8
715 This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Journal of the Korea Concrete Institute Vol. 26, No. 6, pp. 715~722, December, 2014 http://dx.doi.org/10.4334/JKCI.2014.26.6.715 내부 폭발하중을 받는 철근콘크리트 코어의 연쇄붕괴 해석 김한수 1)* 안재균 1) 안효승 1) 1) 건국대학교 건축공학과 Progressive Collapse Analysis of Reinforced Concrete Core Structure Subjected to Internal Blast Loading Han-Soo Kim, 1)* Jae-Gyun Ahn, 1) and Hyo-Seong Ahn 1) 1) Dept. of Architectural Engineering, Konkuk University, Seoul 143-130, Korea ABSTRACT In this paper, internal blast effect of reinforced concrete core structure were investigated using Ansys Autodyn, which is a specialized hydrocode for the analysis of explosion and impact. It is expected that internal blast case can give additional damage to the structure because it causes rebound of blast loads. Therefore, in this paper, the hazard of internal blast effect is demonstrated using UFC 3-340-02 criteria. In addition, analysis result of Autodyn, experimental result regarding rebound of blast load, and example of UFC 340-02 are compared to verify that Autodyn can analyze internal blast effect properly. Furthermore, progressive collapse mechanism of core structure which is one of the most important parts in high rise buildings is also analyzed using Autodyn. When internal blasts are loaded to core structure, the core structure is mostly damaged on its corner and front part of core wall from explosives. Therefore, if the damaged parts of core wall are demolished, progressive collapse of the core structure can be initiated. Keywords : internal blast analysis, RC core structure, progressive collapse, autodyn 1. 1) 최근 테러에 대한 경각심이 높아지면서, 학계에서도 폭 발하중이 구조물에 미치는 영향에 대한 연구가 활발히 진 행되고 있다. 특히 도심지에서는 이러한 폭발사고로 인해 인명피해뿐 아니라 주요 시설물에도 큰 손상이 가해진다. 폭발하중으로부터 인명 및 시설물을 안전하게 보호하기 위해서는 기본적으로 폭발하중을 받은 구조물의 거동에 대한 이해가 필요하다. 일반적으로, 콘크리트는 다른 재 료들에 비해서 상대적으로 높은 폭발저항성을 가진 재료 이지만, 특정 부재손실로 인하여 인접부재까지 붕괴되는 연쇄붕괴와 같은 현상을 방지하기 위해서는 재료 외적으 로 구조적인 보강이 필요하다. 이러한 보강을 위해서는 폭 발하중을 받는 구조물에 대한 해석이 선행 되어야 한다. 국외에서는 폭발하중을 받는 구조물의 연쇄붕괴 가능성 을 판단하고 연쇄붕괴를 방지하기 위해서 국가기관 차원 에서 가이드라인을 제시하고 있다. GSA 1) (General Service Administration)DoD 2) (Department of Defense)가 대표적 *Corresponding author E-mail : hskim@konkuk.ac.kr Received April 21, 2014, Revised June 17, 2014, Accepted October 20, 2014 2014 by Korea Concrete Institute 으로 연쇄붕괴와 관련된 가이드라인을 제시하고 있으며, 그동안 이 기관들에서 연쇄붕괴 해석기술로서 제시하고 있는 기둥제거 시나리오를 이용하여 연구 3,4,5,6) 를 하는 경 우가 대부분이었다. 하지만 기둥제거 시나리오는 폭발 물의 크기와 거리를 고려하지 않기 때문에 보수적인 해 석결과를 도출하게 된다. 이러한 이유 때문에 최근에는 컴퓨터 기술의 발달을 바탕으로 하여 유체해석과 구조해 석이 동시에 가능한 하이드로코드 7) 를 이용한 해석 방법이 많이 연구 8,9,10,11) 되고 있다. 초고층 건물과 같은 규모가 큰 구조물의 경우에는 연쇄붕괴 위험도를 적절하게 평가하기 위해서 구조부재의 손상정도를 파악하고, 폭발 후 부재의 잔류능력까지 고려하여 판단해야 한다. 그렇기 때문에 밀한 연쇄붕괴 해석에는 하이드로 코드를 이용한 해석이 더 적절하다고 판단되어진다. 하이드로 코드를 이용한 해석에서 중요한 요건 중 하 나가 폭발하중의 위치 선정이다. 폭발하중의 위치에 따라 해석의 결과가 좌우될 수 있기 때문에 해석 목적에 따른 적절한 위치선정이 필요하다. 폭발하중은 위치에 따라서 두 가지 경우로 나누어 생각할 수 있다. 구조물의 외부에 위치한 경우와 구조물 내부에서 폭발하중이 일어나는 경 우이다. 구조물 외부에서 폭발하중이 작용하는 경우는 많 연구가 진행되었다. 일단 부재단위의 연구 12,13) 가 활발

