52
Prof. Ji Chen Notes 22 Antennas and Radiation ECE 3317 1 Spring 2014 x y z I l 0 dB 30 30 60 120 150 150 120 60 m 0 -10 dB -20 dB -30 dB z

Prof. Ji Chen Notes 22 Antennas and Radiation Antennas and Radiation ECE 3317 1 Spring 2014

Embed Size (px)

Citation preview

1

Prof. Ji Chen

Notes 22

Antennas and Radiation

ECE 3317

Spring 2014

x

y

z

Il

0 dB

30�30�

60�

120�

150� 150�

120�

60�

m

0

-10 dB

-20 dB

-30 dB

z

2

Antenna Radiation

We consider here the radiation from an arbitrary antenna.

The far-field radiation acts like a plane wave going in the radial direction.

+-

x

y

z

r

, ,r r

r "far field"

S

3

How far do we have to go to be in the far field?

This is justified from later analysis.

+-

r

, ,r r Sphere of minimum diameter D that encloses the antenna.

2

0

2Dr

Antenna Radiation (cont.)

4

Antenna Radiation (cont.)

The far-field has the following form: ˆ ˆE E E

ˆ ˆH H H

0

E

H

0

E

H

x

y

z

E

HS

x

y

z

HE

S

TMz

TEz

Depending on the type of antenna, either or both polarizations may be radiated (e.g., a vertical wire antenna radiates only TMz polarization.

5

Antenna Radiation (cont.)

The far-field Poynting vector is now calculated:

*

* *

* *

0 0

22

0 0

1S E H

21 ˆ ˆ ˆ ˆE E H H21

ˆ E H E H2

EE1ˆ E + E

2

EE1ˆ

2

r

r

r

0

E

H

0

E

H

6

Antenna Radiation (cont.)

Hence we have

22

0

1ˆS E E

2r

2

0

EˆS

2r

or

Note: In the far field, the Poynting vector is pure real (no reactive power flow).

7

Radiation Pattern

The far field always has the following form:

0

E , , E ,jk r

Fer

r

E ,F Normalized ar - field electric fieldf

In dB:

10

E ,dB , 20log

E ,

F

Fm m

,m m direction of maximum radiation

8

Radiation Pattern (cont.)The far-field pattern is usually shown vs. the angle (for a fixed angle ) in polar coordinates.

10

E ,dB , 20log

E ,

F

Fm m

The subscript “m” denotes the beam maximum.

0 dB

30°30°

60°

120°

150° 150°

120°

60°

m

0

-10 dB

-20 dB

-30 dB

z

A “pattern cut”

9

Radiated Power

The Poynting vector in the far field is

2

20

E , 1ˆS , ,

2

F

r rr

The total power radiated is then given by

2

2 22

00 0 0 0

E ,ˆS sin sin

2

F

radP r r d d d d

Hence we have

2

2

0 0 0

1E , sin

2F

radP d d

10

Directivity

In dB,

2

S ,,

/ 4r

rad

D rP r

The directivity in a particular direction is the ratio of the power density radiated in that direction to the power density that would be radiated in that direction if the antenna were an isotropic radiator (radiates equally in all directions).

10, 10 log ,dBD D

The directivity of the antenna in the directions (, ) is defined as

Note: The directivity is sometimes referred to as the “directivity with respect to an isotropic radiator.”

11

Directivity (cont.)

The directivity is now expressed in terms of the far field pattern.

2

S ,,

/ 4r

rad

D rP r

2

20

22

2

0 0 0

E , 1

2, 4

1E , sin

2

F

F

rD r r

d d

Therefore,

2

22

0 0

4 E ,,

E , sin

F

F

D

d d

Hence we have

12

Directivity (cont.)

Two Common Cases

Short dipole wire antenna (l << 0): D = 1.5

Resonant half-wavelength dipole wire antenna (l = 0 / 2): D = 1.643

y

+h

z

x-h

feed

2l h

/ 2,maxD D D

/ 2m

-9 -3 -6

0 dB

30°30°

60°

120°

150° 150°

120°

60°

z

Short dipole

13

Beamwidth

The beamwidth measures how narrow the beam is. (the narrower the beamwidth, the higher the directivity).

HPBW = half-power beamwidth

14

Sidelobes

The sidelobe level measures how strong the sidelobes are.

