73
AD-752 468 PROGRAM SCORES - SHIP STRUCTURAL RESPONSE IN WAVES Alfred 1. Raff Oceanics, Incorporated 51 Prepared for: Ship Structure Committee Naval Ship Engineering Ceftter July 1972 DISTRIBUTED BY: National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151 lill III --

Program Scores-ship Structural Response in Waves

Embed Size (px)

DESCRIPTION

program scroes

Citation preview

  • AD-752 468

    PROGRAM SCORES - SHIP STRUCTURAL RESPONSEIN WAVES

    Alfred 1. Raff

    Oceanics, Incorporated

    51

    Prepared for:

    Ship Structure CommitteeNaval Ship Engineering Ceftter

    July 1972

    DISTRIBUTED BY:

    National Technical Information ServiceU. S. DEPARTMENT OF COMMERCE5285 Port Royal Road, Springfield Va. 22151

    lill III --

  • PROGRAM SCORES-SIHIP STRUCTURAL

    forpv. mis m -iot h s cbi , thse

    NATIONAL Tt:C:-NICAL ToC14 P19,IU~ORtAT!O-N SERVICE J

    . ..4

    'A7 I15

  • SHIP STRUCTURI COMMITTKEA4 INTERAGENCY ADVISORY

    COMMIYTEE DEDICATED TO 44PROVINGTHE STRUCTURE OF SHIPS

    MAEABER AGENCIES: ADDRESS CORRESPONDENCE TO:LINI TED STATES COAST GUAMI SECXTARYNAVAl S)HP SYSTEMS COLWUA SHMP STFRUCTLU COMMITTEEMILITARY SEALWIT CONSAI4O U.S. COAST GUARD HEADOUARIERSMARITIME ADMINISTRATION WASHINGTON. D.C. 20591AMERICAN WU-MAU OF SHIPM? N

    SR-1741972

    A major portion of t-z effort of the Ship Structure Committeeprogrm has been devotoa to improving capability of predictingthe loads which a ship's hull experiences.

    This report contains itails of a computer program, SCORES,Which predicts these loads. Details of the development andverification of the program are contained in SSC-229, Evaluationand Verification of Computer Calculations of Wave-Induced ShipStzuctural Loads . Additional information on this program maybe ofaid in SSC-231, Further Studies of Computer Simulation ofSlamming and Other Wave-Induced Vibratory Structural Loadings.

    Coments on this report would be welcomed.

    Sincerely,

    Rear Admiral, U. S. Coast Guard- ."- d Chairman, Ship Structure Committeei ii i i i ii............... .... ...

    ".

    II

  • UNCLASSIFIED 41S rt Clai fi4t.if o~n

    _A

    DOCUMENT CONTROL DATA. R&D~ ~~~bI i~.fg~~'.qFil. NJ 1 .1b 7.t -i 4 'jlg .i Imun T nn I-., W. -leJ hn Iit. ,ee report a~I. 1-ulhd)

    IO'. .A -- , *C't W-.p..ralea oth.I r. rrl. btVO ''1!l CLA,$I 'C 0IC,SUnclassified ?Oceanics, Inc.Plainview, New York

    Program SCORES -- Ship Structural Response in Waves

    4 0rCSCRIPII v E NOTE, (Type olf rport aid enclr,,Ste dat-l I

    A* -. 4OQ ,IS (Flt.. n ft, ud. V!X ~ s. I ) '0WtlI. I

    A. I. Raff

    6 REPOfl' DATE T*OTAL -40 01 PAGES 17b No or REFSf July 1972 5368CONTRACT OP GnAl.! NO IdOQIGNA!OAR% REPORT ! DAS

    P.O#E1

    NOE 1__0

    N00024-7-957 0EP REPOR .,OIS) (Any other n~mbetA rhoe nr"y be asignedthis *epo.l)

    SSC-230t I S CI' PUTION STAEMENT!

    Unlimited

    R T Naval Ship Systems CommandInformation necessary for the use of the SCORES digital compu-

    ter program is given. This program calculates both the vertical andlateral plane motions and applied loads of a ship in waves. Striptheory is used and each ship hull cross-section is assumed to be ofLewis form for the purpose of calculating hydrodynamic forces. Theregular and irregular wave results can be obtained, including short

    crested seas (directional wave spectrum). All three primary shiphull loadings are computed, i.e. vertical bending, lateral bendingand torsional moments.

    All the basic equations used in the analysis are given, aswell as a description of the overall program structure. The inputdata requirements and format are specified. Sample input and out-put are shown. The Appendices include a description of the FORTRANprogram organization, together with flowcha;-ts and a complete cross-referenced listing of the source language,

    "DD ItR' (PAGE UNCLASSIFIEDS/N 0101.807.6801 Security C,,liificatio !

    "" .I

    ii- - ~ , - - ---------*---..-.-*-...--,

  • r-A

    SSC-230

    Final Report

    Project SR-174, "Ship Computer Response"( to the

    Ship Structure Committee

    PROGRAM SCORES - SHIP STRUCTURALRESPONSE IN WAVES

    byAlfred I. RaffOceanics, Inc.

    under

    Department of the NavyNaval Ship Engineering CenterContract No. N00024-70-C-5076

    This document has been approved for public release and

    L sale; its distribution is unlimited.

    U. S. Coast Guard Headquartm'sWashington, D. C.1972

  • ABSTkACT

    Information necessary for the use of the SCORES digital compu-ter program is given. This program calculates both the vertical andlateral plane motions and applied loads of a ship in waves. Striptheory is used and each ship hull cross-section is assumed to be ofLewis form for the purpose of calculating hydrodynamic forces. Theship can be at any heading, relative to the wave direction. Bothregular and irregular wave results can be obtained, including shortcrested seas (directional wave spectrum). All three primary shiphull loadings are ccmputed, i.e. vertical bending, lateral bendingand torsional moments.

    All the basic equations used in the analysis are given, aswell as a description of the overall program structure. The inputdata requirements and format are specified. Sample input and out-put are shown. The Appendices include a description of the FORTRANprogram organization, together with flowcharts and a complete cross-referenced listing of the source language.

    ii

  • pJ

    - -. -..- ' -

    7I

    CONTENTSPage

    INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . 1

    METHOD OF ANALYSIS ............ ...................... 1VERTICAL PLANE EQUATIONS ....... ................... 3LATERAL PLANE EQUATIONS ........ ................... 8WAVE SPECTRA EQUATIONS .......................... .. 16NON-DIMENSIONAL FORMS ...... ... .................... 19

    PROGRAM ORGANIZATION ....... ...................... .. 20GENERAL ................ ...................... 20RESTRICTIONS . . . . . . . . . . . . . . . . . . . . . . ... 21RUNNING TIME ............ ......................... 22

    DATA INPUT ........... ........................... .. 22UNITS ........... ............................ .. 22DATA CARD PREPARATION ......... .................... 23SAMPLE INPUT .......... ......................... 30

    PROGRAM OUTPUT ............ ......................... 29DESCRIPTION ....................................... 29SAMPLE OUTPUT ............ ........................ 32

    ERROR MESSAGES .............. ........................ 37

    ACKNOWLEDGEMENTS ..................................... 37

    APPENDIX A - PROGRAM DESCRIPTION ...... ............... 38

    APPENDIX B - FLOWCHARTS ...... ................... ... 40

    APPENDIX C - LISTING ........ ................... .. 52

    ii1

    I4

    -V . - -- - - - - -- -

  • r SHIP STRUCTURE COMMITTEEThe SHIP STRUCTURE COMMITTEE is constituted to prosecute a research

    program to improve the hull structures of ships by an extension of knowledgepertaining to design, materials and methods of fabrication.

    l ! RADM W. F. Rea, III, USCG, ChairmanChief, Office of Merchant Marine Safety

    U. S. Coast Guard Headquarters

    Capt. J. E. Rasmussen, USN Mr. E. S. DillonHead, Ship Systems Engineering Chief

    and Design Department Office of Ship ConstructionNaval Ship Engineering Center Maritime AdministrationNaval Ship Systems Command

    Capt. L. L. Jackson, USNMr. K. Morland, Vice President Maintenance and Repair OfficerAmerican Bureau of Shipping Military Sealift Command

    =It

    SHIP STRUCTURE SUBCOMMITTEE

    The SHIIP STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committeeon technical matters by providing technical coordination for the determination ofgoals and objectives of the program, and by evaluating and interpreting the re-sults in terms of ship structural design, construction and operation.

    NAVAL SHIP ENGINEERING CENTER OFFICE OF NAVAL RESEARCHMr. P. M. Pal-ermo - Chairman Mr. J. M. Crowley - MemberMr. J. B. O'Brien - Contract Administrator Dr. W. G. Rauch - AlternateMr. G. Sorkin - MemberMr. H. S. Sayre - Alternate NAVAL SHIP RESEARCH & DEVELOPMENTMr. I. Fioriti - Alternate CENTER

    U. S. COAST GUARD Mr. A. B. Stavovy - Alternate

    LCDR C. S. Loosmore, USCG - Secretary NATIONAL ACADEMY OF SCIENCES -CAPT C. R. Thompson, USCG - Member Ship Research CommitteeCDR J. W. Kime, USCG - AlternateCDR J. L. Coburn, USCG - Alternate Mr. R. W. Rumke, Liaison

    Prof. R. A. Yagle, LiaisonMARITIME ADMINISTRATION

    SOCIETY OF NAVAL ARCHITECTS & MARINEMr. F. Dashnaw - Member ENGINEERSMr. A. Maillar - MemberMr. R. Falls - Alternate Mr. T. M. Buermann, LiaisonMr. R. F. Coombs - Alternate

    BRITISH NAVY STAFFMILITARY SEALIFT COMMAND

    Dr. V. Flint, LiaisonMr. R. R. Askren - Member CDR P. H. H. Ablett, RCNC, LiaisonLTJG E. T. Powers, USNR - Member

    AMERICAN BUREAU OF SHIPPING WELDING RESEARCH COUNCIL

    Mr. S. G. Stiansen - Member Mr. K. H. Koopman, LiaisonMr. F. J. Crum - Member iv Mr. C. Larson, Liaison

    - I

  • I. INTRODUCTION

    This manual describes in detail the use of SCORES,which is a digital computer program for the calculation of thewave-induced motions and loads of a ship. Both the vertical andlateral plane motions are treated, so that results for verticalbending, lateral bending and torsional hull moments can be ob-tained. The principal assumptions of the method are that themotions are linear, can be solved by "strip theory" and thatthe ship sections can be approximated by-'Lewis forms" for thepuz-pose of calculating the hydrodynamic foxces, that is, therequired two-dimeitsional added mess and wave damping propertiesBoth regular or irregular waves can be specified, and for thelatter multi-directional (short crested) seas are allowed.

    aCORES was written in th: FORTRAN IV language andchecked out and run on the Control Data 6600 Computer using theSCf!PE operating system (version 3.1.6). The pzogram is un-classified.

    The method of analysis used in SCORES is outlined belowin Section II. All the equations of motion and loadings aregiven. In Section III, the organization of the SCORES programis discussed briefly. An explanation of input data card prepara-tion is given in Section IV, and of program output in Section V.An example problem is shown. Error messages which can appearduring program ex.ecution are described in Section VI.

    The Appendices include a description of the FORTRANprogram organization, flowcharts for each subprogram and a com-plete cross-referenced (to the flowcharts) listing of the sourcelanguage.

    II. METHOD OF ANALYSIS

    The analysis used in SCORES was developed and investigatedto some extent in work supported by the Ship Structure Committee.*The exposition to be given here will serve as a convenient listingof the equations, but for the full derivation and explanation ofthe analysis method, the references listed should be consulted.

    *Kaplan, Paul, "Development of Mathematical Models for DescribingShip Structural Response in Waves," Ship StructureCommittee Report SSC-193, January 1969 (AD 682591)

    Kaplan, P., Sargent, T.P. and Raff,A.I., "An Investigation of theUtility of Computer Simulation to Predict ShipStructural Response in Waves," Ship StructureCommittee Report SSC-197, June 1969 (AD 690229)

    Kaplan, P., and Raff, A.I., "Evaluation and Verification of ComputerCalculations of Wave-Induced Ship Structural Response."Ship Structure Committee Report SSC-229, July 1972.

    i /

  • 2The relationship between the water wave system and theship coordinate axes system is shown in Figure 1. The wave propa-gation, at speed c, is considered fixed in space. The sh'.ip thentravels, at speed V, at some angle, 8 with respect to the wavedirection. The wave velocity potential, for simple deep-waterwaves, is then defined by:

    w= -ace cos k (x' + ct)w(i

    where a = wave amplitude

    c = wave speed

    k = wave number =

    S= wave length

    z' = vertical coordinate, from undisturbed water surfacepositive downwards

    x' = axis fixed in spacet = time

    The x-y axes, with origin at G, the center of gravity of the ship,translate with the ship. The x' coordinate of a point in the x-yplane can be defined by:

    x' = -(x+Vt) cos 8 +y sin 8 (2)Then, the surface wave elevation n (positive upwards) can be ex-pressed as follows:__

    g1 1 :w =a sin k (x' + ct) (3)

    since c2 =

    where g = acceleration of gravity

    In x-y coordinates we have:

    a sin k [-v cos 8 + y sin 8+(c-V cos 8)t] (4)

    2n5 =( -V --L-) T1 (x, t)t at axI= akc cos k [-x cos 8+y sin 8 + (c-V cos 8)tJ t5)

    ~~ -

  • 3direction of ship travel

    at speed, V

    I I=

    I 'k4B II

    wave direction of axis fixed inpropagation at speed, c space

    Fig. 1. Wave and Ship Axes Cohivention

    and..D= D;NU =-akg sin k [-x cos S+y sin 8+(o-V cos O)t] (6)

    The results of the equations of motion, etc., will bereferenced to the wave elevation n at the origin of the x-y axes,that is:

    n = a sin k'(c-Vcos 8) t (7)or n = a sin wet

    e

    where

    an e (c-V cos 8) (8)eand we is known as the circ.ular frequency of encounter.

