85
Page 1 of 85 PROJECT FINAL REPORT PUBLISHABLE Grant Agreement number: 224338 Project acronym: FAST-DOT Project title: Compact Ultrafast Laser Sources Based on Novel Quantum Dot Structures Funding Scheme: Collaborative Project (Large-scale integrating project) Period covered: from 1 st June, 2008 to 31 st August, 2012 Name of the scientific representative of the project's co-ordinator 1 , Title and Organisation: Prof. Edik Rafailov, University of Dundee Tel: +44 1382 384391 Fax: E-mail: [email protected] Project website address: www.fast-dot.eu 1 Usually the contact person of the coordinator as specified in Art. 8.1. of the Grant Agreement.

PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 1 of 85 

PROJECT FINAL REPORT

PUBLISHABLE 

Grant Agreement number: 224338

Project acronym: FAST-DOT

Project title: Compact Ultrafast Laser Sources Based on Novel Quantum Dot Structures

Funding Scheme: Collaborative Project (Large-scale integrating project)

Period covered: from 1st June, 2008 to 31st August, 2012

Name of the scientific representative of the project's co-ordinator1, Title and Organisation: Prof. Edik Rafailov, University of Dundee

Tel: +44 1382 384391

Fax:

E-mail: [email protected]

Project website address: www.fast-dot.eu

                                                            1 Usually the contact person of the coordinator as specified in Art. 8.1. of the Grant Agreement.

Page 2: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 2 of 85 

1. Final publishable summary report The  laser  systems  that  are  traditionally  used  for  biomedical  applications  are 

very  expensive,  bulky  and  complicated  to  use.    The  vision  of  the  FAST‐DOT 

project  is  to  revolutionise  the use of  lasers  in  the biomedical  field, providing 

both  practitioners  and  researchers  with  matchbox‐sized,  ultra‐high 

performance  lasers at a substantially  lower cost, making  their widespread use 

more affordable.  

FAST‐DOT  is  a  €14.75M  project  (EU  contribution  €10.1M)  coordinated  by  the University  of Dundee, with  a  project 

consortium consisting of 18 of Europe’s leading photonics research groups and companies from 12 different countries.  

The aim of the project is to take advantage of the unique properties of nano‐materials based on quantum dots (QDs) to 

develop a new  class of miniature  lasers designed  specifically  for biomedical and  imaging applications  such as multi‐

photon imaging and cell surgery.  FAST‐DOT has already delivered significant advances and world record performances 

in defining  the unique properties of semiconductor nano‐materials based on quantum dots  to  realise a new class of 

semiconductor lasers components.   

Quantum dots are special semiconductor materials which, when produced under highly controlled conditions can be 

custom  designed  and  are  sometimes  called  artificial  atoms  because  of  their  nano‐scale  dimensions  and  unique 

properties.   The high  level of control that  is possible over the size of the crystal produced means that  it  is possible to 

precisely  design  QD‐based  lasers  with  particular 

characteristics to produce specific wavelengths (or colours) 

that  are  difficult  to  reach  using  conventional  laser 

technologies, ultrafast  / ultra  short pulses and generation 

of difficult to reach wavelengths. 

With ultra short pulses, very high levels of energy can be delivered to a very small area, making this kind of laser very 

useful  for  applications  such as  cell  surgery  as  there  is not  the undesirable heat generation  association with normal 

lasers. 

The lasers developed in FAST‐DOT are mainly targeted towards compact sources of ultra short pulses.  As such they are 

utilising  semiconductor quantum dots and  semiconductor  laser  technology. The  real  strength of  these  lasers  is  their 

compact  size,  potentially  low  production  cost  and  good  performance.  The  performance  that  FAST‐DOT  lasers  can 

achieve  is  not  sufficient  to  compete  directly  in  terms  of  pulse  duration  or  peak  power with  the  Ti:Sapphire  lasers 

currently used in many applications which can produce shorter pulses and higher peak powers, but with a high cost and 

complex system. However  there are certain applications where  the performance  that has been obtained  from FAST‐

DOT  lasers  in  terms of average power, peak power, pulse duration, pulse energy and wavelength  is high enough  to 

make  them  excellent  sources  for  some  applications where  the  ultrahigh  performance  of  a  Ti:Sapphire  laser  is  not 

necessary, and the lower cost and smaller footprint would be a major benefit. 

The FAST‐DOT project has contributed  significantly  to advances  in QD  technology with 78 papers being published  in 

high quality scientific journals and over 100 papers presented at international conferences in the 4 years of the project.   

During the project duration excellent progress has been made: Novel Quantum Dot (QD) structures and devices have 

been designed, fabricated and evaluated by the project partners, detailed theoretical models have been developed for 

the simulation of QD mode‐locked lasers, and novel operating regimes for the mode‐locked lasers have been identified. 

The obtained results are enormously encouraging and confirm the great potential of this technology to enable future 

development of compact low‐cost laser products capable of high power ultrashort pulse generation for applications in 

cell‐surgery and multi‐photon  imaging.     The results achieved and prototypes developed during the FAST‐DOT project 

have shown that ultra‐small, ultra‐high performance  lasers could be made available at a substantially  lower cost than 

the lasers currently used for such applications.  This will make certain procedures and processes which may previously 

have been economically prohibitive more readily available to both industry and society as a whole. 

Page 3: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 3 of 85 

Summary description of project context and objectives 

Since  the  lasers  invention  in  the  early  1960’s,  scientists  and  engineers  have  advanced  ultrashort  lasers  to 

unprecedented performance.  Starting  from  lasers operated  in  a  continuous wave  regime, ultrashort  (picosecond  to 

femtosecond) optical pulses are now commonplace in research laboratories. To put this into perspective, if one second 

was  scaled  down  to  one  femtosecond  (0.000  000  000  000  001  seconds),  the  age  of  the  universe would  scale  to 

approximately  10  minutes.  Such  ultra‐short  pulses  allow  us  to  gain  insights  into  matter  at  the  micrometer  and 

nanometre scales enabling the study of structures at subatomic dimensions. In the same way that a disco strobe light 

‘freezes'  the motion of dancers,  an ultra‐short pulse  laser  can  thus  ‘freeze'  the motion of  rapid events  such  as  the 

dynamics of molecules. Therefore, it is now possible to measure the relaxation processes of carriers in semiconductors, 

chemical reaction dynamics and perform electro‐optical sampling of high‐speed electronics. The enormous  impact of 

ultra‐fast optical sources has already been recognised in the attribution of two Nobel prizes to A. Zewail (1999) and T. 

Hansch (2005), for applications in femtochemistry and laser‐based precision spectroscopy. 

The unique combination of high peak power with low average power that is provided by ultra‐short pulses has enabled 

photo‐ablation of biological tissues with minimal thermal effects. The high peak power available from these sources has 

also  allowed  the  exploitation  of  new  nonlinear  optical  effects  in  biological  structures, which  can  be  used  for  high‐

resolution non‐linear multi‐photon imaging. Additionally, the ultrabroad spectral bandwidth associated with ultra‐short 

pulses  has  made  possible  non‐invasive  medical  diagnostics,  allowing  tissue  imaging  with  micrometer  resolution. 

However,  the  implementation of  femtosecond‐pulse sources within bio‐medical applications will remain  limited until 

femtosecond laser modules can be designed as affordable, integrable opto‐electronic and photonic technologies. 

Indeed, current solid‐state  lasers based on crystalline gain materials (such as Ti:Sapphire) have so far been delivering 

the best performances  in  terms of  femtosecond pulse durations, very high peak power and  low  jitter. Nevertheless, 

these  laser  systems  present  intrinsic  limitations  that  have  been  preventing  their widespread  use  in  industrial  and 

medical applications. These  laser sources are very expensive, cumbersome, and  inefficient. They are also complex  to 

operate  and optimise,  requiring  a highly‐skilled  technical expertise  at  the user. Despite  efforts  to miniaturise  these 

sources, the footprint of these systems laser sources still occupying the area corresponding to a shoe box! In contrast, 

lasers based on semiconductor hetero‐structures have demonstrated superior efficiency, while dramatically  reducing 

the  footprint by several orders of magnitude. This significant advance granted  the Nobel Prize  to Zh. Alferov  (2000), 

from the Ioffe Institute in St Petersburg. 

The principal objective of  the FAST‐DOT project was  the development of efficient  (potentially battery powered) and 

compact ultra‐fast lasers based on novel semiconductor nanostructures called quantum dots. 

Quantum  dots  (QD)  are  tiny  clusters  of  semiconductor material with  dimensions  of  only  a  few  nanometres.  These 

nanostructures are often called ‘artificial atoms', because the charge carriers in these systems (electrons or holes) can 

only occupy  a  restricted  set of energy  levels,  just  like  the electrons  in  an atom  (Figure1).  In 2007  the University of 

Dundee demonstrated that these nanostructures offer major advantages in ultra‐fast science and technology, because 

QD‐based devices offer the unique possibility of combining exploitable spectral broadening of both gain and absorption 

with ultra‐fast carrier dynamic properties. 

Figure 1 ‐ Schematic structures of bulk and low‐dimensional semiconductors and corresponding density of states D(E) for: (a) bulk; (b) quantum well; (c) quantum wire; (d) quantum 

dot. 

 

Figure 2 ‐ The schematic morphology and density of states D(E) in: a) an ideal QD system; b) a real QD system, where 

inhomogeneous broadening is  illustrated. (EGS: ground‐state energy; EES: excited‐state energy; EC: the bottom of the 

conduction band). 

Page 4: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 4 of 85 

Localised states in QD structures introduce new physics into our understanding of optoelectronic devices. When a QD 

laser was  first  proposed,  the main motivation was  to  conceive  a  design  for  a  low  threshold,  single‐frequency  and 

temperature‐insensitive  laser,  owing  to  the  discrete  nature  of  the density  of  states.  In  fact, while  practical devices 

exhibit  the predicted outstandingly  low  thresholds,  the spectral bandwidths of such  lasers were significantly broader 

than those of conventional quantum‐well lasers. This novel property results from the self‐organised growth of quantum 

dots with different sizes (Figure 2). This inhomogeneous broadening of the gain is an extremely useful phenomenon in 

the context of ultra‐fast applications, because a very wide bandwidth is available for the generation, propagation and 

amplification of ultra‐short pulses. 

QD structures exhibit the ultimate  in ultra‐fast recovery time (<1ps!), both under gain and absorption conditions. The 

fast absorption recovery time (Figure 3) is especially useful for enabling 

saturable absorbers to mode lock lasers at high‐repetition rates, where 

the absorption recovery should occur within the round‐trip time of the 

cavity. Crucially, the shaping mechanism of the fast absorption recovery 

also enhances the shortening of the mode‐locked pulses, and thus QD‐

based  lasers  have  real  potential  for  generating much  shorter  pulses 

than  their  quantum‐well  counterparts.  QD  saturable  absorbers  also 

exhibit  lower  absorption  saturation  fluence  than  quantum‐well 

materials,  which  strongly  assists  the  self‐staring  of  high‐frequency 

mode locking. 

Investigations of the amplification of the femtosecond pulses and the 

ultra‐fast carrier dynamics of quantum‐dot structures imply that such 

structures can be used simultaneously as an efficient broadband gain 

media  and  as  fast  saturable  absorbers,  either  independently  or 

monolithically, and  thus  can have a potentially enormous  impact  in 

ultra‐short‐pulse laser design. 

The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser 

optical quality, which  facilitates  the generation of  light with high efficiency. Owing  to  the control available using  the 

latest QD growth techniques, the emission/absorption wavelengths can be engineered over a wide span. QD structures 

can be made available at any wavelength from 1.0 μm to 1.31 μm, with similar operational properties. This represents a 

significant advantage over conventional quantum well technology based on GaAs substrates, which could not cover this 

spectral interval. Using second and third harmonic generation techniques, the spectral range can be extended into the 

Visible  and  UV  regions.  The  spectral  flexibility  of  QD materials  can  open  up  a  range  of  applications with  specific 

wavelength requirements, where the versatility of QD‐based lasers can be fully exploited. 

The ultimate goal of this project is not only to develop a new generation of laser sources but also to access applications 

that are serviced by conventional, expensive, ultra‐fast solid‐state  lasers. One such application sector  is bio‐photonics 

and medicine, where compact, rugged and turnkey sources are crucial for the deployment of sophisticated, minimally 

and non‐invasive optical diagnostics  and  therapeutics.  The use of  femtosecond  (fs)  lasers  as  excitation  sources has 

improved not only the resolution and 3D imaging capabilities of microscopy by multi‐photon excitation – e.g., Two‐ or 

Three Photon Excitation Fluorescence (TPEF) ‐ but has also demonstrated the possibilities for new detection techniques 

by  exploiting  non‐linear  excitation  effects,  e.g.  Second‐Harmonic Generation  (SHG)  and  Third Harmonic Generation 

(THG). The basic principle underlying  these  techniques  is  that  for  focused  fs  laser pulses,  the photon density  is high 

enough  to  induce  multi‐photon  absorption  or  other  nonlinear  (coherent)  processes  within  the  focal  volume. 

Fluorophores whose excitation maximum  is  in the UV or  in the Visible spectral range can be excited by two or three 

infrared photons. Since nonlinear absorption and  thus  induced  fluorescence occurs solely at  the  focal volume of  the 

laser beam, a high axial resolution and consequently the 3‐D imaging capability of confocal microscopy can be attained 

without  the  use  of  a  confocal  aperture.  Furthermore,  there  is  no  interfering  fluorescence  from  the  surrounding 

structures and “out of focal plane” photobleaching and phototoxicity can be significantly reduced. More precisely, for 

nonlinear techniques, the efficiency of the generated signal scales nonlinearly with the intensity of the excitation beam. 

Figure 3 – Pump‐probe measurements of the carrier lifetime of a QD waveguided device. Δτfast and 

Δτslow are fast and slow recovery times respectively, and ΔT corresponds to the temporal 

changes in transmission. 

Page 5: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 5 of 85 

Thus, the use of fs lasers enables high peak powers for efficient nonlinear excitation, but at low enough energies so that 

biological specimens are not damaged. Additionally, the use of  infrared  light  implicates a high penetration depth  into 

tissues could exceed 200 μm due to the low absorption of the primary cellular components (water, etc), as depicted in 

Figure 5. For SHG and THG, an additional advantage derives  from the  fact that no energy  is deposited  (absorbed) by 

specimens,  thus sample disturbance  (e.g.  thermal, mechanical side‐effects)  is minimal. The 3‐D  fluorescence  imaging 

based on nonlinear  fluorophore  excitation  enables  a number of  applications  in  life  science,  such  as high‐resolution 

imaging of biological activities in living cells and tissues, studying cell motility and the distribution of a neurotransmitter 

in living cells. 

However,  nonlinear  imaging  systems  are  still  not  convenient  for 

general use. Generally, mode‐locked Ti:Sapphire  lasers  are used  as 

excitation sources, but as mentioned previously  they are bulky and 

expensive,  require maintenance  and  normally  dedicated  personnel 

for  its  daily  use.  Furthermore,  controlling  optical  pulse  properties 

such  as  the  repetition  rate  and  electronic  synchronization  is  not 

straightforward.  It  is thus necessary to develop simple and compact 

ultra‐short  pulse  light  sources  to  implement  nonlinear microscopy 

diagnostics. In this respect, ultra‐fast sources based on QD materials 

offer the greatest potential and a number of real advantages. In the 

FAST‐DOT  project  QD  materials  were  exploited  in  several  laser 

systems  enabling  widely  tuneable  sub‐picosecond  pulses  in  the 

spectral  range  between  1000  and  1300  nm.  Such  spectral  agility 

cannot be found today  in the commercially available  laser systems. 

The insertion of QD semiconductor structures in the laser systems envisaged in this project enables further control and 

electronic  synchronization  of  the  pulses,  via  modulation  of  the  loss  or  the  gain  components.  Furthermore,  the 

portability of the high‐performance QD‐based lasers will enable the seamless integration of these optical sources into 

microscopes, clearly over passing the capabilities of the mainstream Ti:Sapphire lasers. 

Femtosecond  lasers  have  also  been  shown  to  effect  cell‐resolved  surgery,  which  is  precise  surgery  with  sub‐μm 

resolution and with minimal alteration to cellular environment on living biological samples. Such techniques are crucial 

for the study of cellular processes such as mitosis, mobility, metabolism, differentiation, and apoptosis which are due to 

a  combination  of  processes  occurring  in  distinct  sub  cellular  domains.  To  study  these  behaviours  one  needs  to 

structurally modify or  remove  these  functional domains within  single  living  cells. Though a number of  chemical and 

genetic methods  have  proved  the  last  two  decades most  successful  in  enabling  targeted  organelle  or  biopolymer 

modifications, their spatial resolution is rather limited. Conventional dissection tools such as micro needles have spatial 

resolution limitations on the order of tens of μms and usually severely disturb adjacent cellular structures. 

In  this  respect,  femtosecond  pulses  in  the  IR  spectral  region  are  particularly  appropriate.  In  fact,  semitransparent 

materials such as biological tissues do not strongly absorb light in the IR range of spectrum. However, the intensity of a 

tightly‐focused femtosecond  laser pulse can be high enough to cause nonlinear absorption of  laser energy  leading to 

permanent material  change. A  femtosecond  laser  acts  like  a pair of  “cell‐scissors” by  vaporizing  tissue  locally while 

leaving adjacent tissue unharmed. The use of high numerical objectives  leads to a focal volume of a  lateral extent of 

less than 1 μm, allowing the precise and unprecedented manipulation of single cell organelles.

The objective of the FAST‐DOT project was to develop portable, low‐cost, reliable and highly‐efficient ultra‐short pulse 

laser  sources based on quantum‐dot  semiconductor  structures. Underlying  technologies were addressed  in order  to 

successfully  design  and  develop  laser  sources  that  are  cost‐effective  and  significantly more  compact  than  current 

sources, while improving their performance and degree of functional integration, thus enabling a more widespread use 

of ultra‐fast lasers. The range of applications where high‐performance compact ultra‐fast laser sources can be deployed 

is very wide, but in this project the applicability of the developed core photonic devices in Bio‐photonics for minimally 

invasive medical diagnosis and therapeutics is investigated. 

Figure 5 – The attenuation of various constituents of biological tissue. 

Page 6: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 6 of 85 

By placing a primary emphasis on novel materials, devices and  system designs,  this project encompasses a  range of 

challenging and cutting‐edge research directions that exploit QD semiconductor structures, in particular: 

1. The creation of new knowledge and understanding of the underlying properties of QD structures which are useful for 

ultra‐fast operation, by investigating ultra‐fast carrier dynamics and gain properties in detail. Microscopic simulations of 

the QD material and modelling of the mode locking dynamics will allow the layout of novel design rules for QD‐based 

mode‐locked lasers, where the unique functionalities of QD materials are exploited to the fullest. 

2. The growth and evaluation of novel QD‐based materials, enabling gain and absorption elements that exhibit ultra‐

fast dynamics (<1ps) and ultra‐broadband spectral characteristics (>200nm) in near‐IR range which will allow generation 

of hundreds mW of output power. Nonlinear materials that will allow the efficient frequency conversion generation of 

UV/Visible light from the lasers developed in this project are developed. 

3.  The  development  of  edge‐emitting  mode‐locked  lasers,  both  in  monolithic  and  external  cavity  configurations, 

integrating novel amplification structures with  improved saturation properties,  that will boost  the currently available 

output power by two orders of magnitude (>1W). 

4.  The  design  and  development  of  electrically‐pumped mode‐locked  vertical‐extended‐cavitysurface‐emitted  lasers 

(VECSELs) based on QDs,  in the near‐IR with output power of hundreds of mW, delivering sub‐picosecond pulses. By 

efficient frequency conversion the spectral range is extended into UV/Visible region with few tens mW output power. 

The development of compact mode‐locked device based on EP‐VECSELs and semiconductor saturable‐absorber‐mirrors 

(SESAMs)  technology also  in plan. We expected  to generate pulses with an average power up  to 100mW with  sub‐

picosecond pulse duration. 

5. The development of ultra‐compact high‐power optically‐pumped VECSELs ‐ our aim is to decrease the footprint and 

increase the efficiency by a  factor of 10. This will be  facilitated by the use of novel QD‐based SESAMs, that exhibit a 

lower saturation fluence than their QW counterparts. We expected to generate pulses with an average power of 1W 

and beyond, with pulse duration <500fs. The spectral band of femtosecond pulses will be extended into the UV/Visible 

range by deploying non‐linear crystals, that will result in pulses with output power of few tens mW. 

