38
PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON Project title: Fast All-Electric Cantilever for Bio-Applications Funding Scheme: Demonstration activity Period covered: from 2013-10-01 to 2015-09-30 Name of the scientific representative of the project's co-ordinator 1 , Title and Organisation: Name: Mr. Dr. Ernest J. Fantner Organisation: SCL-Sensor.Tech. Fabrication GmbH Tel: +43-664-3937743 or +43-1-8904345 E-mail: [email protected] Project website address: http://falcon.freesponsible.info/ 1 Usually the contact person of the coordinator as specified in Art. 8.1. of the Grant Agreement.

PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

PROJECT FINAL REPORT

Grant Agreement number: 605389 Project acronym: FALCON

Project title: FastAll-ElectricCantileverforBio-Applications Funding Scheme: Demonstration activity Period covered: from 2013-10-01 to 2015-09-30 Name of the scientific representative of the project's co-ordinator1, Title and Organisation:

Name: Mr. Dr. Ernest J. Fantner Organisation: SCL-Sensor.Tech. Fabrication GmbH

Tel: +43-664-3937743 or +43-1-8904345 E-mail: [email protected]

Project website address: http://falcon.freesponsible.info/

1 Usually the contact person of the coordinator as specified in Art. 8.1. of the Grant Agreement.

Page 2: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

1. Final Publishable Summary

1.1. Executive Summary

Advances in micro-, nano-, and biotechnology put increasing demand on nanoscale microscopy andcharacterization.Atomicforcemicroscopy(AFM)isoneofthehighestresolutionmicroscopymethodsusedinthis area. The FALCON project focused on a new sensor technology for the detection of the cantileverdeflectionforfastall-electriccantilever,andmakethemsuitableforamuchbroaderrangeofapplicationsinair,liquidandevenhigh-vacuumenvironment.

WhiletraditionalAFMsuseopticaldetectionofthecantileversensorandyieldveryhighresolutionimagestheyaredifficulttoautomateandtheintegrationintodemandingenvironments(liquid,high-vacuum)isnotstraightforwardor inmanycasesnotfeasible.Thisprojectaimedatremovingtheselimitationsfora largearea of attractive AFM applications such as analysis in material science and biological applications. Theinnovativeconcept isbasedonanovel3Dnano-printingmethodused for the fabricationofnanogranulartunnellingresistors(NTR)thatareusedasstrainsensorsformeasuringthecantileverdeflection.Thismethod,theso-calledfocusedelectron-beam-induceddeposition(FEBID)isamask-lessdirectwritingtechniquethatallowsthefabricationoftheNTRsensorsonalmostanysurfacewithnanometreprecision.

The aim of this demonstration projectwas to prove the viability of our novel self-sensing NTR-cantilevertechnology for applications with specifications and performance superior to commercially availableconventionalpiezoresisitiveoropticalcantilevers.Inordertoachievetheambitiousgoals,themainobjectivesoftheFALCONprojectincluded:

1. The establishment of a fast- and cost-effective NTR-cantilever fabrication cycle that allows theintegrationintothecantileverprocessonwaferlevel.Therefore,acommercialSEMwasupgradedtoanindustrialNTRfabricationtoolthatwasusedforafirstNTR-cantileverbatchproduction.

2. PerformanceverificationofNTR-cantileverandevaluationofresultsinordertotesttheperformanceformarketrelevantapplications.Thisincludedthedevelopmentofadedicatedtest-facility.

3. DevelopmentofPrototypeAFMupgrademodulesforexistingAFMsystemsthatallowtheend-usersaneasyandcost-efficientupgradeoftheirexistingsystemsinordertouseself-sensingcantilevers.

4. Marketstudiesandbusinessplanthatdescribesthemainaspectsofthetotalbusinessplanningforthe successful commercialization of the FALCON cantilever. In addition, describing the vision andstrategyalongsidesub-planstocovermarketing&sales,finance,operations,humanresourcesaswellasIPRandlegalaspects.

Theprojectconsortiumconsistedof3SME’s–SCL,NANOSS,AMGT–andisthefollow-upoftheALBICAN2project.Themainobjectiveofthisjointprojectof3high-techSMEswastofurtherstrengthentheirpositionin theglobalmarketofMEMS (micro-electro-mechanical systems)basedsensors.ThisprojectallowedtheSMEstodevelopthenovelall-electricFALCONcantileversforatomicforcemicroscopy.Bycombiningtheir

2 ALBICAN – “High-speed all electric bio-cantilever” [FP7-SME-2011, research for SMEs, grant agreement no: 286146, project coordinator: SCL-Sensor.Tech GmbH], project partners: AMGT, Nanoss, Anfatec and RTD-partners Ecole Polytechnique de Lausanne (LBNI), Johann Wolfgang Goethe University Frankfurt (GU-Nano) and Technical University Vienna (VUT)

Page 3: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

technologiesandbasedontheresultsoftheproject,thisprojectpreparedthebasisforasuccessfulmarketintroductionoftheNTRcantileversforattractiveAFMapplications.

1.2. Summary description of project context and objectives

Inatomicforcemicroscopy(AFM)asharptiponamicro-fabricatedcantilever isscannedoverasurfacetogeneratea3D-representationofthesamplesurfacetopography,uptoatomicresolution.Thecantilevercanmeasurethetopographyofthesamplethroughamechanicalinteractionofthecantilevertipwiththesamplesurface.InordertoachievetheextremelyhighresolutionoftheAFM,thecantileverdeflectionneedstobemeasuredextremelyprecise.Thisistraditionallydonebymeasuringtheangleofreflectionofalaserbeamfocused to thebackof the cantilever. Figure1 showsa schematic representationofa tappingmodeAFMsystemwithopticalread-out.

Figure 1: Schematic presentation of a tapping mode AFM system using optical read-out (image taken from Ando, Nanotechnology 23(6):062001 (2012))

Miniaturizationhasbeenthedrivingforceofthesuccessofmicro-technologiesoverthelastdecades.Inthefieldofatomic forcemicroscopy, theminiaturizationofAFMcantilevershas lead to rapiddevelopment inrecentyears towardshigher imaging speeds.While thepotentialofhigh-speedAFM isonly starting tobeexploited,ithasbecomeclearthatafurtherincreaseinimagingspeedwillberequiredtomakeatrulydrasticimpactinscienceandtechnology.Forthisevensmallerandfastercantileverswillbeneeded.Suchcantileverswillbetoosmalltobedetectedwithconventional(optical)meanssincethecantileversareofthesamesize(orsmaller)asthebestachievablelaserspotsizes.

TheFALCONprojectisthefollow-upoftheALBICANprojectandfocusesonanoveltechnologyforhigh-speedAFM cantilevers, enabled by a new technology for the detection of the cantilever deflection usingnanogranulartunnellingresistors(NTR).Thisnewtechnologyallowsthefabricationofmuchsmaller,thinnerandtherebyfastercantileversusableforhigh-speedAFM.

Nanogranularmaterialscanbedepositedwithunprecedentedprecisionandflexibilityusingfocusedelectron-beam-induced deposition (FEBID). This technique is amask-less bottom up process that can be used forfabricationofmicro-andnano-structures.Itisbasedonthebeam-induceddissociationofa(metal-)organicprecursorgasthatisintroducedlocallytoasubstrateviaagas-injectionsystem(Figure2).ByusingtheFEBIDprocessthincantilevers(uptoafactorof10thinnerthanconventionalSiliconself-sensingcantilevers)canbefabricatedwithnanometrethinNTRsensorelements.ThehighlateralresolutionoftheFEBIDtechniquemakes

Page 4: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

structureformationwellbelow100nmpossible,thereforeenablingatremendousdownsizingofcantileverstructures.

Theaimofthisdemonstrationprojectistoprovetheviability of our novel self-sensing NTR-cantilevertechnology high-speed applications withspecifications and performance superior tocommercially available conventional piezoresistiveoropticalcantilevers.Thiswillallowabreakthroughimprovementinself-sensingcantileverperformanceand enable a new generation of high-speed AFMinitiatingcompletelynewdesignsofcombinationsofAFM and other microscopy techniques (e.g. SEM,optical). Based on the extremely promising resultsgenerated in the course of the ALBICAN project,wherewewereabletomeasurebiologicalsamples,e.g.Collagenfibres,usingthenovelNTR-cantilevers(see Figure 3 for details) all pre-requirements aregivenforrealizationofourambitiousgoals.

In order to achieve this goal, and generate allprerequisites foramarket introductionof thenovel all-electric cantilevers forhigh-speedapplications thefollowingprojectobjectivesareaddressed:

• Establishafast-andcost-effectiveNTR-cantileverfabricationcycleDevelopaprocessstrategy for theautomatedNTRproduction thatallows the integration into thecantilever process on wafer level. Afterwards implement the process strategy for upgrading of acommercial SEM to an industrial NTR fabrication tool and use it for NTR-cantilever prototypeproduction.

• PerformanceverificationofNTR-cantileverandevaluationofresultsVerificationofNTR-cantileverperformancethatwillhelptheSMEstohighlightthedistinctadvantagesoftheNTR-technologycomparedtoconventionalopticalandpiezoresistivecantilevers. Inordertotest theperformanceof theNTR-cantileverprototypesa test-facility isnecessary thatenables theusageofultra-smallcantileversincombinationwithhighscanningspeeds.

• DevelopmentofPrototypeAFMupgrademoduleDevelopmentofasetofdedicatedupgrademodulesforexistingAFMsystems,thatallowend-usersan easy and cost-efficient upgrade of their existing systems in order to use self-sensing NTR-cantilevers.

• MarketstudiesandBusinessplanTheSMEswillgenerateabusinessplandescribingthemainaspectsofthetotalbusinessplanningforthe successful commercialization of the FALCON cantilevers. It will describe vision and strategyalongsidesub-planstocovermarketing&sales,finance,operations,humanresourcesaswellasIPRandlegalaspects.

