.: IEEE 11-18-1237-01-00bb

CIR Results (Rainy Weather)

14

July 2018

Submission

30 32 34 36 38 400

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =10 m

30 32 34 36 38 400

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =11 m

35 37 39 41 43 450

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =12 m

35 37 39 41 43 450

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =13 m

45 47 49 51 53 550

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =14 m

45 47 49 51 53 550

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =15 m

50 52 54 56 58 600

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =16 m

50 52 54 56 58 600

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =17 m

55 57 59 61 63 650

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =18 m

60 62 64 66 68 700

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =19 m

60 62 64 66 68 700

0.5

1

1.5

2

2.5

3x 10

-5

Time(ns)

Pow

er

CIR, d =20 m

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

Effective Channel Responses (Rainy Weather)

15

July 2018

Submission

0 2 4 6 8 10 12 14 16 18 20-110

-108

-106

-104

-102

-100

-98

-96

-94

-92

-90

Frequency [MHz]

|Heff

(f)|

2 [

dB

]

d=10 m

d=11 m

d=12 m

d=13 m

d=14 m

d=15 m

d=16 m

d=17 m

d=18 m

d=19 m

d=20 m

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

CIR Results (Foggy Weather, V=50 m)

16

July 2018

Submission

30 32 34 36 38 400

0.5

1

1.5

2

2.5x 10

-5

Time(ns)

Pow

er

CIR, d =10 m

30 32 34 36 38 400

0.5

1

1.5

2

2.5x 10

-5

Time(ns)

Pow

er

CIR, d =11 m

35 37 39 41 43 450

0.5

1

1.5

2

2.5x 10

-5

Time(ns)

Pow

er

CIR, d =12 m

35 37 39 41 43 450

0.5

1

1.5

2

2.5x 10

-5

Time(ns)

Pow

er

CIR, d =13 m

45 47 49 51 53 550

0.5

1

1.5

2

2.5x 10

-5

Time(ns)

Pow

er

CIR, d =14 m

45 47 49 51 53 550

0.5

1

1.5

2

2.5x 10

-5

Time(ns)

Pow

er

CIR, d =15 m

50 52 54 56 58 600

0.5

1

1.5

2

2.5x 10

-5

Time(ns)

Pow

er

CIR, d =16 m

50 52 54 56 58 600

0.5

1

1.5

2

2.5x 10

-5

Time(ns)

Pow

er

CIR, d =17 m

55 57 59 61 63 650

0.5

1

1.5

2

2.5x 10

-5

Time(ns)

Pow

er

CIR, d =18 m

60 62 64 66 68 700

0.5

1

1.5

2

2.5x 10

-5

Time(ns)

Pow

er

CIR, d =19 m

60 62 64 66 68 700

0.5

1

1.5

2

2.5x 10

-5

Time(ns)

Pow

er

CIR, d =20 m

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

17

July 2018

Submission

Effective Channel Responses (Foggy Weather, V=50 m)

0 2 4 6 8 10 12 14 16 18 20-110

-108

-106

-104

-102

-100

-98

-96

-94

-92

-90

Frequency [MHz]

|Heff

(f)|

2 [

dB

]

d=10 m

d=11 m

d=12 m

d=13 m

d=14 m

d=15 m

d=16 m

d=17 m

d=18 m

d=19 m

d=20 m

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

CIR Results (Foggy Weather, V=10 m)

18

July 2018

Submission

30 32 34 36 38 400

0.5

1

1.5

2

2.5

3

3.5

4x 10

-6

Time(ns)

Pow

er

CIR, d =10 m

30 32 34 36 38 400

0.5

1

1.5

2

2.5

3

3.5

4x 10

-6

Time(ns)

Pow

er

CIR, d =11 m

35 37 39 41 43 450

0.5

1

1.5

2

2.5

3

3.5

4x 10

-6

Time(ns)

Pow

er

CIR, d =12 m

35 37 39 41 43 450

0.5

1

1.5

2

2.5

3

3.5

4x 10

-6

Time(ns)