6. The development of ultra‐compact high‐power solid‐state lasers ‐ our aim is to decrease the footprint by a factor of 

10. This will be facilitated by the use of novel QD‐based SESAMs. We expect to generate pulses with an average power 

of 1W and beyond, with pulse durations around 100fs. The spectral band will be extended into the UV/Visible and mid‐

IR range by deploying nonlinear crystals, with the resulting pulses exhibiting an output power of hundreds of mW  in 

UV/Visible and few tens mW in mid‐IR ranges. 

7. The  investigation of the applicability of the prototypes resulting from  laser development  in biomedical applications 

encompassing non‐linear imaging and cell‐surgery. The spectral ranges addressed will be both in the IR and UV/Visible 

ranges. 

8.  And  finally,  an  underlying  objective  across  the  whole  project  was  the  support  of  networking,  integration  and 

structuring of advanced photonics RTD capacities and activities of the participants in the consortium, while supporting 

the training and mobility of highly‐qualified human resources. 

Page 7: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 7 of 85 

Description of main S & T results/foregrounds 

In order to achieve the objectives of the project, the work to be performed was broken down into 6 RTD workpackages: 

WP1 – New QD Materials; WP2 – Mode‐locked QD edge‐emitting  lasers  and  amplifiers; WP3 – Electrically pumped 

mode locked VECSELs; WP4 – Optically pumped VECSELs and efficient SHG; WP5 – QD‐SESAM mode‐locked solid state 

and fibre lasers; WP6 – Biophotonics applications and prototypes.  In addition to the RTD workpackages there was also 

a demonstration workpackage: WP7 – Biophotonics prototype demonstration.  The interaction of all the workpackages 

is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The RTD workpackages and the DEM workpackage will now be visited individually.  Each comprises of an overview, 

objectives, achievements and highlights, impact and conclusion section. 

Workpackage 1 

The aim of this workpackage was to deliver devices to the other workpackages, especially WP2, WP3 and WP4. The key 

technology of the FAST‐DOT project was the growth of InAs/InGaAs Quantum Dots into a GaAs matrix. These objects – 

QDs – are used as active media in semiconductor optoelectronic devices to transform electrical or optical pumping to 

the  emitted  light.  Utilizing  QD  technology  in  comparison  with  conventional  QW  technology  provides  number  of 

advantage such as: 

special wavelength range (1.0‐1.3µm); 

spectrally broad gain; 

ultrafast operation of pulsed lasers. 

Page 8: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 8 of 85 

The  technology of QD growth was well‐known before  the  start of  the project. Thus,  the main  task of WP1 was  the 

adjustment of QD technology to the requirements of WPs 2, 3 and 4. This adjustment resulted in the  fabrication of the 

following type of the devices: 

1. mode‐locked edge‐emitting lasers; 

2. electrically pumped VECSELs; 

3. optically pumped VECSELs; 

4. SESAMs; 

5. broad‐band ultrafast SOAs. 

As  soon  as  technology of non‐linear  crystals  for  light  frequency doubling was  investigated within  the project  these 

crystals were sent to WP5 as deliverables. 

The major highlights and achievements for WP1 within the FAST‐DOT project were: 

Growth and processing of  laser wafer with  chirped QDs demonstrate  tunable  laser with  tunability >150nm operating in CW and mode‐locked regimes. 

1150 1200 1250 1300

Inte

nsity

, a.u

.

Wavelength, nm

1150 1200 1250 13000

20

40

60

80

100

120

Pow

er,

mW

Wavelength, nm

130nm

 Figure 6 – Spectra and power for tunable laser based on chirped QDs 

 

Figure 7 – C‐mount with multi‐sectional chip for tunable mode‐locked laser 

Growth and processing of tapered lasers with QD active media demonstrated within the project: 

a world record in peak power of mode locked tapered laser with 15 W together with a pulse width of 820 fs at 10 

Page 9: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 9 of 85 

GHz repetition frequency 

an ultrashort transform limited pulse of 672 fs together with a 3.8 W peak power at 16 GHz repetition frequency 

and with also a 11 kHz RF linewidth 30 W peak optical power demonstrated by both UNIVDUN and TUD 

Figure 8 – 3D view of the fully gain‐guided tapered laser with 2 electrodes 

Growth and processing of tapered amplifiers with QD active media has allowed the demonstration of high peak power: 

30 W peak optical power demonstrated by  two project partners.  In a MOPA configuration an average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved 

Figure 9 – Schematic top view of different types realized tapered SOAs 

Growth and processing of EP VECSEL structure demonstrate >100 mW output power using a 10% output coupler (ETHZ, Task 1.2).  

    

Figure 10 ‐ Sketch of EP‐VECSEL gain structure and simulation of the injected current in a radial symmetry (disk contact Ø of 80 μm). The colour map of the current density is in A/cm2, the black lines show current 

trajectories 

AR section

 

Electrical contact

 

 

 

 

 

Current Spreading Layer

n-DBR

2x3 QWs

Page 10: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 10 of 85 

Growth of OP VECSEL structure with QDs demonstrate >2 W output power at 1180 nm (INNOLUME, Task 1.3) 

Figure 11 – Dual‐gain quantum dot semiconductor disk laser with intra‐cavity frequency doubling: 2.5 W at 1180 / 2 = 590 nm 

The most of the impact in science/research field is transferred to WP2, 3, 4 and 5 where devices fabricated in WP1 were 

delivered  for  characterization  and  analysis.  Successful  cooperation  between  partners  for  development  of  different 

types  of  devices  helped  to  create workgroups which  continue  developments  of  the  products  to  bring  them  to  the 

market. These developments will continue after the end of the project. Technology of growth and fabrication of gain‐

chips  for  tunable  lasers  allowed  the  products  shown  below  to  be  brought  to  the  market  for  several  different 

applications. 

Innolume Brand Products

Part number Tuning Range

Output power

GC-1055-TO-400 70 nm 400 mW

GC-1060-100 100 nm 200 mW

GC-1075-TO-250 80 nm 250 mW

GC-1113-TO-250 30 nm 250 mW

GC-1156-TO-200 30 nm 200 mW

GC-1178-TO-200 50 nm 200 mW

GC-1180-CM-200 100 nm 200 mW

GC-1220-CM-100 130 nm 100 mW

GC-1260-TO-150 40 nm 150 mW

Any customized wavelength from the 950-1320nm range is possible, please contact us for details

 

Successful realization of WP1 tasks were achieved due to the close cooperation between the FAST‐DOT partners. Rapid 

feedbacks from WP2, 3, 4 and 5 resulted in adjustment of parameters for fabricated devices to fulfil the requirements 

of WP6 and 7. Established connections between partners will be used for further development of the current products 

and/or development of new products required by market. 

Page 11: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 11 of 85 

Workpackage 2:  

WP2 was focused on the development of specific edge‐emitting QD lasers (high‐power, tuneable, ultrafast), based on 

novel compact monolithic and external cavity configurations and subsequent frequency conversion to generate visible 

light, for key applications in bio‐photonics. 

The main objectives of this workpackage were: 

Creation of new knowledge of the mechanisms of mode locking in QD lasers, in order to fully exploit the unique features of these nanostructures in the development of ultra‐fast edge‐emitting lasers. 

Investigation of the ultra‐fast performance of QD amplifiers to boost the optical power of the pulses generated from QD mode‐locked lasers. 

Generation of high peak power pulses from compact external cavity configurations and monolithic tapered lasers, for applications in bio‐photonics tools such as nonlinear imaging and nanosurgery. 

Generation of ultra‐broadband tuneable pulses over a span >100nm, in the spectral range 1100‐1300 nm, enabling a spectrally flexible tool for bio‐photonics and medical applications. 

Generation of visible light in the spectral range 550nm‐650nm, using ultra‐fast QD tuneable sources and waveguided nonlinear crystals. 

Investigate new functionalities present in QD edge‐emitting lasers that could lead to novel regimes of ultra broadband spectra generation, for potential applications in Optical Coherence Tomography. Simulations for development of the novel devices. 

During  the  project  excellent  progress  has  been made. Novel Quantum Dot  (QD)  structures  and  devices  have  been 

designed,  fabricated and evaluated by  the project partners, detailed  theoretical models had been developed  for  the 

simulation of QD mode‐locked  (ML)  lasers and novel operating  regimes  for  the ML  lasers have been  identified. The 

obtained  results  are  enormously  encouraging  and  confirm  the  great  potential  of  this  technology  to  enable  future 

development of compact low‐cost laser products capable of high power ultrashort pulse generation for applications in 

cell‐surgery and multi‐photon imaging.  

The  tunablility wavelength  range has been extended beyond  the 

state‐of‐the‐art  to  ~202nm  (between 1122nm  and 1324nm)  and 

new record achieved. This offers the prospect of users being able 

to  tune  the wavelength  of  the  lasers  to  suit  the  needs  of  their 

particular  applications  and  several  prototype  units  have  been 

assembled to demonstrate this capability. The potential to amplify 

ultrashort  laser  pulses  has  also  been  achieved  using  compact 

semiconductor  optical  amplifiers  based  on  quantum‐dot 

materials.  Novel  device  architectures  based  on  tapered  devices 

have been fabricated and tested, and as a result, the generation of 

picosecond pulses with  record high average power directly  from 

“match‐box”  size  electrically  pumped  devices  has  been 

demonstrated.  

Fully  tunable  semiconductor  lasers  have  been  long  time  an 

aspiration  of  laser  users,  and  FAST‐DOT  has made  substantial; 

progress here with the realisation of picosecond pulse generation 

with broadband wavelength  tunability  (136.5 nm  tuning  range  ‐ 

between  1182.5  nm  to  1319  nm,  as  shown  in  Fig.12)  from  a  quantum  dot  external‐cavity mode‐locked  laser  (QD‐

ECMLL) providing the highest peak power of 870 mW.  

Using  similar  QD‐ECMLL  with  a  tapered  quantum‐dot  based  semiconductor  optical  amplifier  (QD‐SOA),  a  broadly 

tunable master‐oscillator  power‐amplifier  (MOPA)  picosecond  optical  pulse  source was  demonstrated with  a wide 

tunability range between 1187 nm and 1283 nm and the highest output peak power of 4.39 W. 

Fig. 12: Wavelength tuning range in mode‐locked regime  is  presented  for  different  applied  gain current and 3 V  reverse bias. The highest  tuning range of 136.5 nm is achieved for gain current of 1A. 

Page 12: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 12 of 85 

In  addition,  in  collaboration with  all  partners  from WP2  record‐high  30.3 W  peak  power  picosecond  pulses were 

achieved in the 1.26 µm spectral band from a repetition‐rate‐tunable QD‐ECMLL, amplified by a tapered QD‐SOA. Using 

this QD‐based MOPA system with record‐high peak power, two‐photon fluorescence excitation  images  (Fig. 13) were 

obtained with fluorescent Crimson beads, with an excitation wavelength of 1.26 m 

Tunable visible continuous wave (between 567.7nm and 629.1 nm, as shown  in Fig.14) and picosecond (between 600 

nm and 627 nm) laser emission was demonstrated using second‐harmonic generation (SHG) in a PPKTP waveguide with 

a tunable quantum dot external cavity diode laser (QD‐ECDL). The theoretical model has been developed to explain the 

observed results. Frequency‐doubling system generating up to 1W of orange light (at 589 nm) was demonstrated using 

a QD‐ECDL and a quantum dot SOA as a pump source which produced more than 2W at 1178nm. 

 

Fig.13:  Simplified  schematic  of  the  experimental setup  for  the  demonstration  of  TPEF  imaging obtained with a QD‐MOPA system. 

 

 

Fig.14:  Dependence  SHG  conversion  efficiency  and launched fundamental power on wavelength. 

All partners took high benefit out of the strong cooperation between them and the strengthening their expertise and 

knowledge on quantum dot technology. During the project time, the excellent progress has been made. Novel QD 

structures and devices have been designed, fabricated and evaluated by the project partners, detailed theoretical 

models had been developed for the simulation of QD mode‐locked lasers. The obtained results are enormously 

encouraging and confirm the great potential of this technology to enable future development of compact low‐cost 

lasers. Various commercial products based on quantum dot technology had been launched during the project time by 

FAST‐DOT partners. 

In the first year of the project novel two‐section ML QD devices as well as QD SOAs were designed and characterised by 

the partners in detail and compared substantially to gain an understanding of the device performance in dependence of 

the device parameters and operation conditions. In collaboration with TUD, NKUA and UNIVDUN the obtained results 

were  investigated and discussed. These results and  the discussion allowed POLITO and NKUA  to  further  improve  the 

numerical models and to  formulate design recommendations  for the next generation of ML QD  lasers. Based on this 

knowledge ML QD tapered lasers were designed and fabricated to allow for a higher output power. These new tapered 

ML QD  lasers were  characterised  in  detail.  Based  on  these  results  and with  a  fruitful  cooperation  between  all  the 

partners the collaboration led to a second generation of tapered QD ML lasers. The devices provided to TUD exhibited 

an maximum pulse peak power of 5.5W together with sub‐picosecond pulse width as well as an Fourier  limited 670fs 

pulse duration. To further increase the output power tapered SOAs were designed by the partners and fabricated by III‐

V LAB based on a wafer produced by  INNOLUME. Three wafers (10QD  layers, 15QD  layers and 10 chirped QD  layers) 

have been processed  into  three  amplifier  structures  each named A,  F  and G.  The  tapered QD  amplifier  structures, 

tested  in SLD mode, show high power without  lasing effect. The provided SOAs were characterized  in terms of pulse 

Page 13: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 13 of 85 

amplification. With some of these amplifiers partners have demonstrated high peak power of 30W.  In particular, the 

devices provided to TUD allowed amplifying picosecond pulses from the tapered lasers to a pulse peak power of 36W. 

Moreover, the tapered QD‐SOA characterization results confirm the design trends in terms of gain vs current density for 

all three structures. Furthermore, G structure seems more promising as it exhibits a better beam profile combined with 

high gain. This is important as may deliver higher power due to better coupling to an optical fibre.  

The activity of the fourth year was mainly  involved  in correlating and analysing previously obtained measured results 

with new simulations. This activity was largely done in collaboration with the partners involved in WP2 as demonstrated 

by the  large number of  joint publications  in  international  journals and conferences. Part of this year activity was also 

addressed  to  investigate new  improved  structure of QD ML  laser with  the aim  to overcome  some of  the  limitations 

found from the experimental results. 

As a result of the investigations undertaken during the project time, several prototypes of compact external cavity QD 

lasers generating tunable picosecond pulses were developed by TOPTICA. As a continuation and extension of this work, 

UNIVDUN demonstrated the generation of ultrashort pulses in the visible range, using waveguided nonlinear crystals 

and external cavity tunable picosecond pulses QD laser. 

 

Workpackage 3:  

Workpackage 3 was tasked with the job of realising electrically pumped vertical external cavity surface emitting lasers 

(EP‐VECSELs).  These devices, being driven electrically, rather than optically, are compact and potentially very low cost.  

They  have many  similarities  with  VCSELs  which  have  now  come  to  dominate  large  scale markets  of  datacomms 

transmitters and also have found widespread use in optical mice.  This success is only possible in a simple device that 

can  be mass  produced  and  tested  on wafer  so  that  only  the  good  devices  are  packaged.    The  EP‐VECSEL  differs 

significantly  in  that  it can be  scaled  to  large  sizes and  therefore offers  far greater output powers  than VCSELs.   The 

external  cavity  also enables  efficient  frequency doubling  to  create  red,  green  and blue emission,  for  instance.   The 

market here  is  in high brightness micro projectors  for mobile electronic devices such as mobile phones.   This  is one 

example of a high volume low cost market.  At the other end of the scale in biomedical imaging, the market demands 

high performance devices.  Here, the ability of a EP‐VECSEL to emit short pulses and still be compact enough to simply 

fit to a conventional microscope or handheld device is the key driving force for this development. 

Given these applications requirements, the workpackage has proceeded by making devices, scaling the power to useful 

levels and then creating short pulsed  lasing by mode  locking.    In order to establish the most suitable material for the 

gain medium of  the  laser  in  these particular  applications,  the  industry  standard  semiconductor  laser  technology of 

Quantum Wells was compared with the relatively new technology of Quantum Dots.  As with other lasers, it is believed 

that quantum dots  can offer  superior material properties  and  so produce  superior  lasers,  especially  those  that  can 

operate at high temperatures.  High temperature operation is useful in enabling a higher output power before thermal 

rollover dominates, but also opens the possibility of uncooled operation, further increasing the efficiency and reducing 

the cost of the laser modules. 

The aim of this work package was to explore designs for the realization of EP‐VECSELs. We developed design rules for 

EP‐VECSELS,  placing  specific  attention  on mode‐locking  applications.    Both  quantum well  and  quantum  dot  based 

devices were developed, compared and studied, along with different fabricated device designs and geometries. 

In order to establish the most suitable route for EP‐VECSEL fabrication, the key design aspects were considered and two 

significant alternatives were chosen.  These two designs were investigated by ETHZ and USFD and results compared for 

evidence of increased performance.  The major difference identified is one of the substrate thickness, since this acts as 

both  the output  side of  the device  and  also  the n  contact.    The  trade‐off  is between doping  level  (responsible  for 

conductivity  and  current  spreading)  and  optical  loss  (by  free  carrier  absorption). USFD  chose  the  thick  low  doped 

substrate, whilst ETHZ  investigated the thin higher doping, with the original substrate being etched off as one of the 

processing steps.  Interestingly, the result of the experiments was that very similar performance has been achieved by 

both designs, indicating that this the trade‐off is not as significant as originally thought.  Similarly, another major trade‐

Page 14: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 14 of 85 

off was considered  in the doping profiles  in the DBR mirrors themselves.   Many doping  levels and profiles have been 

investigated, and the optimum is found to be similar to that found for VCSELS, where the high doping at the interface is 

critical  to  reduce device  resistance.   However, a barrier  to electrons  is actually beneficial  to  the  lateral  spreading of 

carriers in these large area devices, albeit at the expense of device heating.  At both institutions, the major limitation to 

device performance  is  found  to be due  to  the excess heat generation  in  the DBRs,  combined with  the  limited heat 

extraction  through  ternary  DBR  materials  resulting  in  thermal  rollover  well  below  the  desired  value.    Several 

improvements  to  epitaxy  and  heat  extraction  have  been made  but  this  thermal  rollover  appears  to  be  the major 

limitation to the power scaling of these types of lasers. 

We have achieved  the benchmarking,  investigation of  trade‐offs  in  the realisation of EP‐VECSELs.   ETHZ, PHILIPS and 

USFD have realised EP‐VECSELs with output powers exceeding 100mW. We have created a mode locked EP‐VECSEL with 

record short pulse operation of 10ps. We have established that the QD material is suitable for the SESAM, due to low 

saturation fluence, especially useful for EP devices that have lower output power than the OP counterparts.   

QD based CW EP‐VCSELs have been realised at INNO and PHILIPS.  We have compared QW and QD active materials and 

established  that at  this point,  that unfortunately  the QD material needs  improving  in order  to match  the amount of 

optical gain possible from QWs.  This will be necessary in order to overcome internal losses and achieve mode locking 

from these devices. 

We have not achieved one of the FAST‐DOT targets which was to scale the power to >500mW.  The detailed trade‐offs 

in order  to  reach  this power  level are  reasonably well understood, and within  reach, but will  require  further device 

development.  Achieving this target with a device that is designed for mode‐locking is key to accessing the applications 

markets.  These markets are still present and we feel the research is still worth pursuing.  As such, following the end of 

the FAST‐DOT project the partners will continue to work together to develop this technology. 

The main achievements of WP3 were: 

Understanding of  the  trade‐offs and  formation of design  rules  for electrically pumping of VECSELs, especially with regard to application to mode locking. 

Following the initial work on the optimization of the DBR for loss and resistance trade‐off, the next major step was that 

of  improving the  lateral carrier  injection  into  large area devices necessary  for high power.   The overlap between the 

fundamental mode profile and primarily the carrier density profile but also the refractive  index and  loss profile  inside 

the  device  are  responsible  for  the  large  difference  in  multimode  and  single‐mode  power  achieved  to  date.  

Improvements  to  the  carrier  spreading using different doping‐thickness profiles  for  the electron  injector have been 

investigated.    In order  to make  the EP‐VECSEL more  reliant on  the SESAM  reflectivity changes  to  improve  the mode 

locked  performance,  a  reduction  in  the  strength  of  the  internal DBR  is  necessary.   However  this  reduction  is  only 

possible once the  internal optical  loss  in the structure  is reduced sufficiently otherwise threshold cannot be reached.  

Again, this loss is due to the doping in the DBR mirrors and the current spreader, so complete elimination is impossible 

in the electrically pumped structure.   This significant difference with optically pumped VECSELs will always mean that 

electrical  injection brings correspondingly  lower performance, however size and cost advantages mean that electrical 

injection is essential for many applications. 