Progressive Collapse Analysis of Reinforced Concrete Core …C).pdf · 2018-01-06 · example of UFC 340-02 are compared to verify that Autodyn can analyze internal blast effect properly

Embed Size (px)

Citation preview

  • 715This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Journal of the Korea Concrete InstituteVol. 26, No. 6, pp. 715~722, December, 2014http://dx.doi.org/10.4334/JKCI.2014.26.6.715

    1)* 1) 1)

    1)

    Progressive Collapse Analysis of Reinforced Concrete Core Structure Subjected to Internal Blast Loading

    Han-Soo Kim,1)* Jae-Gyun Ahn,1) and Hyo-Seong Ahn1)1)Dept. of Architectural Engineering, Konkuk University, Seoul 143-130, Korea

    ABSTRACT In this paper, internal blast effect of reinforced concrete core structure were investigated using Ansys Autodyn, which is a specialized hydrocode for the analysis of explosion and impact. It is expected that internal blast case can give additional damage to the structure because it causes rebound of blast loads. Therefore, in this paper, the hazard of internal blast effect is demonstrated using UFC 3-340-02 criteria. In addition, analysis result of Autodyn, experimental result regarding rebound of blast load, and example of UFC 340-02 are compared to verify that Autodyn can analyze internal blast effect properly. Furthermore, progressive collapse mechanism of core structure which is one of the most important parts in high rise buildings is also analyzed using Autodyn. When internal blasts are loaded to core structure, the core structure is mostly damaged on its corner and front part of core wall from explosives. Therefore, if the damaged parts of core wall are demolished, progressive collapse of the core structure can be initiated.

    Keywords : internal blast analysis, RC core structure, progressive collapse, autodyn

    1. 1)

    ,

    . .

    . ,

    ,

    . .

    . GSA1) (General Service Administration) DoD2) (Department of Defense)

    *Corresponding author E-mail : [email protected] April 21, 2014, Revised June 17, 2014,

    Accepted October 20, 2014

    2014 by Korea Concrete Institute

    ,

    3,4,5,6) .

    .

    7)

    8,9,10,11) . , .

    .

    .

    . .

    . . 12,13)

  • 716 266 (2014)

    Fig. 1 Typical blast pressure-time graphs25)

    Fig. 2 Typical internal explosion pressure-time graphs22)(a) Case : wall = 1 (b) Case : wall = 4

    Fig. 3 Condition of structure24)

    .

    , , 14,15,16,17) . 22,23) DoD UFC 3-340-02 24)

    . UFC 3-340-02

    , Ansys Autodyn .

    Autodyn .

    ,

    .

    2.

    2.1

    .

    , .

    Kinney 22)

    .

    .Fig. 1 Smith 25)

    - , Fig. 2 Kinney - .

    , . ,

    . , , min . , . . , (a) (b) , (c) . . , .

    2.2

    UFC 3-340-02 24)

    . . , Fig. 3 Fig. 4

    .

  • 717

    (a) Maximum presure (b) Impulse

    Fig. 4 Example of empirical graph24)

    Table 1 Comparison of maximum pressure on multiple conditions

    h/H l/L (ft/lb1/3)Wall = 1

    (psi)Wall = 4

    (psi)

    0.1

    0.11.6 749 750

    1.13 1595 1597

    0.251.6 745 749

    1.13 1792 1798

    0.51.6 799 801

    1.13 1903 1906

    0.25

    0.11.6 797 805

    1.13 1897 1897

    0.251.6 850 852

    1.13 2003 1910

    0.51.6 890 901

    1.13 2098 2099

    0.5

    0.11.6 791 795

    1.13 2000 2000

    0.251.6 946 952

    1.13 2190 2203

    0.51.6 995 1000

    1.13 2798 2806

    Table 2 Comparison of impulse on multiple conditions

    h/H l/L (ft/lb1/3)Wall = 1

    (psi-ms/lb1/3)Wall = 4

    (psi-ms/lb1/3)

    0.1

    0.11.6 75 140

    1.13 105 461

    0.251.6 70 140

    1.13 280 493

    0.51.6 85 159

    1.13 130 250

    0.25

    0.11.6 75 150

    1.13 120 220

    0.251.6 81 160

    1.13 132 230

    0.51.6 95 179

    1.13 150 280

    0.5

    0.11.6 74 150

    1.13 90 190

    0.251.6 75 151

    1.13 103 207

    0.51.6 86 170

    1.13 110 250

    Fig. 5 UFC sample criteria24)

    N l/L, h/H, L/H, L/, . H , h , L , l , , . . 4 , . H=16 m, L=10 m, , h/H, l/L, (

    ) Table 1 , Table 2 .