    A. Vertical Plane Equations

    The coupled equations of motion for heave, z (positivedownwards), and pitch, 0 (positive bow-up), are given as:

    mz= i dx + Z (9)xs

  • X b

    - dZ x dx + (w (10)y xS~s

    wherem = mass of shipI = mass moment of inertia of ship about y axisy

    dZ- local sectional vertical hydromechanic force onship

    Xs, Xb= coordinates of stern and bow ends of ship,respectivelyZ w, Mw = wave excitation force and moment on ship

    The general hydromechanic force is taken to be:

    dZ Dt [A33 (z-x6+V) (11)

    ' where

    Sp =density of water

    local sectional vertical added mass

    Nz' =local sectional vertical da ning forcecoefficient

    B* local waterline beamand

    14' =pg 2R~~ (12)

    withratio of generated wave to neave amplitude for Ivertical motion-induced wave

    Expanding the derivative, we obtain:

  • 5dZ (zxo2V) ..S- A ~(-1 - z 1I- (;-x6VO)

    - ogB* (z-xO) (13)The equations of motion, (9) and (10) are then transformed intothe familiar form as follows:

    a'z + bi + c'z -d8 - e6 - g'e = z (2 )

    Ae + B8 + cO - Dz - E - G'z = Mw (15)

    The coefficients on the left hand sides are defined by:

    a' =m+ fA dx

    b= N' dx -V d (AVf fI c= Jg B*dx

    d=D= A' xdxIe = N'xdx -2V AIdx-V xd (A3),z i3'3

    g'= pg B*xdx -Vb

    i 33 (16)A =Iy+ A x 2 dx

    ;3All

  • 6 '

    Nzx 2 dx -2V Af xdx -V x2d (A33 )

    C Pg B*x2dx-VE

    E fNzxdx-V [xd (A3)G'= pg B*xdx

    where all the indicated integrations are over the length of theship.

    The wave excitation, the right hand sides of Eqs. (14)and (15), is given by:

    xb dZZf= JZx dx (17)

    xs

    Ix 1J 4b dZzw dx (18)

    The local sectional vertical wave force acting on theship section is represented as:

    dX 3 3 pgB*n + N; ;+-kA (19)

    E I-ix

  • 7where h = mean section draft. Substituting the expressions for n,Sand j from Eq. (4), (5) and (6), with y=O and applying theapproximate factor for short wave lengths we obtain:

    dZw -kh a kg)sin(-kx cos 8) +xe-(--=B-*ae

    kc (NzT-V cos(-kx cos h Cos a ot + (agBe-Ad kg)e3 33

    cos(-kx cos B)-kc Nz'-V - A-x- sin(-kx cos 6 sin wet .

    sin si sin 8+

    ~=~o e(22)

    B_* sin B si

    The value of is approximated by:

    S=HCs (21)

    where H local section draftCs= local section area coefficient

    The steady state solutiow of the equations of motion areITobtained by conventional methods for second order ordinarydifferential equations, using complex notation. The solutions areexpressed as:..

    z =zo sin (w et+5) (22) ,[

    e = 0o sin (w et+C)

    where the zero subscripted quantities are the amplitudes and 6c are the phase angle differences, i.e. leads with respect to thewave elevation in Eq. (7).

    The local vertical loading is given by:

    df z dZ dZw-- -dm (z-xe) + - (23)(

  • 8where 6m = local mass, per unit length.

    Eq. (23) is simply the summation of inertial, hydrodynamic, hydro-static and wave excitation forces. The latter terms are given inEas. (13)and (20). The vertical bending moment at location x isthen given by: 0

    S~dfz

    x x

    and is expressed in a form similar to the motions, i.e.

    BMz = BMzo sin (Wet+G) (25)

    B. Lateral Plane Equa,.ons

    The coupled equations of motion for sway, y (positive tostarboard), yaw, k (positive bow-starboard), and roll, (positivestarboard-down), are given as:

    [x= dYx [ dx+Yw (26)

    I S

    I -I x dx+N (27)

    x

    sSI x #= - d x -m g G - + K w ( 2 8 )~Xs

    where I = mass moment of inertia of ship about z axis iI - mass moment of inertia of ship about x axis

    Ix mass product of inirtia of ship in x-z planeSxz

  • -'g -L4W wan~

    9 1dY dY local sectional lateral hydrodynamic force on ship

    dKdK local sectional hydrodynamic rolling moment on ship

    Y' Nw, Kw = wave excitation fcrce and moments on ship

    T = initial metacentric height of ship (hydrostatic).The hydrodynamic force and moment are taken to be:

    =dY DD 4 (+x.V)_Fri -N. (y+x-V,)+ N

    (29)+ 6G' (Ms$) M + N

    d= -0 FrI-M.s (y+x,-Vi) -Nr$+ Nso (y+xi-Vp)

    (30)-- DOG- (M,$) - O N$ - - dY

    where O = distance of ship C.G. from waterline, positive up

    M = sectional lateral a( -d massNs sectional lateral damping force coefficient

    NO sectional added mass moment of inertia due to lateralMs motion

    Ns = sectional damping moment coefficient due to lateralmotion

    r= sectional added mass moment of inertia INr = sectional damping moment coefficient

    Frs = sectional lateral added mass due to roll motion

    Nrs = sectional lateral damping force coefficient due toroll motion

    and the sectional added mass moments and damping moment coefficientsare taken with respect to an axis at the waterline.

  • a0

    The additional roll damping moment to account for viscousand bilge keel effects is taken as a particular fraction of thecritical roll damping, as follows:

    Nr* = r Cc/L-N (W ) (31)where Nr* = sectional damping moment coef,.icient due to viscous

    and bilge keel effects[ = fraction of critical roll damping (empirical data)Cc = critical roll damping

    L = ship length (L=Xb-Xs)

    WO = natural roll (resonant) frequencyNr(,) = value of Nr at frequency w.

    The critical roll damping is expressed in terms of the naturalroll frequency by:

    Cc =2 mg G-Mw-w

    2" (32)with mg= mgGM

    x(I + fIr (,)dx)

    where the integral is over the ship length. The calculation ofthe natural roll frequency, w , as indicated above is carriedout by means of successive approximation.

    Expanding the derivatives, we obtain

    -Md(y+xi-2V) + d N +xP-VP

    (33) . ~dFrs

    (F+0- M + Nrs+W NsV (-x + -G )S (M Fs+M)]; [VIr (X+ )dK +OGMs*+ F V G"+['X + 5- rrs+6GM) + 3YTX

  • (34)-N -N* +( _GM +Y'-2V,)r r

    + U s d%

    O[ +5G NS-V so +5GP

    IThe equations of motion, (26)0, (27) and (28) are then transformedinto this familiar form:

    a21y 22i+'24 a 25 + 26 ~ 27*+a28$ = (35

    a 3 y+a 32 y+a 34i+a 35*+a 36 *+a 3701a 18 +a 39 = "

    The coefficients on the left-hand sides are defined byr:

    aJ Msdx a 2 [N~dx-V fd(M11 12 + ='

    a14 =fM sxdx a,,a5 fNsxdx -2V fMsdx .-V fxd(M9 )

    Da 16 =-Va 12 ,a 1 P ~rdx - Ufm dx ,(36)

    a 18 f Nzsdx + U6_V ld(Ms)-cWGJNsdx + V d(F s

    a2 M J~xdx ,a 2 N JNxdx -V Jxd(M)

    24 +JSXd a - Nsx dx-2VM d- d(24 z ~ d 25 f~d- (-. if

    37)a 26 =-Va 2 2 , a27 -I~ z JF rs xdx -OG fM sxdx

    aJNrsxdx+rGV Jxd(MS) N xdx+V Jxd(Fa 2 8 s f - rs~

  • I12

    a 1 msdx -U- fM dx ,

    a 1 -fsd W X+ d(M fV5_d(M)

    a3 1 =-Isx -f'Msoxdx - ,G J Mxdxa35 = -JNsxdx - Jsxdx +V xd(M s )+V 5-G xd(Ms )-2Va

    a 'a

    a 3 6 =-Va32 ' (38)

    a 3 7 r.+ firdx +OG sodX +U fFrsdX +6 2 fMsdxa3 8 = J(Nr+N)dx+

    - sdX IrX+2 sxa 9 = N mg + TG_ JN5 dx +OG- JNdx +0G-2 N sdx

    - d (I r+5-G d(Ms)+5 Jd(F +O-G2 d(M)

    a 39 =mg Um

    where all the indicated integrations are over the ship length.

    The wave excitation, the right-hand sides of Eqs. (35) isgiven by:

    JI SdYY w = x d- w dx (39)Yw dx

    xs

    Nw dx x dx (40)

    XbdxKdx - dx (41)

    X%s/

  • t 13

    The local sectional lateral force and rotational momentdue to the waves acting on the ship are represented as:

    rY Dvw dM Dvw dMdxY (PS+Ms) Dt VVw S +NsVw+k (MsD-- +V = ]

    sin sin 8____ ____

    ____(42)

    sin ,

    dK~_ _D(M v)+ B*3 Dv~sin sin a)

    a- -Dt sTw- Dt so- 7TB* sine

    __dYw- MG d--x

    -O (43)

    where vw = lateral orbital wave velocity

    S = local section area

    - = local sectional center of buoyancy, fromwaterline

    The lateral wave orbital velocity is obtained as follows:

    w

    vw = - akc e sin 8 sink x cos, + y sin 8+ (c-V cos 8) (44)

    and then we have:

    DV = akg e-kh sin 0cosk L-x c. 8+ y sinB+ (c-V cos,) (45)cstt(

  • 14

    After substituting these expressions and expa'-ling terms, we obtain

    dY wdYW T cos wet + T2 sin wet (46)

    with TI = T:3 4 co s T6 + c T5 sin T 6]

    T2 T T3 -gT4 sin T6 + c T5 cos Tsin /7r* sin

    T= -ake-kh sin8 rB__* sin a

    T = pS+M -kMs

    T5 = Ns-V a + k V

    T6 = -kx cos B

    dKwand a-= T7 cos wet + T8 sin wet (47)

    wi T 7 = T 3 T9 cos T6 + c T 0 sin T6]

    T T3 g T9 sin T6 + c T 0 cos T

    T 9 P! _so-5OG T4

    dMT N +V - O-G T10 so dx 5

    The steady-state solution of the equations of motion are expressedas:

    a YO sin (wet + K) (48)

    sin (wet+ ) (49)

    0 e

  • 15= sin (wt + V) (50)

    where the zero-subscripted quantities are the amplitudes and K, aand v are phase angle leads with respect to the wave elevation.

    The local lateral and rotational loadings are given by:

    dfdY dYd = - Sm (y+x-rf) + a- + (51)

    xdmx XB*UK)

    S- - 6m. y2' + 6m4(-+xi) + pg - - s OG) -g 5m4dK dK+ a -+ - (52)

    where local center of gr-avity (relative to ship C.G.)positive downlocal mass gyradius in roll

    and the hydrodynamic and wave excitation terms are given in Eqs.(33), (34), (46), and (47).

    The lateral bending and torsional moments at locationx are then:

    01

    roxbI dfBMy(xO) or (x-xo) dxY dx (53)xs J

    y 0 ob dx

    TMx) jj or : -: dx (54)and again they are expressed in this form:

    BMy = BMy 0 sin W et + T)I (55)

    TM = TMxo sin (e t + v)

  • 16

    The requirement on the local vertical mass center is:

    6m.Cdx =0 (56)Ixs

    Similarly, the requirement on the local roll gyradius is:

    J 6my 2 dx = Ix (57)x

    The product of ine:'*:a in the x-z plane is defined by:XbI xz 6mx~dx (58)

    C. Wave Spectra EquationsThe wave spectrum for calculations in irregular seas is

    considered to be a separable function of wave frequency anddirection as follows:

    S ( S,.) = SI(w) W for O

  • 17

    2

    where a2 = mean squared wave amplitude.

    r Since we impose:

    SS2(p) dui = 1.0 (61)

    we then have:

    al= J S(1 )dw (62)Additional statistical properties are formulated from the meansquared amplitude:

    jt a2a (63)a avg = 1.25 arms64)

    al/ 3 2.0 arms (65)

    al/ 1 0 = 2.55 a rms(66)

    where arms = root-mean-squared wave amplitude

    aavg = average (statistical)wave amplitude

    I- -

  • 18

    a =s ignificant (average of 1/3 highest)1/3 wave amplitude

    a1/ic= average of 1/10 highest wave amplitude.

    Neumann Spectrum (1953)This frequency spectrum (as used) is given by:

    SI( = 0.000827 g2 3 -6e2g2-2U-2 (67)

    where U = wind speed

    The constant is one half that originally specified byNeumann so that this spectrum satisfies Eq. (62). Thus, originallythe Neumann spectrum required only a factor of 1 in Eq. (65),instead of 2.0.

    Pierson-Moskowitz (1964)This is given by:

    S 1 M = 0.0081 g2-e-74ge--.-7 4g (

    and was derived on the basis of fully arisen seas.

    Two Parameter (1967)

    M A-B& 5e- (69)

    where A = 0.25 H1/3

    B = (0.817 2i -T

    H1 / 3 = significant wave height (=2.0a1 / 3)

    T= mean wave period

    This spectrum is usually used in conjunction with "onserved"wave height and period, which are then taken to be the significantheight and mean period. This spectrum is similar to that adoptedby the I.S.S.C. (1967) as "nominal", except that it is expressedin circular wave frequency instead of frequency in cycles persecond.

    S1I

  • 77-

    19Uni-Directional Spreading (Long Crested Seas)This is obviously:

    S2 (u) = S(M) (delta function) (70)

    Cosine-Squared Spreading

    = 2 cos2ji (71)2 1T

    Responses

    All of the motions and moments calculated are consideredto be linear and the principle of wave superposition is assumed.Thus for each response a spectrum is calculated by:

    S = IT(w, 1u)] S (wi) (72)

    where Ti (w,) = response amplitude operator (amplitude of responseper unit wave amplitude)

    We then have, similar to the wave amplitude:

    1 = Si(l dw dp0

    22

    61() IT S ddu (73)ITI where a.2 = mean squared response amplitude.SEqs. (63) - (66) then apply to each response.