Establishment of  the growth and  fabrication processes necessary  to  fabricate high power EP‐VECSELs at USFD and ETHZ. 

Since  there  are  many  fabrication  steps  involved  in  realizing  these  devices,  final  yield  is  critically  dependent  on 

optimizing each  individual process step.   Whilst most steps have begun  from existing recipes, there have been many 

changes necessary for this specific type of device.  A key result, which  is not obvious from reports  is that this process 

improvement work  carried out under  FAST‐DOT will provide  a  long  lasting benefit  to both USFD  and  ETHZ.    These 

improved  process  flows  will  not  only  impact  on  future  batches  of  EP‐VECSELs  but  other  similar  projects  at  both 

institutions. 

Realisation of electrically pumped VECSELs at PHILIPS, USFD and ETHZ 

Page 15: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 15 of 85 

Output powers  in  excess of 100mW CW have been  achieved by  three partners  from  three different designs of  EP‐

VECSELs.  These designs have slightly different trade‐offs, which have enabled a better understanding of the underlying 

limitations in the real devices.  

 Figure 15: LIV curves from an EP‐VECSEL with a disk contact diameter of 180 μm, top contact diameter of 300 μm, using 

a 10% output coupler. The heatsink temperature was kept at 3°C. 

 

 

Figure 16: Maximum output power of EP‐VECSELs as a function of device diameter. 

 

Page 16: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 16 of 85 

 

Figure 17: CW and pulsed LI characteristic for a 100μm device with a substrate doping of 4x1017cm‐3 for a range of temperatures.  Inset shows lasing spectra for the same device at a drive current of 300mA and a heatsink temperature 

of 20°C 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

‐150 ‐100 ‐50 0 50 100 150

Intensity (a.u.)

Distance (µm)

low n

n plus

 

Figure 18: Intensity profile of 200 µm devices at 100 mA drive current. 

 

 

Page 17: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 17 of 85 

 Figure 19: Beam quality measurement of VECSEL with 11 n‐DBR pairs at 15 mW output power. 

Realisation of electrically pumped QD based VCSELs at INNO and PFLA 

QD EP‐VCSELs have been grown by INNOLUME and processed by both INNOLUME and PFLA.  Lasing has been achieved 

from a range of device sizes from 2 to 20um diameter. Slope efficiencies of 10%, powers of ~1mW have been achieved. 

 Figure 20: LIV curves for a QD based EP‐VCSEL realized by INNO and PHILIPS 

Mode locking of PFLA and USFD EP‐VECSELS by UNIVDUN  

Mode‐locked pulses of ~270ps were achieved with a repetition rate of 1.9 GHz and an average output power of 8mW.  

The power ratio from mode locked relative to CW lasing was 13% which represents an improvement on previous results 

in the literature. 

Page 18: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 18 of 85 

       

Figure 21: Schematic drawing of a cavity to mode‐lock EP‐VECSEL from Philips, and similar for USFD device. 

1.484 1.485 1.486 1.487 1.488 1.489 1.490 1.491 1.492

-120

-110

-100

-90

-80

-70

-60

Leve

l (dB

)

Frequency (GHz)

 Figure 22: RF spectrum of the mode‐locked USFD device 

Design and fabrication of matched SESAMs to electrically pumped devices at ETHZ. 

ETHZ have designed a series of QD based SESAMs optimised for the  lower saturation fluence necessary to mode  lock 

electrically pumped VECSELs. Saturation fluences below 10 µJ/cm² are possible and modulation depth  in the range of 

3%‐15% has been achieved. These SESAMs are now ready for the next iteration of EP‐VECSEL devices. 

 

Figure 23: Nonlinear reflection of the QD SESAM QD084 enabling saturation fluences < 10 µJ/cm² 

 

 

Page 19: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 19 of 85 

Mode locking of PHIIPS EP‐VECSELS by ETHZ  

Mode‐locked pulses of 9.5ps were achieved with a repetition rate of 1.4 GHz and an average output power of 7.6 mW.  

This result of sub 10ps pulse width is an improvement on any results previous reported, and represents a peak power of 

~0.5W. 

 Figure 24: (a) Optical spectrum, (b) electrical spectrum and (c) pulse shape 

 

We have generated knowledge  in terms of design rules for EP‐VECSELs and mode  locked EP‐VECSELs which  is openly 

available.  We have generated knowhow in terms of growth and fabrication techniques that are invaluable in the future 

development of EP‐VECSELs and  indeed all similar technologies through to VCSELs.   Many other projects at USFD and 

ETHZ can now benefit from this know‐how such as background process tests, tolerances capabilities and recipes.  The 

people working on the FAST‐DOT project have gained valuable training and experience in a number of fields. They have 

also gained exposure  to colleagues and partners across Europe, which will  form  the basis of  future collaborations  to 

come.  Due to the longer term nature of WP3, the direct economic outcomes are limited at this present time, and will 

be seen once performance has reached the point for technology transfer to commercial partners. 

We have made considerable progress  in developing CW and mode  locked electrically pumped VECSELs within FAST‐

DOT.   This has  resulted  in a  considerable body of knowledge at  the partner  institutions  in  terms of design, growth, 

fabrication  and  laser  systems  design.    It  has  resulted  in  the  realisation  of  EP‐VECSEL  devices  that may  now  find 

application  in a range of different areas  in addition to those  initially envisaged by the consortium.   The performance 

achieved so far has led to a strong case for further development work and several partners have therefore committed 

additional resources.  These fabrication and test cycles that are underway, and due to continue beyond the end of this 

project, we hope, will be the final step to bridge the gap between academic research and industry uptake.  As a result of 

FAST‐DOT WP3,  Europe  is  now  very much  active  and  at  the  forefront  of  EP‐VECSEL  and mode‐locked  EP‐VECSEL 

development.  We hope that this technology will soon find its way from our laboratories into companies, clinics, homes 

and pockets. 

Workpackage 4:  

Picosecond  and  femtosecond  laser  oscillators  have  enabled many  breakthroughs  in  both  fundamental  science  and 

industrial applications. However, so far these ultrafast lasers have not achieved the impact of continuous‐wave lasers, 

which are used in various everyday life applications such as compact disk players, optical communication links or laser 

printers. One reason for the low market penetration is the complexity and cost of these sources. Currently, there are no 

suitable ultrafast laser sources for high volume applications such as multi‐photon imaging, medicine, micro‐and nano‐

structuring,  or  metrology,  which  currently  rely  on  bulky  and  complex  ultrafast  lasers  such  as  titanium  sapphire 

oscillators. In contrast to these laser systems, semiconductor lasers are ideally suited for mass production and allow a 

high level of integration which results in compact and simple devices. 

In workpackage 4, novel ultrafast  semiconductor  lasers with unprecedented performance were developed and  then 

optimized  for biomedical applications  in WP6. The approach  is based on  the vertical external cavity surface emitting 

laser (VECSEL, also called semiconductor disk laser) and a semiconductor saturable absorber mirror (SESAM) for pulse 

Page 20: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 20 of 85 

formation. The optically pumped VECSEL can produce extremely high average output powers  in a diffraction‐limited 

beam. The laser beam propagates vertically (perpendicularly) through the epitaxial layers.  

 

Figure 25: Ultrafast lasers generate coherent light pulses with pico‐ or femtosecond duration, 

enabling a large range of new scientific and industrial applications 

In this way, excessive nonlinearities even for high peak powers and femtosecond pulse duration are avoided, which is a 

severe challenge for edge emitters. The total thickness of the epitaxial layers is small compared to the beam diameter 

of the pump laser allowing for very efficient heat removal. This makes the device power‐scalable, i.e. the output power 

can  be  scaled  upwards  by  increasing  the  pumped  area,  while  the  temperature  difference  in  the  semiconductor 

structure remains unchanged. Continuous wave output powers of up to 20 W in a diffraction limited beam have been 

obtained in our project, stating a new world record. Pulsed operation is obtained by modelocking with a SESAM inside 

the  cavity.  In  our  project,  we  addressed  all  aspects  of  the  ultrafast  VECSEL  development  ranging  from  design, 

semiconductor  growth,  device  realization  and  prototype  development. Moreover,  efficient  wavelength  conversion 

methods  using  nonlinear  optics  were  also  investigated.    The  first  modelocked  quantum‐dot  based  VECSEL  was 

demonstrated, contributed strongly to the understanding of the physical processes in semiconductor structures and the 

pulse formation, established several world records, and delivered several prototypes to WP6, which were successfully 

used for the project’s key target application multi‐photon‐imaging.  

 

Figure 26: The focus of WP4 are optically‐pumped semiconductor disk lasers, also called VECSELs, their 

efficient frequency conversion, and modelocked operation. In CW‐operation, a VECSEL laser consists only of 

the optical pump, a gain chip, and an output coupler. Inserting a SESAM into the cavity leads to modelocked 

operation, generating a train of femtosecond or picosecond pulses. 

In work package 4, a substantial progress on optically‐pumped VECSELs  in a broad range spanning from fundamental 

physics  to  prototype  demonstrators  and  application  studies was  targeted.  In  particular, we wanted  to  exploit  the 

advantages of QD‐based semiconductor disk lasers, expanding their wavelength coverage and increasing the achieved 

power  levels. Moreover we wanted to exploit their advantages for short pulse generation. At the start of the project, 

Page 21: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 21 of 85 

proof‐of‐principle ultrafast VECSELs with femtosecond duration were demonstrated, but the power levels of only a few 

milliwatts were too low for driving any of the applications addressed in WP6. Thus, the major milestone in the project 

was  the  first  realization of a  femtosecond VECSEL with more  than one Watt average power, which would enable a 

whole new range of applications. To this purpose, we wanted to extend the knowledge in the area of quantum‐dot (QD) 

and quantum‐well (QW) based VECSELs and SESAMs, develop new classes of laser designs enabling to extend the limits 

in wavelength coverage, pulse duration, and power levels.  

Work package 4 addressed its key challenge of demonstrating the first high power femtosecond VECSEL with a research 

program  focussing on all relevant aspects of VECSELs, SESAMs, and ultrashort pulse  formation. A major part was the 

understanding and the design of novel and improved VECSEL gain structures (together with WP1) and the comparison 

of  the performance between QW and QD gain  regions. For  reducing  the pulse duration of high power VECSELs, we 

investigated and optimization QD‐SESAMs (in collaboration with WP5, growth in WP1). Moreover, we targeted to study 

efficient  frequency  conversion  by  the  development  of  novel  and  improved  nonlinear  crystals  (with WP1)  and  the 

comparison of different approaches for second harmonic generation. Finally, our work package addressed technology 

transfer from university research to the SME partners of the project. We targeted to provide black‐box lasers with high 

power  levels and short pulses  that were reliable, compact, and cost‐efficient  for numerous FAST‐DOT applications  in 

WP6.  

The FAST‐DOT project has significantly strengthened  the European  leading position  in  the area of VECSELs. All major 

research targets were achieved, including the first femtosecond VECSEL with more than 1 W of average output power. 

Efficient frequency conversion was demonstrated, but we focussed the project strongly on the development of ultrafast 

VECSELs  and  prototypes  for  our  internally  top‐ranked  key  application multi‐photon  imaging.  All  tasks  in  the work 

package 4 have been exceptionally successful, leading to numerous first demonstrations, world records, commercially 

attractive IP, prototype demonstrators, successful application studies, and even the launch of a new product line at one 

of our SME partners.  

WP4 had a huge impact on the development of QD‐based VECSELs and SESAMs: FASTDOT defines state‐of‐the art in 

QD‐VECSELs  in  all  operation  regimes, both  CW  and  ultrafast  operation. A  broad wavelength  operation  range was 

confirmed. In continuous‐wave operation, we achieved 5.2 W at 960nm, 5.5 W at 1.03µm,  4.25 W at 1.18µm, and 1.7 

W  at  1.26  µm.  Additionally,  we  also  demonstrated  efficient  frequency  conversion.  In  cw‐frequency‐converted 

operation, we achieved 2.5 W orange at 590 nm, 2 W of green at 515 nm, and 0.34 W red at 624 nm. An excellent, 

broad wavelength tuning range was confirmed. 

 

Figure 27: State of the art in output power and spectral coverage of continuous‐wave QD‐VECSELs. The circled 

results were achieved in the framework of the FASTDOT project. Solid symbols represent fundamental 

emission and open symbols—second harmonic generation 

Page 22: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 22 of 85 

In modelocked operation, we were able  to demonstrate  the  first modelocked QD‐VECSEL. Power and pulse duration 

scaling resulted finally in the first femtosecond VECSEL with more than one Watt average power. This VECSEL relied on 

QDs both in gain and absorber and generated up to 1.05 W in 784‐fs pulses at 960 nm. This result covered for the first 

time the important area of short pulse duration and high output power (see graph below).  

 

Figure 28: Left: The QD‐SESAM modelocked QD‐VECSEL achieved for the first time average powers of more 

than 1 W in the femtosecond regime. Right: cavity setup of the QD‐VECSEL. 

 

 

Figure 29: Left: Autocorrelation of the 780‐fs pulses generated by the 1.05 W VECSEL. Right: RF‐spectrum 

FASTDOT strongly increased the understanding of the passive modelocking process in VECSELs. We presented the first 

detailed experimental study on the influence of GDD on the pulse duration of ultrafast VECSELs, confirming the quasi‐

soliton theory. Furthermore, recent simulation enabled excellent quantitative agreement even  for  femtosecond  laser 

operation.  

 

Figure 30: a) Typical numerical implementation of a VECSEL cavity. b) Simulation of pulse duration and average 

output power for various repetition rates compared to measurements, showing an excellent agreement. 

We presented a novel approach for increasing the pulse energy of modelocked VECSELs: The current performance of 

ultrafast VECSELs in terms of pulse peak power and energy is not yet fully sufficient due to the high repetition rates in 

the GHz‐regime.  Reducing  the  repetition  rate  is  one  option  to  increase  pulse  energy  and  peak power  of  the  laser. 

However, this approach cannot be simply extended to ultrafast VECSELs due the short carrier lifetime of around 1 ns of 

the  semiconductor  gain  element.  This  limits  the  repetition  rate  to  around  500 MHz  for  fundamental modelocked 

operation in the conventional geometry with two gain‐passes per cavity round‐trip. We demonstrated a multi‐gain‐pass 

approach to overcome the  lower  limit  in repetition rate. Using a four‐gain‐pass cavity, we obtain stable modelocking 

with a repetition rate of 250 MHz with an average output power of 400 mW and a center wavelength of 957.5 nm. The 

IP for this approach was protected by a patent submission.  

Page 23: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 23 of 85 

 

Figure 31: a) 250 MHz multi‐pass cavity design with four gain‐passes per cavity roundtrip; b) Autocorrelation 

trace corresponding to a 11.2 ps sech2 fit; c) RF peak at 253.2 MHz; Average output power 400 mW, OC 

transmission 4.5%; center wavelength 957.5 nm 

We achieved  record‐low noise operation of an actively stabilized SESAM‐modelocked VECSEL: We  investigated  the 

timing  jitter of an actively stabilized SESAM modelocked VECSEL. The repetition rate was phase‐locked to a reference 

source using a piezo actuator and the timing phase noise power spectral density of the laser output was measured. The 

resulting rms timing jitter integrated over an offset frequency range from 1 Hz to 1 MHz gives a timing jitter of below 80 

fs,  several  times  lower  than previous modelocked VECSELs  and  comparable  to  the noise performance of  ion‐doped 

solid‐state‐lasers. 

  

 

 

 

 

 

Figure 32: Left: Picture of the laser in the metallic housing including the Z‐shaped cavity and the pump setup 

with a fiber‐coupled pump diode. The pump beam is drawn in green and the laser beam in red. Right: two‐

sided timing phase noise of the laser and the reference oscillator. 

Figure 33: The repetition rate was tuned from 6.5 GHz up to 11.3 GHz. During the tuning we measured only 

small changes in output power (blue), with less than 6% standard deviation around 169 mW, while the pulse 

duration (red) was nearly constant around 625 fs with less than 3% standard deviation. The center wavelength 

(green) was extremely constant changing only about ±0.2 nm around 963.8 nm. 

Page 24: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 24 of 85 

We demonstrated a femtosecond VECSEL with tunable Multi‐Gigahertz Repetition Rate: We present a femtosecond 

vertical external cavity surface emitting laser (VECSEL) that is continuously tunable in repetition rate from 6.5 GHz up to 

11.3 GHz. The use of  a  low‐saturation  fluence  semiconductor  saturable  absorber mirror  (SESAM) enables  stable  cw 

modelocking with a simple cavity design, for which the laser mode area on SESAM and VECSEL are similar and do not 

significantly change for a variation in cavity length. Without any realignment of the cavity for the full tuning range, the 

pulse duration remained nearly constant around 625 fs with less than 3.5% standard deviation. The center wavelength 

only changed ±0.2 nm around 963.8 nm, while the output power was 169 mW with  less than 6% standard deviation. 

Such a tunable repetition rate is interesting for various metrology applications such as for example optical sampling by 

laser cavity tuning (OSCAT). 

WP4  realized several modelocked VECSEL prototypes and progressed  towards commercialization. The  final version 

has a size of only 220x80x65 mm³, but achieves >1 W average power in <1.5 ps with >1.5 kW peak power.  

 

Figure 34: Three generation of modelocked VECSEL prototypes realized by our SME partner 

M2. The FASTDOT project resulted in the lauch of a new product line. 

WP4 delivered several prototypes to WP6 and demonstrated their suitability for biomedical applications studies. In 

particular,  we  successful  used  the  VECEL  prototypes  in  the  key  target  application  MPI.  The  laser's  operating 

wavelengths of 970 nm makes it ideal for nonlinear excitation of GFP as it has a two‐photon action cross section peak at 

this wavelength. 

During the project, we advanced all aspects of OP‐VECSELs, resulting  in a high scientific  impact. We developed three 

generations  of  prototypes, which  performed  excellent  in  the  identified  key  application MPI. Moreover,  technology 

transfer  towards  SMEs was  achieved,  resulting  in  a  new  product  line of  our  industrial  partner M2.  Key  intellectual 

property was secured by two patents and several trade secrets. Our results have resulted in a large scientific visibility. 

Besides numerous peer‐reviewed conference and  journal contributions, our outstanding  results  led  to  the successful 

implementation of new VECSEL conference at Photonics West 2011, which was successfully continued in 2012 and will 

also be continued in 2013. 

FAST‐DOT achieved an enormous progress in CW and mode locked optically‐pumped VECSELs, leaving a strong positive 

impact in the European research landscape and considerably strengthening the European top position in this field.  This 

has resulted in a considerable body of knowledge at the partner institutions in terms of design, semiconductor growth, 

laser  fabrication, and biomedical application.   The  realised prototypes have state‐of‐the‐art performance and will be 

commercially  exploited by  the  SMEs of  the  consortium.  The  generated  European network within  the  consortium  is 

expected will  continue  joint  research  projects  at  the  forefront  of  semiconductor  lasers. Moreover,  the  partners  in 

biomedical research will keep access to state‐of‐the‐art prototypes for initial proof‐of‐principle demonstrators.  

 

Workpackage 5:  

The arsenal of photonics tools and methods used in biomedical field exploded in the past 10 years. As this research field 

developed it was quickly realized that there is a need for means to image and manipulate biological objects on the sub‐

Page 25: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 25 of 85 

cellular  scale. Moreover,  it  is highly desirable  that  these high‐spatial‐resolution methods were  free  from  fluorescent 

dyes and would not require  introduction of deliberate mutations  into the cells.  It  is well known  that using nonlinear 

optical  interactions  in biological objects  it  is possible  to break  through  the  special  resolution barrier  set by  laws of 

diffraction. The caveat is, however, that in order to reach acceptable efficiency of nonlinear interactions, one has to use 

very  high  light  intensities.  So  high,  in  fact  that  if delivered  in  continuous wave  regime,  the biological  object under 

investigation would be utterly destroyed. Using ultrashort pulse  lasers, on  the other hand, allows  reaching  required 

intensities with pulses having very small energies, typically of the order of 10‐8 Joules. For comparison, this is the energy 

required to  lift a weight equal to 1 gram by a distance of 1 micron above the ground. Although  it does not seem  like 

much and is definitely low enough to keep cells alive, due to the short pulse length, the electric field within the optical 

pulse  is very strong and sufficient  to produce efficient nonlinear response  in biological  tissue. Ultrashort pulse  lasers 

have been available on the scientific laser market for years and many biology labs do own such devices. The problem is 

that  for  stable  pulsed  operation  such  lasers  need  to  run  at  relatively  high  powers  and  can  be  not  self‐starting. 