Inthefirstphaseoftheprojectadedicatedknow-howtransferfromALBICANRTDpartnerstotheFALCONSMEstookplaceconcerningNTRsensordeposition,cantileverfabricationandAFMdevelopment.Inaddition,themainfocuswasthedevelopmentoftheprocessstrategyforthefullyautomatedNTRdepositiononthe

Figure 2: Schematic representation of the FEBID process. The electron-beam of a SEM is scanned over a substrate thereby dissociating precursor molecules supplied by the needle of a gas-injection system.

Page 5: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

wafer level. A detailed description of the needed process steps concerning hardware and software wasdevelopedandallnecessarystepsforasuccessfulimplementationwereidentified.Inaddition,afirstbusinessplanforthesuccessfulmarketintroductionaftertheendoftheFACLONprojectwascreatedthataddressesmarket research, competition study, and financial and legal plans. TheDissemination activities in the firstreporting period addressed the promotion of the FALCON project on several international conferences,trainingactivitiesbetweentheprojectpartners,andmanagementofintellectualproperty.

In the second phase of the project the fully-automated NTR deposition process was implemented anddemonstratedonwaferlevel.TheFALCONFastScanupgradepackagewasdevelopedandtestedthatenablesa seamless integrationof self-sensingCantilever inalreadyexistingAFMsystems (Keysight55xx-series). Inaddition,test-customerswereapproachedthatprovidedcriticaluserfeedbackoftheFALCONNTR-cantileverperformance for high-vacuum as well as bio-applications. The business plan was updated and finalizedaddressingmarket research, competition study, and financial and legal plans. TheDissemination activitiesaddressedthepromotionoftheFALCONprojectonseveralinternationalconferencesandfares.

Figure 3: (a) SEM image of an ALBICAN NTR-cantilever with dimensions 70 x 30 x 1 µm3. The inset shows the bending edge of the cantilever including the NTR sensor elements deposited in a full wheatstone bridge assembly. (b) AFM image of a collagen fiber taken with the NTR-cantilever.

TocommunicatetheprojectresultstothegeneralpublicadedicatedwebsitehasbeencreatedfortheFALCONproject(URL:http://falcon.freesponsible.info).ThewebsiteservesasaplatformwheregeneralinformationabouttheFALCONprojectisgiven.Furthermore,thescientificbackgroundconcerningnanogranulartunnellingresistors,thepreparationviafocusedelectron-beam-induceddepositionandtheapplicationforhigh-speedimagingusingatomicforcemicroscopyinliquidsisexplained.

TheachievedresultsprovideallowtheFALCONconsortiumtofabricateself-sensingNTR-cantileveronwaferlevel.MarketrelevantapplicationsconcerningAFMmeasurementsinair,liquid,andevenhigh-vacuumcouldberealized.Thesenewcantileverproductswillprovidebenefitscomplementarytothesmallopticalreadoutcantilevers such as easier operation and easier integration into other analytical tools such as opticalmicroscopesorSEMs.Inadditiontothis,thedevelopedtechnologiescanbeusedtofurtherminiaturizethecantileverstosizesfarbeyondthesizesthatwerepreviouslypossible(duetotheopticaldetectionlimitthatiscurrentlyusedinhighspeedAFMs).ThiswillallowcompletelynewapproachesforresearchintoultrahighspeedAFMsinthefuture.

Page 6: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

FALCONProjectConsortium:

SCL-Sensor.Techn.FabricationGmbH(http://www.sclsensortech.com)R&Dandproductionexpertiseofcantileverswithopticalandelectricalread-out.ApplicationexpertiseinfastAFM.

NanoScaleSystemsGmbH(http://www.nanoss.de)R&DandproductionexpertiseofthenovelNTR-technologyforapplicationsinAFM,bio-chemicalsensing,andMEMS/NEMSapplications.

AMGTTechnologyOOD(http://www.amg-t.com)R&Dexpertise inprototypingofvariousMEMS/NEMSstructureswithembeddedpiezoresistors. Front-endimplementationofthedevelopedcantileversforNTRintegration.Back-endprocessingofAFMsensors.

Page 7: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

1.3. Description of the main S&T results/foregrounds

1.3.1. Automated NTR production process for integration into the cantilever production on wafer level

MainObjectives:ThemainobjectivesofWP1were:

- DevelopmentofaprocessstrategyfortheNTRfabricationonwaferlevel- SEMPhilipsXL40adaptionforNTRsensorelementfabrication- ImplementationofFEBIDprocessforNTRsensorelementfabrication- FullyautomatedNTRbatchfabrication- PerformanceverificationofNTRfabricationprocess

DescriptionofWork:ThesystemusedforthedevelopmentoftheautomationsequenceisaTescanLyraFE-SEM.ThefollowinghardwareandSEM-Parametersandwhereusedduringthedevelopmentandtesting:

- Roboticstage(SmarActSystem)whichconsistsofthreelinearaxesallowinganoperationalrangeof21x21x21mm

- 5kVbeamenergyforthedepositionofNTR- PC6(about1.6nA)beamcurrentforthedepositionofNTR- Alldepositionsaredonewithaplatinumprecursor3.

ThefinaldevelopmentoftheautomationanditsfinalassessmentisperformedonwaferpiecesofferedbyAMG-T.Theentirewafer is FIB treatedbyOFFIS togeta finalelectrodedesignof theblankelectrodesasdepictedinFigure4.Overall,136electrodestructureswereprepared.Thewafercarryingstubsaremountedontheroboticstage.Averticalalignmentofthewafer’scolumnstotheroboticaxisisdonebyeye-controlonly.Noadditionalalignmentmeasuresarenecessary.

Figure 4: Example of the FIB treated electrode structure resulting in the final electrode design.

3 Trimethyl(methylcyclopentadienyl)platinum(IV)

Page 8: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

DevelopedScanGenerator(SG)

ThedevelopedSGisahardwareprototype(developedbyOFFIS)allowingforcontrollingtheSEMbeamandacquiringimagesusingananalogSEMinterface.Thescannerhastwomainconnectors:

1. Amicro-USBportforthecommunicationtothecontrolPC.ThisconnectionhastobedirectlytooneofthePCUSBPorts.AninterfacingUSBHUBcancausemajorsignaldelaysresultinginmalfunctionsofthehardware.

2. ASub-D25connectorfortheanalogconnectiontoanySEM.

The SG offers two different operational modes: The “image acquisition mode” works very similar toconventionalbuild-inmethodsof imageacquisition;thepoint listmodeallowstosettheelectronbeaminpatternswhichcanbedefinedbytheuser.Simultaneousimageacquisitionisnotpossibleduringthelattermode.

Software

ThescannercanbeoperatedbyanadditionalPConly.AlibraryandanapplicationforWindowsisavailable.Furthermore,staticC++librariesandheader-filesareavailableallowingforthedevelopmentofownsoftware.

Thedevelopedautomationsequence,whichispresentedinthefollowingsectionusesthesupportedopensourcedevelopmentframework“OFFISautomationframework”4.

Thestandaloneapplication forWindowsallow toconnect to thescannerand tocall alloperations. Imageacquisition,pointlistloadingandexecution,andcontrollingofallaccessibleparameters.Acquiredimagesaredisplayedintheapplicationaswell.Beforeapointlistcanbeexecuted,ithastobeloadedtothescanner.

ImplementationofFEBIDprocessforNTRsensorelementfabrication:

Theautomationsequenceisdivertedinto5differentfundamentalstepsasdepictedinFigure5.

Initialization:duringtheinitialization,thesoftwareconnectstotheHWunitsSGandroboticstageandsetsthemtooperationalmode.Subsequently,acalibrationmethodiscalledtoacquireageometricaldescriptionofthewafer,whichspeedsupallsubsequentpositioningsteps,inparticulartheindexing.

Indexing:theautomatedindexingstartswiththefirstelectrode.Subsequently,thesequenceprocessesfirstlyallpositionswithinacolumnandsecondlyallrowsusingtheexpectancymatrixandthelinearpositionestimator.

Depositing: The automated deposition process uses all validated and stored positions of the indexingsequence. The SGperformspoint list based scans in order to deposit tungsten. Thedepositionprocess isinterruptedbyadriftdetectionandcorrectionafter several seconds.Thisdrift correction isperformedbyscanning a region of interest with the same geometrical properties as an enveloping square of the NTRdeposition.

4 https://github.com/OFFIS-Automation/Framework

Page 9: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

Figure 5: Sequence of the fully automated NTR deposition process.

Post-Exposure:thepostexposureisperformedinthesamewayasthedepositingprocess,excepttheGIShasbeclosedmanuallybytheoperatorinadvance.

Deinitialization:thedeinitializationstopsthecommunicationtotheHWdevicesandstopstheautomationsequence.

Performanceverification:

Theassessmentoftheentireautomationsequencebasisontheprovidedwaferswithcantileverandelectrodestructures.Thewaferisseparatedinfourquarterstomeetthegeometricalcriteriaoftheroboticsetup.Theautomationsequence isdevelopedondifferentquartersandwafersamples,while thedemonstrationandevaluationisdonewithdifferentrunswithupto27samples.The27samplesonthewaferwerein7rowsand5columns.

Theexpectancymatrixiscrucialandspeedsuptheentireprocessonwaferlevel.Usingtheexpectancymatrixavoidsthisnavigationtimecompletelyandreducestheprocesstimetonecessarystepsonly.Thecalibrationofthewafer(detectioncantileverpositions,centering,focusing,calculationofwaferplane)takesoverallinaverage110seconds(max128seconds,min89).Thisvaluedependsontherotationofthewaferandhencetheamountofrequiredsearchingloops.

Theindexingofallelectrodestructuresisreliable.27structurescouldbefound.Thealgorithmdetected27usablestructures inanaveragetimeof13secondsperstructure.81%(22)ofthesestructureswerefoundimmediately using the trainedpositionpredictionwithout additional search loops. The remaining19% (5)structureswerefoundsuccessfullyusingsearchloopswithinanaveragetimeof26seconds.

Thesearchingtimeforelectrodestructureswhicharenotfindable(nostructureonwaferdespiteindicationbyexpectancymatrix)is61seconds.