In this example the sidelobe level is about -13 dB

Sidelobes

Sidelobe level

Sidelobes

Main beam

15

Gain and Efficiency

The radiation efficiency of an antenna is defined as

radr

in

Pe

P Prad = power radiated by the antenna

Pin = power input to the antenna

The gain of an antenna in the directions (, ) is defined as

, ,rG e D

10, 10 log ,dBG G In dB, we have

16

Gain and Efficiency (cont.)

The gain tells us how strong the radiated power density is in a certain direction, for a given amount of input power.

2S , / 4 ,r r ine P r D

2S , / 4 ,r inP r G

2

S ,,

/ 4r

rad

D rP r

2S , / 4 ,r radP r D

Therefore, in the far field:

Recall that

17

Infinitesimal Dipole

The infinitesimal dipole current element is shown below.

x

y

z

Il

The dipole moment (amplitude) is defined as I l.

From Maxwell’s equations we can calculate the fields radiated by this source (e.g., see Chapter 7 of the Shen and Kong textbook).

The infinitesimal dipole is the foundation for many practical wire antennas.

18

Infinitesimal Dipole (cont.)

0

0

0

0 20

0 20 0

00

I 1 11 cos

2

I 1 1 1( ) 1 sin

4 ( )

I 1 1( ) 1 sin

4

jk rr

jk r

jk r

lE e

r jk r

lE j e

r jk r jk r

lH jk e

r jk r

The exact fields of the infinitesimal dipole in spherical coordinates are

19

Infinitesimal Dipole (cont.)

0

0

0

0

I, , ( ) sin

4

I, , ( ) sin

4

jk r

jk r

l eE r j

r

l eH r jk

r

In the far field we have:

0

0

I, ( )sin

4I

, ( )sin4

F

F

lE j

lH jk

Hence, we can identify

20

Infinitesimal Dipole (cont.)

The radiation pattern is shown below.

0

I( )sin

4F l

E j

10

E ,dB , 20log

E ,

F

Fm m

10dB , 20log sin

HPBW = 90o

10

sin 45 1 / 2

20log 1 / 2 3 [dB]

o

-9 -3 -6

0 dB

30°30°

60°

120°

150° 150°

120°

60°

z

45o

21

Infinitesimal Dipole (cont.)

The directivity of the infinitesimal dipole is now calculated

0

I( )sin

4F l

E j

2

22

0 0

4 E ,,

E , sin

F

F

D

d d

2

22

0 0

4 sin,

sin sin

D

d d

Hence

22

Infinitesimal Dipole (cont.)

Evaluating the integrals, we have

2

22

0 0

2

2

0

2

3

0

2

4 sin,

sin sin

4 sin

2 sin sin

2sin

sin

2sin

4 / 3

D

d d

d

d

Hence, we have

23, sin

2D

23

Infinitesimal Dipole (cont.)

23, sin

2D

, 1.5D

, 1.0D o54.7

0

I( )sin

4F l

E j

The far-field pattern is shown, with the directivity labeled at two points.

o90

-9 -3 -6

0 dB

30°30°

60°

120°

150° 150°

120°

60°

z

24

Wire Antenna

00

0

II( ) sin

sinz k h z

k h

A good approximation to the current is:

A center-fed wire antenna is shown below.

y

+h

z

I (z)

x-h

Feed

2l h

I 0

I (z) vs. z

25

Wire Antenna (cont.)

00

0

II( ) sin

sinz k h z

k h

A sketch of the current is shown below for two cases.

Resonant dipole (l = 0 / 2, k0h = / 2) Short dipole (l <<0)

0I( ) I 1z

zh

0 0 0I( ) I cos I cos

2

zz k z

h

+h

-h

lI 0

+h

-h

l

I 0

sin x xUse

26

Short Dipole

Short dipole (l <<0 / 2)

0I( ) I 1z

zh

Wire Antenna (cont.)

The average value of the current is I0 / 2.

0

1I I

2effl l

0

0

I( )sin

4I

( )sin4

effF

effF

lE j

lH jk

Infinitesimal dipole:0

0

I( )sin

4I

( )sin4

F

F

lE j

lH jk

Short dipole:

+h

-h

lI 0

27

Wire Antenna (cont.)For an arbitrary length dipole wire antenna, we need to consider the radiation by each differential piece of the current.

Far-field observation point

, ,r x y z

0

0

I( )sin

4

jk re lE j

r

0

0

1( )sin I

4

h jk R

h

eE j z dz

R

Wire antenna:

Infinitesimal dipole:

1

22 2 2R x y z z y

+h

z

x-h

Feed

r

R

dz' z'

I (z')

28

Wire Antenna (cont.)

Far-field observation point

z

y

+h

x-h

Feed

r

R

dz'

22 2

2 2 2 2

2 2

2

2

2

2

2

1 2

1 2

R x y z z

x y z z zz

r z zz

z zzr

r r

z z zr

r r r

, ,x y z

29

Wire Antenna (cont.)

Far-field observation point

2

1 2 cos 1 2 cos 1 cos cosz z z z

R r r r r zr r r r

, ,x y z

1 1 , 12

xx x Note:

z

y

+h

x-h

Feed

r

R

dz'

cos /z r

2

0

2Dr

It can be shown that this approximation is accurate when

30

Wire Antenna (cont.)

Far-field observation point

z

y

+h

x-h

Feed

r

R

dz'

, ,x y z

0

0 0

0

0

cos

0

cos

0

cos0

1( )sin I

4 cos

1( )sin I

4 1 / cos

1( )sin I

4

h jk r z

h

hjk r jk z

h

hjk rjk z

h

eE j z dz

r z

e ej z dz

r z r

ej e z dz

r

0

0

1( )sin I

4

h jk R

h

eE j z dz

R

Hence we have

31

Wire Antenna (cont.)

We define the array factor of the wire antenna:

0 cosIh

jk z

h

AF z e dz

We then have the following result for the far-field pattern of the wire antenna:

0

0

1( )sin

4

jk reE j AF

r

The term in front of the array factor is the far-field pattern of the unit-amplitude infinitesimal dipole.

32

Wire Antenna (cont.)

Using our assumed approximate current function we have

0 cos00

0

Isin

sin

hjk z

h

AF k h z e dzk h

The result is (derivation omitted)

0 0 0

20 0

I cos( cos ) cos( )2

sin sin

k h k hAF

k h k

00

0

II( ) sin

sinz k h z

k h

Hence

33

Wire Antenna (cont.)

In summary, we have

0 0 0

20 0

I cos( cos ) cos( )2

sin sin

k h k hAF

k h k

0

0

1( )sin

4

jk reE j AF

r

0

0 0 00

0 0

I cos( cos ) cos( )1( )

2 sin sin

jk r k h k heE j h

r k h k h

Thus, we have

34

Wire Antenna (cont.)

For a resonant half-wave dipole antenna

0

00

cos cosI1 2

( )2 / 2 sin

jk reE j h

r

0

0

/ 4

/ 2

h

k h

/ 2, 1.643D

The directivity is

2

22

0 0

4 E ,,

E , sin

F

F

D

d d

35

Wire Antenna (cont.)

Results

2l h

36

Wire Antenna (cont.)

Radiated Power:

22

0 0 0

22

0 0 00

0 0 00 0

1E , sin

2

I cos( cos ) cos( )1 1( ) sin

2 2 sin sin

FradP d d

k h k hj h d d

k h k h

0 0 00

0 00 0k

Simplify using

22

0 0 00

0 00 0

I cos( cos ) cos( )1 1( ) sin

2 2 sin sinrad

k h k hP j d d

k h

37

Wire Antenna (cont.)

Performing the integral gives us

2

0 0 00

0 00

I cos( cos ) cos( )1 12 ( ) sin

2 2 sin sinrad

k h k hP j d

k h

2 2

0 0 0 0

0 0

I cos( cos ) cos( )sin

4 sin sinrad

k h k hP d

k h

After simplifying, the result is then

38

Wire Antenna (cont.)

The radiation resistance is defined from 2

0

1I

2rad radP R

in in inZ R jX

in radR R

Circuit Model

For a resonant antenna (l 0 / 2), Xin = 0.

2

0

2 radrad

PR

I

y

+h

z

I (z)

x-h

Feed2l h

I0 Z0 Zin

I0

39

Wire Antenna (cont.)

The radiation resistance is now evaluated.

