76
of. Tom Ziegler - Department of Chemistry iversity of Calgary-Calgary,Alberta,Canada T2N 1N4 Density Functional Theory. Approaching Chemistry from First Principle Thursday Februar 22, 2007 19.00 - 21.00 pm.

Prof. Tom Ziegler - Department of Chemistry University of Calgary-Calgary,Alberta,Canada T2N 1N4 Density Functional Theory. Approaching Chemistry from

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

Prof. Tom Ziegler - Department of ChemistryUniversity of Calgary-Calgary,Alberta,Canada T2N 1N4

Density Functional Theory. Approaching Chemistry from First Principle

Thursday Februar 22, 2007 19.00 - 21.00 pm.

400 b.c.

John Dalton (1766 - 1844 )

Early Atomic Theory

"We are perhaps not far removed from the time when we shall be able tosubmit the bulk of chemical phenomena to calculation."-

Joseph Louis Gay-Lussac, Memoires de la Societe d'Arcueil 2:207 (1808)

"Every attempt to employ mathematical methods in the study of chemical questions must be considered profoundly irrational and contrary to the spirit of chemistry.

- A. Comte, Philosophie Positive, 1830.

Atomic Theory

Nield Bohr (1885-1962)

Ernest Rutherford (1871-1937)

H(ri)ψ(ri)= Eψ(ri)

i=1,3N

Quantum Wave-Mechanics

Erwin Rudolf Josef Alexander Schrödinger

1887-1961

Werner Karl Heisenberg

1901-1976

1926

"The underlying physical laws necessary for the mathematical theory of..the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much to complicated to solve."

`P.A.M. Dirac

(1929)

H(ri)ψ(ri)= Eψ(ri)

=1,3i N

Exact Quantum Wave-MechanicsH(ri)ψ(ri)= Eψ(ri)

i=1,3N

H (1926) H2

+ (1929)

n!

He (1930)

H2 (1956)

Time requiredn! with number of electrons n

C6H6 (2000)

Development

Electron Correlation ?

? ?

Exchange-correlation hole ?

Approximate Quantum Wave-Mechanics

HartreeAtomic Theory

R.K.MullikanMolecular Orbital theory

Some too good to be true

Some theories are too true to be good

L.Pauling J. PopleSystematic ImprovementsValence Bond theory

Approximate Wave mechanics

Hartree Fock (2000 atoms)

log(t)

2

Møller-Plesset (100 atoms)4

Quadratic CI ( 10 atoms)

Dead End

Density Functional theory

Thomas-Fermi-Dirac (1929)Model expression of total energy in terms of electron density

E(ρ)

Fermi

W. Kohn

Kohn-Hohenberg-Sham(1964)

Exact relationship between electrondensity and molecular energy ..

..but, form of relationship not known

E(ρ)

? ?

Exchange-correlation hole ?

Approximate density functional theoriesfor exchange and correlation

HFSLocal exchange

LSDLocal exchange +Local correlation

LSD/NLLocal exchange +

Local correlation+ Nonlocal corrections

Exchange energyfrom electron gas

Exchange+correlationfrom electron gas

Nonlocal Exchange:Becke,A.D. Phys.Rev. 1988,A38

Nonlocal CorrelaionPerdew,J. Phys.Rev. 1986,B33

Calgary

Program Implementations for first generation DFT 1973-1983

Montreal A'dam

Florida

Excellent Molecular geometries and electronic properties

Poor bond and atomization energies

DFT Underground

Axel Becke Queens University

John PerdewTulane

Second generation Gradient Corrected Functionals

1983-1992

Calgary

Implementations for second generation DFT 1983-1993

Montreal A'dam

Florida

Excellent Molecular geometries and electronic properties

Good bond and atomization energies

Zurich

San Diego

DFT-underground

Chicago

Many properties

Nobel Prizes in Chemistry1998

Walter Kohn

E(ρ) = <E ψ|Η|ψ> John Pople

JACOBS LADDER OF DFT

QUANTUM MECHANICAL

HEAVEN

E(ρ)