    , , 2 , 4.6 . H L .

    ,

    Kinney .

    .

    3. Autodyn

    3.1 Autodyn UFC

    Autodyn , UFC 3-340-02

  • 718 266 (2014)

    Fig. 6 Analytical model Condition

    Table 3 Peak pressure of analysis model

    with buildings and blocks

    (kPa)with

    buildings only (kPa)

    without reflection

    (kPa) Front Side

    Autodyn-3D 242.90 23.27 71.73 35.17Experimental

    results 295.80 24.74 74.72 36.49

    Conwep 83.65 - 83.22 -Analysis in this study 247.60 23.90 74.50 37.20

    Autodyn . Fig. 5 Autodyn . H=16 ft, L=32 ft, h=6 ft, l=12 ft, =5.33 ft.

    UFC . Autodyn 490 . 0.81 ms Autodyn 0.81 ms . 11.8 MPa, Autodyn 10.2 MPa. 111 psi-ms/lb1/3

    , Autodyn 101 psi-ms/lb1/3.

    UFC .

    3.2 Autodyn Channeled Effect

    UFC Autodyn . UFC

    Autodyn .

    Autodyn

    . Fairlie 14,15) . Autodyn . .

    Fig. 6 . 2 2 8 g TNT . TNT

    . , ,

    3 . Autodyn ,

    , Autodyn Conwep Autodyn . Autodyn TNT , Conwep TNT . Autodyn .

    Table 3 , Autodyn .

    . Conwep ,

    . Autodyn

    . Autodyn

    , Conwep . .

    Conwep .

    , . Conwep .

    , Autodyn , TNT .

  • 719

    (a) TNT 100 kg (b) TNT 500 kg

    Fig. 7 Destruction shape of plain concrete

    (a) TNT 100 kg (b) TNT 500 kg

    Fig. 8 Destruction shape of reinforced concrete

    (a) Structural schematic view showing

    (b) Bending moment diagrams

    Fig. 9 Structural Analysis about Destruction shape

    4.

    .

    4 .

    TNT . , 11.5 m, 14.0 m, 4.0 m. , 1 m 0.5 m . 20) . , 3 . TNT 100 kg 500 kg , . TNT Fig. 7 Fig. 8 . , .

    TNT 100 kg , .

    . TNT 500 kg , TNT 100 kg

    . TNT .

    TNT 100 kg . .

    21)

    .

    Fig. 9 . Fig. 9(a)

    . Fig. 9(b) .

    ,

    . .

    .

    5.

    , .

    .

    . Fig. 10 (Lintel)

    . 13.5 m 15.0 m

  • 720 266 (2014)

    Fig. 10 Analysis model

    Fig. 11 Time-dependent collapse Patterns

    , 3.5 m 4.0 m. 1.0 m, 1.0 m . , . 1 m 0.25 m .

    . 40% 28 MPa .

    . 70 MPa

    TNT . TNT . 4000~6000 kg TNT 4000 kg . TNT

    .Fig. 11

    . . , 150 ms

    . . 500 ms . 1000 ms

    . 1500 ms 2000 ms

    . , 1500 ms 2.4 m , 2000 ms 3.2 m .

  • 721

    . ,

    , . .

    , ,

    , .

    6.

    UFC

    , Autodyn .

    Autodyn . .

    1) UFC

    ,

    . ,

    .2) ,

    . 3)

    ,

    .

    . - ,

    .

    .

    .

    2013 . : 13CHUD-B059231-05-000000.

    References

    1. GSA, Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization, U.S General Services Administration, 2003.

    2. DoD, Design of Buildings to Resist Progressive Collapse (UFC 4-023-03), U.S Department of Defense, 2010.

    3. Iribarren, S., Berke, P., Boulillard, Ph., and Massart, J., Investigation of the Influence of Design and Material Parameters in the Progressive Collapse Analysis of RC Structures, Engineering Structures, Vol. 33, 2011, pp. 2805-2820.

    4. Kim, J. An D., Evaluation of Progressive Collapse Potential of Steel Moment Frames Considering Catenary Action, The Structural Design of Tall and Special Buildings, Vol. 18, 2009, pp. 455-465.

    5. Mohamed, A., Assessment of Progressive Collapse Potential in Corner Floor Panels of Reinforced Concrete Buildings, Engineering Structures, Vol. 31, 2009, pp. 749-757.