    D. Non-dimensional Forms2

    Frequency parameter: e Hj tw

  • 20

    motion amplitudeNon-dimensional linear motion (heave, sway):a

    Sa

    ENon-dimensional angular motion motion amplitude(pitch, yaw, roll): 2 a

    Non-dimensional moment: BM z(orBM or TM )og B,*L~a

    Shear ForceNon-dimensional shear: Se Forceog B*La

    III. PROGRAM ORGANIZATION

    A. General

    In general, the SCORES computer program has been arrangedand organized to both keep a) the coding simple and fle:cible (forS~possible future modification) and b) the running times low (forobvious reasons). Thus, precision of computation has not been ofmajor priority in program development. This approach is consideredreasonable at the present time because precise correlation (toless than about 5%) with independent data (model or full-scale ex-periments) is not envisioned, and the theoretical analysis itselfis an approximation.

    Aside from the actual coding and data structure in theprogram, which will not be discussed here (see Appendices A, Band C of this report), this approach manifests itself primarilyin two aspects. The fir't is the precision with which the local, ortwo-dimensional, sectional ae-ed mass and damping characteristicsor properties, are calculL.=d. For vertical oscillation, the methodof Grim* is used. For the two-dimensional proparties in lateraland roll oscillations, the method of Tasai** has been programmed.In general, these methods can be carried out to increasing degreesof numerical accuracy. For practical purposes of keeping runningtime reasonable: these calculations have been limited. For examplein the lateral and roll computations, the infinite series of termsrepresenting the velocity potential is truncated to nine termsand only 15 points along the Lewis form contour are used for leastsquare approximation purposes. While the full range of sectionproperties and frequencies has not been explored in detail, resultson the order of 1% accuracy or better are obtained for averagesections over a wide frequency range.

    Grim, 0., "Die Schwingungen von schwimmeden, zweidimensionalenKorpern," IISA Repcrt No. 1171, September 1959.

    Grim, 0., and Kirsch, M., private communication, September 1967.**Tasai, F., "Hydrodynamic Force and Moment Produced by Swaying and

    Rolling Oscillation of Cylinders on the Free Surface,"Reports of Research Institute for Applied Mechanics,Kyushu University Japan, Vol. IX, No. 35, 1961

  • 21A

    The second aspect of program organization is related to theabove. While the computations of the two-dimensional propertiesare limited as described, they still are relatively lengthy. Thatis at a particular condition of ship speed, wave angle and wavelength, the bulk of the computation time would be 'devoted to thesecalculations rather than the formation of the coefficients,wave excitation, solution of ship motions and the resultingcalculation of applied moients. Therefore, it was decided thatrather than calculate for each frequency at each cross-sectionthe above mentioned two-dimensional properties, instead thc two-dimensional properties are calculated first at 25 values offrequency over a wide range and then interpolated (or extra-polated) for each subsequent frequency. The results of the initialcalculation over the frequency range are saved in the computermemory for the calculations at hand, and can also be saved on apermanent disc file (or magnetic tape storage), for later usage.In chis way, a large range of ship speeds and headings can be run,each over the appropriate frequency range, without excessively,high running times. The interpolation procedure used is asix-point continued fraction method: which gives results that aregenerally well within 1%.

    In other respects, the SCORES program is organized in afairly straightforward manner. The input consists of:a) basic data which specify the hull form and weight

    distribution and

    b) conditional data which specify the speeds and waveparameters.

    Repeated sets of conditional data can be run with the same basicdata, that is, for the same defined ship. A fair amount 'of inputdata verification is incorporated into the program.

    B. Restrictions

    The main restrictions in the program concern the followingitems:

    SMaximum no. of ship cross-sections .......... 21(stations 0 to 20)

    Maximum no. of wave angles (in one run) ...... 25Maximum no. of wave lengths (in one run)....51Maximum no. of sea states (in one run) ...... 10The core storage requirement is about 25,000 cells as

    compiled on the CDC 6600. This includes the program instructions,data storage and system routines to handle input-output systemcontrol and provide mathematical functions. It would be possibleto decrease this core requirement via program overlay andlinkage techniques, should the need arise. However, it probablywould be relatively difficult to fit the program within a 12Kcore restraint.

    I -~ A

  • 22The word length on the CDC 6600 is 60 bits. No loss in

    overall computational accuracy would be expected if this werereduced, as in other digital computers, to 36 bits.

    A special system subroutine called DATE is used whichprovides the current Aate. This is used only in the heading onthe output.

    C. Running Time

    The following approximate times are for running under theSCOPE operatin" system on the CDC 6600 computer.

    Program compilation (RUN compiler) .......... 10.0 secs.Program loading into core ................... 1.0 secs.

    Calculation of TDP* Array (21 sections,both vertical and lateral modes) .......... 25 secs.

    Calculate motions, moments at one condition,(21 sections, both vertical and lateral

    modes) .................................... 0.14 secs.Calculate spectral response, for each

    spectrum, for each condition ............. 0.006 secs.Thus, for a run with two ship speeds, 7 headings (at 301 incrementsfrom head to following seas), 21 wave frequencies (to adequatelycover the spectral energy bands) and 5 sea states, the incrementaltime once the program was compiled, loaded and the TDP Array wascalculated, would be estimated as follows:

    (2) (7) (21) [0.14+(5) (0.006)] = 50 secs.IV. DATA INPUT

    This section of the manual describes the details of datacard input to the SCORES program.

    A. Units

    For calculations in regular waves, there are no inherentunits assigned to any of the variables in the program. Thus, theuser is free to choose any desired set as long as they areconsistent for all input parameters. The units are establishedby the input values of water density and gravity acceleration.Some typical units are shown below.

    *Two-dimensional properties

  • 23

    Water Density lbs./cu. ft. tons/cu. ft. metric ton/cu.meter

    Gravity Accel. ft./sec. 2 ft./sec. 2 meter/sec. 2

    Resultant Unit ft.-ibs.-sec. ft.-tons-sec. meter-metricSystem I ton-sec.

    Wave direction angles are always specified in degrees,rather than radians.

    However, for spectral calculations in irregular waves, usingeither the Neumann or Pierson-Moskowitz spectra, the SCORES pro-gram assumes ft.-sec. units, full scale. The input wind speedsused to specify spectral intensities, or sea states, are thenassumed to be in knots.

    The following input data description indicates typicalconsistent units for all parameters. Other systems of unitscould be used, as noted above.

    B. Data Card Pre.aration

    Every data card defines several parameters which arerequired by the program; each of. these parameters must be inputaccording to a specific format. "I" format (integer) means thatthe value is to be input without a decimal point and packed tothe right of the specified field. "F" format (floating point)requires that the data be input with a decimal point; the numbercan appear anywhere in the field indicated. "A" format(alphanumeric) indicates that certain alphabetic characters ortitle information must be entered in the appropriate card columns.

    If the field is left blank for either "I" or "F" format,a value of zero (0) is assigned to the parameter. Thus, parametersnot required by the program for a particular problem need not bespecified.

    The card order of the data deck must follow the order inwhich they are described below. Cards which must be present inevery run, regardless of options, are marked with an asterisk (*).The first eight types of cards are considered the basic data set,while subsequent cards are the conditional data set(s).

    1) Title Card (*)Columns Format Entry

    1-80 A Any alphanumeric titleinformation, used to labeljob output

  • - ' - N X A RN x

    24

    The first 30 columns are used a3 a label for the TDP array file.Thus, subsequent runs using the file must duplicate these first30 columns which are then checked against the file label beforeusing the data. This avoids inadvertent use of an incorrectTDP file.

    2) Option Control Card (*)Columns Format Entry

    1-2 I Integration option control tag3-4 I Moment option control tag5-6 I Mass dist. option control tag7-8 I Wave spectra option control tag9-10 I Degrees of freedom option control tag

    11-12 I Directionality option control tag13-14 I TDP file option control tag15-16 I Moment closure option control tag17-18 I Output form option control tag19-20 I Torsion axis option control tag21-22 I Number of ship segments

    Each option control tag is given a value of 0, 1, 2 or 3where the meaning of each is given in the t3ble below. The lastentry of the card, the number of ship segments, corresponds to theeven number of equal length segments, or strips, into which theship hull is divided lengthwise for purposes of calculation.

    OPTION CONTROL TAG INTERPRETATION

    Letter Tag SCode Descriptor options Available

    A Integration 0: Simple summation1: Trapezoidal rule

    B I Moment 0: Calc. motions only, usesummary mass properties

    1: Calc. motions only, usemass dist.

    2: Calc. moments, use massdist.

    C Mass dist. 0: Input masses1: Input weights

    D Wave spectra 0: Regular waves1: Neumann spectra2: Pierson-Moskowitz spectra3: Two parameter spectra

    (continued on next page)

  • 25

    OPTION CONTROL TAG INTERPRETATION, Continued

    Letter TagCode Descriptor options Available

    E Degrees of 0: Vertical plane onlyfreedom 1: Vertical and lateral plane

    2: Lateral plane only

    F Direction- 0: Uni-directional wavesality 1: Cos-sq. wave spreading

    G TDP file 0: Generate TDP file, writeon file (Tape 10)

    1: Read TDP file,(Tape 10), printout TDP data

    2: Read TDP file,(Tape 10), noprint-out

    H Moment 0: Suppress closure calcs.closure 1: Calc. and print out

    closure results

    I Output form 0: Dimensional1: Non-dimensional

    J Torsion axis 0: Center of gravity1: Waterline

    3) Length Card (*)Columns Format Entry

    11-20 F Ship length (ft.)21-30 F Water density (tons/cu.ft.)31-40 F Acceleration of gravity (ft./sec. 2 )41-50 F Ship displacement (tons)

    The entries on this card are self descriptive and determinethe units to be used for all other parameters, except as notedearlier.

    4) Hull Form Cards (*)Columns Format Entry

    1-10 F Section waterline breadth (ft.)11-20 F Section area coefficient (-)21-30 F Section draft (ft.)31-40 F Section centroid (ft.)

    1A

    -I

  • 26One card is used ior each section to be specified, in order

    along the ship length starting at the bow. For example, if thenumber of segments is 10, and the integration option tag is 0,then 10 hull form cards are required which correspond to the hullat stations 1/2, 1 1/2, 2 1/2, ... , 8 1/2, 9 1/2. If theintegration tag is 1, then 11 hull form cards are required atstations 0, 1, 2, 3 ..... 9, 10.

    The entries for sectional waterline breadth, area coef-ficient and draft are straightforward. The fourth entry, thesection centroid, is measured downwards from the waterline . Ifno entries are given and the centroids are needed for lateralplane motions calculations, arnroxirzte controids are thencalculated based on the area coefficient and draft (using a two-dimensional version of the Moorish Approximation).

    5) Lateral Plane CardColumas Format Entry

    1-10 F Ship vertical center of gravity (ft.)11-20 F Radius of gyration in roll (ft.)

    This card is used only if the degrees of freedom op+.iontag is 1 or 2, indicating lateral plane calculations. The shipvertical c.g. is measured from the waterline, positive upwards.

    6) Summary Mass Properties CardColumns Format Entry

    1-10 F Radius of gyration, longitudinal(ft.)

    11-2U F Longitudinal center of gravity(ft.)

    This card is used only if the moment option tag is 0.The longitudinal center of gravity is measured from amidships,positive forwards.

    7) Sectional Mass Properties CardsColumn Format Entry

    1-10 F Segment weight, or mass (tons,or tons-sec 2/ft.)

    11-20 F Segment vert. c.g. (ft.)21-30 F Segment roll gyradius (ft.)

    These cards are used only if the moment option tag is1 or 2, in lieu of the summary mass properties card above. Onecard is used for each section to be specified, in a similarmanner as the hull form cards described earlier.

    The first entry on each card is the segment weight, ormass, depending on whether the mass dist. option tag is 1, or 0,

  • 27

    respectively. The second entry, the segment vertical center ofgravity, necessary only for lateral bending moment calculations,is measured, positive downwards, with respect to the ship's over-all vertical center, as specified on the lateral plane data cardabove. Since it is required that the vertical mass momentintegral satisfy the specified overall v.c.g., the input segmentv.c.g.'s are shifted by an equal amount, up or down as necessaryto exactly balance the vertical moment for the hull. Thisminimizes the effort required to obtain precise balance in inputdata preparation. The third card entry, the segment roll gyradius,is needed only for torsional moment calculations. If no entriesS~are given the overall ship value is used at each segment.

    8) Moment Station Card egn

    Column Format Entry

    1-10 I First station for moment calculations11-20 I Last station for moment calculations21-30 1 Increment between stations

    The parameters on this card determine where along the shiphull the moment calculations are to be performed. Station numbersare defined as zero at the forward end of the first segment,increasing to N, the number of segments, at the after end of thelast segment. If the calculations are required only at one station,then the first two entries on the card snould be equal to thatstation number.

    The moment results at only one station are stored forsubsequent irregular seas spectral calculations. In the calculationsover a range of stations at which moments are calculated (andprinted), then only the results at midships are stored for thesubsequent spectral calculations.

    9) Run Control Card (*)Columns Format Entry

    1-10 F Run control tag and waveamplitude (ft.)

    11-20 F Initial wave length, orfrequency (ft. or rad./sec.)

    21-30 F Final wave length, or frequency(ft. or rad./sec.)

    31-40 F Increment in wave length, orfrequency (ft. or rad./sec.)

    43-50 F Initial ship speed (ft./sec.)51-60 F Final ship speed (ft./sec.)61-70 F Increment in ship speed (ft./sec.)

    The first entry, the run control tag, determines programcontinuity:

  • 28

    Run Control Tag ActionGreater than 0.0 Continue calculations, using this as

    wave amplitude0.0 (or blank) Stop calculations; read new basic

    data setLess than 0.0 Stop program execution

    Thus, if the run control tag is not greater than 0.0, thenthe remaining parameters on the card are irrelevant. A blankcard, for example, is used to stop calculations and proceed toread a complete new set of data starting with the title card ,P) above. This parameter is also used as the wave amplitude, andis usually set to 1.0.