E(ρ,∇ρ )

E(ρ,∇ρ,∇ 2ρ)

LDA

GGA

Meta-GGA

E(ρ,∇ρ,∇ 2ρ)

+HFHyper-GGA

Rung 1

Rung 2

Rung 3

Rung 4

Rung 5

HΨ =EΨ

ACCURATE STRUCTURESFOR ACCURATE EXPECTATION VALUES

Reactant(s)

Product(s)

Transition State

Metal-ligand bond distances from HF and Xa calculations

Mol Bond HF Xa EXP

Fe(Cp)2 Fe-Cp 1.88 1.60 1.65

Fe(CO)5 Fe-COax 2.04 1.774 1.80 Fe-COeq 1.874 1.798 1.827

Ni(CO)4 Ni-CO 1.921 1.794 1.838

Cr(CO)6 Cr-C 2.00 1.868 1.914

Fan and Ziegler ,J.Chem.Phys. 1991,95,7401

Fe Cr

CO

OC COOC

CO

CO

Metal-ligand bond distances from LDA and LDA/NL calculations

Mol Bond LDA(HFS) LDA/NL EXP

Fe(Cp)2 Fe-Cp 1.59 1.65 1.66

Fe(CO)5 Fe-COax 1.768 1.817 1.807

Fe-COeq 1.769 1.814 1.827

Ni(CO)4 Ni-CO 1.795 1.841 1.838

Cr(CO)6 Cr-C 1.872 1.909 1.914

Fan and Ziegler ,J.Chem.Phys. , 1991,95,7401

Method Cr(CO)6 Mo(CO)6 W(CO)6

M-C C-O M-C C-O M-C C-O

LDA 1.866 1.145 2.035 1.144 2.060 1.144

NL-SCF 1.910 1.153 2.077 1.152 2.116 1.154

NL-

SCF+QR 1.910 1.153 2.076 1.153 2.049 1.155

MP2 1.883 1.168 2.066 1.164 2.054 1.166CCSD(T) 1.939 1.178

Exp 1.918 1.141 2.063 1.145 2.058 1.148

Relativity and Structure

that relativistic effects are “of no importance in the consideration of atomic and molecular structure and ordinary chemical reactions.” [P.A.M. Dirac, Proc. R. Soc., London Ser. A  1929, 123, 714.]

"..that relativistic effects are “of no

importance in the consideration of atomic and

molecular structure and ordinary chemical

reactions.” "

`P.A.M. Dirac

(1929)

H(ri)ψ(ri)= Eψ(ri)

=1,3i N

O

O

O O

C

C C

O O

C C

FeFe

C

C

C C

O

O O

252.3252.3

182.5183.6

114.8115.6

201.1201.6

116.8117.6

77.7°77.6°

96.0°96.1°

NL - SCFExperiment

Biological moleculesMetal SurfacesSolids

Biological MoleculesMetal SurfacesSolids

ACCURATE ENERGETICS

Reactant(s)

Product(s)

Transition State

Unsaturated SpeciesGenerating Coordinatively

Unsaturated Species

COLnM LnM

Saturated18-electronsystem

Unsaturated16-electroncatalyst

+ CO

Calculated and Experimental First Bond Dissociation Energies (kcal/mol) for M(CO)6

.

Cr(CO)6 Mo(CO)6 W(CO)6

LDA 62.1 52.7 48.4NL-SCF 45.9 38.2 38.8NL-SCF+QR 46.2 39.7 43.7MP2 58.0 46.1 54.9CCSD(T) 45.8 40.4 48.0

Exp 43.8 ±2 40.5 ±2 46.0 ±2

10

20

30

40a

OO

ΔE (kcal/mol)

10

20

30

40

Ni Pd Pt

Ni Pd Pt

c

ΔE (kcal/mol)

10

20

30

40

Ni Pd Pt

Fe Ru Os

d

10

20

30

40b

Relativistic influence

: non-relativistic : relativistic

Li+Ziegler, Inorg.Chem, submitted

that relativistic effects are “of no importance in the consideration of atomic and molecular structure and ordinary chemical reactions.” [P.A.M. Dirac, Proc. R. Soc., London Ser. A  1929, 123, 714.]