Moreover,  the  commercial  lasers  up  to  recently mostly  employed  Ti‐doped  Sapphire  gain medium which  strongly 

limited  available  output wavelength. Obviously,  there  is  plenty  room  for  improvement  in  terms  of  laser  efficiency, 

operation at lower powers and therefore with less stringent cooling requirements and employing more compact laser 

cavities.  Quantum‐dot  semiconductor  saturable  absorber  mirrors  (QD‐SESAMs)  due  to  unique  physical  properties 

afforded by the quantum dot, such as low saturation fluence, broad absorption spectrum, short relaxation times and a 

possibility to engineer central absorption wavelength by appropriate growth conditions, are very promising for mode‐

locking compact solid state and fiber lasers operating in different spectral ranges.  

WP5 had three central tasks, namely, design of saturable absorber structures, characterization of the grown structures 

and use  in specific  laser designs, and delivery of mode‐locked pulsed  laser sources to the applications work packages 

WP6 and WP7. With  this structure WP5 had control over all stages of  laser development, except  for  the  fabrication 

process of  the  saturable  absorber  structures. Moreover  the  success of demonstrations  in WP6  and WP7 depended 

critically on the performance of WP5 due to the simple fact that the laser technologies developed in WP5 could deliver 

the  peak  powers  required  for  nonlinear  optical 

microscopy of biological  tissues and  for  surgery on  sub‐

cellular level. 

At  the  beginning  of  the  project  there  was  only 

rudimentary and sometimes contradictory data available 

in the scientific literature regarding technical parameters 

and performance of  semiconductor quantum  dot  layers 

as  saturable  absorbers.  Although  the  basic  physics was 

more  or  less  known  and we  based  our  projections  and 

expectations  on  that  previous  knowledge,  we  also 

assumed  expected  that,  as  always,  there will  be  some 

crucial details and difficulties which were not  known or 

not  written  about  in  the  scientific  literature  which  we 

would need to find out and overcome during the course 

of  the  project.  Due  to  the  fact  that  producing  well‐

functioning  QD‐SESAMs  involves  optimizing  multi‐

parameter  space,  we,  from  the  outset,  established 

rigorous  logistics  procedures  which  allowed  systematic 

collection of data from all involved partners and that data could be exploited in the process to make better design and 

fabrication decisions. Without this the whole exercise had little chance of success. Another crucial factor for successful 

outcome was the consistency in the performance of the quantum dot structures grown by our partners in the project. 

In  fact  fabrication of quantum dot  structures  is not unlike cooking, where  the using  the  same  recipe different chefs 

would  invariably produce different‐tasting dishes. The need  for a  single  supplier  for  the  sake of  consistency  is well‐

known for commercial laser manufacturers who were in fact partners in WP5.  

Fig. 35. 1.5 GHz Yb:KYW QD‐SESAM mode‐locked laser 

generating picosecond pulses at 1.5 GHz repetition rate

Page 26: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 26 of 85 

The workpackage developed and delivered mode‐locked lasers at different wavelengths to WP6 and WP7. Judging from 

the results of those WPs the devices were successful  in producing nonlinear  imaging and sub‐cellular surgery. Due to 

flexibility of QD‐SESAM technology in terms of laser wavelengths we were able to demonstrate lasers at 1 µm, 1.26 µm, 

1.53 µm all using QD‐layers grown by exploiting GaAs/InAs technology.  

Some of  the  laser designs developed  in WP5 have been  specifically  chosen  to  reach  ranges of operation not easily 

accessible with other mode‐locking techniques and where quantum dot saturable absorbers have definite advantage. 

One of such regimes is a picosecond laser operating at repetition rate above 1 GHz. Figure 35 shows the compact cavity 

of  Yb;KYW  laser  generating picosecond pulses  at  1.5 

GHz repetition rate in 1 µm wavelength region.  

Another  difficult  regime  of  operation  where  QD‐

SESAMs  have  advantage  is  mode‐locking  low  gain 

Er:Yb:glass  lasers.  Such  lasers  operate  in  1.55  µm 

wavelength range and are very difficult  to mode  lock 

using  other  techniques.  Special  InAs  quantum  dot 

growth method on GaAs has been developed  in WP5 

in order to tailor the quantum dot size and density for 

absorption  in  the  required  spectral  range.  2‐

dimensional scan using atomic force microscope over 

the grown quntum dot layer is shown in Figure 36. 

The  novel  QD‐SESAM  growth  method  allowed 

fabricating  absorber  structures  which  successfully 

mode‐locked  Er:Yb:glass  laser.  Moreover  the  laser 

showed  characteristics  superior  to  those  obtained 

with  other  methods.  The  autocorrelation  trace  of  the 

picosecond pulses  and  spectrum of  the  laser output  are 

shown in Figure 37. 

   

Fig. 37. Autocorrelation trace (left) and spectrum of Er:Yb:glass laser mode‐locked with InAs/GaAs QD‐SESAM. 

WP5 definitely generated new knowledge and provided consistent mapping of QD‐SESAM technology. This knowledge 

allows making informed decision on which saturable absorber is best suited for specific laser technology. For instance 

the fabrication of low saturation fluence devices at different wavelengths and successful demonstration of mode‐locked 

laser with those devices which we achieved in WP5, essentially adds a new technology to the laser engineer’s toolbox, 

the  technology especially  suitable  for high  repetition  rate pulse generation especially  in  lasers with  small gain. Such 

technology was sorely missing before. One can ask if such technology is really required, considering that there ways to 

Fig.36: AFM scan over InAs/GaAs QD layer 

Page 27: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 27 of 85 

generate ultrashort pulse trains using for instance devices based on quantum wells. The answer is definitely – yes. First 

of  all,  it  should  be  stressed  that  there  are  many  applications  of  lasers  especially  in  metrology,  sensing  and 

communications which require high stability  lasers operating at high repetition rates. Second, quantum dot saturable 

absorbers as shown in WP5 give substantially more design freedom for the laser and has much wider margin for errors 

as compared to quantum well technology. This is very good news for laser manufacturers who up to now struggled to 

produce reliable lasers at GHz repetition rates and different wavelengths.  

Short  conclusion  definitely  is  that WP5  has  performed  as  expected,  developed  and  delivered  lasers with  required 

specifications  to Wp6 and WP7, where wealth of  results have been generated using nonlinear microscopy and  sub‐

cellular surgery. Looking a bit deeper one can see that the  lasers developed  in WP5 use different  laser materials and 

have different output wavelengths than the ones available on the market. Therefore the groups working on biological 

applications within FAST‐DOT were able to test new spectral ranges not yet available for other groups. Sometimes with 

very  pleasant  surprises,  as  was  the  case  of  label‐free  third‐harmonic  imaging  using  femtosecond  Er:fiber  lasers 

developed  in WP5. We  can  definitely  claim  that  the  result  is  very  promising,  indeed.  It  is  also  obvious  that  the 

microscope manufacturers did not expect anyone to use anything else than Ti:Sapphire lasers so appropriate low loss 

optics  has  not  been  developed.  It will  require  some  time  and  persuasive  results  coming  out  of  biomedical  labs  to 

change  the situation and convince very  inert and slow‐moving microscopy companies  to changes  their ways. On  the 

other hand the slowness of the big companies gives opportunity for smaller and more nimble startups.  

The work done  in WP5 has shown that quantum dot saturable absorber technology  is suitable and advantageous for 

high  repetition  rate  ultrashort  pulse  lasers,  the  laser market  segment which  is  rather  unoccupied  at  the moment. 

Therefore it is reasonable to expect that this technology with some additional development will be adopted by existing 

laser  companies  or  new  startups.  In  any  case,  the  investment  of  time  and  resources  in  developing  quantum  dot 

saturable absorber technology that has ben done in Fast‐Dot WP5 has definitely put Europe into the leading position in 

this area.  

 

Workpackage 6:  

FAST‐DOT committed a significant part of  the  total effort and  investment  in demonstrating  the  immediate need and 

usefulness of  the developing QD  technology not only within  the narrow  limits of  research  and development of  the 

semiconductor  industry but  in the broader marketplace. From the diverse application areas that such devices can be 

used in, that of the biomedical field held the most appeal and promise, as the field combines and exploits the promise 

of miniaturization and integration, low cost and customization afforded by QDs. 

For  this  goal  what makes  them  attractive  is  that  they  are more  compact,  have  lower  cost  and  can  cover more 

wavelength  regions  than  the  competition. 

Their  operational  demands  and  costs  are 

much  lower  and  their  user  interface  and 

control  is  by  easier  and more meaningful 

for such applications. 

Of course such comparative statements are 

with  respect  to  the  older  generation  QW 

technology  (which  has  made  modest 

inroads  in  the  bio  area)  and  the 

cumbersome solid state laser technology.  

Figure 38: System compactification trend towards the QD limit 

Solid  state  and  semiconductor  lasers  have  been  widely  used  in  the  instrumentation  developed  for  biomedical 

applications,  where  necessary.  Such  sources,  either  as  cw  or  ultrashort  pulsed  systems,  need  to  offer  a  set  of 

operational parameters as they are required by the specific application. This demands a significant  investment, either 

towards the purchase or by the operational overhead for such an instrument, especially in a user friendly setup. Today 

Page 28: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 28 of 85 

most such systems are stand‐alone devices  incorporated  in seemingly  integrated package for the user. The two main 

contenders for such systems are the Ti;sapphire and QW lasers. This project, aims to provide a direct replacement for 

such systems through the QD technology. Such a replacement is expected to enhance performance by minimizing the 

optical sample source interfacing, extend source stability both short and long term, expedite data collection, processing 

and visualisation intervals by variable repetition rates, provide an extended coverage of the important spectral regions 

of  biomedical  studies    while  reducing  costs,  needed  to  procure  and  maintain  such  a  system,  compacting  the 

instrumentation by real system integration techniques and improving the user friendliness of the system. 

In prioritizing the work effort of  this workpackage one had  to consider and satisfy two different sets of criteria. One 

stemmed from the planned availability of devices by the partners on the “growth” and “integrate” side of the project 

and the other from the business assessment team of what would be the most profitable applications that can reach the 

marketplace quickly.  

The project established on  its outset, that nonlinear microscopy and cell surgery would be the best bet for QD based 

ultrashort  devices  while  cw  units  will  focus  on  optical  coherence  tomography  and  and  a  battery  of  fundamental 

spectroscopic studies of biosamples including the demonstration of cutting, ablating and potentially welding tissues of 

various types. 

These  techniques  were  selected  from  amongst  others,  as  very  desirable  and  highly  exploitable  by  the  industrial 

partners.  This in turn defined the investigative work needed to be carried out by the research partners to demonstrate 

that such techniques can leave the environment of a research lab and become integrated in a turn‐key lab instrument. 

 The  project  proceeded  then  in  a  dual mission  (a)  to  provide  the QD  devices  and  (b)  simultaneously  demonstrate 

instrumentation test‐beds that incorporated such devices in eventually marketable setups. 

The concerted effort made available a variety of QD device, leading to modules and systems that were integrated and 

tested  into  existing  and  modifiable  research  setups.  This  was  coupled  smoothly  to  the  efforts  of  the  industrial 

integrators  in order  to completely  fulfil all 

goals, milestones  and  deliverables  of  this 

workpackage. 

From  the  nonlinear  spectroscopy  effort, 

what  is  now  planned  is  a  compact  all 

inclusive  unit  of  eventually  zero  user 

intervention i.e turnkey operation, that can 

easily  perform  imagery  of  biosamples 

through  Second  and/or  Third  harmonic 

generation,  generate  3D  reconstructions 

and do  it  in real time on the time scale of 

the evolution of biological functions. 

Cell  surgery  has  been  demonstrated  to  be  as 

easy as the nonlinear spectroscopic techniques, 

but  the  intensity  levels of  the  lasers developed 

by  the  FAST‐DOT  project  are  not  optimum  as 

yet, and are not expected to reach them by the 

conclusion of the project. 

 As  soon  as  these  second  generation  devices 

become available, it will be possible to provide a 

single  workstation,  where  nonlinear 

spectroscopy  can  perform  preliminary  studies, 

immediately turn to surgery mode on targeted 

subsystems  and  continue  with  nonlinear 

Figure 39: 3D reconstruction of  (a) TPEF signal from neurons forming 

the nerve ring expressing GFP (blue) (b) SHG signal from the 

pharyngeal region (orange) of the C. elegans nematode (c) Merged 

TPEF (Green) and SHG (red) images of both structures. 

Figure 40: 3‐D reconstruction of THG images of a HeLa cell before 

and after cell disruption 

Page 29: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 29 of 85 

investigations for postsurgery effects. 

OCT is still a promising market to penetrate provided that the bandwidth of QD devices reaches the promised values, in 

a single device setup. 

Overall it can be safely stated that the project achieved what it set out to do and demonstrated this in a clear way. 

Workpackage 6 demonstrated that FAST‐DOT contributed  in a significant way, helping QD technology reach maturity 

and become  competitive  vs more  costly and  cumbersome older  technologies. 

The  delivery  of  an  “industrial”  quality Nonlinear Microscopy  prototype  for  a 

project of  this breadth  is  the  testament of  this endeavour, amalgamating  the 

efforts of all partners: from growers, researchers and integrators to the market 

analysts.  

The  project  also  demonstrated  that  nonlinear  spectroscopic  techniques  are 

powerful tools in exploring cell structure and morphology. The compilation of a 

database  of  such  observations  can  eventually  enable  quick  identification  of 

specific cell components  for  the user. This cell activity can be  followed  in  real 

time and through software support 3D reconstructions can be visualised. 

 It was demonstrated that cell surgery will be possible and can even integrate in 

a  single  setup  with  spectroscopic,  when  the  QD  lasers  reach  sufficient 

intensities, and that QDs are competitors for a number of the more established 

niches of biomedical instrumentation such as laser ablation, cutting, drilling and 

welding and spectroscopy.   

In assessing the impact of the work carried out within this workpackage, one can start in the more traditional approach, 

where  numeric  indices  are  quoted  and  compared  such  degrees  and  training  offered,  publications  and  conference 

presentations, patents and exploitation contracts  realized, prototypes or even end products delivered. One  can also 

quote number of positions created during the project and projected number  if the exploitation plan  is executed after 

the conclusion of the project. All such numbers are compiled and clearly demonstrate the  impact one expected from 

such a consortium has been realised. 

 In an even more traditional approach, the  impact of this project cannot be fully appreciated and/or compiled at this 

early stage. It should be evident by know that any work and advancement in the state of the art of the laser adheres to 

original observation that the laser is the tool in search of a problem. This coupled to the current technology trend in the 

nanotechnologies and biomedicine can only multiply the open opportunities. 

Bio research teams, the targeted end users, are looking forward to the introduction of such integrated systems to the 

marketplace.  For the interim period though, the research partners of FAST‐DOT will continue work on issues such as 

understanding cell morphology and cell substructure behaviour in vivo, mitosis and embryonic development, to 

mention only a couple of interesting research topics of interest to the multidisciplinary cross section of the partners 

involved. 

 

Workpackage 7: Biophotonic prototype demonstration 

Biophotonics describes the targeted interaction of light with biological samples. The interaction can be either to sense 

certain parameters or to manipulate the sample. The most widely used method of  light sensing  is microscopy, so the 

creation of images with high magnification. Means of manipulation are photoactivation, photobleaching, photoablation 

and optical tweezing. Due to the wave characteristics of light, all those methods are limited in their spatial resolution by 

diffraction. As light travels as a collimated beam and is focused by a microscope objective into the sample, its photons 

interact with the sample along its full cross‐section which is a clear disadvantage in all applications.  

Figure 41:  Detail from the THG 

signal of blastomeres in the 8‐cell 

stage mouse embryos 

Page 30: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 30 of 85 

The particular advantage of ultrafast biophotonics  is that  individual photons do not  interact with the sample. Only at 

very high spacial and temporal “concentrations” of photons an effect is achieved by the absorption of several photons 

in a single process. This way, the effect is refined to the very center of the focus and no other areas are affected. 

WP7  focused on  the design and  realization of a demonstrator  for a multiphoton microscope with cellsurgery option 

using lasers developed in the FAST‐DOT consortium.  

Two photon imaging and cellsurgery are available as demonstrator module inside the mmiCelltools toolbox. By that the 

multiphoton imaging will become compatible with the other micromanipulation modules as optical traps and capillary 

based micromanipulation. This flexibility is unreached before.  

The system shows that multiphoton imaging and cellsurgery have the potential to become available for biologists in the 

future.  Fast  life  views  (>10fps)  and  easy  acquisition  of  z‐staples  is  an  essential  prerequisite  to  enter  the  biological 

market. Taking into account that these labs do not have access to laser specialists and normally only have very limited 

lab  space,  the  robustness  and  compactness of  the  system  is  the  key  to  success.  The  simplicity  and usability of  the 

demonstrator software is one additional main breakthroughs of the workpackage. 

 

 

 

Figure 42: 3D stacks of living c.elegans were recorded. Shown here are the 3D‐projections of a nerve 

ring stained with GFP (animated gif was also produced). 

 

 

 

 

 

High scientific and economic impact is expected from applications that are facilitated only and exclusively by ultrafast 

lasers: multiphoton imaging, cellsurgery, higher harmonic imaging, nanotransfection, nanoconstraction... The relatively 

high costs must be compensated by unique selling propositions (USPs) of ultrafast laser applications. These techniques 

are  currently employed by  research  labs with a  constant  increase  in publication numbers as  shown  in  the  following 

graph (source: isiknowledge.com, topic search for “two photon” and “multiphoton”). 

Nanosurgery: Works as before and as expected. Only a  lot 

simpler  to  use  and  easier  to  reproduce.  Shown  is  a  single 

axon expressing GFP inside a living c.elegans 

Page 31: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 31 of 85 

As these publication developments suggest, there will be an  increasing amount of applications that create a demand 

outside the research labs. 

MMI plans  to  set up  follow up project  focusing on  the  industrialization of  the  FASTDOT  results  and  expanding  the 

capacities of the developed modules. The next goal needs to be the successful implementation of SHG. Additionally the 

lasers need to be industrialized and even more compact.

 

Summary 

The lasers successfully developed in FAST‐DOT are mainly targeted towards compact sources of ultra short pulses 

utilising semiconductor quantum dots (QDs) laser technology. Such devices have long been an objective within laser 

science and FAST‐DOT partners have managed to develop and demonstrate practical devices that exploit established 

compact and cost‐effective semiconductor technology. 

The  real  strength of  these  lasers  is  their  compact  size, potentially  low production  cost  and  good performance.  The 

performance that FAST‐DOT lasers can achieve is not sufficient to compete directly in terms of pulse duration or peak 

power with  the Ti:Sapphire  lasers  currently used  in many applications which can produce  shorter pulses and higher 

peak powers, but with a high cost and complex system. However there are certain applications where the performance 

that has been obtained  from FAST‐DOT  lasers  is high enough  to make  them excellent  sources  for  some applications 

where the ultrahigh performance of a Ti:Sapphire laser is not necessary, and the lower cost and smaller footprint would 

be a major benefit. 

FAST‐DOT collaborators have played a tremendous role in developing and exploiting a range of challenging and cutting‐

edge research directions to advance both the physical understanding and the key technology underlying novel lasers 

with radically new capabilities. During the project duration excellent progress has been made: Novel Quantum Dot 

structures and devices have been designed, fabricated and evaluated by the project partners, detailed theoretical 

models have been developed for the simulation of QD mode‐locked lasers. The obtained results are enormously 

encouraging and confirm the great potential of this technology to enable future development of compact low‐cost laser 

products capable of high power ultrashort pulse generation for applications in multi‐photon imaging and cell‐surgery. 

The developed prototype compact laser are one order of magnitude cheaper and smaller than Ti:Sapphire laser which 

allows to widespread multi‐photon imaging system that every doctors surgery could afford one. 

Furthermore,  the  FAST‐DOT  project  has  also  shown  that  ultrasmall,  ultra‐high  performance  lasers  could  be made 

available  at  even  a  substantially  lower  cost,  and  allows  implementing  such  devices  directly  in  living  animal model 

(mouse head)  to perform deep  tissue  imaging, which  could  revolutionise approaches  in  cell biology  science and  the 

understanding of cell‐to‐cell communication and regulation in‐situ.  

Page 32: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 32 of 85 

All  academic  and  industrial  partners  took  high  benefit  out  of  the  strong  cooperation  between  them  and  the 

strengthening  their  expertise  and  knowledge on quantum dot  technology  and biophotonics  as well  as  launching of 

various products based on this technology during the project time. This should open up avenues for future work aimed 

at advancing a more comprehensive physical understanding of novel quantum dot devices as well as providing  fresh 

innovation for industry in respect of next‐generation, highly flexible laser‐diode platforms. 