Theoverall success rateandaveragedetection time is100%and15seconds (min11.5seconds;max27.9seconds),respectively.

Page 10: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

Thedepositionprocesswasperformedonall27cantilevers. Theaverageprocesstimefortheautomateddepositionprocess is129.3 secondsper structureand this includes theactual FEBiD timeof120 seconds.Hence,thetimeshareoftheautomationis9.3secondspercantilever.

Figure 6: NTR deposition and its precision: The deviation in x and y is less than 200 nm:

Investigationof the faileddepositions indicate, that thedrift correctioncanbecomeadisruptivemeasureinsteadofoptimizingtheprocess:theappearanceoftheelectrodestructurechancesduringthedeposition.Thetemplatematchingbasedalgorithmscannotfollowthischangesandresultsinmisdetectionsofthecorrectposition. In success cases in contrary, the drift correction keeps the deposition centeredwith amaximaldeviationoflessthan200nm(cf.Figure6).

Theprocessandtimeforthepost-exposureroutineisthesameasforthedepositionprocess,justwithclosedGIsystemandlargerbeamcurrent.Problemisthedriftcorrectionaslessimportant,sincenodepositionisappliedandtheappearanceofthesampledoesn’tchange.Hence,thesuccessrateofthepost-exposurecanbeassumedas100%.

Inconclusion,thepresentedstrategy,developmentandimplementationproofthefeasibilityandcapabilitiesofautomationforNTRdeposition.ThedevelopedHWoffersanoperationperformancewhichfulfilsallcriteriatoperformareproducibleprocessascharacterizedbyresearch.Theproposedautomationsequenceisproventoworkonmediumrunswithoutanydistortionsandprocesstimeandsuccessratearealreadyadequateforaserialprocess,sinceadailythroughputclosetohundredpiecesisrealistic.

Summary:

AdedicatedprocessstrategyfortheupgradeofacommercialSEMtoafullyautomatedNTRfabricationtoolwasdevelopedinWP1.TheimplementationofthisprocessstrategywillenabletheFALCONconsortiumtoestablishacost-effectiveandcompetitiveNTRfabricationplatform.DocumentedindetailinDeliverable1.1“DetailedupgradeprotocolforautomatedNTRdeposition”.

The main tasks were the implementation of the developed process strategy. This meant an adaption ofdedicatedSEMforNTRsensorelementfabrication,theimplementationoftheFEBIDprocess,therealizationofafullyautomatedNTRbatchfabrication,andtheperformanceverificationoftheNTRfabricationprocess(Task5).Theworkandalltheresultsweredocumentedindetail inDeliverable1.2“DemonstrationoffullyautomatedNTRsensorelementdepositionontest-wafer”.

Page 11: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

1.3.2. NTR cantilever prototype production

MainObjectives:ThemainobjectivesofWP2were:

- DefinetargetspecificationsforNTRcantileverprototypes,incl.:optimizationoftheverticalstructureofthecantilevers;materialparametersofthecantilever’ssub-layers;optimizetheelectrodelayout;tuningtheresonancefrequencyandcontrolofQ-factor

- Fabricationofcantileverprototypesfortargetapplications,incl.:designofdedicatedteststructuresandspecifiedcantilevers;conductofprocessintegrationexperimentsforincorporationofNTRsensorelements;fabricationofspecifiedcantileverstructures,etc.

- CharacterizationandtestofNTRcantileverprototypes, incl.:determineoptimal tappingamplitudevalues, current and voltage levels, etc. specific conditions for measurement and exploitation ofcantileverswithNTR.

Respectively,Deliverable2.1“Fabricationof4differentNTRcantileverprototypes”proofsthatafabricationofsufficientvarietyandsufficientnumberofcantileversforNTRdepositionneededforimplementationoftheproject,hasbeenprovidedfortheprojectimplementation.

DescriptionofWorkUsabilityoftheNTR-enableddevicesdependscriticallyontheelectricalandmechanicalcharacteristicsoftheself-sensingMEMS.Forthispurposetheknow-howformanufacturingofcantilevers,incl.theonegeneratedintheresearchprojectALBICAN(FP7-SME-2011-BSG,GA#:286146),hasbeenusedandfurtherdevelopedbyAMGTandwastransferredtotheprojectpartnerSMEsSCLandNANOSSwithinthedurationoftheproject.

Define target specifications for NTR cantilever prototypes Analyses of the influence of each material parameter on overall cantilever performance and usability inpotentialAFMapplicationhavebeenimplemented.Particularly,ithasbeenshownthatinitiallytargetedbio-applicationsrequirevery“soft”cantileverswhichareinstrongconflictwiththesensitivityofthestrainsensorsexploitingNTRs.Thus,novelapproachtodemonstratetheNTRsuperiorityoverexistinganalogueshasbeenconsidered.

a) MaterialparametersofNTRandcantilever’ssub-layers

Figure 7: Cantilever Material Options Twocantilevermaterials–Si/SiO2andSixNyhavebeenpreferablyused,asshownintheFigure7.Bymeansofnumerical calculations, the influence of material parameters on overall cantilever performance has been

Page 12: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

analyzed.Besides,itwasexperimentallyfoundthatFIB-cutmetalelectrodesonPECVDSixNylayersrevealverylow insulation resistance.Despite series of dedicated experiments havebeen triggered, itwas found thatPECVDSixNylayershavealimitedapplicationwhenFIB-cuttingmethodisexploitedformetalpatterning.

b) Verticalstructureofthecantilevers–optimizationfortargetapplications

Sincelithographyequipmentwithlimitedpatterningperformancehasbeenexploitedintheproject,acomplexverticalstructureofthecantileverswastheonlycompensatingoption.Patternedstructuresarelocatedone-above-the-other, thus multilayered cantilevers – Si/SiO2, SixNy/SiO2, etc. have been created. Alternativetechniquesforcantilevermaterials’depositionhavebeenexperimentallystudiedincl.spin-ondepositionfromzol-gelsolutions.

c) Electrodestructure(layout)fortargetedapplications

Forachievinghighresonancefrequencyandlowspringconstantsmall-sizecantilevershavebeendeveloped.Thelayoutofthesmallestcantileverenabledwithfoursensingresistorsandanelectrothermalactuator, isdemonstratedinFigure8(left).Metalpatterningtakesplaceintwostages:first,theoveralllayoutisshapedwith optical photolithography and after that, the metal structure is further processed by FIB-cutting asdemonstratedintheleftfigure.Theoverallsizeofthecantilevers:40µmX16µm.Besides,theseAFMsensorsareprovidedwithasecondcantileveredstructurealsocalled“foreground”.ThelengthL andthethicknessoftheforegroundstructuredefineitsresonancefrequency.

Figure 8: Layout of electrodes of dedicated FALCON cantilevers: (left) 40x16µm, (right) 100x48µm.

InordertocontroltheQ-factorinvacuumapplicationofNTRcantilevers,athermoactuatorisneeded.Thelayout of electrodes of a cantilever having size 100/48 µm is illustrated in Figure 8 (right). This layoutrepresents the smallest cantilever with two self-sensing resistors (NTR) resolved by the availablephotolithographyequipmentinAMGTandwithoutFIB-cut.

d) Controlofresonancefrequency

Sincethelengthandwidthofthecantileversaredefinedbythegeometryofthemasksforphotolithography,theonlyvariableparameter is thecantilever thickness.Respectively,amethod for controllable tuning thethicknessbyadryblanketchingontherearsideofthewafershasbeendevelopedandexperimentallyverified.

Page 13: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

e) ControlofcantileverQ-factor

TargetthevacuumapplicationsofAFMsdependscriticallyonmeansforQ-factorcontrolonthecantilevers,thus additional structures for electro-thermal actuation have been integrated on above mentionedcantilevers.ThelayoutsofboththermoactuatorsareshowninFigure8.

f) Tipsharpness

ProvidingsharptipswithRIEatfabricationofself-sensingAFMcantileversisanextremelytoughproblemtosolve–morethat90%oftheyieldlossisduetothebadtipsharpness.Thusaconceptof:i)opticalmicroscopemonitoringthepre-etchedtestpatternsii)foreachtipsize,aspecificmodificationofRIEprocessbyhardwaremeans,hasbeendeveloped.

Fabrication of cantilever prototypes for target applications For fabrication of each type of the above mentioned of AFM cantilevers, a dedicated set of masks forphotolithographyhasbeenused. Thesemasks comprisepatterns in every layerof both abovementionedcantileverdeviceandteststructures,asdisplayedinFigure9.

Figure 9: Breakdown of the layout of the cantilever in masks for photolithography.

Besidesaimedperformanceofthecantilevers,theusabilityofcantilevershavingalengthoflessthan100µm,hasbeenboostedbyprovidingthemwithasecondcantileveredstructure,alsocalled“foreground”showninFigure10.Respectively,anewprocesssequenceforshapingtheforegroundbymeansofwetetchinginKOHsolutionhasbeendeveloped.

Figure 10: SixNy cantilevers with a P+second cantilever structure foreground.

Page 14: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

DuringtheresearchwithinALBICANproject,itwasfoundthatduetoverylowsupplyvoltagesusedwithNTR-enabled cantilevers, there’snoneedofpassivation layers.Also, itwas found thatpassivationwithPECVDharmstheNTRperformance.SinceadominatingnumberofthetargetedapplicationsofNTRcantileversareconsideredtoberelatedtovacuumapplications,experimentswithpassivationlayershavebeenabandoned.

Strategy of mass manufacturing of NTR enabled AFM cantilevers InordertosecureefficientmassmanufacturingofAFMcantileversforNTRenabling,itwasexperimentallyvalidatedtheoptionsfor:

• Tuning of the cantilever parameters. Having the cantilevers with above mentioned patternedstructures, the parameters can be tuned on wafer level, to achieve the optimal performance asrequestedperspecificapplication.

• Metal patterning. Double step metal patterning: by optical lithography and FIB cutting has beenconsideredasmostpromisingmethod.ToreducetheFIBprocessingtime,anoptimizedlayoutofthemetalpatternhasbeendesigned.