"..that relativistic effects are “of no

importance in the consideration of atomic and

molecular structure and ordinary chemical

reactions.” "

`P.A.M. Dirac

(1929)

H(ri)ψ(ri)= Eψ(ri)

=1,3i N

Biological molecules ( Hydrogen Bond Strength)

Metal Surfaces (Adsorption Energies)

Solids (Cohesive Energy)

Energetics ???

Vibrations

BondBreaking

Conformations

Excitations IonizationsandAffinities

Spin-flip

H

E

hv

Cl

C

C

C

C

C

Si Zr

C

C

C

C

Cl

C

Inorganic Spectroscopy

EXCITED STATES

Photo Chemistry

hv

Electron Transfer

Ziegler,Rauk,BaerendsTheor.Chim.Acta1977,43,261

Excitations

Baerends et al. J.C.P 2005 Baerends et al. J.C.P 2005

Exp

Calc

Electronic Spectrum of Permanganate

cm-1

}Oxygent14t2a1

Metal-d5t2

e

Orbital Diagram

0

1

2

3

4

5

6a1-5t23t2-e

4t2-5t2

t1-5t2

4t2-e

t1-e

AOC

Determinantsonly

1T21T2

1T2

1T2

1T2

1T21T1

1T1

1T1

1T1

1T1

50 000

40 000

30 000

20 000

10 000

eV

0

sharp

broad

sharp

broad

broad

weak

Experiment

Determinantsand integrals

Ground state

3T13T2

cm -1

Charge Transfer Spectrumof Permanganate

R.Dickson + T.Ziegler, Int. J. Quantum Chem., 1995

Mn

O O

O O

ACCURATE FORCE FIELDS

Entropy of activationSpectroscopic finger printing

Molecular Mechanics Force Fields

A.Berces and T.ZieglerTopics in Current ChemistrySpringer 1996

Vibrations

Calculated and observed vibrationalfrequ ncies

of ferrocene

no. LDA Exp. no. LDA Exp.

A 1'

1 3161 3110 E1' 17 3155 30773 1086 1102 18 1371 14102 791 814 20 978 10054 305 309 19 808 855

21 489 492A1" 5 1209 1255 22 163 179

6 44 44E2' 23 3138 3100

A2' 7 1210 1250 26 1318 135624 1014 1058

A2" 8 3162 3103 25 838 897d10 1088 1110 27 790 d9 777 820 28 562 59711 458 478

E2" 29 3139 3085E1" 12 3153 3086 32 1337 1351

13 1370 1410 30 1025 105515 966 998 31 845 885d14 770 844 33 814 d16 362 389 34 560 569

A.Berces+T.Ziegler J.Phys.Chem 1994

Fe

IR-Fe2CO8

O O

C C

O O

C C

Fe Fe

C C

O O

C C

O O

3a

O

O

C

C

O

C

O

C

O

Fe Fe

C

C

O

C

C

O

O

3b

Experiment Theory3b (C2h) 3a (D2h)

1974 (w) 1951 (211) 2000 (1555)

1978 (w) 1995 (613) 2007 (254)

2006 (ss) 2032 (2034) 2036 (1951)

2038 (s) 2036 (1484) 2039 (1692)

111 kJ/mol 31 kJ/mol

NMR-SPECTROSCOPY

Spectroscopic Finger printing

SHIFTS:Schreckenbach+ZieglerPhys.Chem. 1995

Spin-Spin CouplingDickson+ZieglerPhys.Chem. 1996

Spin-flipNMR/ESR

NMR/ESRSpin-spin coupling

molecule

chemical shift (ppm)

experimentalcalculated

DFT-GIAO

GIAO-HF

GIAO -MP2

(CH3)2Se 0 0 0 0(CH3)SeH -155 (g), -116 (sol) -171 -130

-120-180

-171SeF4 1,083 1,162 966 1,175SeF6 631 (g), 610 (l) 676 577 727

SeOF2 1,378 1,258 1,464 1,365

(CH3)2C=Se 2,131 2,316 1,943 2,200Se=C=O -447 -607 -364 -532Se=C=Se 331, 299 222 446 121

605 579 589 598

Se42+ 1,923-1,958 1,834 3,821 154

Se

Se-Chemical Shifts77

Schreckenbach+Ziegler, J.Chem. Phys. 1996

Organometallic Tellurium shifts

-1000

-500

0

500

1000

1500

2000

2500

3000

-1000-500 0 500 1000 1500 2000 2500 3000

Calculated (ppm)

Experiment (ppm)

M

Te

Te

PMe3

PMe3

Me3P

Me3P

M=W

M=Mo

Cl Pd Cl

Te

Te

trans-[Pd{ Te(CH2)4} 2Cl2]

Te

Fe Fe

Te

CO

CO

CO

OC

OC

OC

CH3

CH3Fe2(CO)6(μ-TeMe)2 CH3

CH3

CH3H3C

H3C

Re

TeHOC

COH

[Cp*Re(CO)2H(TeH)]

VibrationsExcitations

IonizationsandAffinities

Spin-flipNMR/ESR

Spin-spin coupling

NMR/ESR

Spectroscopic Energetics

Tungsten compounds

W(CO)6

W(CO)5PF3

W(CO)5PCl3

W(CO)5WI3

cp-W(CO)3HWF6

J.Autschbach , T. Ziegler, JCP (2000), 113.9410

Results I : scalar ZORA

Compound Coupling K(NR,GGA) K(Zora,LDA) K(Zora,GGA) K(Exp)

W(CO)6 W-C 603 985 1001 997

W(CO)5PF3 W-P 1726 2383 2435 2380

W(CO)5PCl3 W-P 1126 1997 2041 2090

W(CO)5PCI3 W-P 972 1688 1745 1639

CpW(CO)3H W-H 26 103 96 73

WF6 W-F 151 -96 -94 87

Biological molecules ( ESR of metallo-proteins)

Metal Surfaces (Ir of absorbed molecules)

Solids (NMR of Solids)

Astronomy (Molecules in out-space)

Investigation ofCatalysis

Catalytic Research in Calgary

SpectroscopicFingerprinting

NMR,ESR,IR,UV

Direct Static CalculationsPaths, Barriers,Structures

DynamicsTemperature,Entropy

EnviromentalEffectsSolvents,Counter-ions

Static DFT: Walking on the potential energy surface Static DFT: Walking on the potential energy surface

INTRINSIC REACTION COORDINATS

= -

dxds

r g xr g x

dxds

Deng+ZieglerInt.J .Quant.Chem1994,52,731

IRC Energy Profile

x(s)

C N

dxds

IRC Reaction Path

Fukui et al. HCN → CNH

Steepest desendin mass weightedcoordinates

CrCl2O2 + CH3OH → CrCl2(OH)2+ CH2O

+

Ha

a

b

cd

e

f

g

h

i

TS1

Alcohol OxidationO-H Addition

#

Reactants

Addition Product

IRC for O-H Bond Addition

Deng+Ziegler, Jacs 1996

1.0

2.0

3.0

-20

40

140

Distances (Ångstroms) Angles (Degrees)

0.0-10.0 10.0

Ha

ab

cd

e

fg

h

i

f g

b

ihca

c

fcb

QuickTime™ and aH.264 decompressor

are needed to see this picture.

SN2 reaction: Cl- + CH3Cl Cl-CH3 + Cl- SN2 reaction: Cl- + CH3Cl Cl-CH3 + Cl-

Cl- + CH3Cl TS Cl-CH3 + Cl-

Thermolized canonicalmolecular dynamics. Constant T,V,N.T = O

QuickTime™ and aCinepak decompressor

are needed to see this picture.

SN2 reaction: Cl- + CH3Cl Cl-CH3 + Cl- SN2 reaction: Cl- + CH3Cl Cl-CH3 + Cl-

Cl- + CH3Cl TS Cl-CH3 + Cl-

IRC-MD (P TS P):

Thermolized canonicalmolecular dynamics. Constant T,V,N.T > O

QuickTime™ and aCinepak decompressor

are needed to see this picture.

Thermodynamic Integrationn A constraint is applied to the reaction

coordinate during the dynamicsn During the simulation, the value of the

constraint is changed, leading the systemover the barrier

n Free energy differences along the RC arecalculated by

λ

=-Force δ /E δ λ

Δ F =

∂ E

∂ λ

λ

λ , T

d λ

Brookhart Polymerization Catalyst

C&EN Feb. 5, 1996:“Polymer Catalyst System:Dupont Eyes New Polyolefin Business”

Brookhartcatalyst

highly linear to moderately branched

Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 2343.

• high MWs

• good activities

N

Ni+N

RRiPr

iPriPr

iPr

R

• temperature: Temp branching

• monomer pressure: [Et] branching

• bulk of substituents: bulk branching MW

N

NiN C

iPr

iPriPr

iPr

C

ClH

Cl H

HCl

HCl

Cl

H

ClH

Cl

Cl

HH

H

HClCl

HH

Cl Cl

H

H

ClClCl

Cl

HH

Cl

HHCl

+ B-

Cl

H

ClH

Cl

H

ClH

Cl

Cl

HH

Cl

Cl

HH

Cl

H

Cl H

H

HClCl

HH

Cl Cl

Including Steric Bulk and Solvation :Typical Polymerization System

Polar copolymerization – diimine catalysts

QuickTime™ and aCinepak decompressor

are needed to see this picture.

N

NiNH H+

no substituents

0 K simulation(static)

no solvent

no counter-ion

Including Steric Bulk and SolvationTraditional Computational Models

gas phasemodel system

Ax

NiEq Eq

Ax

R

RR

R

RR

R

R R

R

R R

Active Site in Brookhart Catalyst

R R

L. Deng, T. K. Woo, L. Cavallo, P. Margl and T. Ziegler, Jacs 1997, 119, 6177-6186.

Including Steric Bulk and SolvationContinuum Model

explicit solvent

QM solute

_

+

+

_ ++

_+

+

_

++

_

+

+

_+

+ _ +

+

_

+

+

_++

_+

+

_+

+_ +

++

+

+

++

+

continuum

QM solute

__

_

__

__

a b

1. COSMO : Klamt, A.; Schuurmann, G. J. Chem. Soc. Perkin Trans. 1993, 2, 799.

2. PCM : Tomasi, J. Chem. Rev. 1994, 94, 2027.

energy relative to free species(kcal/mol)

2.0 3.0 4.0 5.0 6.0 7.0

olefin midpoint-Ni distance (Å)

5 : Ar = 2,6-C6H3(i-Pr)2, R'=H

6 : Ar = 2,6-C6H3(i-Pr)2, R'=Me

4 : Ar = H, R'=H (pure QM)

0

-5

-10

-15

-20

Enthalpy of Capture

0.0

2.0

4.0

6.0

8.0

10.0

12.0

∆F (kcal/mol)

2.50 3.00 3.50 4.00 4.50 5.00 5.50

Ni - Olefin midpoint distance (Å)

654

Free Energy of Capture

Ni

R=MeR=H

Ni

A QM/MM study of Monomer Capture in Brookhart’s Catalyst

R’ substituent effect found to be both electronic and steric effect

indirect steric effect

Woo,Ziegler J,Phys.Chem. A,1997

PRF

Mitsui

Moving to Calgary Canada

Calgary Skyline

University of Calgary

Banff Rocky Mountain National Park

Autschbach et al. J. Phys.Chem. A 2005, 109, 4836 Autschbach et al. J. Phys.Chem. A 2005, 109, 4836

Full Simulated CD Spectrum for [Os(phen)3]2+Full Simulated CD Spectrum for [Os(phen)3]2+