    The next three entries determine the wave lengths to beused in the calculations. If the wave spectra option control tagis 0, indicating regular waves, then these entries are the initial,final and increment in wave length. If the wave spectra optioncontrol tag is greater than 0, indicating irregular wave calculations,then these entries are the initial, final and increment in wavefrequency. The increments should always be positive, so that wavelength, or frequency, increases from initial to final value.

    The last three entries are similar parameters for ship speed.If calculations are required at only one value, then the initialand final values should both be set equal to it.

    "10) Roll Damping CardColumn Format Entry

    1-10 F Fraction of critical roll damping(empirical data)This card is used only if the degrees of freedom option

    control tag is 1 or 2 indicating lateral plane motions calculationsare included. The calculated wave damping in roll, at the naturalroll frequency, is increased so that the total damping is thespecified fraction of critical damping. The additional rolldamping thus determined initially is then used fon all subsequentcalculations.

    11) Wave Angle Card (*)Column Format Enty

    1-10 F Initial wave angle, degrees11-20 F Final wave angle, degrees21-30 F Increment in wave angle, degrees

    These entries specify the wave direction angles to be usedin the calculations and are always given in degrees. Forcalculations with uni-directional waves, the meaning of theparameters is as indicated. If the directionality option control

  • 29

    tag is greater than 0, indicating calculations for a directionalwave spectrum, then only two choices exist. If the initial waveangle is 180.0 the calculations proceed for head seas only,including the wave directionality. If the initial wave angle isnot 180.0 the calculations proceed for all angles from followingseas to head seas, in sdteps according to the wave angle incrementspecified.

    In both cases the integrations with respect to wave angleuse the same increment, as specified.

    12) Wave Spectra Card(s)Columns Format Entry

    1-10 I No. of sea states (wave spectra)11-15 F First spectra parameter16-20 F Second spectra parameter21-25 F Third spectra parameter

    (5 col.fields) F56-60 F Tenth spectra parameter

    This card is used only for calculations in irregular seas(wave spectra option control tag is greater than 0). The firstentry specifies the number of sea states (spectra) to be used(maximum 10). For both the Neumann and Pierson-Moskowitz spectra(wave spectra option control tag equals 1 or 2), the parametersto be specified are the wind speed, in knots, for each seastate. For the two parameter spectrum (option tag equals 3),tie parameters on this card are the significant wave heightsfor each sea state. A second card is then used which containsthe mean periods for each corresponding sea state, as thespectral parameter entries specified above.

    C. Sample Input Deck

    A sample input card deck listing is given on the nextpage. The units are meters, metric tons and seconds.

    V. PROGRAM OUTPUT

    A. Description

    The printed output from the SCORES program depends on theoption control tags set as input. Each output section will bedescribed, though in any given run not all sections will beprinted. Each section starts a new page and is labeled with thetitle information and date.

    The first part of the output is a listing of the basicinput data as processed. This defines the hull form and weightdistribution. Then the conditional data cards are printed out.For irregular seas cases, the wave spectra will then be printed,together with internally generated wave statistics. If the TDParray is calculated diagnostic messages concerping thesecalculations may then appear.

    V3

    f IIs4

  • 30

    The next output will be the listing of the two-dimensionalproperties (TDP array) for each station and each frequency. Ifthe data is being read from file, this output can be suppressed.For lateral plane calculations, the natural roll frequcncy androll damping information will then be printed.

    Then, the vertical and/or lateral plane responses will beprinted out with all frequencies, or wave lengths, for a givenship speed and wave angle, on the same page. For irregular seascalculations, this will be followed by a print-out of theresponse spectra and statistics (long crested seas). These pageswill be repeated for each wave angle at the initial ship speed.Then directional seas calculations results will be output, ifspecified. The output is, of course, then repeated foradditionally specified ship speeds.

    B. Sample Output

    A sample output listing, in abbreviated form, is givenfollowing the sample input listing.

    Sample Input Card Deck Listing

    StRIFe 6', MULL FOQu; 0.4" tLUCK (TNO RPT. .0. inO b) OCEA41CS 'HRnIFCT %-U. 10d31 2 1 3 I 1 I I lI u

    14J.0 1 9.0665 44176-4.00.04 .0 r0 414 ,JQ , il.OJ2 l.8,9 4A "0 4 31.4

    27.54 O .9 11.01

    21.b? QY1 41.4327:57

    21.67 .9V4 11.03 1

    21f.7 .9V4 11.(13Pt .57 QY4. 11;0127.67y .993 !1.0327.6? .9 :9 11.0321. 5.? . 4 1 1.0321.24 .9l 11.03P5 .94 .051 11 .03?3;46

    .7b9 1 0S9 .6b3 hel 11."313 .8? .419 l.V

    4.41 .53 I.24

    -1.09A5 0.9V026

    "481.3.2 .2406 6 340Y90*1

    3 0.

    4331.44331.4.168,.4

    1684.43831443.8 ,219b .-3290: 73633.&346b,13166.3

    1.0 0.3151 I.J3079 0.n41 6.5251 6.bo2b 1.0

    10.0 17 .0 0.0,I- Ai 'o. -2 . - - -. .. _

    10.0

    , 7

  • 31

    Sample Input Listing

    SEHIES 60 HULL FORM. .).HO bLCK gINO RPI. NO. 100 SI OCEANICS PROJECT NO. 1093 SEP P4e 1970OPTIONCONTHOL TAGS- A f- C I) F G H I J

    F- P. I- 1 ?- 1 3 0--I 1 1 I1 NO. OF STATIONS * 20

    BASIC INPUT DATA

    LENGTH .193.00 OENSIfY * 1:025000015.... * ?6_46 _ GRAVITY a 9.80665A

    STATION PLAN AREA COLF. DRAFT L-SAP ;EIGHT ZFTA GYRtROLL0.00 "100 0.0000 0.6000 fi00 40.600 0.000 a.960?

    1.00 14.3900 .8720 11.-300 5.-4, 4uI.3O00 0.0000 8.96022.00 2,OA .A940 11.0300 S.ISi 1203.2000 0.0000 8.96023.00 ?6.5800 .9290 11.0300 5.754n 2406.3000 0.0000 8.9602

    -4.00 27.S460 .9700 11.0300 -- 5.404i "3850;1000--- ... vo 'S.0"89602-5.00 27.S700 .9910 11.0330 S.481n 409047000 0.0000 6.96026.00 750n .9940 11.0300 5.492o 4331.4000 0.0000 890

    27.57008.9602

    7.00 27.S700 ,qV40 11.0300 5.49? 4331.4000 0.0000 8.96028.00 27.$760 .9940 11.0300 5.492a 3368.8000 0.0000 8.96029.00 27.5700 .9940 11.0300 5.492n 16#4.4000 0.0000 8.9602S.. 0-27.S?0 --. 4940 11.0300-- S.4926 1684.4000 0 -00000--- 3.9602 4-

    11.00 27.5700 .4940 11.0300 5.et 1443.8000 0:0000 8.9602 f12.00 27.5700 .99-3o 11.0300 5.4&9'1 2195,8000 0.0000 8.960213.00 27.67an .9(490 11.0300 5.4744 329007000 0.0000 8.960214.00 27.5T0n .9680 11.0300 5.3971 3633.6000 0.0000 8.960215.00 277.200 .9210 11.0300 S.2249 3465,1000 00.0000 8.9602

    *16.b0 2S.9600 Asio ll.o00 "-.967 3146.3000 "- 0o000 8.9602"17.00 23.460 ,7580 11.0300 4.625p 19!)5.1000 0.0000 8.96021A.00 19.#,30n .6270 11.0300 4.143* 721.9000 0.0000 8.960219.00 13,8?nn .4190 11.0300 3.376o 481.3000 0.0000 8.960220.00 4.4100 .5300 1.1000 .3777 120.3000 0.0000 80602

    "OG a ;-1.04 9 6YRTUS, RQLL - 8.960...CALCULATE MOMENTS AT STATION 10

    UtNTYLO RESULTS.ISPL.(WT5.J . 44126.50

    LIa -. Ti-F~Trlrd r MOT tS1tPSr- NxSPtvo.tIO. 48077.S3

    LON4. C.G. 4.82; IFwD. OF PICSHIPI LAInG. GYPADIUS x 46.159 aM 3 1i78

    SERIES L FORM- O.HO HLUCK (TNO HPI. NO. 100 S) OCEANICS PROJECT NO. 10q3 SfP 2p4 1970

    CONDITIC14AL INPIUT DATA CART PRINT OUT

    1.0000 .3157 1.3c79 .0451 6.'257 b.5257 1.0600.1000

    - 10.0000 170.0000 20.00001 . . . -40. -0.0 :OU -q.0 -0.0 -0.0 .0.0 -0.0 -0.0

    . ."* -0.0 -0.0 -0,0 .A0.0 -0.0 -0.0

    SERIES 60 HULL FORM, 0.80 HLOCK (TNO RP;. nO. 100 S) OCEANICS PROJECT NO. 1093 SEP Ptl 1920

    WAVE SPECTRAL I)LNSIIY, TWO PARAMETER. ISSC 1967 SPECTRAS1G.T. ,4004I NP 14. ]~000SPECTRA NO. I

    wAVk FOE,.

    .361 1.32A

    .406 P.610

    .451 12.254%.496 12.954.541 11.743----------------

    .631 7:886

    .6f6 6,aOh 1.173 .533

    .72? 4.846 1.21I ,43

    .61 3 ?,037 1.263 ,3?1"A*sf- 2 .331 "-1.3011 .313

    ,:992 1,7 "b RPS. 2.073

    03?? -11,1 AVG. 7.539

    2.03? ,9611.08? *fH4 SIG. 4.146

    '. ,- ? -" 6 -AVI/I- S-,27 - -'.'---

  • 32

    IV I. 6a6I np000000000000 0000000000i 0000.

    0 ~ ~ 0 In a* a inv5-1 0 -

    ag.; F.J* 0000 000 00 0 0 0 NlVu* WI a a I 0 J-5 A

    0 00 000 0.000 00001 0000

    on MCNwr EONV000 x-A0N@ W W n W

    *CE0n 0 t-O* D1I0.*C0-N Go

    .00 in a11...

    000 00 00 00 00 00 00a0 _* t:..%Vina aIL1W54 Whih WWS.bJW Z tvWW. hJS.

    ~,S~mNsD.~~INN ~ 044 a: :z000 00 00 Ia. OM %vl

    *t' N tN N Cy IV N t N PNNC.- -. ~~000 000707000000000000000* - wwwwWu*WwW~WW*W wU= hSWWhawW WWSWOW,

    LOM* a* 40k4100 WCN C4415PNCO .*C-.w19 if C-04l W lP.11a,

    V)~ 0000000000a40000000ac ;;%.*000 J O e NNNyypih4NPSNN- - - en*' nh 41 1.P.-W0 a06N009O

    Mal Mf40000 0c;0-.; -a :a 0F) a 000000000000000 00 00o ~ S.JWWWWWW..sWWWWWdWWWWWW WWW9 WWWsJ

    C~AN -M C. M0 a9s. D04.0041 0 CM*L)-540 0l9 .N P 0, 1 00(P95

    C~~~' in1-- -- -- -- -- --- -- -- 00 - - - -

    4J Z 0a000a00C OCOOPO O4! FCIDPCOFOO&OeOM C'000000 00000--- - 'yCU 2 WWUUIUWW W.hiWjgih5W41 WWUh~..,h, S5.WWI W

    C)- CD zm r.. 4 0 mm!t kn#S l C43 N -C& 0 00in E mom" 4 CP a 5 0-

    00500 ~ ~ 0--~0PC >(190

    cc I -pu "-q~ 00.000000000000 00000 'a0 000

    I ry M 1'. a. Op-*P! 0 03 7 m p a m A.S .1 .W N * 9 9 55 .(54 .(J~I1. . .... .... ... a *

    - o~~~1 4.. . . . .. . p.l NO-5 1.4f:45 J;;0Z 4154 C

    0000 cc~ 0 0 0 0 0 00 0 000 aCc ocOCwWLW.WWShS.hJ.WWW WWW WOIN %WMWWW5 2~~~~~ ~~ IN S 5..5 N03 0IU M1455 Z_ v fu m M

    - 3 -- oe fl.39.00 O~iWI 59-~'.. 3-5fuU. ~~~!il .1% *0* N N .940It3, U 3 4000

    Z3. 1 1. ;C;OZ440 SY - 3 4.5CI --0000.5 N0N.0 .60N0 051 553945.

    o 1 0000000000000000000 NJNNIS39NJ-.CPNNME45O. SSJJNN4-MU.W

    coo *0 0C 0Ceo.000000*cc C0. CC 0 'Do-l Ctc .5 55 3 . .5 11 . C51t3.5.5. It

    o -~ ~ ~ em USt- 2, h4W W W W.5JW.IJ.IJW5.JI1. S.J54S.J

    in~ ~~.