Tipsharpness.Thetipsharpnessisthekeythecantilevers’yield.Byunconditionaldeposition(Figure11)ofNTRandtip-apexinoneFIB-process,ayieldof90%canbeachieved.

Figure 11: Shaping the tip-apex with FEBID - exploiting the same HW&SW as for NTR deposition.

AdditionalworksinWP2havebeenfocusedonpreparationofoptimizedstructuresonwafer-leveltoachieveautomated NTR deposition, to reduce the cost of fabrication and to improve further the tip-to-sampleaccessibility.Technicaldetailareconfidential,andrespectively,notdisclosedhere.

Summary&ResultsAFMcantilevershavingfourdifferentlayoutswereavailableforNTRdeposition:

• 100/48µm(250kHz<fres<700kHz)

• 70/30µm(550kHz<fres<1.4MkHz)

• 40/16µm(800kHz<fres<3.0MHz)

• 20/8µm(2.50MHz<fres<4.5MHz)

Thesecantilevershavebeenprototypedondifferentsubstrates/layers,thus,asufficientnumberofcantileversforNTRdepositionhavebeenprototypedforprojectimplementation.

Page 15: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

1.3.3. High-speed Bio-AFM test-facility

Mainobjective:Themain objective of thiswork packagewas the setupof a dedicated test facility for theNTR cantileverprototypes.Inaddition,applicationnoteswereproducedthathighlighttheadvantagesoftheFALCONself-sensingcantilevertechnology.

DescriptionofWork:

Test-System for NTR cantilever Forthetest-systemfortheFALCONself-sensingcantileveranewcantileverholderaswellasanewread-outelectronicandaswitch-boxwasdeveloped.Figure12showstheAFMheadwiththenewcantileverholder.Themainfocusofthenewdesignwas:

• Electricalintegrationofafirststagepre-amplifierunitdirectlynexttotheCantilever,atthebeginningoftheflexiblePCB

• MechanicalRe-designingtoimprovethemechanicalhighfrequencyperformance,inordertoachieve:o EnchasedstabilityofCantilever/CL-holdercouplingo Betterdampingofresonanceso Adaptationtonewmechanicalmountingandalignmentsituation

Figure 12: AFM head for optical and electrical read-out. The instrumentation amplifier was integrated next to the cantilever sensor for noise reduction.

Inaddition,anewread-outelectronicwasdeveloped.ThemaingoalwastobringthefullperformanceoftheNTRsensorstotheAFMcontroller.Theprocedurewastocreateafullyadapted,NTR–dedicatedsolution(notonlyare-parameterizedread-outforclassicalpiezoresistivecantileversensors).

Duringdesigningelectricalread-outcircuit,themainfocuswas:

• Better adapting to NTR resistor behaviour (higher drift-compensating range, different impedanceadjustment)

• Furtherreductionofnoiseandbetterhighfrequencyperformance:

Page 16: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

o DevelopmentandIntegrationofthefirstpre-amplification(pre-readout)unitdirectlynexttothecantilever,atthebeginningoftheflexiblePCB.

o Re-designingthemainPCB(foradaptingtotheoutsourcedfirstpre-amplificationstage

Theswitch-boxwasdeveloped,enablingswitchingbetweenopticalandelectricalread-outofthecantilevers,formeansofcomparison,evaluationandadjustingofthedatainterpretationandpresentation.TheswitchingpointislocatedbetweentheAFMheadantheAFMbase(seeFigure13).

Figure 13: Cantilever signal readout path configuration options: a.) Original AFM including designated optional features b.) Setup enabling switching between optical and electrical cantilever readout (ALBICAN version) c.) Setup enabling switching between optical and NTR electrical cantilever readout, switching in raw cantilever signal path (dedication FALCON version).

TheNTRtest-systemcanperformanimagingspeedof20lines/swith90%undistortedscanimagesurfaceinairandvacuum.It isthereforewellpreparedtodistinguishthedifferencesbetweenNTRandclassical(PR)electricalread-outcantilevers(bothadvantagesanddisadvantageswithintheiroptimalparameteroperationwindow).ExemplarymeasuredresonancecurvesoftwodifferentNTR-cantileversareshowninFigure14.

Figure 14: Measured Resonance curves for two different Si3N4-cantilevers. For each cantilever the resonance frequency using optical detection as well as measuring the electrical signal from the NTR sensor elements was used. The resonance frequency for the left measurements was fres= 1.32 MHz. For the measurements shown on the right side a resonance frequency of fres = 1.11 MHz was observed.

Application studies:

Page 17: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

In order to identify and select 1-2 applications basedon input from test-customers that demonstrate theadvantagesoftheFALCONself-sensingcantileverstwodifferentapplicationshavebeenaddressed:

1. CorrelatedMicroscopyinhigh-vacuumenvironment

Figure 15: (Top Left) SEM image of NTR Self-Sensing Cantilever inside the SEM above the test-grid. (Bottom left) Correlated AFM image using the NTR cantilever on exactly the marked area in the SEM image. (Right) 3D representation of the test-grid structure measured in high-vacuum environment.

TodemonstratetheadvantagesoftheNTRSelf-SensingCantileverwehaveusedtheminafirstapplicationforcorrelatedmicroscopyinahigh-vacuumenvironmentinsideascanningelectronmicroscope(SEM).ForthatweusedtheexistingAFSEM™ofthecompanyGETecMicroscopyLtd.TheAFSEM™isanAFMdevelopedforeasyintegrationintohigh-vacuumenvironmentespeciallyforintegrationintoSEMs.TheAFSEM™onlyworkswithself-sensingcantileversthatrequirenoopticalread-out.TheNTRself-sensingcantileverarethereforeideallysuitedforworkingwiththeAFSEM™microscope.Figure15displaysacorrelatedmeasurementinsidetheSEM.FirsttheareaofinterestcanbeidentifiedusingtheSEMimage.AfterwardsthecantilevercanbepositionedexactlyonthedesiredareaandtheAFMimagecanbetaken.ThisenablesacorrelatedimageusingboththeSEMandtheAFM.Therefore,theadditionalinformationfromtheAFMmeasurement(topography,phase,…)canbeusedtoanalyzethesample.

The usage of theNTR Self-Sensing Cantilevers for high-vacuumapplications has the great benefit that noopticaldetectionofthecantileverdeflectionisnecessary.Thisenablesamucheasierintegrationintothehigh-vacuumhostsystem.Inaddition,itallowsforamuchfasteroperationtimesincethetime-consumingopticalalignmentcanbecircumventedandstartingtheAFMmeasurementscanperformedwithinminutes.

Page 18: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

2. FALCONcantileverinair&liquidenvironmentforbio-applications

Todemonstratetheadvantagesofself-sensingsmall&softcantileverswehaveintegratedtheself-sensingtechnologyintoacommercialavailableAFMsystembydevelopingaFALCONFastScanAFMupgrademoduleforaKeysight5500AFM(formerAgilent).ThisAFMhasaworld-wideinstalledbaseandismainlyusedformeasurementsonbiologicalsamplesinliquid.Itoffersavarietyofimagingmodeslikecontact,tapping,forcemodulation,phaseimagingmode,etc.,andisthereforeanoptimalAFMsystemforusageoftheFALCONself-sensingcantilever.

ThecompleteFALCONFastScanAFMupgrademodule is shown inFigure17. It consistsofa scannernoseupgrade,apre-amplifierandaswitch-box.Theupgrademoduleallowstheusageofself-sensingcantileversusing electrical read-out. Therefore, no optical detection is needed for AFM imaging. This brings greatadvantagesformeasuringbiologicalsamplesespeciallyinnon-transparentliquids(e.g.blood).Inaddition,theself-sensingcantileveraremorestableintermsofdriftthatallowslong-termmeasurementswithouttheneedofaconstantre-alignmentofthelaserbeam.Inordertodemonstratethepotentialoftheusageoftheself-sensing cantilevers in combinationwith the FALCONFastScanupgrademodule,AFM in anon-transparentliquidhavebeenperformed.InFigure16Figure19theusedsetupisshown.Astandardcalibrationgridwasinserted into a bowl of milk and afterwards measured using self-sensing piezo-resistive cantilevers incombinationwiththeFALCONupgrademodule.AscanbeseeninFigure19rightthegridcanbeperfectlyimagedinnon-contactmodeeveninthenon-transparentliquidenvironment.

Summary:Wecoulddemonstratetoattractiveapplicationsformarketrelevantapplicationsusingtheself-sensingNTRcantilevers.OneistheusageoftheNTRcantileversinhigh-vacuumenvironment.Herethebenefitsare:

• Noopticalalignmentneededduetoself-sensingmeasurement• FastoperationaltimeèAFMisreadyinafewminutes• Self-sensingcantilevertechnologyallowaneasyintegrationintohigh-vacuumhostsystem(especially

SEMs)• Truecorrelatedmicroscopyispossible(CombinationofSEMimageandAFMimageatexactlythesame

spot)

In addition, we demonstrated the application of the FALCON FastScan upgrade package in air and liquidenvironment.Herethebenefitsare

• Usabilityofself-sensingcantileverinnon-transparentliquids(e.g.blood)forbio-applications• Higherstabilityconcerningdrift(long-termmeasurementsarepossible)• Potentialforfurtheroptimizationusingpassivationtechniques

In summary,wecoulddemonstrate theusabilityof theNTRself-sensingcantilever inair, liquid,andhigh-vacuumenvironment.Thisopenstheroadforarangeofmarketrelevantapplications.

Page 19: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

1.3.4. FALCON FastScan AFM upgrade module

Mainobjectives:ThemainobjectiveisatestedprototypeofafinalFALCONFastScanAFM(atomicforcemicroscope)upgrademodule.Theusabilityofsmall&softself-sensingcantilevers(NTR-nanogranulartunnellingresistoraswellaspiezoresistivecantilevers)inoneofaworld-wideinstalledmodernAFMsystemwiththefollowingadvantagesshouldbedemonstrated:

• Nospeedlimitationduetocantileverbandwidth

• Nolaserlightonthesample

DescriptionofWork: Todemonstratetheadvantagesofself-sensingsmall&softcantileverswehaveintegratedtheself-sensingtechnologyintoacommercialavailableAFMsystembydevelopingafirstprototypeFALCONFastScanAFMupgrademoduleforaKeysight5500AFM(formerAgilent).ThisAFMhasaworld-wideinstalledbaseandismainlyusedformeasurementsonbiologicalsamplesinliquid.Itoffersavarietyofimagingmodeslikecontact,tapping,forcemodulation,phaseimagingmode,etc.,andisthereforeanoptimalAFMsystemforusageoftheFALCONself-sensingcantilever.

Figure 16: Keysight 5500 AFM situated at the test customer in Linz. The NTR self-sensing cantilever upgrade package was integrated into this AFM for imaging in air and liquid environment.

Oneofthesesystemsislocatedatapartnerfromourscientificnetwork(JKU,JohannesKeplerUniversityinLinz,Austria).JKUusesvariousKeysightAFMsmainlyforbioandlifesciencesanalysis.Figure16displaystheKeysightAFMsystematJKUwiththealreadyinstalledfirstprototypeFALCONupgradepackageforimagingwiththeself-sensingcantileversdevelopedincourseoftheFALCONproject.

Theupgradepackageconsistsof3mainpartsthataredisplayedinFigure17:

1. NewlydesignedAFMscannernose

2. Post-amplifierbox

3. Finalswitchbox

Page 20: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

Figure 17: Key components for the FALCON upgrade module: (a) Newly designed AFM scanner nose upgrade for a Keysight 5500 AFM. (b) Post-amplifier box for the FALCON upgrade module. (c) Final Switch box for the FALCON upgrade module.

AFM scanner nose including read-out electronics InordertobeabletoworkwiththeFALCONself-sensingcantileversthenewcantileverholder includingaread-outelectronic for self-sensing cantileverwasdeveloped (seeFigure17a). Themost importantdesignrequirementsforthescannernoseupgradeinordertousetheFALCONself-sensingcantileversare:

• Opticalandself-sensingimagingopportunitywiththesamenose

• Tip–samplepositioningsystemusingexistingCCDcamerasystem

• Self-sensingmeasurementsinliquidand

• Anintegratedamplificationstageforlownoisemeasurements

Thefinaldesignallowsselectingbetween0.5and2VlownoisevoltagesupplyfortheWheatstonebridge.The0.5V supply is preferred for the NTR cantilevers and necessary for performing measurements in liquidenvironment. 2V Wheatstone bridge supply is preferred in dry state using piezo resistive self-sensingcantileversforincreasedsensitivity.Thenewinstrumentationamplifierallowsadjustingthedeflectionsignalamplificationviaanexternalwiredresistor.Thesameboardcanbeusedforanacousticexcitationorathermalexcitationnosejustbereplacingawirejumperinformofa0Ohmresistor.AmainrequirementduringPCBdesignwasusingasoftandsmallflexpartforthecantileverconnectortofitthroughtheholeofthenoseandtobeafterwardssealed,protectingtheelectronicsduringoperationinliquid.Thenewboarddesigncombinestherigidequippedpartwiththeflexibleconnectorpartinamultilayerboard.

Post-Amplifier Box for FALCON upgrade module Themeasuredsensorsignalmustbeamplifiedassoonaspossibleafterthereadoutfromthesensorchiptoavoidnoisepickuportokeepthesignalnoiseratioashighaspossible.Therefore,wehaveintegratedthefirstamplificationstageinsidethesmallnose.ThesecondstagewasplacedoutsidethescannerbutdirectlyontheAFMbaseasapost-amplifier.

Forthefinalpost-amplifierthefollowingoptimizationstepsandre-designshavebeenincluded:

• Variableamplificationbetween1and100• OptimizedPCBdesigntofitintosmallernewhousing• UsageofmicroD-Sub-9connectors

Thepost-amplifierexhibitsavariableamplificationwhichcanbeadjustedbetween1and100andisequippedwithanoptionallowpassfilter.ItisdirectlyconnectedtothestandardcablesoftheKeysightsystemwithouttheneedofchangingthestandardhardware.TheamplifierhasbeenreroutedforanoptimizedPCBboard

Page 21: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

perfectlyfittingtoanewhousing.ThemicroD-Sub9connectorsaresurfacemountedtoreducethewiringlengthforallneededsignalsforoptimizedsignaltonoiseratio.Figure17bdisplaysthefinalPost-AmplifierBoxfortheFALCONFastScanupgrademodule.

Switch box for Upgrade Module Thethirdneedednewlydevelopedhardware,theswitchbox,isplacedbetweenthestageandtheAFM´sheadelectronicbox(HEB).Themainfunctionoftheswitchboxistoselectbetweentheopticalandthenewself-sensingmode.Furthermore,thepowersupplyandtheoffsetvoltageforthepre-amplifierareconnectedviatheswitchbox.

Forthefinalswitchboxthefollowingoptimizationstepsandre-designshavebeenincluded:

• Redesignofexternalconnectors

• Redesignofallhardware

• Easyswitchingbetweenopticalandself-sensing

In thenewdesign the signal splittingand theexternal connectors arePCB surfacemountedandnotwireconnectedtoreducethenoise.Inaddition,thesupplyvoltagefortheself-sensingcantileverhardwareisnowtakenfromanoriginalKeysightbreakoutboxwherebyaredesignofthewholehardwarefrom+/-6Vto+/-15Vwasnecessary.ThedeflectionoutputoftheswitchboxisconnectedtotheoriginalKeysightMAC-IIorMAC-IIIboxusingtheirlock-inamplifiertodrivetheAFMwiththeself-sensingcantileverdeflectionsignal.Toswitchbetweenopticalandself-sensingintermittentcontactmodejustsoftwaresettingsarenecessary.UsingtheKeysightAFMincombinationwithself-sensingcantileverincontactmodeispossiblebutrequiresachangeintheHEB,whereacircuitpathneedstobeopenedandswitchbetweenopticalandelectricalcontactmodehastobeplacedattheHEB.Figure17cshowsthefinalswitchboxdevelopedforthefinalupgrademodule.

Test imaging Afterassemblyandfirstelectricalpre-testingandcharacterizationofallfinalupgradepackagecomponents(nosewith pre-amplifier, post-amplifier, and switch box), all partswere integrated into the KeysightAFMsystem.AnindepthcharacterizationoftheAFMperformanceofthefinalupgradepackagewasperformedusinga standardcalibrationgrating.AFM imagesusing self-sensing cantileverswereperformed in contactmode,tappingmodeusingeitherexternalpiezo-actuationortappingwithself-actuatedheaterstructure.

Figure18displaysAFMimagesrecordedinairatambientconditionsusingcontactmode(a),tappingmodewithexternal piezo-actuation (b), and tappingmodewith self-actuation (c).All differentmodeswerealsoperformedin liquidenvironmentusingde-ionizedwaterforcontactmode(d), tappingmodewithexternalpiezo-actuation(e),andtappingmodewithself-actuation(f).Thistestimagesclearlyshowthecapabilityofthe final upgrade package to use self-sensing cantilever on all Keysight 5x00 AFM series both in ambientconditionsaswellasinliquidenvironments.Therefore,acompletelynewmarketsegmentfortheFALCONcantileverscanbeaddressed.

Page 22: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

Figure 18: AFM image of a calibration grating. Upper row shows contact, tapping with piezo and tapping with heater in dry state (a-c), the second row shows the corresponding images in de-ionized water.

Page 23: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

1.3.5. Test Customers

MainObjectives:Themainobjectiveofthisworkpackagewastoachievetest-cooperationswithdedicatedAFMusersthatwilluse the self-sensing cantilever prototypes with their lab-equipment. In addition, 2 critical test-customerreportsthatincludeadetailedtest-protocol,faultanalysisandsuggestionsforimprovementswerewanted.

DescriptionofWork

Choice of Test Customers The InstituteofBiophysicsat the JohannesKeplerUniversityLinzasoneof theworld leading Institutes inatomicforcemicroscopy(AFM)andformerprojectcollaboratorofSCL.SensorTechwasbeenchosenastestcostumerforbioapplicationsusingself-sensingcantilevers.TheymainlyperformAFMimagingonbiologicalsamples(cells,proteins,DNA,…)inambientconditionsaswellasindeionizedwaterandphysiologicalbuffers.JKU is expert inmolecular recognition forcemicroscopy (MRFS),where interaction forces between singlemoleculesaremeasuredandtheenergylandscapeoftheseinteractionscanbeinvestigatedandtopographyand recognition imaging (TREC) where in addition to a topographical image a corresponding receptordistributionmapisrecorded.Asformerprojectpartner,theyarehighlyinterestedinself-sensingcantileversforbioimaging,MRFSandTREC.Inaddition,JKUis inclosecollaborationwithKeysightandequippedwithseveral Keysightbio-AFMsperfectly suited toperform characterizationof self-sensing cantilevers and testthemonhottopicsinlifescience.

GETecMicroscopyLtdisahigh-techstart-upfocusingondevelopingofspecialatomicforcemicroscopes(AFM)dedicatedtoaseamlessintegrationintootherhostsystemssuchasscanningelectronmicroscopes(SEM).Themodular AFM concept is based on “all electric cantilevers” allowing a very compact design (AFSEM™,www.getec-afm.com).Therefore,correlatedmicroscopyofexactlythesamesamplespotcanbeperformedalmostsimultaneously.TheFALCONcantileverareinterestingforGETecsincetheyprovideahigherflexibilityconcerningcantileverpropertiesforintegrationintohigh-vacuumenvironment.

Short summary of test customer report JKU Linz

Figure 19: A calibration grid in milk (left side) and the corresponding AFM image recorded in tapping mode using a self-sensing cantilever.

Page 24: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

JKULinzservedasatest-customerwiththemainfocusontestingtheself-sensingcantileversincombinationwiththedevelopedFALCONself-sensingadd-onkit (seedetails inDeliverable4.2).Thetest includedan indepthcantilevercharacterization,imaginginliquidenvironment(seeFigure19),andacomparisonofopticallyAFMimagingandelectricalimagingusingtheFALCONupgrademoduleforbiologicalsamples(seeFigure20).

Figure 20: The left column shows the images recorded with optical readout, the right column images with electrical readout using self-sensing cantilevers. In line (a) a platelet sample after 3 minutes of incubation and in line (b) with 5 minutes incubation times is shown. (b) already shows a much higher activation and crosslinking then (a). From column (a) and (b) it can be seen that die resolution is worse compared to the optical images because of a larger tip radius. The marked areas in the images in line (c) mark for the same sample position. Here the tip resolution is comparable as the self-sensing cantilever tip seems to be as sharp as the optical one being in a range of 10-30 nm due to the manufacturer.

Short summary of test customer report GETec Microscopy Ltd

Page 25: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

GETecMicroscopyservedasa test-customerwith themain focuson testingNTRself-sensingcantilever incombinationwith theirproductAFSEM™thatenables correlatedmicroscopy insideaSEM inhigh-vacuumenvironment. The test included also an in depth cantilever characterization and imaging in high-vacuumenvironmentinsideaPhilipsXL30SEM.

Figure21showstheNTRself-sensingcantileverinsidetheSEMabovethetest-gridsamplestructurethatwasimaged inhigh-vacuumenvironment. InFigure22 theobtainedAFSEM™ imagesof the test-grid structureinsidetheSEMareshown.

Figure 21: (Left) SEM image of the NTR Self-Sensing Cantilever inside the SEM. In the background the used test-grid can be seen. (Right) Zoom in image of the NTR Cantilever and the test-grid structure.

Figure 22: AFSEM™ images of test-grid structure in high-vacuum environment inside a Philips Xl30 SEM system.

Page 26: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

1.3.6. Business Plan

IntheBusinessPlanthefutureFALCONproductrangehasbeenestablished.ItconsistsinthefirstrunoffourdifferenttypesofNTRself-sensingcantilever.Thesecantileversaddressawiderangeofresonancefrequenciesandspringconstantsthatareimportantfordifferentmarketrelevantapplications.TherangeforresonancefrequenciesaddressablewiththeNTRself-sensingcantileversrangesfrom90kHzupto3600kHz.Thespringconstants ranges from 0.15 N/m to 140 N/m. This enables the usage of the novel NTR cantilever forapplications in liquidsaswellashigh-vacuumapplications(thetwokeymarketsforourNTRcantilever). Inaddition,ourfutureproductrangeincludesaFALCONUpgradeKitthatisadedicateddevelopmentforthecompleteKeysight5x00AFMseriesandallowsaneasyanduser-friendlyintegrationoftheNTRself-sensingcantilever.ThisallowsadirecttargetingoftheKeysightuserbase.

NTR self-sensing cantilever (Type NTR-L20-XXX)

Description:

The typeNTR-L20-xxx cantilever seriesaddressesapplications inhigh-vacuumandair. Thehigh resonanceenablehigh scanning speeds.Thewide rangeofavailable springconstantsmake this cantileverusable fortappingmodeaswellascontactmodeapplications.

Figure 23: NTR Self-Sensing Cantilever Type NTR-L20-XXX.

TipSpecification

Type NTR-L20-F1200 NTR-L20-F2400

Radius(tipapex) <15nm

Height 4…7µm

Material Silicon/Si-Nitride/EBD

CantileverSpecification

Resonancefrequency 700…1800kHz 1800…3600kHz

Springconstant 0.5…8N/m 8…62N/m

AFMmode Tappingmode Variousapplications

Length 20±2µm

Width 8±1µm

Shape Rectangular

Material Silicon/Si-Nitride/…

DeflectionSensing NTRfullbridge

Actuator ExternalShaker

Electricalconnections BondedtosmallPCBwithconnector

Page 27: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

NTR self-sensing cantilever (Type NTR-L70-XXX)

Description:

ThetypeNTR-L70-xxxcantileverseriesaddressesapplicationsinhigh-vacuum,airandfluidenvironment.Theavailablelowspringconstantsmakethiscantileverusableevenforsoftsamplesforbiologicalapplicationsinfluidenvironment.

Figure 24: NTR Self-Sensing Cantilever Type NTR-L70-XXX

TipSpecification

Type NTR-L70-F200 NTR-L70-F600

Radius(tipapex) <15nm

Height 4…7µm

Material Silicon/Si-Nitride/EBD

CantileverSpecification

Resonancefrequency 90…300kHz 300…900kHz

Springconstant 0.15…5N/m 5…145N/m

AFMmode Contact&Tappingmode Variousapplications

Length 70±2µm

Width 30±1µm

Shape Rectangular

Material Silicon/Si-Nitride/…

DeflectionSensing NTRfullbridge

Actuator ExternalShaker

Electricalconnections BondedtosmallPCBwithconnector

Page 28: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

FALCONUpgradeModule

Figure 25: Upgrade kit for Keysight AFM (cantilever holder “nose”, pre-amplifier and signal splitter box (see below)) Description

Theself-sensingadd-onkitenablesausertoworkwithself-sensingcantileversonaKeysight5x00AFMseries.ThiscombinesthebenefitsofaconventionalbioAFMwiththeadvantagesofalaserfreedeflectiondetectionusingSCL´sself-sensingcantilevers.Theadd-oncanbeusedwithoutchangestotheoriginalAFMhardwareforimaginginintermittentcontactmode.Theself-sensingcantileveradd-onkitconsistsofacantileverholderplug-inmodule for self-sensingcantilevers (nose),apre-amplifier,a signal splitterbox, cablesand10 self-sensingcantilevers.ThenosecontainsanadjustablelownoiseinstrumentationamplifierandafixedreferencevoltagefortheWheatstonebridgeof2.048Vforhighsensitivitymeasurementsor0.5Vformeasurementsinde-ionizedwater.FordrivingthecantileveranoseimplementedpiezooraheaterofaSCLPRSAcantilevercanbeused(mechanicalorthermalexcitation).Thedeflectionsignalisamplified(adjustablefrom1xto100x)andfilteredbeforeitiswiredtothelock-inamplifieroftheKeysightAFMMAC-box.ThehardwareispoweredviatheKeysightbreak-outboxoranexternalpowersupplyunitandisconnectedviathesignalsplitterbox.Thewholesystemisplug-and-playableandonlythecantileverholderhastobechangedforelectricaloropticalreadout.

nose 48 x 28 x 1.6 mmsignal splitter box 52 x 28 x 7 mmpost-amplifier 46 x 36 x 18 mm

Operation voltage Vs +/-15 V (from Keysight breakout box)Gain, voltage amplification 10...10.000xBandwidth f3dB = 2,5 MHz @ 2mVpp sine input signalexternal offset voltage range (Vs-) +0.5 V to (Vs+) -0.5 VOutput impedance 50 OhmInput impedance 3 GΩ || 6 pF

Wheatstone bridge supply voltage 0.51 V or 2.048 V (voltage reference)

Slewrate output stage 27 V/µs

Input connector (cantilever side) FFC 8 PinOutput connector Header Connector 8 PinInput FFC cable FFC, 8 pol, length: 152 mm Output cable shielded flexible cable, l = 1 m, open ends

Connectors and cables

Electrical Pre-Amplifier Specifications

Dimensions (l x w x h)

Page 29: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

ThetablebelowdescribesthesalesforecastfortheNTR-CantileverproductsdevelopedwithintheFALCONproject.Theforecastisbasedonthefollowingmarkettrendsandobservations:

• WegotaverypositiveresponsefrompotentialcustomersatthepresentationattheconferenceinLinzlastFebruary

• WesucceededinstartingnegotiationswithKeysighttopromotethenewupgradekittogethertotheirestablisheduserbase.Ajointmarketingeffortcouldspeedupthemarketpenetrationsignificantly.AvisitofKeysighttoViennaisagreeduponforcomingMai.

• Weseeastronglygrowingmarketdemandforusingself-sensingcantileversinexperimentalresearchsystemsforapplicationsapartfromAFM:e.g.conductivitymeasurementsonnanowiresormechanicalmeasurementsonGraphene.

Themarket response to theM&S-cooperation with AGAR started in November last year shows that thischannelhasaworldwidereach,indeed(e.grecentordersfromChinaandUSA)

Thisforecastshowsthat

• Thisbusinesswillgiveapositivecashflowcontributionfromthestartofsellingthesenewproducts.

• Thecostsofthe3consortiumpartnersforthedevelopmentofthistechnologyandfortheproducts–takingintoaccountthecostsandthefundinginALBICANforthe3partners–willberecoveredbyendof2018.

• Theadditionalsalesbytheseproductswillaccountformorethan30%ofthesalesbycurrentproductsofthe3partnersfrom2019onwards.

Theseexpectedresultsclearlyshowthatthedecisionin2011toinvestintothishighlyinnovativeandthereforehigh-riskprojectwasacommerciallyjustifieddecision.Ithastobestatedthatthisdecisionwouldhavebeennot taken without the FP7-funding and especially would not have been technically feasible without thecooperationandcontributionsbythescientificpartnersofALBICAN.

SignificantResults:

AnupdatedBusiness Planhas been formulated that includes a detaileddescriptionof the futureproductrange, amarket analysis and an updated plan for themarket introduction of the novel NTR self-sensingcantilever.

Page 30: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

1.4. The potential impact and the main dissemination activities and exploitation results

ThepotentialimpactontheEuropeanscale

TheAFMtechnologyisbasedontheinvestigationsofGerdBinningandHeinrichRohrercarriedout1981attheIBMResearchLaboratoryinRüschlikon,Switzerland.ForthisinvestigationbothreceivedtheNobelPriceforPhysicsin1986.