Pow

er

CIR, d =13 m

45 47 49 51 53 550

0.5

1

1.5

2

2.5

3

3.5

4x 10

-6

Time(ns)

Pow

er

CIR, d =14 m

45 47 49 51 53 550

0.5

1

1.5

2

2.5

3

3.5

4x 10

-6

Time(ns)

Pow

er

CIR, d =15 m

50 52 54 56 58 600

0.5

1

1.5

2

2.5

3

3.5

4x 10

-6

Time(ns)

Pow

er

CIR, d =16 m

50 52 54 56 58 600

0.5

1

1.5

2

2.5

3

3.5

4x 10

-6

Time(ns)

Pow

er

CIR, d =17 m

55 57 59 61 63 650

0.5

1

1.5

2

2.5

3

3.5

4x 10

-6

Time(ns)

Pow

er

CIR, d =18 m

60 62 64 66 68 700

0.5

1

1.5

2

2.5

3

3.5

4x 10

-6

Time(ns)

Pow

er

CIR, d =19 m

60 62 64 66 68 700

0.5

1

1.5

2

2.5

3

3.5

4x 10

-6

Time(ns)

Pow

er

CIR, d =20 m

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

19

July 2018

Submission

Effective Channel Responses (Foggy Weather, V=10 m)

0 2 4 6 8 10 12 14 16 18 20-134

-132

-130

-128

-126

-124

-122

-120

-118

-116

-114

-112

-110

-108

-106

-104

Frequency [MHz]

|Heff

(f)|

2 [

dB

]

d=10 m

d=11 m

d=12 m

d=13 m

d=14 m

d=15 m

d=16 m

d=17 m

d=18 m

d=19 m

d=20 m

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

Channel Characteristics (1/2)

20

July 2018

Submission

(m)(ns)

Clear Rain Fog (V=50 m)

Fog (V=10 m)

Clear Rain Fog (V=50 m)

Fog (V=10 m)

10 7.95 7.95 7.95 7.97 1.14×10-4 1.08×10-4 8.66×10-5 1.95×10-5

11 7.95 7.95 7.95 7.99 1.06×10-4 1.03×10-4 7.44×10-5 1.73×10-5

12 7.95 7.95 7.95 7.95 9.92×10-5 9.56×10-5 6.76×10-5 1.55×10-5

13 7.95 7.95 7.95 7.97 9.01×10-5 8.38×10-5 6.08×10-5 1.09×10-5

14 7.95 7.95 7.95 8.56 8.01×10-5 7.68×10-5 4.93×10-5 7.91×10-6

15 7.95 7.95 7.95 7.97 6.92×10-5 6.45×10-5 4.03×10-5 4.73×10-6

16 7.95 7.95 7.95 8.02 6.20×10-5 5.89×10-5 3.91×10-5 5.08×10-6

17 7.95 7.95 7.95 8.14 5.66×10-5 5.50×10-5 2.91×10-5 4.06×10-6

18 7.95 7.95 7.95 7.99 5.21×10-5 4.82×10-5 3.09×10-5 1.64×10-6

19 7.95 7.95 7.95 8.16 4.71×10-5 4.39×10-5 2.37×10-5 1.85×10-6

20 7.95 7.95 7.97 7.96 4.43×10-5 4.05×10-5 2.13×10-5 1.64×10-6

RMS0H

d

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1237-01-00bb

21

July 2018

Submission M. Uysal, F. Miramirkhani, T. Baykas, et al.

Channel Characteristics (2/2)

10 11 12 13 14 15 16 17 18 19 200

0.2

0.4

0.6

0.8

1

1.2x 10

-4

Distance (m)

H0

Clear Weather

Rainy Weather

Foggy Weather, V=50 m

Foggy Weather, V=10 m

doc.: IEEE 11-18-1237-01-00bb

22

July 2018

Submission M. Uysal, F. Miramirkhani, T. Baykas, et al.

Conclusions

o This contribution proposes LiFi reference channel models for vehicularcommunications to assist the IEEE 802.11bb.

doc.: IEEE 11-18-1237-01-00bb