2

0

2 radrad

PR

I

Using the previous formula for Prad, we have

2 2

0 00

0 0

cos( cos ) cos( )1

2 sin( ) sinrad

k h k hR d

k h

l0 / 2 Dipole: 00,

4 2h k h

73radR

40

Wire Antenna (cont.)

The result can be extended to the case of a monopole antenna

1

2monopole dipolein inZ Z

36.5radR

(see the next slide)

h

Feeding coax

0 / 4h

I (z)

41

Wire Antenna (cont.)

This can be justified as shown below.

+

-

Dipole

Vdipole I0

Virtual ground

+

Vmonopole

I0

-

1

2monopole dipoleV V

ˆ zE zE

monopole dipoleI I

1

2monopole dipolein inZ Z

42

Receive Antenna

The Thévenin equivalent circuit of a wire antenna being used as a receive antenna is shown below.

+-VTh

ZTh

Th inZ Z

ˆV EincTh effl l

0

20

/ 2, ( )

2cos cos / sin , / 2 ( )

2eff

l l

ll l

electrically small

resonant

+

-VThEinc

l = 2h

l̂ direction of wire axis

43

Example

+-VTh

ZTh

Receive Thévenin circuit

Two lossless resonant half-wavelength vertical dipole wire antennas

73[ ]ThZ

1.643t rD D

incxS

+

-VTh

Receive

xr

Transmit Prad [W]

Prad

z

o90

Find the Thévenin voltage (magnitude of it).

1.0 (100%)trans recr re e

44

Example (cont.)

o

2

90

0

2 2 2

2

0 020

2 2cos cos / sin

2

2

1.6434 4 4

EE 2 1.643 2

2 4

eff eff

inc incin rad radx t t x

inczinc inc inc rad

x z x

l l l l

l

P P PS G D S

r r r

PS S

r

002

2V 1.643 2

2 4rad

Th

P

r

Hence we have

Design equations:

V E V Einc incTh eff z Th eff zl l

45

Example (cont.)

The result is

Assume these values:

f = 1 [GHz] (0 = 29.979 [cm])

Prad = 10 [W]

r = 1 [km]

3V 3.00 10 [V] 3.00 [mV]Th

+-3.00 [mV]

73 []Receive Thévenin circuit

46

81.54 10 [W]LP

Next, calculate the power received by an optimum conjugate-matched load

Example (cont.)

+-VTh

ZTh

*L ThZ Z

2/ 2

2Th

LTh

VP

R * 73[ ]Th Th ThZ Z R

For resonant antennas:

47

Effective Area

Another way to characterize an antenna is with the effective area.

Receive circuit: Assume an optimum conjugate-matched load:

This is more general than effective length (which only applies to wire antennas).

+-VTh

ZTh

*L ThZ Z

L eff incP A P

Aeff = effective area of antenna (depends on incident angles)

Pinc = average power density incident on antenna [W/m2]

PL = power absorbed by load

48

Effective Area (cont.)

We have the following general formula*:

20, ,

4effA G

*A poof is given in the Antenna Engineering book:C. A. Balanis, Antenna Engineering, 3rd Ed., 2055, Wiley.

G(,) = gain of antenna in direction (,)

49

Effective Area (cont.)

2o o 0

20

2

90 , 90 ,4

1.6434

21.643

4

effA G

l

Effective area of a lossless resonant half-wave dipole antenna

o 290 , 0.5230effA l

Hence

Assuming normal incidence ( = 90o):

0 / 2l

50

Effective Area (cont.)

Example

Find the receive power in the example below, assuming that the receiver is now connected to an optimum conjugate-matched load.

f = 1 [GHz] (0 = 29.979 [cm])

Prad = 10 [W]

r = 1 [km]

incxS

Receive

xr

Transmit Prad [W]

Prad

z

o90

* 73 [ ]L ThZ Z

51

Effective Area (cont.)

2

o 090 , 1.6434effA

incL eff xP A S

21.643

4inc radx

PS

r

20

21.643 1.643

4 4rad

L

PP

r

81.54 10 [W]LP

Hence

The result is

52

Effective Area (cont.)

Effective area of dish antenna

20

4, ,effG A

eff phy apA A e

Aphy = physical area of dish

eap = “aperture efficiency”

In the maximum gain direction:

The aperture efficiency is usually less than 1 (less than 100%).