Basedonthesedevelopmentsawholeindustryhasbeenstarted,leadingtoamarketvolumeaboutestimated500MillionEURin2013.Thismarketisservedbysome5majorplayers(e.g.Bruker(PreviouslyVeeco),OxfordInstruments (previouslyAsylumResearch),Agilent, JPK)andmanyminor suppliers.Within thismarket thecantileversareessentialconsumablesanddeterminetoahighextenttheperformanceoftheinstruments.Suchinstrumentsfindapplicationsinpracticallyallmaterialrelatedinvestigationsanddevelopmentstoday.Theapplicationareasarenumeroussuchas:

Ø ChemistryØ CoatingsØ MicrostructuresØ PhysicsØ Semiconductors,LEDsØ MaterialsScienceØ LifeScience

Inparticular, theupcomingareaofBioscienceand Life Science is looking for specific investigations toarecarriedoutwithimprovedAFMsintheareaof

Ø MolecularElasticityØ ProteinFoldingØ PolymersØ DNAInteratomic/MolecularbondsØ Receptor-ligandbondsØ ColloidalforcesØ AdhesionØ NanoindentationØ andmore...

TheFALCONself-sensingNTRcantileverswilladdressbothapplicationareas.Inthefirstareaitwillallowmoresensitiveinvestigationsinshortertimeswithsmallercantilevers.Forthematerialscienceaswellasthebio-andlifescienceareatheyopenthewholefieldwithAFMimaginginhigh-vacuumenvironmentaswellasofsoftmaterialinliquidsathighspeeds.

WithsuchimprovedresearchandinvestigationtoolsallthesehightechareasinEuropewillbenefit,becausetheywillhaveearlieraccessthanothergroupsoutsideEurope.Therefore,Europe’snanomaterialresearchwillgainanadditionalcompetitiveadvantage.

Page 31: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

TheexpectedimpactontheSMEsThe current product of self-sensing cantilevers of SCL is based on conventional piezo-resistive sensortechnology. Figure 26 shows such a cantilever bondedonto a small PCBwith amicro-connector.With anadaptermodulehostinginadditionanintegratedpreamplifierthesecantileverscanbeuseddirectlyintheAFMsystemsofthe5mainglobalAFMvendors.ThenewFALCONNTR-basedsmallcantileverwillbefullycompatiblewiththeexistingconnectorandadaptionmodule.Therefore,theyareusableatleastin50%oftheinstalledAFMbase.

Figure 26: Pictures of the current self-sensing cantilevers with the connector for easy mounting of the cantilever into the AFM head.

Benefit for NANOSS

ThemainbenefitforNanosswillbethedevelopmentofanewmarketforNTRself-sensingcantileversusingitsuniqueandpatentedFEBID-NTRtechnology.Thisnewapplicationof itstechnologyformsoneof itskeyelementsofNANOSSchiefcompanystrategyonpromotingandestablishinganewindustrialmeasurementstandardofforcesensingdevicesonthenanometerscale.ItsuniqueNTRtechnology,whichovercomesthelimitationsofboththeclassicalopticalmethodsandtraditionalpiezoresistivesensors,enablesthecompanytoactasaworldwidesupplierformanufacturersofAFMandotherhigh-endanalyticdevices.

ThisprojectdemonstratesthekeyUSPs(UniqueSellingPropositions)andbenefitswhichcomealongwiththesensorsprovidedbyNANOSS:

• Independencyfromsubstratematerialsallowstheimplementationofnewsensorconceptsonawiderangeofmaterialsandsurfacessuchasglass,polymers,metals,etc.andthereforeensuresflexibilityandadaptivenesscomparedtotraditionalsiliconbasedmanufacturingtechniques.

• Manufacturing of very small sensor components with dimensions below 100 nm and highlysophisticated 3-dimensional structures enables NANOSS to provide solutions for completely newproductsandnovelapplicationsbeyondtheAFM-businesscase(e.g.inNanoanalytics,Gas-andBio-sensing,pressuresensorsetc.).

• Conventional (top-down)production techniques for integratedsensors (e.g.piezoresistors) requirecleanroomenvironment,photomasksandexpensivesiliconsemiconductorequipment,respectively.IncontrasttotheseconventionaltechniquestheNANOSStechnologyisbasedonadirectstructuring(bottom-up) approach. This approach drastically simplifies conventional lithography and therefore

Page 32: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

allowsnewadaptiverapidprototypingtechniques.Italsohasahugeimpactoncostreductionandproductionefficiencysince investments inmachineryandcostsofmaintenancecanbe reducedatleastbyafactorof10withtheNANOSStechnology.

NANOSSexpects as adirectoutcomeof this cooperation further jointdevelopments fornovelNTRbasedMEMSandNEMSdeviceswiththeotherSMEpartners.

Benefit for AMGT

AMGT strategy is to focus further on development of a large number of MEMS devices withforce/displacement feedback, for different applications. Besides AFM sensors, the company developsdedicatedcompliantmicro-deviceswithforce/displacementoperationcapabilityintherangeofmorethanfourordersofmagnitude.TheNTR-enabledtechnologywillprovideacommonapproachtoovercomethelimitationsofcurrent(“classical”)piezoresistivesensors,renderingthecompanytobecomeaninternationallyrecognizedsupplierofself-sensingMEMS,incl.AFMsensors.ThekeyUniqueSellingPropositionsandbenefitswhichcomealongwiththesensorswithNTRareasfollows:

• Extendingtheself-sensingfunctiononnewclassesofmicro-devicesandmicrosystems.Self-sensingfeedbackwillbeaddedtoboth:devicesmadeofnonsiliconsubstratesaswellastosilicondeviceswithnon-sufficient self-sensing components; NTRs will be especially useful in hybrid micro-systemsapplications.

• Manufacturingofapplicationspecificdevicesinverysmallvolumebytailoredmodificationofsensorcomponents,beyondAFM-compatibleapplications:foradvancedstudiesandforhighlyspecificandlimited-in-volumeapplications.

• Fastprototypingofforce/displacementsensorswithNTRelements–byusingthereadytemplatesandestablished NTR-enabling protocol, prototyping of devices with (extra) feed-back options will beavailableinamaxtwodays.

• AMGTwillbecomeacompetitiveproviderofwiderangeofadvancedproductsandservicesbasedonlow-costandhighaddedvalueNTRtechnology,afteritslicensing.

Benefit for SCL

ThebusinessmodelofSCLisbasedontheroleofatrendsetterinhighlyinnovativecantileversforemergingapplications.Thisallowscompeting successfullywith themaincantilever supplierswithoutpricedamping,whichisnotaffordableforanSME.TheresultsoftheFALCONprojectsignificantlybroadenstheSCLexpertiseandtechnologybaseaswellastheinternationalR&Dnetwork–bothinacademiaandindustry.ThisisthebestbasisforthefutureplanstoexpandthecurrentproductrangewithcompletelynewAFMcantileverssuchasfunctionalizedcantilevers,wherethecantilevertipwillbe“functionalized”withspecificmolecules.Thiswillmakethecantilever“intelligent”.Thismeansthatthecantileverwillnotonlyreactdirectlytosamplesurfacemorphology,butalsotodifferentchemicalcompositions.ThismeansthattheAFMcantileverdevelopstoa“chemicalsensor”.ThetechnologyofNTRcantileversisaprerequisiteforthesefutureproductdevelopments.

Page 33: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

1.4.1. Main dissemination measures

ThedisseminationoftheALBICANprojectresultsstartedrightfromthebeginningoftheprojectandactionswillstillcontinue.ThemaindisseminationactivitiesduringthelifetimeoftheALBICANprojectincluded:

• Developmentandsetupoftheprojectspecificwebsite

• Publicationsinscientificjournals

• Attendanceandoralpresentationsatinternationalconferencesandfairs

• TrainingactivitiesandmeetingsoftheALBICANpartners

• Promotionactivitiesandworkshops

SetupofprojectspecificwebsiteThe FALCON project website was implemented and can be found online (URL:http://falcon.freesponsible.info).Itinformsinterestedvisitorsabouttheprojectandgivesabasicintroductiontothefabricationtechniquesthatareused.

TheFALCONwebsite(URL:http://falcon.freesponsible.info)issetupusingthepublishingtoolWordPress.ThewebsiteservesasaplatformwheregeneralinformationabouttheFALCONprojectisgiven.Furthermore,thescientific background concerning nanogranular tunneling resistors, the preparation via focused electron-beam-induceddepositionandtheapplicationforhigh-speedimagingusingatomicforcemicroscopyinliquidsisexplained.

Figure 27: Welcome page of the FALCON website.

Page 34: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

MainDisseminationActivities,meetingsandcustomervisits:

DuringthecourseoftheFALCONprojectscientificexpertsandusersoftheNTRdepositiontechnologyhavebeeninvitedtoourproductionandshowroomfacilitiesinordertospreadourresultsandroadmapformarketentry.Thefollowingmeetingshavebeenheldduringtheproject:

• Formalandun-formalvisitstothefacilityofAMG-T,incl.thegroupledbyMr.Prof.SiegfriedSelberherr-TUVienna,April30th,2014andtheDelegationfromIMEC,BelgiumledbyDr.JoDeBoeck,SeniorVicePresidentandCorporateTechnologyOfficer,May22nd,2014

• VisitofscientistsfromJKULinztoSCLledbyDr.AndreasEbner:Presentationofself-sensingcantilevertechnologyandoftheFALCONFastScanupgradepackage

• VisittothefacilityofatopequipmentsupplierEVG:Presentationofself-sensingcantilevertechnology,July21st,2015.

TheactivitiesandmeetingsoftheFALCONpartnersduringtheFALCONprojectaresummarizedinthetablebelow.Inordertokeepallpartnersuptodateinthedailyoperationalworkoftherelevantworkpackages,

Fig. 1. Photo taken during the presentation at Electronica 2014 conference in Sofia, May 15, 2014

Fig.2.PhotostakenduringthevisitofthegroupfromIMEC,Belgium–(left)Explanationofthecurrentlyrunningprojects(FALCON–therightmostontheslide);(right)DiscussionwithDr.DeBoeckonapplicabilityofself-sensingbulkmicromachinedcantileversfornon-AFMmeasurements

Page 35: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

discusssolutionstrategiesforemergingproblemsandplanthenextnecessarysteps,regularbi-monthlyvideoSkypeconferenceshavebeenscheduled.ThehighdegreeofparticipationinthevideoSkypeprojectmeetingsreflectedthedeep involvementofallpartners–membersofall threeprojectpartnersparticipated ineachSkypemeeting.Extensiveandspecificminutesofthemeetingswiththemainemphasisontheactionpointsagreeduponinthemeetingsdocumentsthecontinuousprojectprogressandthecooperationbetweenallpartners.