  • 33

    "00000000000000 0000000000000000W0000 0000000001******44**& sg'sge*2..... 2.4wooiiihhhhhhiliiihhhhh 15hi H. iiihhh~iW h~iibit ihhhhh ih0009p *o o-44 ON-U 0' *0.UO l-04o 4a

    i.ON~bft 1~Me 40 4 C 0 g0 M.0S0 00 4 000~J( * 0#10

    0.0p. .6.00 Z.#U: On. .04,. ft 03 ... 0 4 M lo 0

    000 00 000 40

    4444 -p0 t0 04. "run W 40000dO 40 00 0*0009.-000~..00NNW Nj .0Mvnz00.40004ft

    * ...... ,. 0 *,***.*ww

    109 4000 1`= 04000 100e , 9 .44..400 00

    0 0 0 0 ooooa I10 10o oa on oo0 0 0 0000%. 00 p000".OO

    o '. 0 0 noG cIi) 40T no I-0 0 0 . . 4 . 40010

    4 00 . 1 6-...aI I I -- - - - - -

    0 ma a,. N0*B1eB*.B* **. 4m 4p V.I0 - PIhhh.iiiiiiii. ihhhhh &i hiiiIW.kh Wiiihh Miihh Mi W . h h hi 0hinPNO

    1~~~h 1II 1 tgo.0 -0 -04 - - -

    04040.J14g01 z v v 00009

    **BB*B*B * 0.. ..*. , . . .. .. . .. .. iBBB**BI0iiiiiihhhhh .iiihhh hi .lhhhhhhhhhhiiiiilhhhhh .iih hi .. iit-i ihi

    4J0...0000004 ....00..000 C0004 0 00 .0 a 0

    00- - - - - -0000 M100000- 004110 00- - -

    coccco oeecoMceocc woe ~ c o~o C C O O C a4 "00 0 000

    ...4. Cal 0~0c B Z - a0 00 .-. 90 0 1 . .4 0 0 0 p 0~i3I**.1i 060*00..0*14 0 00T*0. 0 0.0.0. 0. 0 ,10*..0.10. 400 -0000 -4 0.S WWWW~z..WzWW~wWWW *W* 4*w 00ww1W4 ?U

    Vo gsw 4In a IMOM 400-.004 000 .. 1AN04440M.5flwe10 00400%s:-.1 xM0~~~~ ~ ~ M o, a ,aM.0amIq o a

    .04 4 *. * * * , . . ... .- * . . .. .. .. * 14 ,. .. .. to* 0 4 * a... nC * %Vth o. hi Itih Ith 1i. It.. 'ih Iiht hih hi lhhIJI.iiO h~Iiiihi~hai.hhaiih -Iiii .1 i I. hitih

    ccc

    0~40o~i00.0 00 *.1-41 .1. 1.L,111.1 .1 -1 W, .0001W14000J000 .O.LI04w0-W04001p In - 7 G 04--0 -n vMF m004 0 -

    hi4 1 1 .o`i 42 t , -. '' 00Z n 8 OI 1-I"' N0W, -,r.M 4 9 .00 rullp~p o "n

  • 34

    Nt0P- M 04 * 4V 0 N s-I-ac w4w - -MNia f

    a. I. o N ,g *mImsDa1 m *2 , see m

    0009000S000 00000000000

    No #0 a t 5- .3 .400f0NU0N. fV. .V4

    002

    A4f V.V m N e , WV . - r INNV. 4 ts- '9 4 000 m o NU-: 0. C I S S S ~--ee ~ e0 V1 a.Ao w

    QV. ~ O4M~M 'iI44C 0m 2 - 0 NC -m&at ' c&&a oi

    1 ei ee0Ie.l ~ e m s w .1 M WMA40N I 1a4t.0N410, 0 0 0. .110 000W0000.00 0.

    I'D V- r4 *n; W%01" '' m N 0',am 00 - 0 ~ ~ 4 4 4 ~NN 4- W4 O~ O N.OZNo

    ,e.ee-,eeeI, .0000 .. c ommt O:Ze4 c-co 0oNi z .. o~0NJ

    4-;'~N N N0 t JO 4 4 NN N % 0z 0 0 0 (I 0l C M I .000-0 0 0 0 0 C

    4J w z mrV.MN.N - - - - - ,

    S0 Z.

    Z7 41.A3.09..l IItIII -- I=

    00 C C 0.0 2 3 e-.0-b) wF 04 4fSS S~SS II S5 P~ I t SI V...0 . 455SN

    (f 0 00 W OW 00 00 WI OW 0 0..0 .,. 0 71

    MNN ZV V.0 1 N 'i WV. Ii 12 17 ct I5-

    C, .0 0 9 00- U.J I N 0 z1c Wttl W W t! It W t WW tWCCt ? 2

    SI * 1 1 . . . . * 1.21 .3 I.. 02 2D: 4:.~f4 N r0.

    c0 W 0 , S O O W O I C -. C.

    0 05-C 40r Z~LM - ,,,.4 2C U!!: 00 O O OO O 0C..-4 c!4IUI I

  • 35-.1

    z ,Jw F* m m.1W . =,

    1

    -,an o 40c occ0ccc t c hJ4 is.,4.O, .~d *4~5~

    ok N- 0. : 21 1 . MON .s . ... ...s

    weIjo - W -N -' 177777777iie.3 SnnnnSS4L4nnnnn1fU

    CO OCCOCCCCOCCOOCCCml

    in P- m o 4 - ,aP-ao: 00A 0, 01 0 1

    1 0

    A~- a.iT . a a asa a an aa a as , ,- 0alaa a 4 . A a P . P n a J~ Not 0- no

    P.: It 11.0 % cS1 a,,. . .. . . . . . . . .2 vs

    ~~~~~~~~~~~c W UI *0 1. .Q e0 4 4P 60 0O 0 . 40 SP ..ON-. 4A!= -. -------;.- 2 c 1-04 g1Ina14 & j---C 6

    4 m u a In M:.. 00: La0 a3W 0. P a~s ass-;(" - ,co n 0

    Vi... xa vs ~ v OnoJW.s .'..JWW.3W41 . MONO IJ Wa.j~-m #Ce-PrAO-t.--.O-0Pt-t. *J -P15-44-3pa~.E~~..Jcc1~

    4JC z.5 0 5-U CL- O d I , M 4 P* EIU C J ~ 0

    3 M, CNIS n0 40 00 3mn4. Z P. . .3 ... C------

    e............... 0 aJs 7ax~PPN~C14PCNn400 4,! .CP CL 5 4 Z 4 t

    0 >

    x . A a 0 00 f 0 D

    . . . . .c e~

    c m5 M. a V ... z JN. In InA1In A

    E 1 2, 1 0V) M4 #4t.0 4 m .,&2 .

    4M z

    C NCco 4.5;r, - C44 c ml0- -U a,

    U. .. . ....In In

  • 36

    th In

    IL V

    116 1e 14J *OwO@ at

    05 0-

    wwCw www wSN

    C40C

    a'af ImcO- f 11211 .4.t

    * z S : 1. m ovL ,Z:= d4 Iz1

    CtrC Ct

    _j ..e

    'y 4,.

    fn 4 a

    C hb' .. . . . . .n

    -A r I

    00-D 4 - t.

    in;a o fo '

    ___________________________________4w___ -t H~- .- a--..---,- iii

  • 37

    VI. ERROR MESSAGES

    Various error messages may appear in the output and causeprogram termination. Each will be labeled with the subroutinewhich found the error, and possibly a brief note as to the typeof error. Some messages give error numbers as explained below:

    Subroutine Error No. Explanation

    PRELIMB/C 0 Too many sections, wavelengths, wave angles, etc.

    PRELIMB 1 Sum of weight distribution#displacement

    PRELIMB 2 Hull volume inconsistentwith displacement

    PRELIMB 3 Longitudinal center ofbuoyancy # long. center ofgravity

    PRELIMC 4 Error in range or incrementof variable conditions

    PRELIMC 5 TDP calculation incompletePRELIMC 6 TDP file lable # title data,

    col. 1-30

    Errors in the calculation of the two-dimensional propertieswill be self explanatory. However, if an error is found in theenergy balance check on the results of the two-dimensional lateralmotion calculation the message is printed, but computations proceed.It has usually been found that such errors in the energy balancecheck have little influence on the calculated two-dimensionalproperties.

    VII. ACKNOWLEDGEMENTS

    The SCORES program derives from earlier basic ship motionprograms originally developed in the Department of Naval Arch-itecture at M.I.T. in 1963-64, and subsequently updated atNSRDC. Thus, while the program concept is not wholly original,the increased level of both complexity and flexibility inProgram SCORES results in a new generation program with littleresemblence to its predecessors. However, the earlier work isacknowledged as the root source for the present development.

    The initial phase of programming for Subroutine TDIR, thecalculation of the lateral and rolling oscillation two-dimensionalhydrodynamic forces based on the method of Tasai. was carripdout by Dr. Y. K. Chung.

  • 38

    APPENDIX A "' PROGRAM DESCRIPTION

    The SCORES program, written in FORTRAN IV (RUN FortranVersion 2 under SCOPE Version 3 for CDC 6600 computer), isstructured in a fairly conventional manner. The main programserves as a control for the job processing, calling varioussubroutines as required. The major program loops over ship speed,wave angle and wave frequency are established in the main program.Data are transferred among subroutines via labeled common blocks,each subroutine accessing those blocks specifically required. Aspecial common block labeled PROGRAM is used and shared by manysubroutines for storage of intermediate calculation data.

    Subroutine PRELIMB reads, processes and stores the basicinput data. Preliminary calculations are performed and the dataare checked to some extent for self-consistency. Subroutine PRELIMCreads, stores and processes thL conditional input data. Preliminarycalculations are performed including spectral density calculationsand print out (via Subroutine PAR) if required. Then the two-dimensional properties are obtained, either read from file orcalculated via Subroutines CKLEW, ZIPSMO and TDLR.

    Subroutine CKLEW simply calculates the two Lewis formparameters for each section and checks them against criteria toinsure positive contours. If necessary, the section area coef-ficient is increased to satisfy the criterion. Subroutine ZIPSMOcalculates the two-dimensional properties for vertical oscillation,while Subroutine TDLR does the same for the lateral and rollingmodes. The latter routine follows both the method and the notationof Tasai. Subroutine MATPAC is used by ZIPSMO for solution ofsimultaneous equations.

    If lateral plane computations are required, Subroutine ROLDis used to calculate the natural roll frequency and the additionalroll damping, to approximately account for viscous effects.

    The basic ship response calculations at a given conditionare performed by calling Subroutines ALINT, COEFF, EXCITE, "'OTIONand BENDSH, sequentially. Subroutine ALINT finds and stores thevalue of each required two-dimensional property by continuedfraction interpolation in frequency parameter (equal to circularfrequency of encounter squared times draft divided by accelerationof gravity). Subroutines COEFF and EXCITE calculate the coef-ficients and excitation, respectively, in the equations of motion:which are then solved in Subroutine MOTION. Subroutine BENDSHthen calculates the local loadings and integrated moments. Closureresults are calculated, if required. Throughout all the calcula-tions, subprogram function SINT is used as a simple integrator.

    The ship responses "t each speed and wave angle are printedout by Subroutine TNIRPA, including closure results if required.If irregular seas are used, Subroutine STATI then cc'-ulates and

    ?I

  • 39

    print the response spectra and statistics for long crested, oruni-directional, seas at the particular ship speed and waveangle. Only the integrated spectral response at each wave angleis saved, so that the response spectra for short crested seasare not available. For short crested seas results, SubroutineSPREAD is used after the full range of wave angles has beendepleted. The integrated responses over wave angle are computedand printed.

    After completion of the specified calculations, controlreverts to Subroutine PRELIMC for additional cases with thesame basic data, that is, the same ship. If no additionalcomputations are required, normal program termination occurs inSubroutine PRELIMC upon input of a run control tag less than 0.0.

    Only one special system subroutine is included in the program.This is referenced in the main program by CALL DATE (DTA, DTB)which provides the current date in the argument variables asHollerith data (DTA = MMMbDD,bI9,DTB=YY).

    Program SCORES - Input Data Card Summary

    ConditionsCard (see legend FormatNumber below) Parameters Entered (4 Columnsl

    1 , Title information A802 * Option control tags; number of

    segments 11123 * Length; density; gravity; displace-

    ment 1OX, 4FI0

    Breadth; area coeff.; draft;centroid (each station) 47I0

    S5 OT(E)>0 VCG; roll gyradius (ship) 2F10S6 OT(B)-O Long. gyradius; LCG 2F10m

    7 OT(B),O Weight; VCG; roll gyradius (eachstation). 3F10

    8 * First sta.; last sta.; incrementfor moment calcs. 3110

    9 Run uontrol tag; initia2, final andincrerent in wavelength, or freq-quency; initial, final and incre-ment in speed 7F10

    o 10 OT0)>0 Fraction of critical roll damping 7i0... 11Initial, final and increment in

    wave angle 3FI00S12 OT(D)>0 No. of spectra; parameters .... I10, 10F5'0 o OT(D)-3 Additional corresponding parameters l0X, 10F5

    Legend for conditions: * - always necessary in data deck.OT(-}>- necessary only if Option Tag indicated

    meets condition shown.

  • S0

    40

    APPENDIX B - FLOWCHARTS

    Flowcharts follow for the mainprogram and each subroutine. Thereferences given on the flowcharts,such -s C-01 etc. (above and on theright of the symbolic outlines)correspond to numbered comment cardsincluded with the FORTRAN source.program, and listed in the nextappendix.

    I

    oi

  • 41

    FLQWCHAQT FOP M4N IFOM1AMI

    4~ r40 4 r-n4. -

    i4_ 4 . AFT -4 . CALC FQF-QFAO. pnreqq ANOf STOP E 4 4 TnP APPAY 4 * FlDrNnFNT .

    PAASC INPUT flATA - . 4 * i)eA~t (?UIATT . 4 P&OAUFTFOS .

    4 4C-. 4 1-

    0CALL PRI'FmI 0M 0. MOM AOG **-4 4 FACVF WAVF F.O~F4C A*

    4. 4 + 0

    + 4, *o**4`fq0

    4~s ..n .~)FMT31 4rFFFCT

    CAI 0__ I__a_ 4 nVF WVflrS

    _!so.so + 4

    44AR CA SF"rAS. WAVF rpA~I

    0 . C.