Page 33: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 33 of 85 

Potential impact and main dissemination activities and exploitation results 

The lasers developed in FAST‐DOT are mainly targeted towards compact sources of ultra short pulses.  As such they are 

utilising  semiconductor quantum dots and  semiconductor  laser  technology. The  real  strength of  these  lasers  is  their 

compact  size,  potentially  low  production  cost  and  good  performance.  The  performance  that  FAST‐DOT  lasers  can 

achieve  is  not  sufficient  to  compete  directly  in  terms  of  pulse  duration  or  peak  power with  the  Ti:Sapphire  lasers 

currently used in many applications which can produce shorter pulses and higher peak powers, but with a high cost and 

complex system. However  there are certain applications where  the performance  that has been obtained  from FAST‐

DOT  lasers  in  terms of average power, peak power, pulse duration, pulse energy and wavelength  is high enough  to 

make  them  excellent  sources  for  some  applications where  the  ultrahigh  performance  of  a  Ti:Sapphire  laser  is  not 

necessary, and the lower cost and smaller footprint would be a major benefit. 

During the project duration excellent progress has been made: Novel Quantum Dot (QD) structures and devices have 

been designed, fabricated and evaluated by the project partners, detailed theoretical models have been developed for 

the simulation of QD mode‐locked lasers, and novel operating regimes for the mode‐locked lasers have been identified. 

The obtained results are enormously encouraging and confirm the great potential of this technology to enable future 

development of compact low‐cost laser products capable of high power ultrashort pulse generation for applications in 

cell‐surgery and multi‐photon imaging. 

The laser systems that are traditionally used for biomedical applications are very expensive, bulky and complicated to 

use.  The FAST‐DOT project has shown that matchbox‐sized, ultra‐high performance lasers could be made available at a 

substantially lower cost, making their widespread use more affordable.  

The project has been widely disseminated and promoted  to both  the scientific  research community and  the general 

public throughout its duration.  The main vehicles have been papers in scientific journals and presentations at scientific 

meetings and conferences to promote scientific results to the research community, the project WEB site to keep both 

the research community and the general public updated with the current status of the project and Press Releases to 

announce major achievements. 

Over the course of the project FAST‐DOT has been promoted at more than 40 scientific conferences and meetings.  This 

has  involved  a  combination  of  presentations  and  posters  communicating  the  objectives  of  the  project  and  results 

achieved.  Examples are shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 34: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 34 of 85 

In addition, the FAST‐DOT partners have disseminated the project results via 78 papers (2 invited) published in scientific 

journals, many of which have been open access.   

 

FAST‐DOT was  involved  in  the 66th Scottish Universities Summer School Project with 9 project  related posters being 

presented  in a session.   The project also organised  its own Summer School which was held  in September 2011 called 

“Photonics Meets Biology”  Keynote speakers spoke on topics relevant to the project and project partners and students 

got the opportunity to discuss the results obtained to date, 

Press  Releases  have  been  used  from  the  very  start  to  promote  the  project  in  general,  as well  as  highlighting  key 

achievements.   For example,  the University of Dundee  issued a Press Release at  the  start of  the project which was 

featured on  a  variety of UK  and European news  and business 

WEB  sites  as well  as  the  local  Dundee  press.    See  below  for 

examples  of  media  coverage  resulting  from  Press  Releases 

issued by the FAST‐DOT partners. 

 

 

The FAST‐DOT project WEB site  (www.fast‐dot.eu) has acted as the main communication tool of the project since  its 

launch in August 2008.  It is updated on a regular basis and contains areas for both the general public and the research 

community, for example the News page is aimed at a wide audience and contains links to all project related publicity, 

Page 35: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 35 of 85 

press  releases  and  news  articles, whereas  the  Research  and  Innovation  area  is  aimed more  towards  the  research 

community. 

The exploitation strategy has been an important aspect of the FAST‐DOT project, and the CPO developed a process for 

achieving this to the best standard. 

The FAST‐DOT exploitation planning process comprised the following activities; 

Scanning the external environment for potentially suitable application opportunities 

Systematically evaluating and ranking application opportunities 

Linking market/customer requirements to FAST‐DOT work packages/deliverables 

Periodically reviewing the alignment of project activity to external opportunities 

In detail, the process comprised the following steps: 

Preparation of a list of potential application opportunities for FAST‐DOT in bio‐photonics and other exploitable 

opportunities for compact, low cost laser systems based on QD technology. 

Development of the criteria against which the attractiveness of individual opportunities are evaluated. 

The scoring of each application against the evaluation framework. 

An assessment of the degree of alignment of each Work Package to individual application opportunities. 

Consolidation of the above in a matrix planning tool to facilitate decision making. 

Development of lower order detail for the requirements of each application area. 

Review of the matrix planning tool, inputs and outputs at periodic milestones. 

This resulted in the two top applications of multi photon imaging and cell surgery being identified and this concentrated 

the activities in the relevant workpackages and helped the consortium work towards common goals. 

There are many other applications that could benefit from the results generated in FAST‐DOT.  These applications 

include, but are not limited to: Fluorescence microscopy; Spectroscopy; Optical Coherence Tomography; Dermatology / 

PDT; Cosmetic Treatments; Ophthalmology; Dentistry; Blood analysis. 

The industrial partners involved in the project have benefited greatly from the project with 18 products incorporating 

FAST‐DOT technology being developed.  Also, an estimated 7 full time equivalent positions have been generated within 

the SMEs of the consortium.  The estimated market share that could be seen as a result of the FAST‐DOT project is just 

over €21M over  the next 5  to 10  years, with  some products being available already, with others due  in  the next 6 

months  to  5  years.    The  supply  chain  for  lasers  developed within  FAST‐DOT  is  largely  covered  by members  of  the 

consortium, which means  that  the strong network  that has been nurtured during  the project will continue  for many 

years to come, providing valuable resource and products for the companies involved.   

A high number of PhDs were a direct result of the FAST‐DOT project, with 22 theses being written or expected soon.  All 

partners on the project have benefitted from the collaboration with the other beneficiaries on the project, with visits to 

partner labs being an important feature.  This has resulted in a spring board for future projects, follow on funding and 

networking, e.g. fellowships, an ERC grant, and 2 NEXPRESSO funded projects, with many more project proposals being 

written as a result of the research and network established within the FAST‐DOT project. 

Page 36: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 36 of 85 

Address of project public website and relevant contact details 

 

Compact Ultrafast Laser Sources Based On Novel Quantum Dot Structures 

www.fast‐dot.eu 

 

Project Coordinator:  Prof. Edik Rafailov, University of Dundee (UK) Project Contact:  [email protected]  Partners: Innolume GmbH (Germany) – www.innolume.com University of Sheffield (UK) – www.sheffield.ac.uk Tampere University of Technology (Finland) – www.orc.tut.fi Swiss Federal Institute of Technology Zurich (Switzerland) – www.ulp.ethz.ch Royal Institute of Technology Stockholm Sweden (Sweden) – www.kth.se Institut de Ciències Fotòniques (Spain) – www.icfo.es The Foundation for Research and Technology – Hellas (Greece) – www.forth.gr III‐V Lab (France) – www.3‐5lab.fr Vilnius University (Lithuania) – www.vu.lt M Squared Lasers Ltd. (UK) – www.m2lasers.com Philips (Germany) – www.ulm‐photonics.de  www.philips.com Technical University of Darmstadt (Germany) – www.tu‐darmstadt.de Toptica Photonics AG (Germany) – www.toptica.com TimeBandwidth Zurich (Switzerland) – www.time‐bandwidth.com Politecnico di Torino (Italy) – www.polito.it University of Athens (Greece) – www.optcomm2.di.uoa.gr Molecular Machines and Industries GmbH (Germany) – www.molecular‐machines.com  Duration:  1st June, 2008 to 31st August, 2012 Total Cost:  €14,747,337 EC Funding:  €10,100,100 Project ID:  224338 

Page 37: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 37 of 85 

2.  Use and dissemination of foreground 

Page 38: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 38 of 85 

Section A (public)

In table below the 16 “most important” papers are listed first, with the rest following in chronological order. 

TEMPLATE A1: LIST OF SCIENTIFIC (PEER REVIEWED) PUBLICATIONS, STARTING WITH THE MOST IMPORTANT ONES

NO. Title Main author Title of the

periodical or the series

Number, date or frequency

Year of publication

Relevant pages

Permanent identifiers2

(if available)

Is/Will open access3

provided to this publication?

1 Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms

Rodrigo Aviles-Espinosa

Biomedical Optics Express

Vol. 2, Iss. 4 2011 10.1364/BOE.2.000739

Yes

2 High peak-power picosecond pulse generation at 1.26 μm using a quantum-dot-based externalcavity mode-locked laser and tapered optical amplifier

Y. Ding Optics Express Vol. 20, No. 13 2012 10.1364/OE.20.014308

Yes

3 Femtosecond high-power quantum dot vertical external cavity surface emitting laser

Martin Hoffmann Optics Express Vol. 19, Iss. 9 2011 10.1364/OE.19.008108

Yes

4 Cell tracking in live Caenorhabditis elegans embryos via third harmonic generation imaging microscopy measurements

George J. Tserevelakis

Journal of Biomedical Optics

Vol. 16, Iss. 4 2011 10.1117/1.3569615

No

5 Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers

Ksenia A. Fedorova Optics Express Vol. 18 2010 pp. 19438-19443

10.1364/OE.18.019438

Yes

6 Femtosecond laser nanosurgery of sub- George J. Journal of Vol. 5, No. 2 2011 pp. 200-207 10.1002/jbio.20110 No

                                                            2 A permanent identifier should be a persistent link to the published version full text if open access or abstract if article is pay per view) or to the final manuscript accepted for publication (link to article in repository). 3 Open Access is defined as free of charge access for anyone via Internet. Please answer "yes" if the open access to the publication is already established and also if the embargo period for open access is not yet over but you intend to establish open access afterwards.

Page 39: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 39 of 85 

cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool

Tserevelakis Biophotonics 0055

7 High-Power Versatile Picosecond Pulse Generation from Mode-Locked Quantum-Dot Laser Diodes Invited Paper

Maria Ana Cataluna

IEEE Journal of Selected Topics in Quantum Electronics

Vol. 17, Iss. 5 2011 10.1109/JSTQE.2011.2141119

No

8 Growth parameter optimization for fast quantum dot SESAMs

D. J. H. C. Maas Optics Express Vol. 16, Issue 23 2008 pp. 18646 - 18656

10.1364/OE.16.018646

Yes

9 High-power quantum-dot-based semiconductor disk laser

M. Butkus Optics Letters Vol. 34, Iss. 11 2009 pp. 1672–1674

10.1364/OL.34.001672

No

10 1.55 µm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser

Z. Y. Zhang Scientific Reports

2, article no. 477 2012 10.1038/srep00477 Yes

11 Electrically Pumped Vertical External Cavity Surface Emitting Lasers Suitable for Passive Modelocking

Yohan Barbarin IEEE Journal of Selected Topics in Quantum Electronics

Vol. 17, Iss. 6 2011 10.1109/JSTQE.2011.2107313

No

12 Electronically Controlled Pulse Duration Passively Mode-Locked Cr:Forsterite Laser

S.A. Zolotovskaya IEEE Photonics Technology Letters

Vol. 21, Iss. 16 2009 pp. 1124-1126

10.1109/LPT.2009.2023225

No

13 Real time imaging of femtosecond laser induced nano-neurosurgery dynamics in C. elegans

Susana I. C. O. Santos

Optics Express Vol. 18 2010 pp. 364-377 10.1364/OE.18.000364

Yes

14 Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode

B. Rudin Optics Letters Vol. 33, Issue 22 2008 pp. 2719-2721

10.1364/OL.33.002719

No

15 Quantum Dot Based Semiconductor Disk Lasers for 1–1.3 μm

Mantas Butkus IEEE Journal of Selected Topics in Quantum Electronics

Vol. 17, Iss. 6 2011 10.1109/JSTQE.2011.2112638

No

16 Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs

Martin Hoffmann Optics Express Vol. 18, Iss. 10 2010 pp. 10143-10153

10.1364/OE.18.010143

Yes

1 Modelocked quantum dot vertical external

cavity surface emitting laser M. Hoffmann Applied Physics

B: Lasers and Volume 93, Number 4

2008 10.1007/s00340- Yes

Page 40: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 40 of 85 

Optics 008-3267-0

2 Intracavity generation of 610 nm light by periodically poled near-stoichiometric lithium tantalite

J. Rautiainen, Electronics Letters

Volume 45, Issue 3

2009 pp.177 - 179

10.1049/el:20093123

No

3 Modelocked integrated external-cavity surface emitting laser

A.R. Bellancourt IET Optoelectronics

Volume 3, Issue 2 2009 p. 61-72 10.1049/iet-opt.2008.0038

No

4 Subpicosecond quantum dot saturable absorber mode-locked semiconductor disk laser

Keith G. Wilcox Appl. Phys. Lett. Vol. 94, 251105 2009 10.1063/1.3158960

No

5 Ultrafast release and capture of carriers in InGaAs/GaAs quantum dots observed by time-resolved terahertz spectroscopy

H.P.Porte Applied Physics Letters

Vol. 94, 262104 2009 10.1063/1.3158958 No

6 In vivo imaging of cell morphology and cellular processes in Caenorhabditis elegans, using non-linear phenomena

G. Filippidis Micron Vol. 40, Iss. 8 2009 pp.876-880 10.1016/j.micron.2009.06.005

No

7 Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers

A.A. Lagatsky Progress in Quantum Electronics

Vol. 34, Iss. 1 2010 pp. 1-46 10.1016/j.pquantelec.2009.11.001

No

8 State-Switched Mode Locking of a Two-Segment Quantum Dot Laser via a Self-Electro-Optical Quantum Dot Absorber

S. Breuer Electronics Letters

Vol. 46, Iss.2 2010 pp. 161-162 10.1049/el.2010.3360

No

9 1.2-μm Semiconductor Disk Laser Frequency Doubled With Periodically Poled Lithium Tantalate Crystal

Jussi Rautiainen IEEE Photonics Technology Letters

Vol. 22, No. 7 2010 pp. 453-455 10.1109/LPT.2010.2040989

No

10 Optically pumped semiconductor quantum dot disk laser operating at 1180 nm

Jussi Rautiainen Optics Letters Vol. 35 2010 pp. 694-696 10.1364/OL.35.000694

No

11 Many-body formulation of carriers capture time in quantum dots applicable in device simulation codes

Marco Vallone Applied Physics Vol. 107, 053718 2010 10.1063/1.3309838

No

12 Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate

A. E. H. Oehler Journal Applied Physics B: Lasers and Optics

Vol. 99, No. 1-2 2010 10.1007/s00340-010-3912-2

Yes

13 2.5 W orange power by frequency conversion from a dual-gain quantum-dot disk laser

Jussi Rautiainen Optics Letters Vol. 35, No. 12 2010 pp. 1935-1937

10.1364/OL.35.001935

No

Page 41: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 41 of 85 

14 Pulse width narrowing due to dual ground state emission in quantum dot passively mode locked lasers

Charis Mesaritakis Applied Physics Letters

Vol. 96, 211110 2010 10.1063/1.3432076 No

15 Broadly Tunable InGaAsP/InP Strained Multiquantum Well External Cavity Diode Laser

K.A.Fedorova IEEE Photonics Technology Letters

Vol. 22, Iss. 16 2010 10.1109/LPT.2010.2051661

No

16 Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation

Maria Ana Cataluna Optics Express Vol. 18, Iss. 12 2010 pp. 12832-12838

10.1364/OE.18.012832

Yes

17 Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy

Sotiris Psilodimitrakopoulos

Journal of Optics

Vol. 12, No. 8 2010 10.1088/2040-8978/12/8/084007

Yes

18 Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis

Rodrigo Aviles-Espinosa

Journal of Biomedical Optics

Vol. 15, 046020 2010 10.1117/1.3477535

Yes

19 Reverse-emission-state-transition mode locking of a two-section InAs/InGaAs quantum dot laser

Stefan Breuer Applied Physics Letters

Vol. 97, 071118 2010 10.1063/1.3480405

No

20 Temperature dependence of electroabsorption dynamics in an InAs quantum-dot saturable absorber at 1.3μm and its impact on mode-locked quantum-dot lasers

M.A. Cataluna Applied Physics Letters

Vol. 97, Iss. 12 2010 10.1063/1.3489104

No

21 Quantum-dot external-cavity passively modelocked laser with high peak power and pulse energy

Y. Ding Electronics Letters

Vol. 46, No. 22 2010 10.1049/el.2010.2336

No

22 Terahertz electro-absorption effect enabling femtosecond all-optical switching in semiconductor quantum dots

M. C. Hoffmann Applied Physics Letters

Vol. 97, Iss. 23 2010 10.1063/1.3515909

No

23 Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser

L. Drzewietzki Optics Communications

Vol. 283 2010 pp. 5092-5098

10.1016/j.optcom.2010.07.013

No

24 Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight

U. Keller Applied Physics B

Vol. 100 2010 pp. 15-28 10.1007/s00340-010-4045-3

Yes

Page 42: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 42 of 85 

25 Third harmonic generation for the study of C.elegans embryogenesis

R. Aviles-Espinosa Journal of Biomedical Optics

Vol. 15 (4) 2010 pp. 046020-7

10.1117/1.3477535 No

26 Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser

C. Mesaritakis AIP Applied Physics Letters

Vol. 97 2010 10.1063/1.3477955 No

27 Stste-Switched Mode Locking of a Two-Segment Quantum Dot Laser via a Self-Electro-Optical Quantum Dot Absorber

S. Breuer Electronics Letter

Vol. 46, Iss. 2 2010 pp. 161-162 10.1049/e1.2010.3360

No

28 Time-domain Travelling-wave Model for Quantum Dot Passive Mode-locked Lasers

M.Rossetti IEEE Journal of Quantum Electronics

Vol. 47, No. 2 2011 10.1109/JQE.2010.2055550

No

29 Orange light generation from a PPKTP waveguide end pumped by a cw quantum-dot tunable laser diode

K. A. Fedorova Applied Physics B

Vol. 103, No. 1 2011 10.1007/s00340-010-4317-y

No

30 Modeling Passive Mode-locking in Quantum Dot lasers: a comparison between a Finite Difference Travelling Wave model and a Delayed Differential Equation approach

Mattia Rossetti IEEE Journal of Quantum Electonics

Vol. 47, Iss. 5 2011 10.1109/JQE.2010.2104135

No

31 High-power passively mode-locked tapered InAs/GaAs quantum-dot lasers

D. I. Nikitichev Applied Physics B

Vol. 103, No. 3 2011 10.1007/s00340-010-4290-5

No

32 Broad Repetition-Rate Tunable Quantum-Dot External-Cavity Passively Mode-Locked Laser with Extremely Narrow Radio Frequency Linewidth

Ying Ding Applied Physics Express

Vol. 4 2011 10.1143/APEX.4.062703

Yes

33 Broadly tunable 1250 nm quantum dot-based semiconductor disk laser

M. Butkus IET Optoelectronics

Vol. 5, Iss. 4 2011 pp. 165-167 10.1049/iet-opt.2010.0071

No

34 Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL

V. J. Wittwer IEEE Photonics Journal

Vol. 3, No. 4 2011 10.1109/JPHOT.2011.2160050

Yes

35 A Calming Influence H.Dyball Electronics Letters

Vol. 47, No. 17 2011 10.1049/el.2011.2462

No

36 Suppression of Q-switching instabilities of passively modelocked semiconductor lasers by a passive electrical circuit

L. Drzewietzki Electronics Letters

Vol. 47, No. 17 2011 10.1049/el.2011.1802

No

37 Impact of Gain Saturation on Passive Mode Locking Regimes in Quantum Dot Lasers with Straight and Tapered Waveguides

Mattia Rossetti IEEE Journal of Quantum Electronics

Vol. 47, No. 11 2011 10.1109/JQE.2011.2167131

No

Page 43: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 43 of 85 

38 Following the course of pre-implantation embryo patterning by non-linear microscopy

Christiana Kyvelidou Journal of Structural Biology

Vol. 176, Iss. 3 2011 10.1016/j.jsb.2011.09.007

No

39 High Repetition Rate Ti:Sapphire LaserMode-Locked by InP Quantum-Dot Saturable Absorber

Mantas Butkus IEEE Photonics Technology Letters

Vol. 23, No. 21 2011 10.1109/LPT.2011.2164902

No

40 Modelling of passive mode-locking in InAs quantum-dot lasers with tapered gain section

Mattia Rossetti Physica Status Solidi

C 9, No. 2 2011 10.1002/pssc.201100243

No

41 Femtosecond VECSEL with tunable multigigahertz repetition rate

Oliver D. Sieber Optics Express Vol. 19, No. 23 2011 10.1364/OE.19.023538

Yes

42 Joint experimental and theoretical investigations of two-state locking in a strongly chirped reversely-biased monolithic quantum dot laser