BesidestheSkypemeetings,severalinpersonmeetingswereorganized.TheFALCONprojectkick-offmeetingtookplaceinLangenlois,Austria(2013-11-14/15)withallprojectmembersparticipating.Additionally,a2ndfullprojectmeetingtookplaceatAMGTinBotevgrad,Bulgaria(2014-04-28/29)inordertodiscusstheprojectprogress andnecessarynext steps. The thirdprojectmeetingwasheld inDarmstadt (July16th-17th, 2014)wheretheprogressofprojectimplementationvs.challengesanalyses,havebeendone.AfulldaySTEERINGBOARDMEETINGof FALCONproject,washeld after the reviewmeeting inBrussels (2014-09-12). Besidesregular issues,theconceptofmosteffectivedistributionofNTRcantileversfabricationinasharedprocessbetweenAMGTandSCL,hasbeenformallydiscussed.TheforthprojectmeetinghasbeenorganizedinVienna(July8th-9th,2015),wheretheprogressinachievingtheDeliverablesandMShasbeendiscussedandreportedintheminutesofthemeeting.

Efficientdisseminationoftheknowledgebetweenthepartnerstookplacebyseveralbi-andtri-lateralvisits(seetablebelowfordetails).Also,oralpresentationswerescheduledtodisseminatetheresultsoftheFALCONprojecttotheoutsideworld.TheuniquefeaturesoftheNTR-technologyandadvertisetheFALCONcantilevershavebeencommunicatedtotheleadingexpertsinthescientificcommunity.

Bi-Monthly SkypemeetingwithallprojectpartnersAim: Presentation of results, definition of work schedule, discussions concerning experimentalproblemsandpossiblesolutions

11/2013 2Daykick-offmeetinginLangenlois,Austriawithallthreepartners12/2013 Ch.Schwalb(NANOSS)andE.Fantner(SCL)visitAMGTinBotevgrad(Bulgaria)

Aim:AnalyzetheexistingSEMandequipmentneededforsuccessfullyupgradingthePhilipsXL4004/2014 2ndfullprojectmeetingatAMG-TinBotevgrad(Bulgaria)withallprojectpartners

Aim:Detaileddiscussionsonprojectprogressandnecessarynextsteps07/2014 3rdfullprojectmeetingatAMG-TinDarmstadt(Germany)withallprojectpartners

• Aim:Reportsonprojectprogressandnecessarynextsteps;dedicatedmeetingwithOFFIS08/2014 Ch.Schwalb(NANOSS)visitsSCLinVienna(Austria)

Aim:AFMtrainingandjointexperiments08/2014 3daysvisitofTobiasStrunz(SCL)toAMGT

Aim:XL-40andCantilevertechnologyknow-howtransfertoSCL08/2014 Ch.Schwalb(NANOSS)andEJF(SCL)visitsJKULinzProf.HinterdorferInstituteforBiology(Austria)

Aim:Planningoffirstexperimentsattest-customersite09/2014 SteeringBoardmeetingafterinterimreportmeetinginBrusselswithallprojectpartners09/2014 3daysvisitofPeterZiger(SCL)toAMGT

Aim:XL-40andCantilevertechnologyknow-howtransfertoSCL10/2014 VisitofDr.Ch.Schwalb(NANOSS)to(OFFIS)inpreparationofNTRsensorelementsrunbyMB12/2014 Un-formal resolution on reallocation of NTR deposition facility from AMGT (Botevgrad) to SCL

(Vienna)2015/Q1 WorkshopatSCLforMEMS/NEMSapplications2015/Q2 DirectNTRdepositionknowledgetransferfromNANOSStoSCLbyemploymentofDr.Ch.Schwalb

Page 36: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

2015/Q2+Q3 DirectNTRdepositionknowledgetransferfromNANOSStoOFFISbyDr.AlexanderKaya07/2015 4thfullprojectmeetingatSCLinVienna(Austria)withallprojectpartners

Aim:• Discussprojectprogressandnecessarynextsteps

PreparationofFALCONfinalreport2015/Q3 ExperimentsDr.Ch.SchwalbwithDr.MichaelLeitneronbiosamples2015/Q3 ExperimentsDr.Ch.SchwalbwithDr.MichaelLeitneronvacuumapplications

Oral/PosterPresentations:DuringFALCONproject,relatedresultshavebeenpresentedatthefollowingevents:

• V.Stavrov(AMG-T)madeanoralpresentationofcurrentFALCONprojectresultsatSecondNationalCongressinPhysics,November2013,Sofia,titled:V.Stavrov,P.Vitanov,G.Stavreva,“Self-sensingMicrocantileverSensorsforAdvancedApplications”,

• V.Stavrov(AMG-T)madeanoralpresentation,titled:“3DPositionsensorswithSelf-sensingDetection”,atNationalConferenceElectronica2014,Sofia,May15,2014,pp.5-25(invitedtalk)

• 2014,July,22-24.:ChristianSchwalb(Nanoss)hadanoralpresentationatthe5thFEBIDworkshopinFrankfurt,Germany,titled:“Newpathwaysforultra-smallMEMS/NEMSforcesensorsystemsusingnanogranularmetals”

• 2014,Sept,7-10:VladimirStavrov(AMG-T)presentedaposterattheEurosensors2014inBrescia,Italy,titled:“MEMSsensorsformm-rangedisplacementmeasurementswithsub-nmresolution”

• 2014,Sept.,09-10:ErnestJ.Fantner(SCL)presentedaposterattheInternationalMicroscopyCongressinPrague(IMC2014)–titled:“BeyondCurrentSEM-AFMSolutions:AHighlyFlexiblein-situAFMforCorrelatedMicroscopyinMicromechanicalTesting”

• 2014,Nov.30toDec5,Boston:Prof.GeorgE.Fantner(EPFL),presentedoraltalkattheMaterialResearchSocietyfallmeeting,titled:“NanoscaleCalorimetryRevealsHigherStabilityofCholesterolInducedNanoscaleDomainsinLipidBilayersandMulti-FrequencyAFMintheMHzRegime”

• AlexanderDeutschinger,ErnestJ.Fantner(SCL),presentedaposter,titled:“Self-sensingAFMcantileversforbioAFMapplications”,atXVIIannualLinzWinter-Workshop2015,Jan.30-Feb.2,2015(poster)

• Rodrigo Pacher Fernandes (Nanoss) had an oral presentation at TechConnect World/NationalInnovation Summit & Showcase (June 14-17, 2015), Washington, D.C., U.S.A., titled: “Novel 3D-PrintingontheNanoscaleforTailoredSensorsandElectronics”

• AlexanderKaya (Nanoss)presentedaposteratTechConnectWorld/National InnovationSummit&Showcase(June14-17,2015),Washington,D.C.,U.S.A.,titled:“HowMicroSensorsinfluenceScience&Technologyand“FastAll-ElectricCantileverforBio-Applications”

• 2015,June8-9:Dr.Ch.Schwalb(SCL)madeanoralpresentationattheNanoforumWorkshopinLinz,Austria,titled:“Self-SensingCantileversforNanoanalyticsandCharacterizationofNanostructures”

• 2015,June21-24:Prof.GeorgE.Fantner(EPFL)presentedaninvitedtalkintheInternationalScanningProbeMicroscopyConference(ISPM),RiodeJaneiro,Brazil,titled:“Timeresolvedatomicforcemicroscopyimagingofbiologicalprocesses”.

• 2015Nov.30th–Dec.5th:Dr.Ch.SchwalbandDr.ErnestJ.Fantner(SCL)attendedtheMRSfallmeetinginBoston,USA.Oralpresentationtitled“CorrelatedAFM&SEMMicroscopyofNanostructuredMaterials”

PublicationsThe project team had plans to publish the project results in noted journals until the end of the projectcoordinated with the communication plan, taking into account the IPR and competition aspects. A jointmanuscriptwith the leadingexperts from theALBICANconsortiumentitled "Additive rapidprototypingof

Page 37: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based

nanogranularstrainsensorsformicro-andnanomechanicalresonators"hasbeensubmittedtotheJournalNatureNanotechnologyonMarch12th,2015.ThemanuscripthighlightstheprojectresultsfromtheALBICANprojectandgivesanoutlookon theFALCONprojectgoals.Theconsortiummemberswere regret togetanegativedecisionofthereviewersandamodifiedpaperentitled"3Dprintingofnanogranulartunnellingstrainsensorsonsub-micrometercantileversfornextgenerationhigh-speedatomicforcemicroscopy"(referencenumber: NCOMMS-15-19666), has been submitted to Nature Communications on October 4th, 2015. Themanuscriptreviewistakingplace,currently.

ExploitationofresultsThedetailedplanfortheuseandexploitationofforegroundsisexplainedindepthinchapter2.

1.5. Address of the project public website and relevant contact details

ProjectspecificwebsiteProjectwebsiteaddress: http://falcon.freesponsible.info

ContactDetailsParticipant1(Coordinator):SCL-Sensor.Tech.FabricationGmbHwww.sclsensortech.comSeestadtstr.27,1220Vienna,AUSTRIAMr.Dr.ErnestJ.Fantner,+43-664-3937743,[email protected] Participant2:NanoscaleSystems,NANOSSGmbHwww.nanoss.deRobert-Bosch-Straße7,64293Darmstadt,GERMANYMr.Dr.AlexanderKaya,+49-6151-6674037,[email protected]:AMGTechnologyOODwww.amg-t.comMicroelectronicaIndustrialZone,2140Botevgrad,BULGARIAMr.VladimirStavrov,+359-72366135,[email protected]

Page 38: PROJECT FINAL REPORT - CORDIS · PROJECT FINAL REPORT Grant Agreement number: 605389 Project acronym: FALCON ... in the global market of MEMS (micro-electro-mechanical systems) based