    2* . -*4START LflnP *r W" V 0 -YlF 9

    *VFR W4~r 4-c(ccc9. WV-A" 04-l"S .* 4 AIlt Tf-IODA

    .............. el ri'll .iTT~ AN() &~i -lCl Tr ANn 0011,1

    jWjQVFMFT . 44 OT~cr.;rS n f a STA q T4TIS;Tffr&l e4Sii, It~ ATqNIO "Frin . 44 til T AT TNT~ zrrrn 4 TNTS ;OPrr aN

    4r, wAvF

    .................9999

    -- 4. YFq. "opr *A *9 49-',HIP4 Itrr. rO45 *)44 AlL f.OOIAf a 44~ 4 . cast qT*Tj 6

  • 423

    IA v-A VA V

    WA Vixf V, N I z31 a z I. V -*~OS 0I 0.

    z ) 4 It U% * .. *-b~ 0 D 4 4 4 -D-A 0A ANL,AA4 *--+9+9 + + * +9.44 444

    AA

    IA A VAA

    j A V A4 V 11 A

    I~~~ A f* . I .V*N N f*I(l

    I~~ A1 .-- *0- . N., (A* 4

    A W C- *L) GO 1, OCf L) 10

    AA~ .9 NN *

    A

    -A)-& A

    WAA

    I Ar

    a U. . .l .

    it jP .0.. - I-C

    E Reprdui fr

    produced fm pyt tieaitabt co .bepI8 ,er-c:p

  • 43

    A

    0 4 :-.8-- 0 4 4 4 V *

    OtX az 0, ** a .IL XW "31 1.*4 u0 4 cz u 4 4 .04: I 4 .- u V 2;

    *l* .e * I # C J * S -I 1 0 -* IS SI C .8-20b* V 0 .8 4

    A .0 10A u A. 4 . 0 W a *4*3t 0.8 In0

    A . 46 L0VL ~A .4.c 4 4U 0 5 cc4 4

    * 4% 40 0 @444 OA -w 2WA I

    ,A VV

    X V

    AAV AA V A

    IlA Z V

    o 4[ w o * v A%- -*4CLA V A

    V I A Ao 4 %%A0 V

    * U * 4 .. i-U

    A . ft U

    t. 4 4U

    A kU 0 Wl6 vv ct

    454..3*,. 4:. , U S A .t 44%- 40. 544[0 *:'. S A 4* .,- ,- ,' -4o,

    A a AL IV W

    A j -1x A oLWAL A V 4 C - a"A :w ,4 A V L

    A A . mA (- c 4D oA V4 ,-

    A V AK-~ 10

    A 4 4 . . . .44

    AA A VAA A V

    Z -v

    A A VLIA A V

    A v

    A- A V

    A A '. . ........ + + V

    .4-4. . 4., 4b V

    A.-4 +~.I +- 4 +4 4 4 +.8 +J +++++ ++++ V

    "% 4' c.. * * .* In , 0,ft*%ftO1% U 7~J*I U *'-4W *4 4 U.5.44%.1-0% 4 n. 44 .2 4. 4t~ 4 4 5 4 44*US4 4

    A A

    A~~~~~~ vU% * 44 a .

    A A AVA. V

    An V

    A V

    A A VwEA V3u "_

    . A QA VttAA Al 2 I V.A ' v *a -. *x V

    *4 44. . 4.S. *AA . 4 4 4.

    4. A '.t' 3.. .In *~4 A 4' 44 v4 .4U

    * A 4 0. 4 +U.4 4 *1- .. v +44 A 14' 4 44 + 4 41 4 4 .4 4 #b44444444V4

    *~ A v' '441

    A1 A. 4 -

    U A A VJ A A VA A V

    .0 A 4* *4*4*4****4 44* **** 4*4 *44* 4*

    Iv

  • 44

    S*i r *-

    -A . RE

    .,-4 . 2 S * .... AV A "1 v *

    *0: "* , -Vw V, 61

    -.. w *... A.. .. .

    u wet **

    V . -.

    '.00~~V c M. vv~s8-

    5. o. . .xLaI

    +' 4.. 4. % + 6 4.+1 ++6 o

    A... . * :*'" :A I

    v

    :. .................... ...

    A V V A* I. . .. . ... . . .

    Sv

    A VIQ

    aA

    r SA V vCA V7A V A

    .-.. .. .. ,A.- , ,2.-,. .**

    A. 2 A* A . 2 * . . LIi 7

    AV v

    +N V

    4 . . ** 43 *.AA v ....... .... .. .. .v v

    p.-.~ ~~ ~~... .....PpVA AtPPP Jp-w.

    .............. A .. . . . . . . . .

    5.5 V

    ..... .... . .. .... ....

  • 455

    Na Z 44-& Wcao

    %&a

    L) V. * VIL A KI-A V14 A V

    wA V

    c v

    It .' . V.

    a a.rA a4- *-.9444 c .m-1- 4 4 Cl **4*

    0 0

    *44*4440+1 44.0-04VA VA V

    CA Vz A V

    V. ~ . . ..

    .IA v V. AJ04. aO Q 2* j-.1- V. 2.24 1- C-0 w 0 C

    A 3 * i. . :) a v .4) C u0 -4 a .4-ACA 4 4 W 4 IL 4.C S1 a x .0 .64 ew.424+ 4

    A IL a - ~4' 0 * *24A 1. k)- CL . CA IV.1-aA V1 V iC1, 0I

    A VIA V

    A V AA V A v

    A V A vA~ V A V

    WAV A V WA

    AV A V

    w . . . . . . . . . V A

    CS- 2 *. U. V ...1 V V P, CA l NW .20 *CC A 2k & .0 ,ICL

    cc a Vi~ Su *S-k vv. -L. It 0

    A4 S 0 4 .4 * jI!0 4 oID . 44* .A ** I..* .A F. . . . . . . . . . . . . . . . .S a

    A CVA V, c

    AVAC v

    A v

    AA AV

    AA V 3

    4? 00 A 4#vA A V

    V, A AA Av

    AA AV

    L z444 C45>

    ~~~.,~~ c~-4CL4...

  • 46

    . . .. . . ..

    I : *Z 0 * G O 4 A 'Z . . 41 w U Q W 3*IZOwC4. , .- Z " 4 * 4e

    *~uO eIX AA40.0 * .- 0U,U*4U,-.. 44..,,.* 3.,_ J 4)*XZ U* 44". 4. 4.,-,..-

    .. J 4. A 4 *.* o o. 4 * " * . . .'4* ..ZJ *, .4044 . :44 . 4) . ....U4 4 -.. A :* .' .. . . .

    .. . . . . . . .. .. . . .. . .... .....

    A V AAA V AA V *

    Q,*v + +J ,

    A V AA A AA V A V

    A .4.9o444A

    .A V+* **+*. 444 4444444' 4A V A 'n AZV 3A V AV C

    A V -A .u 3A V C v It4 * r .+i.i

    A x .. -0 . .0.

    * .V. --V

    5 Iz VV

    *W Z A IL.J0 C 4 w*I44~0 A 4 u 41 "oX

    S 4 A , " -.. : 4 o .4 "

    A*A

    * A W

    A V vA A UV

    A. A , v , .v

    A A V v4 4A A VA A VA A VA A v

    A A , + , +A A v +.+ + +3 +

    A -,, .#^-.444 VA* v

    A v

    C s^

    4 -. .4L .... . .. *C)-"2' " 4 44 4 4

    91 01 a .4 , V. o 15

    * .4. 0 4-

    A. :. .f l ... ....... O A .W

    A I :w A

    A '4 w' " D4 z4 f:T3. 4. AA 0 4. N X4 .44 4. A 4.

    A A .4 a* W AA 'A X .4. AV AA VA V A )A V AA V

    A VA AA VA vA 4++

    A AvA A

    .4 4 4

    A 4 44 . . . A

    *~ AA.4

    J, IV

    .* .+

  • 47

    4Is a aP4 0 * 4. -. 4. VC 4. ..

    *4 A .3 4 *v4 44 A44(4 A A&1-r AA vvA V

    A WV

    A V-:v~A V

    V f 3Ca V A3'V A VV~ cAVCV Cs V t A

    ~V 6 .... ; U) 1oI I40 4 A *' 1

    A UVAAW

    V N NN* 4 V ~4 4 N

    C. V v -- C 4 OOX . z v

    * 4 V NCV vV

    v ZV V

    V V

    V betavi

    41~- A . ~ . ~ > V. -

    A I Sj. A 4A V A I~

    A 444 4 el 4A V

    44*44 4444 4A444 444

  • Io ..::?Iubj44 4J' Irn' paw . trj. r *. .r.1- ....-. ..-. ..- . 7--.48

    II1 4I I I V I

    ..' .. .. . .. ... . . . :

    I c

    I i' ": I .-

    ........ ...... .....

    Ai

    . . .a.*.*. . ..

    .. ...... . .. ... .... .

    ..

    '' : . .3'4 .." .

    * t t*Q .. vIO A ,. A

  • .jjlppqpj!,l i_ _ -. m i !l !! 1' 11, 1, M+ +i JJAV M I FR- - -

    49

    I

    ~-i ", t." ;;

    e -

    iI I l tl 4 allt*

    S"" ... .......

    I I v

    :111

    "". . . .. .1 ...S................ . ......... . ...

    . . .. . ..

    .,. . . . .-

    .. . . .

  • bo

    .........

    Ip.v

    ili

    i ~ ~ ..+ .. ... ... ..

    A A AA

    Ay A

    . ..... . .... . . .. . .

    * . ..

    ....... . A4 ,4OW

    * WI *AZ+

    .. . . . . . . . . ............. ;+ .,.. :...

    * .. ., ' .. ... *':

    +. .. . + i . .... *t .A,

    .. . .. . .. . .. .... ..... ' . .... ++' ......"'

    ' .... . ' :. + .' ' +

    *. *** **** * ' , . *-A'

  • 51

    VA

    .. .. .. r....... *.... . .. .

    .. . . ... . .. .... ...

    IIc 3 k. :f- c.--.r *

    I * .. 1 vu % r .

    Iwg :

    3bt. C a, .&W._J2C Z 4S

    44 *I * fl A

    e Q:....: .:w......'. 4V4+ *i 4'.4 . ~ .

    4a .:.4.I4i ." w% . * ~.V. 43

    t "*Iq+ ' +"I+T : ~ r+ '+i +i;i*"+i+,++` | I+ " , +++ +*I+' +T'-"l:+l'+e +++++ +,+ .... + +... .A.. ... ,.i

  • -R. oCa'9'*W.

    52

    APPENDIX C - LISTING

    The complete FORTRAN IV source decklisting for Program SCORES is given.The numbered conWpent cards, such asC-01 etc., are cross-referenced onthe flowcharts in the previous section.

    3*09*41. SCOACS 121.00I.0U13127.101(1..21.T*Ut.IPEOUTPU?.TA*IOCI

    CO20N~p / J, 10C*21,2S.1O2r09ON1 / C01.OA / *2,A*1A.G*A0.MC1, 0011. I moll, PLO$2:*ASY.~tOS2I.th~)

    2.490 0 C1)0.Z A R X A.01.2 ,*.02 s0o ,*I 2129001. ~ ~ 1 A A.2 /: N!91,ICCO12IICdOt

    **0. /*2* I A.1C.CO.V*A*,O*000ACC.N.CV.OXII.1.?C(ITA00/19*..WCAA1NS.).*,ACI)OMW4 .190* MN.V OEIV/

    CV.AjS.A4.AG,.

    C-2~~.; -!:1.UT1 N,:IIAVAVI:

    C-C 01 1 000* S4C A'OL 2 A

    IFO1 I( It. 4*941 CALL MOLD21C *r11L 9121SI PC

    ANA 2 .01 !I 2 lAL *0

    2r i 2.2.?.? 10* 1eom.o~zO 2OTO

    PRINT0 q10.904,CA.Ot8

    PO IN 03.012*12 *

    COC1 LOO 1011r, *41 tU(.T*10,)Off 0 0 0..1.10W,01 V OZW0A*C,(GNA/04

    C-CA, CALCUL '1 FREQUENCY *PARAMTERSCA W a &AV/C*(*AW?0 * .ACIIN*4CW.0*CC2*tA1O)2

    **014.** SCCCIIIN21PCT.OUT*CT,040ZC*.1.*UT.T4P(1.CU?*OT.TAPtiIC

    CO?7 *0**0*P CALCULATIONS AT EACH FOCOECY11CCALIAL 4.1?NCALL ECOITE

    CALL CC?

    C-Cl *9W? 0 ESL FOR2.7 TPC* 1.S PEEC A0 WAVE &%.OLECALL T, lop,11 " , 2710. 20 10 90

    CALI STATl90 10 1470. 1 10To10

    ICC 0 *kp1- 0.(.0pSOE

    400 PA-6 I ..90 '*''3

    902 POO.. r -9110*,0.. 4. 13--AVt *1.Lt.*~~~~~~~EU 1..2"40.0911PuLS I

    It, 000*01 1 210, I20, 01.0V(*?2C*L Hko.m.0. L-?!*AL 9090.M1. 10p$ZI

    1O

    .

    AL 91.1. IN 009lot F f0 0110. to 02004A.OLI.X.30 PHASEX I 'I

    91 C401109. , I... 6.1X, j71921.0902901.02AL1 Ir1.0

    - 2 4 .1

  • 53

    6634 003 06,00030.30*L06X

    '1 *

    It IF 41. .61 0.INT 306 * 0.60

    7606333 14 0 F13 0 .1.1VM.O1AVVW.WDX21S.AOA 6 331 3 31..10992 3 0 TO 3

    C-1I ,~ .10y6 *.o.0:~ , BAI INPU TOT 30OS Cf WTS. 33. V OLI-. 31o0.0. AGANS T0T30,iO . .33 3 9Oil0 top. 6*00.03 Io P0 .0.01 )00 19T .0300 002110??**03

    IF M 0L0.67.21 .A T0O get.~. 0T 31 IF1 9 ET *YCIS 0 .003IL .*1 07.0.) 6P0.4 1000.4. 9 0

    06. 33 * 0 6 0 0 I60 T3 CX3 A1 0L04 St6 . * .1634 0 30 0 OS 60 O 9403 ,03 . 0." 139 .*10:0.0061 .003l*.0.

    IP I 36A42.61 .0 3 GO .TO .T. 12 600 .TO IjOA*.qa CIO:. I

    TO 3.6 .0 3 60 0 14f roe4 I 6 1 00 to CNRO AO.43 r 5 H

    30 0 3 n0 o 3 o 10 70 30 ill0 136* 7 3000 h 09 aU00 4 ",;,ON$ 1300 1 0 3

    no A .I'M :~~~~~~0 06 030 -b 3 S-00 3. F93 SR00GP~U.RL O3

    ::1 :0:: 13194T3C3" T,.0thS T SATON.3333? 011 6 *FLt"NN CALUL4vaS UONBASC 09PT ATAI0I.

    I A W.3* 0.300 :I 61L 401S6L10T .70000.0011.31 010.0.

    0313 . G3A333.3.0 t 3 bi 3:I,1 . 0...C.., 103 .3.40"06,090*0633.00f 003003.03.3.3533

    0303 100 (It)-X1*3 0x / f0..4 O-CSU*3 30`00.0 1 T6O INEO REUT I3.133,6033.3.030

    ,*1 O!NT: , 0.0 0.01 4.~ 0.06 0.0 03, .1 00..363 1.1. 36 *04 RoT30n#-A03.'000S.T 0 310.0.00.04.00.1034.0 .0 .0 .11 P In 92.0. 3 60TO0 1 3.01. 3.A6. 42.73. 0.0. 7.1. .,3.

    I3.0 13 so 00*is3000V43 0 fal-I 0.( 39WSn I40 URUTN.PEIM, RORN.?3IF 1T 14. 0303401.0 01SSl 66301 00,00*OT*0T

    I-P%3 30.LT13 3 607AS000 66300 IN 00, 600.OW.1L3,00.00.0

    IF1 I 020/10000 1' 0.L. 60 TO 13CMMN6AO17 W400 07 .3.6 404-MDP 61033ll~ '07. RO

    I0* 000 ;I I,3COMMON3TO.13isI ifs 111-1t f-f" OIIZ.04gCMO RGA TP~(9jRAIjNCSCAL ATA.0.1

    !' I Oa

  • 54

    POIN? too. kSl.tS~tIt.ISO.I1t AS WIT* sit. 0"t41t 4tO tJ.3I5 Do00or ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 T TO.0. I 01 1ont tsi~~to3lno.~

    SEA 100!. 0t1t.1.,l00 fo Oh SI*Slst 113:.tdl.3I,

    c-os $I Sta Too ASSAY 9*00 FILL ItaaClOt6 tc-OS307 OaPTh 1D40A S"to 11 1 :g.gt, i 60 tO III

    S31 5 0SIl(05tOt.ItIFI43*3.(LA03.10 :0(50Ix I0 to 3 00I.

    OP 1 OS. 'St ANDO. l9LWL.LG!;0.0 3P,53I Ot3 0.sAI 40 TDe AIF I MI;3.k0.oSAS .AND, OELVA.LE0OI 3 92 CONTI0JF

    IfI A ;W'(.L4f ANO.kO 05AN4.tt.O.0 I IX 3 sa o It*~.,IJ:aIoI~,0Go IDS'J. I 5 t 5 IF ( 3510.1 j oto

    st 30 - 3C-01 INITIALIZEIAND0 CI4CKI INTIERNAL DLO*5(1IOC 1, zy.%E.0 1 so TO 950

    t !% ., 0? 1, CALL a'.I

    to3 0 - 1 1 so.G.3 10 tO930 C ALL0 *of (I "*TO'

    FI 0S.3 I 00 tO 91139 I 10 ) K -2 50 tO 30 CO a*O ,0 D

    ,01 * I t3 904 u1~h a WAE j D!; A :;1:: 9:;:;1 1S40.0/a 9p 0 aa r RI 03O. 3090.1 )

    IF' C 1*0.0 00 . 16 0 30 FOSa *-A 303OS, 15 *!, 010,ELM.efRMNO 3901* . 41 P054-At 110S07.0* FILE LABt) I So Atgo 9? rOOMA?, I I"t.03,.3a4?5003W105300AL SECTIONJ PROPERTfIE /S.'a.1E50.

    03 A - 0.C a/4o.joloaI 0*SIaCI33I A)SAS)OO. 50.t5lIO Z,' 3X"t I

    C-01 *P4s3"I"lly CALCULATONS0 FOR s1GIJLA5.. to:r 99* .& FVa 4. Sa" 00 *F.3 Ito 00 3.1 -I.N 90 FaMA DP 130 12" 3hI.V10t0 9M1.4/ 5 F3.A. 10112.4)

    IS Sr.0 I.o !I. ;!

    C 0CO~fT O IMNS04L [SLcoOann / CONS / ) A30a0.GLv

    eALl CKLIW COSSON / 00*0 / S*ECI4Il0.01#.S10I5.30.01I,irr t~ot .o to so COOWON / FRoOMa t50155.331S.~o

    t3P.,N13 0, SpICO?,C-to vF*0?CAt. 01CLLA30 tAYL SPc/*00E0"4A0N.Nl05 9S0f.355 11:.b"LI

    F L .m' ;IONS/X.I 1~W *A,10:5A*EtE.55 IT,50lotho On 453.0 osouaSTC4" * OSLYWISLO4?00 AS 351.- SU&1OA A

    ant0*tjd.3I * tOWI.0.3IWF*C C-01 CILCOLLIE aLOE SPECTRAL 0ES:11n At E*Ch 95(00(0(0IF7 If3.0.1I 00 10 T50 O n .0K1.sIN

    *-! a? -U) 101. .10001. 5 O Mo. .-.no La4.0."- C-az 000 OVES 03%0 S(IEEC (05 OIL STATED RANGEIF I 5965l I E. n.0 ) 00 TO AS i - Im ao~a......

    *%5Al) RaPIaIj OtjPsOO-- 0 -O9:'flF o .Tf jF

    WOII S.t5t.l%0t0A.tJ WFII.5W ,OIt(05tESPIPOWESII/tO43050-WCKVtI

    4*Tt. .. t - IOPC~lI..Ot53 fltt A0 TO' 54A.3. wrostlrqsjC~l. 4r~w 1111nuf11 rs &O"A

    C310 41111,4-1 I*A 00 I,1.1 0C",0 C ALO t.S300. SHILLST 10 .1.3 C. S0-1I1L 114.l,C143 PO 3)tJcI13l 30 A .0-IIW(

    00 LW j. ?cNobur-l J-0.S t. I

  • 55 .

    C-09 I.4TP6hTf WOOL SPECTRA TO 00OIAIR WAVE AMPLITUDOE STATISTICS FUNCTION SINT I.~JVO~

    TO VA 01,1 C IOT "*AT ?.I FUNC1.Oli Tlt). WWIC" It TABULATED #'OR . POINTS ATno ?V1.OPC . c FOUFI.DISCTOVT ISOT90VALS 01 03?

    S' 0 110 IfINTOT 0. USE00 SIPL SUMMATION TIMES 0018~~~~~ ItTl.',.OL INTlOT 1 . USE TRAPEZOIDAL. RULE

    0001,1,31 :1* 1 1 1:2111 ol"Nsok TilW'VV,0 '0T0.1-. OW 3.0

    6 0 CONTI" V. -IV UV.' SUNA.."?,

    ::INVC? OTWaVE oIsOTWA &NO AMPLITUDE STATISTICS 01'N? WDOWS

    t". 1VW ,I.EV! 10

    50PVRINV I" IfU(j,TVI", NIWWV.OWV ETO ES1..0.UIOIO COZOII. 'MM No

    P0W..? It o112 VPVVWAPTI EV0 SPL O .7-302 PVxo I 0 S I1O' VVIWIAWI,*SlWTI

    P0 Iolk ?~110 I. SET 011T'/lW I#02 IVI.TA

    6%lil **% 0.0

    I., IWWI ;200.V S-EWWVT.V OW..VTl.l WV 41top WoaIS V0;4 trnA~ l1.VIV.0.SSVI

    'UWIJ,. WOL I '3 .0'0 It%. OP P12III.10ITVWWOO~ /40 S) rWWI" I Its. O.1.

    .S/02lI

    14 PO .&: 1 10000 / OC N 4P,1P.00. .10. 9112? a 1,APVOV WV "In 1I'T

    WDlO 00 1.E T.ORIN,, lS l

    D71-410 .071,.1

    WINDW IP.SD1. .0.OWW0?O46,P..W OP.400PO .. 10.t0C

    OAI.Lo.r.63 1001.4. 0 OVIW . CL10. TIOOIT.DTTV' 110 TII 0 411III 0912 3W .,.S01.I

    * III).~A 0.401.10 SII.SIII.011 SIII0121.011.

    C-02 WALCl .-W -AWOI&*W MOLL WAEOV)IE00Y. .0W00O.GIIIO.1lINERTIA1.10010

    "TT41.0 I N1.110 1 .1 .4 0.01111.11 VLWO/W. .10 0010 IWCS'It.0AII'O,it)W !7 *T.W?,010 I $5V00.IV0I

    90 slaaxl S

    TV 1 .1..

    It4 I4PL A

    -. - ... -6-.- j

  • 56

    I 16KJIK.JI6COOI AC.02 LOOP OVER N2006(6 OF STATION.SI

    IF I K2 .90. 1 60 T0O6 scroci .Co~OI.ECOAc.2C 2.06CA3

    I0 100 S;:.~~2206

    292 66202.70* .0.S6222.LL.0.O 0 OG M0.".!"2341~o 025 26 .1.1,04**22.420910! 624 .122616222022/

    *b*2IN26062. 6 6262. 6 0226022.602..*. 0/00is6026-.76802 m0.

    s0 ul 1.2?0.2 7022202*0222..02.0'1 20.0?16.22 0627 20.202 0 *902.902.202 2eS9M .

    It226MIW 906*Tb?0622l66CT P*6*6(1(6. 22160O @1216 PON STATION .2 F1:1132 99.19.0122200920 .0. IS CONTrINUE ::1t

    T*.226o*22.33..61000611102.260* to6*0

    It6 1009 1( 9P0(60 001 29021102 4T62S22 6.2T I 0. 60 So20.2 X600 .0 .62 6 0 0. O.6S 2 .0U S

    0 00

    MS2..;26122.I~..060..260*2021 2.2020. 106600.0I?6011@In626;1* K0.1.

    2 66 fl t 60* 9u.6J fto Pnat.Jj.uIF Ano I. I A 0 ;42; 1,: GIaI

    *Ivtc 6969* SI-1 Sol S ;2016620CI n9 02 109 6, 0.. 6010 10' t .0j. 1-II INI

    2 ~3 00(.196.901*1 6I*127* 02 44600019121.011333-1.26SPI92 SA?.6.7664100*20.* 04 1 900200.2.0066670020-02.13333S200

    00 26 2..22 9002,220.00..020010M

    gal20 .. $A22060

    13~90 111.21111A 47.12 260 3016 :6 1 .o602.ot062

    ENO22.2.. ** 0

    1 6.01 000.2TO610

    "13 6 . ., Al0i6*00.0cocacoc C 902n017 .72.20.10210"(06(20(3226(2 06222u2.0CS*.0cose -Coec I0 ,..32O2.3332..*. 606* 62(..262C2 9621 .03262* 2.0011..006,.S.2.661009

    * o~~~~~~iscscO90*0.3000062.6626.,0202I~~~~~~ 292*.1 16 001 0220393000730.06.00.6606

    NO ; oo$..6.oC 0 0 ..IT et-.60o2C 20 022.2 092.12

    6260102..220* 022.2S .0*IVe~0c006-~us* 12 * 112

  • 57

    -: . e k 4: 0. OP 61-41 IN2 A*N PLNWI W M s?

    14, ,0=.1i 099IC011P 112 aOP022 11 CCII 9 11 S11-ICOI 92, 61

    9C.9.9Y29.1919.22.e.Sau~~~a~ugI.OuO*.9S22o 1 n0,151 2,029.S19.022,2209

    19 to....10. 6C16y .. 7.0.0U14r

    :rT~n 24% 13 4592.2,2eor0 . 1.091

    CO-022 / PR09CM' 00994612222.2. 010,191CE12022,A210,l.1 9*PCX1102 10161.1921s".n,~O T. 91 .to. 1 60 TO AS

    0 C-CO Cole. P0FO C0kSTAMT SCTIC N 2022 910911C1C.-RXA4,22LS* 2.

    n2P2C.02 .1.90 no No .3.10

    CII. I.,2 so TO so*. fl 61 ~~~~~~~oP MA 02a.1O.C. 2.900.. 0 0

    As 9 2.2.*PIC n 0 90 9099 43.Z

    4 2 2 .. ... .2.OI92.... 960* .0

    :C .c 299

    9.0.1 21C. , A2002999

    30 9 2 9 .2 2 2 I 3 4 k 0 .2P D TE R I N NT toS*2 9 .A9 ,C CI P * A S S e P C . C .0. / . 0 ItA 3 ,3IS I F 0to~~~~~0 To2? 30322%29

    20 10 ,00I

    C AD AE &31I 't-T H C1C, . Ot1 SW.30 4:'9 S 39901. 011A94 N 2 R L99 01 96 2'IESOA LEWI If C9-242C.32 6.2. 2 0

    IN990220291 O029 %01 PC" 1. R 99A9 9?,UT IS0 11

    0-1.1992901.MECHANICS,9C219,0

    C 'IFNIY JA2 A.10022 91006 091% C2' .C2L 0 ME P 3 1 0 10222 29C0C

    C 0 '9 ' 2 .0194 l E L H 22 L .00 .90100 M 90012 W91 9100 .9....0.2C 099t OP -0900f% O L2 DELP'. 992 P09C 90 909wo 1 0 WARY CI 9066 C00 O T 2S0920 C?]-14090A2 At

    09SF093 f 119 C T No.00 01P093 (SS2.210 9 jC99 110C1.171C0 900090T 9/0O.PCTIN HT RUN ETO OTUC 229902229 DT-OTO~o:@c 9 0..9 00..922 PCL919090191 'C9 C9 . I11, 91 2. 4101901.20 .7 .Core 01 090950 0022120P9C 'T nq/3.0q

    C 99090 96022 2090.2.2226 ,L091'AA90[ 29 P911 CPACIOVE91e09?C. 90.] 2224 o 209 A42. 092O L~0 a90090~o U9T4 0009 , IN 9119C90009U901,ISC PP 19219 A%19902 lot P0 19fTS 91091v h01 ~ 209 29A 9

    C ~ ~ ~ ~ ~ ~ ~ ~ ~ ' 'PtuS' 27 CI9C1 9.- ,2 eP 090 9.I-C/a.L3CTS1

  • 58

    90 44400100.LT.Id.C90I 00 0.0 OF Costs"0000 *9090 .. r.0..4 00 * 0.0 to Go 0.1 .49. .0

    C-00 *A~IT P.00 40 C*k? FORU Y440NOL A

    0 0 .0D 09.0

    00 240. 0..3 095'.00...4S044TO0 0.....

    *4010 Lon IIIV FaQI* RANGE ':";1K.AK99C9.*40000SO.04

    if .01111 0170.10

    001 TA -40 .1-1..C11 CACUAT * TEA ANDPOENIA FNCIS0.004N[N 007 TO So

    An0 2*0049 1.10

    AAo. 0.0A 7I.O4.3I1.F0-.44

    I0 r 0 0 T 00001)0 O3 -17 q'0~ SI-LT.0. U 4* V0C10 SO AN*0 "0t90 OCOO%SI * COIOOO 00 C AM4'rTMNIZ:Y~ATSU~tSMT000 TA 50.4 000.0. Col

    33 T' NIO.A . 6 7040 .0..

    99. X A5. 9OO 1:0000.1 I:J:.*44 .04*0044110 04.072S49 AOfA99 .1 t-100. .7 FO:00009? eO000 COF'*T 9019 LEAS SQUARES0 000* 1 9*1

    '0 OSXIno ..-'~~~~ "Z* A 90 ~0 .,

    q0 s9.1 00C. 5 01!0 **3A0n go 0009C10S00009O.o."I001 A JS 4 7 9CI1*C1(t)10 9'I..94.0

    99% . %I590005'0C0no 04 30040 009* 11091 950LI 104 16 9*0 00 12,

    3 040 11 .1K 959 00 '.. I I N

    40~. *l:T04A 00 00 00,C010 CA 00"9u1 It04*1 AND P4,1090*4 An8. AvL . 9404.0.

    I'll 9C004I4Cl. 040 040490

    Fly . 04,0990050 00049011 r* .X 90040900040 T40./Xl. A040

    9000940400000204404 0 f41.004.004400440,0*45 0 9 .. 009 XO`IXX09.~A. .USS*900- 90 .U.

    4 * 0*- NC 94.10*90000.00L*0 -e AN 0.02 SRE

    4I A C. 1S9*0400000009 0 .

    O0 .0 90004904. 4044:1 0'46 9.*.9J*074

    '91000, * 00.00 A* 99.j944074

    00 4 %2=0:.120111 ... 49CC00040/*3.0A009 . c*4.CCOT.A.,.-393494*O

    09 p00C 9 PS90.C002944040.*F03,.92,*0AS 9 .,.0

    C-16 1111:0111 LL OEFICINTS F 0AND0 $EIC$%'~qlC I N'S I 1121111.PPAA1

    ~~~~~~~. . . . . .0 . I.N. . . . . . . . . . . .T-G2),II3 PQAA

  • 59 '

    10 O

    e s oo~o ERS EU74.0 010.1 e.-A O / M3R/4g!I Tti4!NCi!iRESI;2C~014TF

    G0-0 1 10..1

    44 '0 t-0 LO IN OF STATIONS

    Gino 0~~ ' O10.1 *O*0.0 N O To I

    IF0 *1 G00P0*U/O4.4 UOfIGO,0 - 0.00)) **S Al 'o 2

    o-0 ?"CO IV C II F 00 TO001

    IF 0I4 0.0.0 I oP0q C-4 0l&: SEARC 0-400070 GORA FO Ian 000o A fpj

    1-1-.1 MIL 015.01 ?f 0.OM ;00 TO AGA 10.' 0S."(0 -I 1.1.

    0 IF I LS A 000() .0.11 00 TO 6

    07 l0 . 0. I 0 1 C.0% mGIIUOY OISOCO .1 LO D ION 2ARGOT 0 ?40 10. 0*0.l

    .1, , 3 . , I~

    0O*IF I00 jj GE o

    0 0.0 .0311?G TO 4C230 OPal FRO!UECAC CALCULATIONS0 IF I JJ. OGT. I .0. t .GT. 1 1 Go to 3

    .0 00 * 0.000.TC*oG*A00 OOOYAAGTG01?T lIl 10PI0IC

    :Us7 4 0 0 1 ' X .g !NU

    C-14 F0400 OGF -3.0 0 - 4.0.3 *4/IKoJJ)AG I'F 11.70a.0 100G TO 003 no0 I0 I.I.

    90 I I IXA.S. I GOt 1O 0.0l* .

    IV . 0 00. 1.175e-2O S0TGGP AFOLTSIN2 COAMON AORGT C-GA0?GOA P0OT1U.'FCTIOO OOTCOPOLP?000 LOOPto, NN f oo ..

    00 .6 0.0.6 .01 0.j.0 1. 0*0

    '! i J'At Ofw00.OPj) - .sL(ll ' .101j.A1

    10, COTI NUE IF (O 00E O o To 1

    14 VAL4OI * l AGO.R~fJlljOAT FORAt* 132-OTOP0 24 SVBAOO?71 ?0ME 0001 TOS .?" 30IIAA A4GTAO0 0A04

    Al P."G 150AG , 100., 40 0 10* 1,03.4 .. 40 I0 ;100.4."4".TA :0.4 .. "lI00l.GIO0l00 4 101007M-p91 00.: Is" NO GH..003 07 PI4011:0*0.00/1 .1. 0.100 02

    00000T01 0000 00 10 1

    TSOOAPLA I ALL tACOU1 10001 0,00104A PROPETIE OAPTI P00000 041410C r*1GINOCT9 700 4.0. SECTIONS. USE COkil"t F0)1 RACTION 49TWOO. WIT" OF 0)

    C 401:400 N11145 PC1111~4080la or 0 TGT10/300SCIENTIFIC SI)kOUTbbUCf P ACOG of 100. 000. to" OUR. No. "0020.00.3 rOSl' -O9 070Cr -POULTS2P 00041.00. * .10

  • -F ~

    IL 60

    L

    A N O( INUE I' IP 0U.LT.3 00 TO 40NI0 R C.. In. POR3 l) LATERAL. PLINE NOTI0N$ SIAN,, TAW ROLL)

    CLI P) * P50)VDr

    OORRVUT)NE COUP CL) N)0P01).*PA2TOP3C0) C)* V1CLI)2to (I I4 CONoA PI.JAAMA.NRAV.mO tL I) *j IPN.C1P

    COnN / ASON / PLOSPL.TRAIII.,TNETRSTA S 1111hAOPAISII, L, A, .)0OC'CIL)S)VO0).11110"1211,0RA012S ZNR2I0I0,SIS0 CL))*00

    O SSZPER,ONNO!.0N1EItI.:NC ES,. OLOPP o x')oOS0",1004 /TORIN LIONNS5.N..,10I,012 .

    CO-04O MIND10 IA.N A .S0.0.NeO.6,AVNCI)SAPC 11.~ : yNO.Xd101.1.00/ 01.0I Cj(100CLISI,,000WI1.NW,1.c '1")A P0;0~ AP02)T*I3

    iC it V!Aj CI) * .*O Ol * ROA 1. CIilO) X..PO-7V P2

    it IIICL OS) *0.0CLIOO OOCTPON-CA.02

    00~~~ 10N.L0UCLP) * ,?CLIOS I2

    P-0 ) CACLT ROINIRID ITERAS VE SIPLEO CLIPT) r. OPl.40

    1.0 M .O*R

    FIN))1 1)".IT0.VO0

    TV I K.01.4 ) 40 To 10OVA .1,1 OUAVUTNP EXCOTE

    P00)01-S. IT.,.X 001.00l I CONOA I. PIS0AOCVRCOONIPN S/PLSIS1.,TMOSV.ONETSTRS)N.0S)

    0)0 .Y)).1) S0 Vll 4)(011.1(t)X ISPR.0001... NK..AXSO1.IINC1.000ROLO1.P

    1 01-04T / 101N IANSDPIV,0hNO 0,0000NNOONCW50 l0I.).0)PAC.WACC PLEN.A L AT2,N1.:I

    C-O2 ONC-PAS? RLL 04ISOAP ITO ACCOUNT POR viscous EFFECTS) COUCLE4 RUC / TCwOP5T)512,,LO,0R2)TO1)IO,11)lIt(000 )LPCMM PRW00N. / STORNOE)A5?).OlI)I,0I14

    PIMP) a PO)O'P*FAC C..e * S"C-00 CALCIILATE PFQ0000O DERIVATIVES AN.0 THEIR INTOGRALS S".1.. * 1.)NO

    1.. -U .00. 1 1C0 C&LC.-LATE WAVE EXCITATION AT EACH !IATOON

    00 20 R3OL.9u.0 C N-l)CAM . . 141, /2 N 0~~"I0XII.K.0) JA- tlA0)..1*-ANSI*..0I)/OSt !OT N pP-.OP')SCO)

    ty(OOP))*0 (NNOItI1.0*0)ANS)0.I.KllTSOX IF I SN.P.O. 1 500 -11DC~~~~I IF)*000,0 0O I AL.GT,2 1 NO TO 10

    If I 00cSrO.4 1 00 TO 2 O C-O2 :01- VEROOCAL FORCE CObORONNTSn0 1. 0..1 X 1":S .l GAVAS11

    P. V)) ..0.0 0 'A'L Wk 0A1 N qATO 00 x.ORVNI 00

    16 vf E1 .V1 4b1)"IM O IF ( U,LT.3 1 40 TO 30'S r .yNV C-*NOS 011 LATERAL FORCE CO1.00E NTS1 ~ ~ ~ ~ ~ 0 1,fK.G. 0 O3L .0 0RVHAOO0EN)0[AtANSIT,3)01.VN-ANS: I

    C-ON0014 rf-CO:POICIlENTS P01. VERTICAL FLANE PIOTION1 t)"&ENO POOCH) 0) 'y CN.IX.)NS)IAN)VOO0S100.CIV I2) " A P2V.OP) TI .1 ), :PO~LC0*OlSN

    CVI CPA - ASIAOPO.)-V1Z)0 C-. 01.. 0).. NOCT CI100%NOC CI YN) PS0*)VOPSI)S.VP)I -CIA0,.05IOS)U11LCV(IAI

    20&IT.11. N')R).TfOT

  • 61

    30 C .ON 000I 0CO9900

    IV I L.41T.1, 00 soT 40 PNS

    C.09 040*0000 VEA70CIL FORCE N0 PIC" OMENTro.oI COND.A I 00,009000l.041,AW10C ~ o 70 19 0.1.0 NS9 / 007 .I000,7.7,O0,00,00.,0.J51

    o909 * 004 C0PS?9099 000o74 / 04070 /StOEIZ.I 40007,U009,0409

    I0 It COa.0b0.00l0000 / O000 i 00410.0,L0~00Yoo oo - -oIo I Cn0:P9 ,X CAI0 / 090.00OVOO00,ov..COo*05,P:0

    Cie -SIYW:9I:O5 to 0 /00NOT 009I C0I

    00 COOLJ9CO,009 01400C0Vein / 9070000 z/ C9.001" 0.S910.00100.09,,09y10 1 U. T7.3 S0 To go I 99413092 0090,0.0000,T070000000y010007

    A 000.l f799,9,.0-ch thleffinal f LA0I4L F0RCE, III MOMENT AND0 A'.t. 000007 e-0-0LE.X .00,0.00.0.00.0,07.0.0

    4 A I00 0ITt..: I ( I el0110 .- 1

    '* "11" " 004-940129.00* 0000110 190 Yet 40 40 000 90 9 0 0 I ,C." 11 TOTAL9.100 L000 L*DI. IT00l.0000

    00 ~ ~ ~ ~ ~ ~ I D I0.90000907 0*000ve C00L090,00970 * 00.4

    II 1A-IA- 11

    C9~1 007 o 000.00ox

    *0 P 1.0*00 007 /(-S~I 741,4oA0 ft0 * 00Foi 200.0 O4741,1V0 00 *000(

    c70 0

    0'99~ ~ ~ ' 0010I)tollIR-X()T*~*P / 070.950.059.050.001,000.090.007*000

    r o..(I MT A003 1Wn:104

    9Al no 09.07? 0 0

    ZO0 If.a0009.Y e"1909.1-e

    * ~ ~ ~ ~ ~ ~ ~ ~ C'YI3 00ASI-OLII01RDj ICD.90090070900009 I 1140070.90 0090900. 00.110011t)2C 01 *00.90 0000 900* 9 rel4 O .009.900:D0009 :I69000094000

    A, 0*4 ALl(TloN3COvSTAY~olw~v 21 10*0 RO .ooo.0,o94XISI909.0/099 9A0000910 * (.007P*CV 74WE-Ci 41 v00.o~'C P 79000 190 400.Z 9 I 9000o009000 F0.0 1))

    14900004/0 90.914.C009.49.0.00 00' ze00 :.09 .17%.'90709009 T to07904*400I097 Cil 4144/9004L9 04 9 714 11049 oilIf C1101ANT IO7tIt,

    17 90.?. 0' 20 ** 14 011- 1-41 .09 07900 0009. g 9.00CALIA1 09. AI00009.9 099 09 0901009.0

    0 (90999 4.0 00 9. 490 009 1 IT599 0 otC0900. 0.400019ON no909. 099 I-4 900000000 7000 *L00

    O0 1 009.0.99. A-Wt..010L9029..0CLI09 510..00

    0 C00909p4009.90,0C-20001 9 00 T O .(0.~J A Of TYPE 001OANQ

    0*90 0 0 00 0. 0 U* .. 0. 0 .. 0 o0 000.C 00 A~ 0 * 9 1. 0.. 90 T0 0204 . 000 10 9.00 0.0 .000 .00T0.0 0.9000/0 09 .. 0

    III07 0 00le01)/D9009009~:". O*o 41009009.959.4040909900.211

    009009* *. W. .0Yu.MIMI 0Ov S.alov.2A p

    9 ~ ~~ ~~ A010 A 01 '.5909.V94049090970

    219 9' lA.2s?

  • 62

    v,

    . .c;FT(0124.xm%/21.2*2 O

    4 . .CT0124.6221.*2412242.02 "06 Z2 ~ 0CT DOF ft a I KU 49LT.3 1 00L

    -3-1.) CAPS2*,446947272 C I'9S'"

    _" OTREPNS UCTOS." PL LN4727 *Ak*4,.0Ll41.IA~I6*22*6.0/ I42 . '0401 ', ASTIC *000 72.102S .1t* L

    If f KP447.NF.4NS-A,2 60 so0T 34 20., 9".0. 64 43

    C-07 L'4 PRINT2. 992. ",? "0*7.40A*M,70