S. Breuer IEEE Journal of Quantum Electronics

Vol. 47, No. 10 2011 pp. 1320-1329

10.1109/JQE.2011.2165834

No

43 Chaotic emission and tunable self-sustained pulsations in a two-section Fabry-Perot quantum dot laser

C. Mesaritakis AIP Applied Physics Letters

Vol. 98 2011  10.1063/1.3552962 No 

44 Dual ground-state pulse generation from a passively mode-locked InAs/InGaAs quantum dot laser

C. Mesaritakis AIP Applied Physics Letters

Vol. 99 2011  10.1063/1.3643523 No 

45 Design Rules and Characterisation of Electrically Pumped Vertical External Cavity Surface Emitting Lasers

Jonathan R. Orchard Japanese Journal of Applied Physics

Vol. 50 2011  10.1143/JJAP.50.04DG05

No 

46 Tradeoffs in the Realization of Electrically Pumped Vertical External Cavity Surface Emitting Lasers

Jonathan R. Orchard IEEE Journal of Selected Topics in Quantum Electronics

Vol. 17 2011  pp. 1745-1752

10.1109/JSTQE.2011.2146756

No 

47 Swept-Source Laser Based on Quantum-Dot Semiconductor Optical Amplifier – Applications in Optical Coherence Tomography

David N. Krstajic IEEE Photonics Technology Letters

Vol. 23 2011  pp. 739-741 10.1109/LPT.2011.2130520

No 

48 A microfluidic platform integrated with tapered optical fiber for studying resonant properties of compact high index microspheres

Oleksiy V. Svitelskiy Optics Letters Vol. 36, Iss. 15 2011 pp. 2862-2864

10.1364/OL.36.002862

No

49 Nonlinear microscopy techniques for assessing the UV laser polymer interactions

Alexandros Selimis Optics Express Vol. 20, No. 4 2012 10.1364/OE.20.003990

Yes

Page 44: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 44 of 85 

50 BPM simulation and analysis of quantum dot flared SOAs in CW high saturation regime

T. Xu IET Optoelectronics

Vol. 6, No. 2 2012 pp. 110-116 10.1049/iet-opt.2011.0056

No

51 Simulation and Analysis of Dynamic Regimes Involving Ground and Excited State Transitions in Quantum Dot Passively Mode-Locked Lasers

T. Xu IEEE Journal of Quantum Electronics

Vol. 48, No. 9 2012  pp. 1193-1202

10.1109/JQE.2012.2206372

No 

52 Tunable Master-Oscillator Power Amplifier Based on Chirped Quantum-Dot Structure

Y. Ding IEEE Photonics Technology Letters

Vol. 24, Iss. 20 2012  pp. 1841-1844

10.1109/LPT.2012.2216516

No 

53 External optical feedback-induced wavelength selection and Q-switching elimination in an InAs/InGaAs passively mode locked quantum dot laser

C. Mesaritakis Journal of Optical Society of America B

Vol. 29 2012  pp. 1071-1077

10.1364/JOSAB.29.001071

No 

54 Two section quantum dot mode locked lasers under optical feedback: pulse broadening and harmonic operation

H. Simos IEEE Journal of Quantum Electronics

Vol. 48 2012  pp. 872-877 10.1109/JQE.2012.2193387

No 

55 Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool

G.J. Tserevelakis Journal of Biophotonics

5 2012  pp. 200-207 10.1002/jbo.201100055

No 

56 Broad wavelength tenability from external cavity quantum-dot mode-locked laser

D.I. Nikitichev Applied Physics Letters

Vol. 101 2012  10.1063/1.4751034 No 

57 Green-to-red tunable SHG of a quantum-dot laser in a PPKTP waveguide

K.A. Fedorova Laser Physics Letters

Vol. 9 2012  10.7452/lapl.201210085

No 

58 Flip Chip Quantum Dot Semiconductor disk laser at 1200 nm

A. Rantamaki IEEE Photonics Technology Letters

Vol. 24 2012  pp. 1292-1294

10.1109/LPT.2012.2202222

No 

59 SESAM-free mode-locked semiconductor disk laser

L. Kornaszewski Laser Photonics Review

2012  10.1002/lpor.201200047

No 

60 P-i-n junction quantum dot saturable absorber mirror: Electrical control of ultrafast dynamics

S.A. Zolotovskaya Optics Express Vol. 20, Iss. 8 2012  pp. 9038-9045

10.1364/OE.20.009038

Yes 

61 VECSEL gain characterization Mario Mangold Optics Express Vol. 20, No. 4 2012 10.1364/OE.20.004136

Yes

62 High Peak Power and Sub_Picosecond Fourier_Limited Pulse Generation from Passively Mode_Locked Monolithic

D. I. Nikitichev Laser Physics Vol. 22, No. 4 2012 10.1134/S1054660X12040147

No

Page 45: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 45 of 85 

Two_Section Gain_Guided Tapered InGaAs Quantum_Dot Lasers

TEMPLATE A2: LIST OF DISSEMINATION ACTIVITIES

NO. Type of activities4 Main leader Title Date/Period Place Type of

audience5

Countries addressed

1 Presentations UNIVDUN Kick Off FP7 Photonics Projects Concertation Meeting

18th September, 2008 Barcelona, Spain Scientific Community

EU

2 Presentations UNIVDUN EU-Russia cooperation: FP7 - ICT Information and brokerage event

23rd October, 2008 Moscow, Russia Scientific Community

EU, RF

3 Presentations  UNIVDUN 21st Annual Meeting of The IEEE Lasers & Electro-Optics Society

12th November, 2008 California, USA Scientific Community, Industry 

WORLD

4 Presentations  UNIVDUN Photonics West 2009 26th January, 2009 San Jose, USA Scientific Community, Industry 

WORLD

5 Presentations  ETHZ Advanced Solid-State Photonics (ASSP) Topical Meeting

2nd February, 2009 Denver, USA Scientific Community 

WORLD

                                                            4   A drop down  list allows choosing the dissemination activity: publications, conferences, workshops, web, press releases, flyers, articles published  in the popular press, videos, media 

briefings, presentations, exhibitions, thesis, interviews, films, TV clips, posters, Other. 

5 A drop down list allows choosing the type of public: Scientific Community (higher education, Research), Industry, Civil Society, Policy makers, Medias, Other ('multiple choices' is possible).

Page 46: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 46 of 85 

6 Presentations  ETHZ Advanced Solid-State Photonics (ASSP) Topical Meeting

2nd February, 2009 Denver, USA Scientific Community 

WORLD

7 Presentations  UNIVDUN Advanced Solid-State Photonics (ASSP) Topical Meeting

2nd February, 2009 Denver, USA Scientific Community 

WORLD

8 Presentations  ETHZ Advanced Solid-State Photonics (ASSP) Topical Meeting

3rd February, 2009 Denver, USA Scientific Community 

WORLD

9 Presentations  KTH Advanced Solid-State Photonics (ASSP) Topical Meeting

3rd February, 2009 Denver, USA Scientific Community 

WORLD

10 Presentations  KTH Advanced Solid-State Photonics (ASSP) Topical Meeting

3rd February, 2009 Denver, USA Scientific Community 

WORLD

11 Presentations  UNIVDUN Concertation meeting on Nano-Photonics 12th February, 2009 Florence, Italy Scientific Community 

EU

12 Presentations  ETHZ CLEO US 31st May, 2009 Baltimore, USA Scientific Community, Industry 

WORLD

13 Presentations  POLITO CLEO Europe – EQEC 14th June, 2009 Munich, Germany Scientific Community, Industry

WORLD

14 Presentations  UNIVDUN CLEO Europe – EQEC 14th June, 2009 Munich, Germany Scientific Community, Industry

WORLD

15 Presentations  UNIVDUN CLEO Europe – EQEC 14th June, 2009 Munich, Germany Scientific Community, Industry

WORLD

16 Presentations  UNIVDUN CLEO Europe – EQEC 14th June, 2009 Munich, Germany Scientific Community,

WORLD

Page 47: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 47 of 85 

Industry

17 Presentations  ETHZ CLEO Europe – EQEC 14th June, 2009 Munich, Germany Scientific Community, Industry

WORLD

18 Presentations  ETHZ CLEO Europe – EQEC 14th June, 2009 Munich, Germany Scientific Community, Industry

WORLD

19 Presentations  VUFC 11th International Conference on Transparent Optical Networks

2nd July, 2009 São Miguel, Azores

Scientific Community 

WORLD

20 Presentations  POLITO i-NOW 2009 2nd August, 2009 Stockholm, Sweden and Berlin, Germany

Scientific Community 

EU

21 Presentations  UNIVDUN 16th International Conference on Electron Dynamics In Semiconductors, Optoelectronics and Nanostructures (EDISON16)

27th August, 2009 Montpelier, France

Scientific Community 

WORLD

22 Presentations  UNIVDUN 1st EOS Topical Meeting on Lasers 28th September, 2009 Capri, Italy Scientific Community 

EU 

23 Presentations  UNIVDUN 1st EOS Topical Meeting on Lasers 28th September, 2009 Capri, Italy Scientific Community 

EU 

24 Presentations  POLITO 1st EOS Topical Meeting on Lasers 30th September, 2009 Capri, Italy Scientific Community 

EU 

25 Presentations  UNIVDUN 1st EOS Topical Meeting on Lasers 30th September, 2009 Capri, Italy Scientific Community 

EU 

26 Presentations  UNIVDUN 1st EOS Topical Meeting on Lasers 30th September, 2009 Capri, Italy Scientific Community 

EU

Page 48: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 48 of 85 

27 Presentations  TUT 1st EOS Topical Meeting on Lasers 30th September, 2009 Capri, Italy Scientific Community 

EU

28 Presentations  UNIVDUN SPIE Photonics West 2010 25th January, 2010 San Francisco, USA

Scientific Community, Industry 

WORLD

29 Presentations  ETHZ Advanced Solid-State Photonics (ASSP) 2010 1st February, 2010 San Diego, USA Scientific Community 

WORLD

30 Presentations  POLITO 15th European Conference on Integrated Optics, ECIO 2010

8th April, 2010 Cambridge, UK Scientific Community 

EU 

31 Presentations  ETHZ 15th European Conference on Integrated Optics, ECIO 2010

8th April, 2010 Cambridge, UK Scientific Community 

EU 

32 Presentations  ICFO Biomedical Optics (BIOMED), Topical Meeting and Tabletop Exhibit

13th April, 2010 Miami, USA Scientific Community 

WORLD

33 Presentations  UNIVDUN SPIE Photonics Europe 2010 14th April, 2010 Brussels, Belgium Scientific Community, Industry 

WORLD

34 Presentations  TUD SPIE Photonics Europe 2010 14th April, 2010 Brussels, Belgium Scientific Community, Industry 

WORLD

35 Presentations  POLITO SPIE Photonics Europe 2010 16th April, 2010 Brussels, Belgium Scientific Community, Industry 

WORLD

36 Presentations  ETHZ CLEO/QELS: 2010 17th May, 2010 San Jose, USA Scientific Community, Industry 

WORLD

Page 49: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 49 of 85 

37 Presentations  KTH CLEO/QELS: 2010 17th May, 2010 San Jose, USA Scientific Community, Industry 

WORLD

38 Presentations  TOPTICA CLEO/QELS: 2010 18th May, 2010 San Jose, USA Scientific Community, Industry 

WORLD

39 Presentations  TBWP From Solid State To BioPhysics V International conference

19th June, 2010 Dubrovnik, Croatia

Scientific Community 

WORLD

40 Presentations  VUFC 12th International Conference on Transparent Optical Networks, ICTON 10

29th June, 2010 Munich, Germany Scientific Community 

WORLD

41 Presentations  UNIVDUN 14th International Conference Laser Optics 2010

29th June, 2010 St Petersburg, Russia

Scientific Community 

WORLD

42 Presentations  UNIVDUN 14th International Conference Laser Optics 2010

29th June, 2010 St Petersburg, Russia

Scientific Community 

WORLD

43 Presentations  M2 14th International Conference Laser Optics 2010

29th June, 2010 St Petersburg, Russia

Scientific Community 

WORLD

44 Presentations  TUD 14th International Conference Laser Optics 2010

30th June, 2010 St Petersburg, Russia

Scientific Community 

WORLD

45 Presentations  ETHZ 4th EPS-QEOD EUROPHOTON CONFERENCE

31st August, 2010 Hamburg, Germany

Scientific Community 

EU

46 Presentations  UNIVDUN ISLC 2010 The 22nd IEEE International Semiconductor Laser Conference

28th September, 2010 Kyoto, Japan Scientific Community 

WORLD

47 Presentations  UNIVDUN ISLC 2010 The 22nd IEEE International Semiconductor Laser Conference

28th September, 2010 Kyoto, Japan Scientific Community 

WORLD

Page 50: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 50 of 85 

48 Presentations  TUD ISLC 2010 The 22nd IEEE International Semiconductor Laser Conference

28th September, 2010 Kyoto, Japan Scientific Community 

WORLD

49 Presentations  III-V LAB ISLC 2010 The 22nd IEEE International Semiconductor Laser Conference

29th September, 2010 Kyoto, Japan Scientific Community 

WORLD

50 Presentations  ETHZ The 22nd IEEE International Semiconductor Laser Conference

29th September, 2010 Kyoto, Japan Scientific Community 

WORLD

51 Presentations  UNIVDUN ISLC 2010 The 22nd IEEE International Semiconductor Laser Conference

29th September, 2010 Kyoto, Japan Scientific Community 

WORLD

52 Presentations  ICFO SPIE Photonics West 2011 23rd January, 2011 San Francisco, USA

Scientific Community, Industry 

WORLD

53 Presentations  ICFO SPIE Photonics West 2011 23rd January, 2011 San Francisco, USA

Scientific Community, Industry 

WORLD

54 Presentations  ETHZ SPIE Photonics West 2011 24th January, 2011 San Francisco, USA

Scientific Community, Industry 

WORLD

55 Presentations  ETHZ SPIE Photonics West 2011 24th January, 2011 San Francisco, USA

Scientific Community, Industry 

WORLD

56 Presentations  ETHZ SPIE Photonics West 2011 25th January, 2011 San Francisco, USA

Scientific Community, Industry 

WORLD

57 Presentations  ETHZ SPIE Photonics West 2011 25th January, 2011 San Francisco, USA

Scientific Community, Industry 

WORLD

Page 51: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 51 of 85 

58 Presentations  ETHZ SPIE Photonics West 2011 25th January, 2011 San Francisco, USA

Scientific Community, Industry 

WORLD

59 Presentations  UNIVDUN SPIE Photonics West 2011 25th January, 2011 San Francisco, USA

Scientific Community, Industry 

WORLD

60 Presentations  ICFO SPIE Photonics West 2011 27th January, 2011 San Francisco, USA

Scientific Community, Industry 

WORLD

61 Presentations  UNIVDUN CLEO/QELS: 2011 5th May, 2011 San Jose, USA Scientific Community, Industry 

WORLD

62 Presentations  UNIVDUN CLEO®/Europe-EQEC 2011 22nd May, 2011 Munich, Germany Scientific Community, Industry 

WORLD

63 Presentations  UNIVDUN CLEO®/Europe-EQEC 2011 24th May, 2011 Munich, Germany Scientific Community, Industry 

WORLD

64 Presentations  UNIVDUN CLEO®/Europe-EQEC 2011 24th May, 2011 Munich, Germany Scientific Community, Industry 

WORLD

65 Presentations  PFLA CLEO®/Europe-EQEC 2011 24th May, 2011 Munich, Germany Scientific Community, Industry 

WORLD

66 Presentations  TUD CLEO®/Europe-EQEC 2011 24th May, 2011 Munich, Germany Scientific Community, Industry

WORLD

Page 52: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 52 of 85 

67 Presentations  ETHZ CLEO®/Europe-EQEC 2011 26th May, 2011 Munich, Germany Scientific Community, Industry

WORLD

68 Presentations  ETHZ CLEO®/Europe-EQEC 2011 26th May, 2011 Munich, Germany Scientific Community, Industry

WORLD

69 Presentations  TUD CLEO®/Europe-EQEC 2011 26th May, 2011 Munich, Germany Scientific Community, Industry

WORLD

70 Presentations  VUFC ICTON 2011 29th June, 2011 Stockholm, Sweden

Scientific Community

EU

71 Presentations  VUFC Lithuanian National Conference on Physics 6th October, 2011 Vilnius, Lithuania Scientific Community 

LT

72 Presentations  VUFC MINAP 2012 18th Januray, 2012 Trento, Italy Scientific Community 

EU

73 Presentations  TBWP SPIE Photonics West 2012 BIOS 22nd January, 2012 San Francisco, USA

Scientific Community, Industry

WORLD 

74 Presentations  TBWP SPIE Photonics West 2012 LASE 22nd January, 2012 San Francisco, USA

Scientific Community, Industry

WORLD 

75 Presentations  USFD SPIE Photonics West 2012 23rd January, 2012 San Francisco, USA

Scientific Community, Industry

WORLD 

76 Presentations  USFD SPIE Photonics West 2012 23rd January, 2012 San Francisco, USA

Scientific Community, Industry

WORLD 

Page 53: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 53 of 85 

77 Presentations  ICFO SPIE Photonics West 2012 24th January, 2012 San Francisco, USA

Scientific Community, Industry

WORLD 

78 Presentations  ETHZ SPIE Photonics West 2012 LASE 24th January, 2012 San Francisco, USA

Scientific Community, Industry

WORLD 

79 Presentations  ETHZ SPIE Photonics West 2012 LASE 24th January, 2012 San Francisco, USA

Scientific Community, Industry

WORLD 

80 Presentations  ETHZ SPIE Photonics West 2012 LASE 24th January, 2012 San Francisco, USA

Scientific Community, Industry

WORLD 

81 Presentations  USFD SPIE Photonics West 2012 25th January, 2012 San Francisco, USA

Scientific Community, Industry

WORLD 

82 Presentations  TBWP FOM 2012 3rd April, 2012 Singapore, Republic of Singapore

Scientific Community

WORLD

83 Presentations  ETHZ 1st DYCE-Asia Workshop 2012 24th April, 2012 Tokyo, Japan Scientific Community

ASIA

84 Presentations  UNIVDUN CLEO/QELS: 2012 9th May, 2012 San Jose, USA Scientific Community, Industry

WORLD 

85 Presentations  UNIVDUN CLEO/QELS: 2012 9th May, 2012 San Jose, USA Scientific Community, Industry

WORLD 

Page 54: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 54 of 85 

86 Presentations  USFD CLEO/QELS: 2012 9th May, 2012 San Jose, USA Scientific Community, Industry

WORLD 

87 Presentations  TBWP CLEO/QELS: 2012 10th May, 2012 San Jose, USA Scientific Community, Industry

WORLD 

88 Presentations  VUFC ICOOPMA 2012 4th June, 2012 Nara, Japan Scientific Community

WORLD 

89 Presentations  UNIVDUN Laser Optics 2012 27th June, 2012 St Petersburg, Russia

Scientific Community

WORLD 

90 Presentations  UNIVDUN Laser Optics 2012 27th June, 2012 St Petersburg, Russia

Scientific Community

WORLD 

91 Presentations  ETHZ 5th EPS-QEOD Europhoton Conference 2012 29th August, 2012 Stockholm, Sweden

Scientific Community

EU

92 Presentations  ETHZ 5th EPS-QEOD Europhoton Conference 2012 30th August, 2012 Stockholm, Sweden

Scientific Community

EU

93 Press Release TUT Tampere University of Technology June, 2008 N/A Scientific Community, Industry, Civic Society, Policy Makers

FI

94 Press Release TOPTICA TOPTICA Photonics June, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

DE

95 Press Release TBWP Time Bandwidth Products June, 2008 N/A  Scientific Community, Industry, Civic Society, Policy

CH

Page 55: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 55 of 85 

Makers 96 Press Release M2 M Squared Lasers June, 2008 N/A  Scientific

Community, Industry, Civic Society, Policy Makers

UK

97 Press Release ICFO ICFO June, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

ES

98 Press Release UNIVDUN World of Photonics Portal June, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

99 Press Release UNIVDUN electrooptics.com 30th June, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

100 Press Release UNIVDUN optics.org 30th June, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

101 Press Release UNIVDUN Semiconductor Today 18th June, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

102 Press Release UNIVDUN University of Dundee 16th June, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

UK

103 Press Release UNIVDUN BBC News 16th June, 2008 N/A  Scientific Community, Industry, Civic

UK

Page 56: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 56 of 85 

Society, Policy Makers

104 Press Release UNIVDUN Nano2Life July, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

105 Press Release UNIVDUN Amazines.com July, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

106 Press Release UNIVDUN The Engineer Online 2nd July, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

107 Press Release UNIVDUN CORDIS 8th July, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

108 Press Release POLITO F1RST 8th July, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

IT

109 Press Release POLITO Le Scienze Web News 8th July, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

IT

110 Press Release UNIVDUN Nanotechnology Now 8th July, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

111 Press Release UNIVDUN Nanowerk 8th July, 2008 N/A  Scientific Community,

DE

Page 57: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 57 of 85 

Industry, Civic Society, Policy Makers

112 Press Release UNIVDUN Institute of Nanotechnology 9th July, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

DE

113 Press Release ICFO La Flecha 10th July, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

ES

114 Press Release UNIVDUN nanotechwire.com 11th July, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

115 Press Release UNIVDUN Laserati.com 12th July, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

116 Press Release UNIVDUN Association of Laser Users 15th July, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

117 Press Release UNIVDUN Europhotonics News August, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

EU

118 Press Release TOPTICA European Medical Device Technology 1st September, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

EU

Page 58: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 58 of 85 

119 Press Release UNIVDUN The Engineer Online 1st September, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

120 Press Release UNIVDUN The Parliament 17th November, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

121 Press Release ETHZ Optics.org 25th November, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

122 Press Release TUT High Tech Finland 7th March, 2009 N/A  Scientific Community, Industry, Civic Society, Policy Makers

FI

123 Press Release TUT Cordis ICT Results 30th April, 2009 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

124 Press Release TUT Laser Focus World 4th May, 2009 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

125 Press Release TUT Eureka Magazine 5th May, 2009 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

126 Press Release UNIVDUN Research EU 15th June, 2009 N/A  Scientific Community, Industry, Civic Society, Policy

WORLD

Page 59: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 59 of 85 

Makers 127 Press Release TUD Laserphysik 13th April, 2010 N/A  Scientific

Community, Industry, Civic Society, Policy Makers

DE

128 Press Release TUD Alpha Galileo Foundation 14th April, 2010 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

129 Press Release TUD Pro-physik.de 19th April, 2010 N/A  Scientific Community, Industry, Civic Society, Policy Makers

DE

130 Press Release UNIVDUN Nature Photonics 10th November, 2010 N/A  Scientific Community, Industry, Civic Society, Policy Makers

WORLD

131 Publications NKUA FAST-DOT Newsletter 1 28th July, 2009 N/A  Scientific Community, Industry, Civic Society, Policy Makers, Medias

EU

132 Publications  NKUA  FAST-DOT Newsletter 2 28th July, 2010 N/A  Scientific Community, Industry, Civic Society, Policy Makers, Medias

EU

133 Publications  NKUA  FAST-DOT Newsletter 3a 4th March, 2011 N/A  Scientific Community, Industry, Civic Society, Policy Makers, Medias

EU

134 Publications  NKUA  FAST-DOT Newsletter 3b 15th June, 2011 N/A  Scientific Community, Industry, Civic

EU

Page 60: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 60 of 85 

Society, Policy Makers, Medias

135 Publications  NKUA  FAST-DOT Newsletter 4a 12th April, 2012 N/A  Scientific Community, Industry, Civic Society, Policy Makers, Medias

EU

136 Publications  NKUA  FAST-DOT Newsletter 4b 27th August, 2012 N/A  Scientific Community, Industry, Civic Society, Policy Makers, Medias

EU

137 Web NKUA www.fast-dot.eu 26th August, 2008 N/A  Scientific Community, Industry, Civic Society, Policy Makers, Medias

WORLD

138 Posters TUD 66th Scottish Universities Summer School Programme

11th – 21st August, 2010

Edinburgh, UK Scientific Community

EU

139 Posters  UNIVDUN 66th Scottish Universities Summer School Programme

11th – 21st August, 2010

Edinburgh, UK Scientific Community 

EU 

140 Posters  UNIVDUN 66th Scottish Universities Summer School Programme 

11th – 21st August, 2010

Edinburgh, UK Scientific Community 

EU 

141 Posters  VUFC 66th Scottish Universities Summer School Programme 

11th – 21st August, 2010

Edinburgh, UK Scientific Community 

EU 

142 Posters  UNIVDUN 66th Scottish Universities Summer School Programme 

11th – 21st August, 2010

Edinburgh, UK Scientific Community 

EU 

143 Posters  USFD 66th Scottish Universities Summer School Programme 

11th – 21st August, 2010

Edinburgh, UK Scientific Community 

EU 

144 Posters  ETHZ 66th Scottish Universities Summer School Programme 

11th – 21st August, 2010

Edinburgh, UK Scientific Community 

EU 

Page 61: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 61 of 85 

145 Posters  POLITO 66th Scottish Universities Summer School Programme 

11th – 21st August, 2010

Edinburgh, UK Scientific Community 

EU 

146 Posters  FORTH 66th Scottish Universities Summer School Programme

11th – 21st August, 2010

Edinburgh, UK Scientific Community 

EU 

147 Conference/Workshops FORTH Photonics meets Biology 15th – 18th September, 2011

Heraklion. Crete Scientific Community 

EU

148 Workshop UNIVDUN Café Science Extra 13th January, 2010 Dundee, UK Scientific Community 

UK

149 Workshop UNIVDUN Women in Science and Engineering 10th September, 2009 Dundee, UK Scientific Community 

UK

150 Presentations TBWP Towards Compact, Affordable Ultrafast Lasers 17th December, 2009 Zagreb, Croatia Scientific Community 

HR

151 Presentations UNIVDUN Photonics for Life Sciences at the University of Dundee

17th February, 2009 Dundee, UK Scientific Community 

UK

152 Presentations NKUA 4th Concertation Meeting in Photonics 11th September, 2009 Athens, Greece Scientific Community 

EU

153 Other ALL LaserFest Throughout 2010 various Scientific Community, Industry 

WORLD

154 Web NKUA Animated Semiconductor Laser Tutorial N/A  Scientific Community 

WORLD

155 Flyer NKUA FAST-DOT 30th July, 2009 N/A  Scientific Community 

EU

156 Thesis UNIVDUN Compact ultrafast laser sources based on February, 2012 N/A  Scientific UK

Page 62: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 62 of 85 

novel quantum-dot structures Community 

157 Thesis UNIVDUN Novel semiconductor disc lasers based on quantum-dot structures

May, 2012 N/A  Scientific Community 

UK

158 Thesis USFD Electrically Pumped Vertical External Cavity Surface Emitting Lasers (EP-VECSELs)

July, 2012 N/A  Scientific Community 

UK

159 Thesis TUT Tailoring the wavelength of continuous wave and mode locked semiconductor disk laser

March, 2012 N/A  Scientific Community 

FI

160 Thesis TUT Optically pumped semiconductor disk lasers operating at near infrared spectral range

January, 2012 N/A  Scientific Community 

FI

161 Thesis TUT Towards power scalable short pulse semiconductor disk lasers

May, 2010 N/A  Scientific Community 

FI

162 Thesis ETHZ Modelocking of semiconductor vertical emitters: from VECSEL to MIXSEL

January, 2009 N/A  Scientific Community 

CH

163 Thesis ETHZ Electrically and optically pumped semiconductor disk lasers – continuous-wave and modelocked

May, 2011 N/A  Scientific Community 

CH

164 Thesis ETHZ High repetition rate frequency combs from diode-pumped solid state lasers

November, 2011 N/A  Scientific Community 

CH

165 Thesis KTH Design and characterization of QD-SESAMs May, 2012 N/A  Scientific Community 

SE

166 Thesis KTH 0D, 1D and 2D quantum structures for passive mode-locking solid state lasers

Expected 2013 N/A  Scientific Community 

SE

167 Thesis ICFO Strategies for pushing nonlinear microscopy towards its performance limits

December, 2012 (expected)

N/A  Scientific Community 

ES

Page 63: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 63 of 85 

168 Thesis ICFO Advanced photonic techniques for monitoring laser axotomy in C. elgans

March, 2013 (expected)

N/A  Scientific Community 

ES

169 Thesis FORTH Non linear imaging at microscopic level for biological applications

expected N/A  Scientific Community 

GR

170 Thesis FORTH Construction of Cesium Magneto-optical Trap and Non-destructive Temperature Measurement Using Spin Polarization Fluctuations

expected N/A  Scientific Community 

GR

171 Thesis FORTH Environment-dependent shape of gold nanoparticles – a first-principles study

expected N/A  Scientific Community 

GR

172 Thesis VUFC Kinetic spectroscopy of non-linear crystals and photochromic switches

2009 N/A  Scientific Community 

LT

173 Thesis VUFC Investigation of structurisation technology of silicon

Expected 2013 N/A  Scientific Community 

LT

174 Thesis TUD Quantum dot lasers and amplifiers Expected N/A  Scientific Community 

DE

175 Thesis TUD Tailoring and exploiting emission state dynamics in quantum dot semiconductor diode

January, 2010 N/A  Scientific Community 

DE

176 Thesis TBWP Development of 30 fs laser tunable around 1 micron

October, 2012 N/A  Scientific Community 

CH

177 Thesis NKUA Investigation of quantum dot passively mode locked lasers for telecomm and biomedical applications

June, 2011 N/A  Scientific Community 

GR

Page 64: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 64 of 85 

Section B (Confidential6 or public: confidential information to be marked clearly) Part B1 The table below shows the patents that have been applied for during the duration of the FAST‐DOT project 

 

LIST OF APPLICATIONS FOR PATENTS, TRADEMARKS, REGISTERED DESIGNS, ETC.

Type of IP

Rights7:

Confidential

Click on YES/NO

Foreseen embargo

date

dd/mm/yyyy

Application reference(s)

(e.g. EP123456)

Subject or title of application Applicant (s) (as on the application)

Patent N n/a 1015565.3 Semiconductor disk laser ICFO/TBWP/ETHZ/UNIVDUN/M2

Patent N n/a US

61/622,670Pulsed semiconductor laser ETHZ/TBWP

Patent N n/a 1105982.1 Green to red CW laser system UNIVDUN

Patent N n/a 13/164452 Semiconductor LD biomedical applications UNIVDUN

 

                                                            6 Note to be confused with the "EU CONFIDENTIAL" classification for some security research projects.

7 A drop down list allows choosing the type of IP rights: Patents, Trademarks, Registered designs, Utility models, Others.

Page 65: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 65 of 85 

Part B2 - Exploitable foreground

No. 

Type of 

Exploitable 

Foreground 

Description of 

exploitable 

foreground 

Confidential

YES/NO 

Foreseen 

embargo 

date 

dd/mm/yyyy 

Exploitable 

product(s) or 

measure(s) 

Sector(s) of 

application 

Timetable, 

commercial 

or any other 

use 

Patents or 

other IPR 

exploitation 

(licences) 

IPR 

Exploitation 

Measures 

Potential 

Impact 

Owner & 

Other 

Beneficiary(s) 

involved 

1  Commercial 

exploitation of 

R&D results 

Disk Laser for 

Nonlinear 

Microscopy 

Applications in 

Living 

Organisms 

NO  N/A  Semiconductor 

QD disc laser 

and imaging 

system 

C26 ‐ 

Manufacture 

of computer, 

electronic and 

optical 

products 

 

2012‐2015  1015565.3  

 

TBWP: 

Discussion 

between 

TBWP and M2 

for licencing 

VECSEL patent 

to M2. 

ETHZ: exploit 

scientific 

potential by 

further state‐

of‐the‐art 

research 

ICFO: Through 

licensing of 

the patent 

M2: Sale of 

Products for 

MPI 

Large potential 

for reduction of 

manufacturing 

costs for MPI 

systems. Enable 

new classes of 

scientific and 

industrial 

instruments. 

ICFO: In 

biomedical 

fields by 

introducing 

compact, non 

expensive 

nonlinear 

microscopy 

imaging 

systems 

M2: €10M 

Owners: 

ICFO/TBWP/ETH

Z/UNIVDUN/M2 

2  Commercial 

exploitation of 

R&D results 

Pulsed 

semiconductor 

laser (multipass 

approach) 

NO  N/A  Increasing 

pulse energy 

and peak 

power of 

semiconductor 

C26 ‐ 

Manufacture 

of computer, 

electronic and 

optical 

More 

engineering 

needed to 

tailor the 

specs for 

US 61/622,670  TBWP: We 

hope for a 

product 

covering 

multiple 

TBWP: 

Depending on 

sales it might 

open new jobs. 

ETHZ/TBWP 

Page 66: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 66 of 85 

No. 

Type of 

Exploitable 

Foreground 

Description of 

exploitable 

foreground 

Confidential

YES/NO 

Foreseen 

embargo 

date 

dd/mm/yyyy 

Exploitable 

product(s) or 

measure(s) 

Sector(s) of 

application 

Timetable, 

commercial 

or any other 

use 

Patents or 

other IPR 

exploitation 

(licences) 

IPR 

Exploitation 

Measures 

Potential 

Impact 

Owner & 

Other 

Beneficiary(s) 

involved 

disk lasers by 

reduction of 

the repetition 

rate for various 

applications 

products 

 

microscopy.  applications in 

a near future, 

including 

nonlinear 

microscopy. 

ETHZ: exploit 

scientific 

potential by 

further state‐

of‐the‐art 

research 

 

ETHZ: Achieve 

similar 

repetition rates, 

pulse energies 

and peak 

powers than 

currently used 

ultrafast lasers 

based on more 

expensive 

technologies. 

Replace them 

with the cost‐

efficient VECSEL 

technology, 

thereby 

opening the 

market towards 

numerous new 

cost‐efficient 

applications. 

3  Commercial 

exploitation of 

R&D results 

Tunable lasers  NO  N/A  Spectroscopy  C26 ‐ 

Manufacture 

of computer, 

electronic and 

optical 

products 

  1105982.1  TOPTICA 

launched  new 

product based 

on this 

research 

 

Spectroscopy of 

bio‐medical 

samples. 

Expect new job 

positions in 

industry and 

UNIVDUN 

Page 67: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 67 of 85 

No. 

Type of 

Exploitable 

Foreground 

Description of 

exploitable 

foreground 

Confidential

YES/NO 

Foreseen 

embargo 

date 

dd/mm/yyyy 

Exploitable 

product(s) or 

measure(s) 

Sector(s) of 

application 

Timetable, 

commercial 

or any other 

use 

Patents or 

other IPR 

exploitation 

(licences) 

IPR 

Exploitation 

Measures 

Potential 

Impact 

Owner & 

Other 

Beneficiary(s) 

involved 

academia 

4  Commercial 

exploitation of 

R&D results 

Triplet Oxygen 

Splitting  

NO  N/A  Cancer Therapy  M72.1.1 ‐ 

Research and 

experimental 

development 

on 

biotechnology 

  13/164452  License to M 

Squared Lasers 

– 

Development 

Contracts 

In biomedical 

fields by 

introducing 

compact, non‐

expensive laser 

for cancer 

treatment. 

New job 

positions in 

industry and 

academia 

€0.5M 

UNIVDUN 

5  General 

advancement 

of knowledge 

Active GVD 

compensation in 

QD based 

modelocked 

laser sources for 

external control 

of pulse 

parameters in a 

nonlinear 

imaging and cell 

surgery compact 

optical system 

YES  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL 

Page 68: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 68 of 85 

No. 

Type of 

Exploitable 

Foreground 

Description of 

exploitable 

foreground 

Confidential

YES/NO 

Foreseen 

embargo 

date 

dd/mm/yyyy 

Exploitable 

product(s) or 

measure(s) 

Sector(s) of 

application 

Timetable, 

commercial 

or any other 

use 

Patents or 

other IPR 

exploitation 

(licences) 

IPR 

Exploitation 

Measures 

Potential 

Impact 

Owner & 

Other 

Beneficiary(s) 

involved 

6  Commercial 

exploitation of 

R&D results 

High power fs 

Yb‐based solid 

state lasers. 

YES  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL 

7  Commercial 

exploitation of 

R&D results 

Continuum 

generation and 

compression.  

Mode‐locked 

VECSEL design 

and 

performance. 

YES  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL 

8  General 

advancement 

of knowledge 

Benchmark data 

on 

semiconductor 

lasers 

NO  TBC  Implementing 

QD laser 

sources for 

new 

multimodal 

microscopy 

techniques and 

bio imaging 

applications. 

M72.1.1 ‐ 

Research and 

experimental 

development 

on 

biotechnology 

C26 ‐ 

Manufacture 

of computer, 

electronic and 

optical 

products 

Multimodal 

imaging 

projects 

underway 

NO  Generation of 

academic 

papers in peer 

reviewed 

journals 

Towards 

portable 

microscope 

imaging devices 

ICFO 

9  Exploitation of 

results through 

innovation 

Design use of 

QD as an active 

element in the 

laser and as a 

YES  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL 

Page 69: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 69 of 85 

No. 

Type of 

Exploitable 

Foreground 

Description of 

exploitable 

foreground 

Confidential

YES/NO 

Foreseen 

embargo 

date 

dd/mm/yyyy 

Exploitable 

product(s) or 

measure(s) 

Sector(s) of 

application 

Timetable, 

commercial 

or any other 

use 

Patents or 

other IPR 

exploitation 

(licences) 

IPR 

Exploitation 

Measures 

Potential 

Impact 

Owner & 

Other 

Beneficiary(s) 

involved 

passive element 

in the SESAM 

10  Exploitation of 

results through 

innovation 

Design and 

manufacture of 

electrically 

pumped 

extended cavity 

vertical emitting 

lasers 

YES  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL 

11  Exploitation of 

results through 

innovation 

ML QD laser 

numerical tools 

for the fast 

dynamic in QD 

SOA 

YES  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL 

12  QD‐SESAMs  Realization of 

new SESAMs 

with 

unprecedented 

performance 

YES  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL 

13  Commercial 

exploitation of 

R&D results 

Advanced 

camera 

technology 

NO  NO  Mmi CellTools 

product line 

C26 ‐ 

Manufacture 

of computer, 

electronic and 

optical 

products 

2012  No    Medium  MMI 

 

Page 70: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 70 of 85 

No. 

Type of 

Exploitable 

Foreground 

Description of 

exploitable 

foreground 

Confidential

YES/NO 

Foreseen 

embargo 

date 

dd/mm/yyyy 

Exploitable 

product(s) or 

measure(s) 

Sector(s) of 

application 

Timetable, 

commercial 

or any other 

use 

Patents or 

other IPR 

exploitation 

(licences) 

IPR 

Exploitation 

Measures 

Potential 

Impact 

Owner & 

Other 

Beneficiary(s) 

involved 

M72.1.1 ‐ 

Research and 

experimental 

development 

on 

biotechnology 

14  Commercial 

exploitation of 

R&D results 

Multiphoton 

imaging module 

YES  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL 

15  Commercial 

exploitation of 

R&D results 

Cellsurgery 

module 

YES  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL  CONFIDENTIAL 

 

The information in the table below relates to the exploitable foreground shown in the table above, with the numbers matching the number of the 

exploitable foreground. 

No. Purpose How the foreground might be exploited, when and by whom

Further research required

1 Biological and biomedical Imaging ICFO, with a medical partner (in Germany) is researching on the use of compact laser sources for endoscopy applications (ICFO)

ICFO, is exploring the use of compact laser sources for label-free imaging of skin (ICFO).

More research is needed to be able to deliver ultrashort pulses through fibre bundles (ICFO)

More research needed in label free imaging at the new wavelengths and pulse durations (ICFO).

Page 71: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 71 of 85 

2 Bio imaging, metrology, telecomm Future commercialization by the FASTDOT partners M2 or TBWP

New family of products will follow in ~1-2 years, after some more research and development by ETHZ and TBWP

Apply technique to increase the peak power of femtosecond SDLs into the >10 kW regime

More research is needed on material growth, development VECSELs at different wavelengths and with different pulse rep rates by both ETHZ and TBWP

3 Tuneable lasers New family of products will follow in ~1-2 years, after some more research and development by INNO, UNIVDUN and TOPTICA

More research is needed on development broadband tunable laser diodes and nonlinear waveguides by both INNO and UNIVDUN

4 Medical biophotonics Future commercialization by the FASTDOT partners M2.

New family of products will follow in ~2-3 years, after some more research and development by UNIVDUN and M2

More research is needed on development this technique by UNIVDUN

5 CONFIDENTIAL CONFIDENTIAL  CONFIDENTIAL 

6 CONFIDENTIAL CONFIDENTIAL  CONFIDENTIAL 

7 CONFIDENTIAL CONFIDENTIAL  CONFIDENTIAL 

8 Imaging Variations of the new laser devices available to ICFO will be explored for its use in super resolution imaging applications (ICFO, M2)

Research on the feasibility of fluorescent markers to be excited with the new lasers (ICFO, M2)

9 CONFIDENTIAL CONFIDENTIAL  CONFIDENTIAL 

10 CONFIDENTIAL CONFIDENTIAL  CONFIDENTIAL 

11 CONFIDENTIAL CONFIDENTIAL  CONFIDENTIAL 

12 CONFIDENTIAL CONFIDENTIAL  CONFIDENTIAL 

Page 72: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 72 of 85 

13 Biophotonics Biological imaging and micromanipulation  No fundamental research required 

14 CONFIDENTIAL CONFIDENTIAL  CONFIDENTIAL 

15 CONFIDENTIAL CONFIDENTIAL  CONFIDENTIAL 

 

Further research is necessary and planned to exploit the foreground defined in patents and generated by FAST-DOT;

1. MPI patent Nonlinear microscopy (NLM) techniques, such as Two-Photon Excited Fluorescence (TPEF) and Second Harmonic Generation (SHG), are able to overcome some of the drawbacks present on conventional Confocal Laser Scanning Microscopy (CLSM). This is in part due to the fact that the nonlinear excitation is confined to a focused volume rather than the whole illuminated beam path as it is the case for one-photon fluorescence. Therefore photo-toxicity and out of focus photo-bleaching are considerably decreased. This confinement of light is advantageous since it allows optical sectioning of the sample, enabling the reconstruction of three dimensional (3D) models. In addition, nonlinear excitation normally relies on the use of wavelengths in the near-infrared (NIR) range. At these wavelengths, besides the fact that there is reduced photo damage, Rayleigh scattering is also decreased enabling larger penetration depths. A key element in a nonlinear microscope is the use of an ultrafast laser. These are natural sources that are able to produce the required high intensities needed for exciting nonlinear processes. Historically, Ti:sapphire sources have been used in NLM due to its available large peak powers along with its large tunability range. However, its complexity, high price and maintenance requirements, have limited the widespread adoption of these powerful imaging techniques into daily routine biomedical applications. Our idea is to use a portable ultrafast Semiconductor Disk Laser (SDL) for nonlinear microscopy. The FASTDOT SDL is well suited for Two-Photon Excited Fluorescence (TPEF) imaging of in vivo samples. Efficient TPEF imaging is achieved due to the fact that our wavelength matches the peak of the two-photon action cross section of widely used fluorescent markers. The cost-efficient, turn-key, compact laser system is a well-suited platform to develop portable nonlinear bio-imaging devices. The relevant IP was protected with a joint patent (ICFO/TBWP/ETHZ/UNIVDUN/M2). For exploitation of this foreground, there are several scenarios. One option is that the partners M2 or TBWP develop a full MPI solution. Another option is to provide OEM products to well-established manufacturers of microscope solutions.

Purpose: Biological and medical imaging using semiconductor disk lasers How the foreground might be exploited, when and by whom: Future commercialization by the FASTDOT partners M2, TBWP, or possibly

licensing to larger instrument manufacturer

Page 73: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 73 of 85 

Further research required: realization of additional nonlinear imaging methods, improvement of performance & speed

2. Multipass patent

SDLs combine the advantages of diode-pumped solid-state lasers (DPSSLs), such as excellent beam quality and a high-Q cavity, with the features of semiconductor lasers such as emission wavelength engineering, compactness and low-cost fabrication. Ultrafast SDLs have experienced an impressive improvement in performance and start to be a viable alternative to ultrafast Ti:sapphire lasers, fiber systems or DPSSLs. VECSELs exhibit a gain carrier lifetime that is several orders of magnitude lower than for typical ion-doped glass or crystal gain materials. This is a clear advantage for the realization of extremely high repetition rates, because Q-switching instabilities, as present in DPSSLs, are strongly suppressed. The short gain lifetime, however, is a severe challenge for increasing the pulse energy by means of lowering the pulse repetition rate for a given average output power. For DPSSLs, longer cavities and therefore lower pulse repetition rates enabled pulse energies above 10 µJ at a few MHz repetition rate and peak powers in the Megawatt regime directly from SESAM modelocked DPSSLs without further amplification. So far, the lowest repetition rate of SESAM modelocked VECSELs is around 340 MHz with no more than 15 mW average output power. The pulse energy was limited to a few nJ even for Watt-level average output powers. The semiconductor gain is able to store energy only for a limited time of a few nanoseconds. If the separation between the pulses becomes longer, two or more pulses have a gain advantage, which introduces modelocking instabilities or harmonic modelocking.

In our project, we develped a new approach to suppress multiple pulse instabilities at low repetition rates while still providing a high average output power. The idea is to employ a cavity in which the pulse passes over the gain multiple times per cavity round trip, as opposed to twice per cavity round trip in a standard linear cavity of a SESAM modelocked VECSEL. This allows to use longer cavities for a given gain recovery time without the formation of multiple pulses in the cavity. We applied the active multipass approach to reduce multi-pulse instabilities and demonstrate a stable and self-starting SESAM modelocked VECSEL demonstrator with a repetition rate of 253 MHz using four gain-passes per cavity round trip. In a similar cavity using only two gain-passes we could not observe a regime of stable modelocking. To the best of our knowledge this is the first operation of an active multipass VECSEL cavity and we demonstrate the lowest pulse repetition rate obtained with a SESAM modelocked VECSEL so far. We achieve pulse durations of 11.2 ps at an average output power of 400 mW. Furthermore, our cavity is designed in such a way that it can be extended in a modular way to many more passes.

The relevant IP was protected with a joint patent (TBWP/ETHZ). The exploitation of this foreground will be done by the industrial partners TBWP or M2. Moreover, it is highly attractive to improve the imaging performance of Foreground 1 (multi-photon imaging with an SDL) by increasing the peak power of the pulses.

Purpose: Increasing pulse energy and peak power of semiconductor disk lasers by reduction of the repetition rate for various applications How the foreground might be exploited, when and by whom: Future commercialization by the FASTDOT partners M2 or TBWP Further research required: Apply technique to increase the peak power of femtosecond SDLs into the >10 kW regime

Page 74: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 74 of 85 

Potential/expected impact

The IP generated by the FASTDOT project has already had significant impact, with results already benefitting 18 products of the participants: 14 are new products that have already been launched with a further 3 new products using the IP developed in the project already forseen. These are described in the tables below.

The table below is updated from section 3.4 of the FASTDOT exploitation strategy (D8.7).

Results Lead user/s Results description Exploitation plan Funding Current Status

New QD-based material production methodologies and techniques

INNOLUME Packaged compact QD materials with novel application potentials. New products now offered to the market

Productisation of packaged devices. Development of high-power broad-spectrum SOAs

Private (INNOLUME)

10 new products on the market.

Microscope based Cell Surgery module

MMI Ultra compact laser source for cell surgery. Prototype and assessment.

Marketing, promotion and productisation

Private (MMI)

Plans for public sector research funding.

Being integrated into new product lines

M2 Realisation of the full modelocked vecsel system and demonstration of utility for MPI

Opportunity to become OEM supplier for a major optical systems manufacturer which will open up significant revenue for the company

Private (M2/OEM)

New product launched and development of further new product underway.

Multi-photon Imaging

TBWP Demonstration in MPI of background passively mode-locked optically pumped semiconductor external-cavity

surface emitting laser technology

Increase business in MPI via new product incorporating FASTDOT technology, GLX-Yb-Tune

Private (TBWP) New produce launched and second tuneable product due in next 5 - 10 months

Page 75: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 75 of 85 

MMI Demonstration of MPI in IMI system Develop MPI modules for integration into MMI cell manipulation systems.

Private (MMI)

Development into products ready for marketing underway

ICFO Modelocked Yb_based laser and vecsel system for MPI.

Use of developed knowledge and laser sources for new multimodal microscopy techniques and bio imaging applications.

In place two FP7, NEXPRESSO projects granted

Further research underway

Processing of tapered multisection QDot lasers and amplifiers

III-V LAB QDots tapered amplifiers achieved 30W peak optical power

Products available for applications as required

Private (III-V LAB)

Products available

New low cost compact tuneable laser sources. Road-mapping and market analysis

TBWP/M2 Devices and prototypes for widespread applications

Develop and apply devices in a range of technological applications.

Private (M2/TBWP)

Wavelength extension of product lines

TOPTICA Now able to provide Diodes and System in the 1100nm to 1300nm wavelength range

Market enhanced product capability

Products available see links in table below.

Page 76: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 76 of 85 

Summary of Exploitation Results for FAST-DOT Industrial Partners

Partner Products incorporating FASTDOT technology

New Products Launched New Products Planned Future plans based on FASTDOT results and

participation

Innolume 10 10 0 Y

Molecular Machines Industry 1 0 1 Y

Time Bandwidth Products 2 1 1 Y

Toptica Photonics 2 2 0 N

M-Squared Lasers 2 1 1 Y

Philips 0 0 0 Y

III-V Lab 1 0 0 Y

TOTAL 18 14 3 -

 

Page 77: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 77 of 85 

 

Summary results of project’s outcomes Number

Which is the ‘Breakthrough’ or ‘real’ innovation achieved in the considered period N/A Development of two new compact ultrashort pulse laser systems for MPI application

1. “Shoe box” size

2. “Match box” size

Scientific or technical publications on reviewed journals and conferences 170 N/A

Scientific or technical publications on non-reviewed journals and conferences 9 N/A

Invited paper published in scientific or technical journal or conference 37 N/A

Patents filed and pending 4 N/A

Patents awarded 0 N/A

Patents sold 0 N/A

Creation of start-up 0 N/A

Creation of new department of research (i.e. organisational change) 0 None as a direct result of FAST-DOT

Collaboration/partnership with industry not a member of the consortium - Several partners have formed new collaborations/partnerships with industrial organisations that are not a member of the consortium, but wish to keep the details confidential.

Active participation to conferences 1 VECSELs session at SPIE Photonics West

Page 78: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 78 of 85 

Number of PhD students hired for project’s completion 26 In what field: physics/biophotonics

Media appearances and general publications (articles, press releases, etc.) 38 N/A

Page 79: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 79 of 85 

2.3 Report on societal implications

A General Information (completed automatically when Grant Agreement number is entered.

224338Grant Agreement Number:

FAST-DOT (Compact Ultrafast Laser Sources Based on NovelTitle of Project: Quantum Dot Structures)

Prof. Edik RafailovName and Title of Coordinator:

B Ethics

1. Did your project undergo an Ethics Review (and/or Screening)?

If Yes: have you described the progress of compliance with the relevant Ethics

Review/Screening Requirements in the frame of the periodic/final project reports? Special Reminder: the progress of compliance with the Ethics Review/Screening Requirements should be described in the Period/Final Project Reports under the Section 3.2.2 'Work Progress and Achievements'

No

2. Please indicate whether your project involved any of the following issues (tick box) :

YES

RESEARCH ON HUMANS Did the project involve children? Did the project involve patients? Did the project involve persons not able to give consent? Did the project involve adult healthy volunteers? Did the project involve Human genetic material? Did the project involve Human biological samples? Did the project involve Human data collection?

RESEARCH ON HUMAN EMBRYO/FOETUS Did the project involve Human Embryos? Did the project involve Human Foetal Tissue / Cells? Did the project involve Human Embryonic Stem Cells (hESCs)? Did the project on human Embryonic Stem Cells involve cells in culture? Did the project on human Embryonic Stem Cells involve the derivation of cells from Embryos?

PRIVACY Did the project involve processing of genetic information or personal data (eg. health, sexual

lifestyle, ethnicity, political opinion, religious or philosophical conviction)?

Did the project involve tracking the location or observation of people? RESEARCH ON ANIMALS

Did the project involve research on animals? Were those animals transgenic small laboratory animals? Were those animals transgenic farm animals? Were those animals cloned farm animals? Were those animals non-human primates?

RESEARCH INVOLVING DEVELOPING COUNTRIES Did the project involve the use of local resources (genetic, animal, plant etc)? Was the project of benefit to local community (capacity building, access to healthcare, education

etc)?

DUAL USE Research having direct military use No

Research having the potential for terrorist abuse

Page 80: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 80 of 85 

C Workforce Statistics

3. Workforce statistics for the project: Please indicate in the table below the number of people who worked on the project (on a headcount basis).

Type of Position Number of Women Number of Men

Scientific Coordinator 0 1

Work package leaders 4 5 Experienced researchers (i.e. PhD holders) 9 68 PhD Students 4 22 Other 16 4

4. How many additional researchers (in companies and universities) were recruited specifically for this project?

22

Of which, indicate the number of men:

19

Page 81: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 81 of 85 

D Gender Aspects 5. Did you carry out specific Gender Equality Actions under the project?

Yes No

6. Which of the following actions did you carry out and how effective were they? Not at all

effective Very

effective

Design and implement an equal opportunity policy Set targets to achieve a gender balance in the workforce Organise conferences and workshops on gender Actions to improve work-life balance Other:

7. Was there a gender dimension associated with the research content – i.e. wherever people were the focus of the research as, for example, consumers, users, patients or in trials, was the issue of gender considered and addressed?

Yes- please specify

No

E Synergies with Science Education

8. Did your project involve working with students and/or school pupils (e.g. open days, participation in science festivals and events, prizes/competitions or joint projects)?

Yes- please specify

No

9. Did the project generate any science education material (e.g. kits, websites, explanatory booklets, DVDs)?

Yes- please specify

No

F Interdisciplinarity

10. Which disciplines (see list below) are involved in your project? Main discipline8: 1.2 Physical sciences (astronomy and space sciences, physics and other allied

subjects)

Associated discipline8: 1.5 Biological sciences (biology, botany, bacteriology, microbiology, zoology, entomology, genetics, biochemistry, biophysics, other allied sciences, excluding clinical and veterinary sciences)

Associated discipline8:

G Engaging with Civil society and policy makers

                                                            8 Insert number from list below (Frascati Manual).

2 summer schools 

Science cafe

Project website including 

tutorials

Page 82: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 82 of 85 

11a Did your project engage with societal actors beyond the research community? (if 'No', go to Question 14)

Yes No

11b If yes, did you engage with citizens (citizens' panels / juries) or organised civil society (NGOs, patients' groups etc.)?

No Yes- in determining what research should be performed Yes - in implementing the research Yes, in communicating /disseminating / using the results of the project

11c In doing so, did your project involve actors whose role is mainly to organise the dialogue with citizens and organised civil society (e.g. professional mediator; communication company, science museums)?

Yes No

12. Did you engage with government / public bodies or policy makers (including international organisations)

No Yes- in framing the research agenda Yes - in implementing the research agenda

Yes, in communicating /disseminating / using the results of the project

13a Will the project generate outputs (expertise or scientific advice) which could be used by policy makers?

Yes – as a primary objective (please indicate areas below- multiple answers possible) Yes – as a secondary objective (please indicate areas below - multiple answer possible) No

13b If Yes, in which fields? Agriculture Audiovisual and Media Budget Competition Consumers Culture Customs Development Economic and Monetary Affairs Education, Training, Youth Employment and Social Affairs

Energy Enlargement Enterprise Environment External Relations External Trade Fisheries and Maritime Affairs Food Safety Foreign and Security Policy Fraud Humanitarian aid

Human rights Information Society Institutional affairs Internal Market Justice, freedom and security Public Health Regional Policy Research and Innovation Space Taxation Transport

Page 83: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 83 of 85 

13c If Yes, at which level? Local / regional levels National level European level International level

H Use and dissemination

14. How many Articles were published/accepted for publication in peer-reviewed journals?

54

To how many of these is open access9 provided? 18

How many of these are published in open access journals? 17

How many of these are published in open repositories? 1

To how many of these is open access not provided? 36

Please check all applicable reasons for not providing open access:

publisher's licensing agreement would not permit publishing in a repository no suitable repository available no suitable open access journal available no funds available to publish in an open access journal lack of time and resources lack of information on open access other10: ……………

15. How many new patent applications (‘priority filings’) have been made? ("Technologically unique": multiple applications for the same invention in different jurisdictions should be counted as just one application of grant).

4

Trademark 0

Registered design 0

16. Indicate how many of the following Intellectual Property Rights were applied for (give number in each box).

Other 0

17. How many spin-off companies were created / are planned as a direct result of the project?

0

Indicate the approximate number of additional jobs in these companies:

18. Please indicate whether your project has a potential impact on employment, in comparison with the situation before your project:

Increase in employment, or In small & medium-sized enterprises Safeguard employment, or In large companies Decrease in employment, None of the above / not relevant to the project Difficult to estimate / not possible to quantify

19. For your project partnership please estimate the employment effect resulting directly from your participation in Full Time Equivalent (FTE = one person working fulltime for a year) jobs:

Indicate figure: 7

                                                            9 Open Access is defined as free of charge access for anyone via Internet. 10 For instance: classification for security project.

Page 84: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 84 of 85 

Difficult to estimate / not possible to quantify

I Media and Communication to the general public

20. As part of the project, were any of the beneficiaries professionals in communication or media relations?

Yes No

21. As part of the project, have any beneficiaries received professional media / communication training / advice to improve communication with the general public?

Yes No

22 Which of the following have been used to communicate information about your project to the general public, or have resulted from your project?

Press Release Coverage in specialist press Media briefing Coverage in general (non-specialist) press TV coverage / report Coverage in national press Radio coverage / report Coverage in international press Brochures /posters / flyers Website for the general public / internet DVD /Film /Multimedia Event targeting general public (festival, conference,

exhibition, science café)

23 In which languages are the information products for the general public produced?

Language of the coordinator English Other language(s)

Question F-10: Classification of Scientific Disciplines according to the Frascati Manual 2002 (Proposed Standard Practice for Surveys on Research and Experimental Development, OECD 2002): FIELDS OF SCIENCE AND TECHNOLOGY 1. NATURAL SCIENCES 1.1 Mathematics and computer sciences [mathematics and other allied fields: computer sciences and other

allied subjects (software development only; hardware development should be classified in the engineering fields)]

1.2 Physical sciences (astronomy and space sciences, physics and other allied subjects) 1.3 Chemical sciences (chemistry, other allied subjects) 1.4 Earth and related environmental sciences (geology, geophysics, mineralogy, physical geography and

other geosciences, meteorology and other atmospheric sciences including climatic research, oceanography, vulcanology, palaeoecology, other allied sciences)

1.5 Biological sciences (biology, botany, bacteriology, microbiology, zoology, entomology, genetics, biochemistry, biophysics, other allied sciences, excluding clinical and veterinary sciences)

2 ENGINEERING AND TECHNOLOGY 2.1 Civil engineering (architecture engineering, building science and engineering, construction engineering,

municipal and structural engineering and other allied subjects) 2.2 Electrical engineering, electronics [electrical engineering, electronics, communication engineering and

systems, computer engineering (hardware only) and other allied subjects] 2.3. Other engineering sciences (such as chemical, aeronautical and space, mechanical, metallurgical and

materials engineering, and their specialised subdivisions; forest products; applied sciences such as

Page 85: PROJECT FINAL REPORT - CORDIS...ultra‐short‐pulse laser design. The remarkable achievements in QD epitaxial growth have enabled the current fabrication of QD structures with laser

Page 85 of 85 

geodesy, industrial chemistry, etc.; the science and technology of food production; specialised technologies of interdisciplinary fields, e.g. systems analysis, metallurgy, mining, textile technology and other applied subjects)

3. MEDICAL SCIENCES 3.1 Basic medicine (anatomy, cytology, physiology, genetics, pharmacy, pharmacology, toxicology,

immunology and immunohaematology, clinical chemistry, clinical microbiology, pathology) 3.2 Clinical medicine (anaesthesiology, paediatrics, obstetrics and gynaecology, internal medicine, surgery,

dentistry, neurology, psychiatry, radiology, therapeutics, otorhinolaryngology, ophthalmology) 3.3 Health sciences (public health services, social medicine, hygiene, nursing, epidemiology) 4. AGRICULTURAL SCIENCES 4.1 Agriculture, forestry, fisheries and allied sciences (agronomy, animal husbandry, fisheries, forestry,

horticulture, other allied subjects) 4.2 Veterinary medicine 5. SOCIAL SCIENCES 5.1 Psychology 5.2 Economics 5.3 Educational sciences (education and training and other allied subjects) 5.4 Other social sciences [anthropology (social and cultural) and ethnology, demography, geography

(human, economic and social), town and country planning, management, law, linguistics, political sciences, sociology, organisation and methods, miscellaneous social sciences and interdisciplinary , methodological and historical S1T activities relating to subjects in this group. Physical anthropology, physical geography and psychophysiology should normally be classified with the natural sciences].

6. HUMANITIES 6.1 History (history, prehistory and history, together with auxiliary historical disciplines such as

archaeology, numismatics, palaeography, genealogy, etc.) 6.2 Languages and literature (ancient and modern) 6.3 Other humanities [philosophy (including the history of science and technology) arts, history of art, art

criticism, painting, sculpture, musicology, dramatic art excluding artistic "research" of any kind, religion, theology, other fields and subjects pertaining to the humanities, methodological, historical and other S1T activities relating to the subjects in this group]