    6. Tsai, H. and Lin, H., Dynamic Amplification Factor for Progressive Collapse Resistance Analysis of an RC Building, The Structural Design of Tall and Special Buildings, Vol. 18, 2009, pp. 539-557.

    7. Zukas, A., Introduction to Hydrocodes, Elsevier, UK, 2004, pp. 313.

    8. Jayasooriya, R., Thambiratnam, P., Perera, J., and Kosse, V., Blast and Reidual Capacity Analysis of Reinforced Concrete Framed Buildings, Engineering Structures, Vol. 33, 2011, pp. 3483-3495.

    9. Kelliher, D. and Sutton-Swaby, K., Stochastic Representation of Blast Load Damage in a Reinforced Concrete Buildings, Structural Safety, Vol. 34, 2012, pp. 407-417.

    10. Luccioni, M., Ambrosini, D., and Danesi, F., Analysis of Building Collapse under Blast Loads, Engineering Structures, Vol. 26, 2004, pp. 63-71.

    11. Shi, Y., Li, X., and Hao, H., A New Method for Progressive Collapse Analysis of RC Frame under Blast Loading, Engineering Structures, Vol. 32, 2010, pp. 1691-1703.

    12. Kim, H. S. and Park, J. P., An Evaluation of Blast Resistance Performance of RC Columns According to the Shape of Cross Section, Journal of Computational Structural Engineering Institute of Korea, Vol. 23, No. 4, 2010, pp. 387-394.

    13. Kim, H. S. and Lee, J. Y., An Evaluation of Blast Resistance Performance of RC Columns by Using P-M Interaction Diagram, Journal of Architectural Institute of Korea, Vol. 27, No. 10, 2011, pp. 47-54.

    14. Fairlie, G., Efficient Analysis of High Explosive Air Blast

  • 722 266 (2014)

    in Complex Urban Geometries Using the AUTODYN-2D & 3D Hydrocodes, Analytical and Exprimental Methods, Proceedings of the 15th Int. Symposium on the Military aspects of Blast and Shock, Banff, Canada, 1997.

    15. Fairlie, G., The Numerical Simulation of High Explosives using AUTODYN-2D & 3D, Proceedings of the Explo 98, Institute of Explosive Engineers 4th Biannual Symposium, 1998.

    16. Zhao, F., Chen, Y., Wang, Y., and Lu, J., Damage Mechamism and Response of Reinforced Concrete Containment Structure under Internal Blast Loading, Theoretical and Applied Fracture Mechanics, Vol. 61, 2012, pp. 12-20.

    17. Deng, G., Research on Internal explosive Loadings and Blast Resistant Characteristics of Discrete Multi-layered Explosion Containment Vessels, Journal of Pressure Equipment and Systems, Vol. 6, 2008, pp. 217-224.

    18. Clutter, K., Mathis, T., and Stahl, W., Modeling Evironmental Effects in the Simulation of Explosion Events, International Journal of Impact Engineering, Vol. 34, 2007, pp. 973-989.

    19. Zheng, Y., Deng, G., Chen, Y., Sun, G., Hu, Y., Zhao, L., and

    Li, Q., Experimental Investigation of Discrete Multilayered Vessels under Internal Explosion, Combustion, Explosion, and Shock Waves, Vol. 42, 2006, pp. 617-622.

    20. Kim, H. S., Ahn, H. S., and Ahn, J. G., Erosion Criteria for the Blast Analysis of Reinforcement Concrete Members, Journal of Architectural Institute of Korea, Vol. 30, No. 3, 2014, pp. 21-28.

    21. Cho, H. B., Kim, J. J., Lee, J. H., Shin, J. K., Jeong, Y., and Kim, G. Y., Evaluation on the Blast-Resistant Performance of Fiber Reinforced Concrete Box Structures by Contact Explosion and Pressure, Journal of 2013 Spring Conference of Korea Concrete Institute, 2013, pp. 369-370.

    22. Kinney, G. and Graham, K., Explosive Shocks in Air, U.S, 1985, pp. 137.

    23. Mays, G. and Smith, P., Blast Effect on Buildings, UK, 1995, pp. 40.

    24. DoD, Structures to Resist the Effects of Accidental Explosions (UFC 3-340-02), U.S Department of Defense, 2008.

    25. Smith, P.D., Hetherington J G, Blast and ballistic loading of structure, Laxton's, Great Britain, 1994, pp. 336.

    Ansys Autodyn . . , UFC 3-340-02 . Autodyn UFC Autodyn ., Autodyn . , . , .

    : , , ,

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure true /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /NA /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice