127
Production Optimization of a Tight Sandstone Gas Reservoir with Well Completions: A Numerical Simulation Study by Cyrille W. Defeu, B.S. A Thesis In PETROLEUM ENGINEERING Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCES IN PETROLEUM ENGINEERING Approved Dr. M. Rafiqul Awal Chair of Committee Dr. Shameem Siddiqui Dr. Habib K. Menouar Peggy Gordon Miller Dean of the Graduate School December, 2010

Production Optimization of a Tight Sandstone Gas Reservoir

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Production Optimization of a Tight Sandstone Gas Reservoir

Production Optimization of a Tight Sandstone Gas Reservoir with Well

Completions: A Numerical Simulation Study

by

Cyrille W. Defeu, B.S.

A Thesis

In

PETROLEUM ENGINEERING

Submitted to the Graduate Faculty

of Texas Tech University in

Partial Fulfillment of

the Requirements for

the Degree of

MASTER OF SCIENCES

IN

PETROLEUM ENGINEERING

Approved

Dr. M. Rafiqul Awal

Chair of Committee

Dr. Shameem Siddiqui

Dr. Habib K. Menouar

Peggy Gordon Miller

Dean of the Graduate School

December, 2010

Page 2: Production Optimization of a Tight Sandstone Gas Reservoir

Copyright 2010, Cyrille Defeu

Page 3: Production Optimization of a Tight Sandstone Gas Reservoir

DEDICATION

To the Almighty God giver of life and wisdom,

To my parents, who never had a college education, but understood its importance, and

sacrificed everything in their life for our education,

To my sisters and brothers for their unconditional support and love,

To my grandmother for her encouragement,

To the rest of my family and friends for prayers and continual support.

Page 4: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

ii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Mohammad Rafiqul Awal,

Chairperson of my committee for igniting this study, for guiding my steps through this

work and for his endless support. I am also grateful to the members of my committee Dr.

Shameem Siddiqui and Dr. Habib Menouar for co-advising this project and always

making sure my work was on track.

To Dr. Lloyd R. Heinze for encouraging me to enroll in Graduate School, I would like to

graciously say thank you.

I would like to express my thanks to my colleagues and friends specially Mr. Amao

Abiodin (Matthew) and Stacey Amamoo, for going out of their way to help me on this

work.

I would like to express my thanks to Dr. Thomas Tan, President of T. T. & Associate for

providing academic license at no cost to use the commercial 3D black oil simulator,

Exodus™ and also for his technical assistance and support.

Thanks to the staff and faculty of Bob L. Herd Department of Petroleum Engineering for

providing me close assistance since day one here at Texas Tech University, I could not

imagine my journey here without your support.

Finally I would like to thank my very supportive fiancée Sandrine Ngamo for being by

my side all along this journey.

Page 5: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .............................................................................................................. ii

ABSTRACT.................................................................................................................................. vi

LIST OF TABLES ......................................................................................................................... vii

LIST OF FIGURES ...................................................................................................................... viii

LIST OF ABBREVIATIONS ............................................................................................................ xi

1 INTRODUCTION ....................................................................................................................... 1

1.1. Background – Unconventional Hydrocarbon Resources ............................................... 1

1.2. Tight Gas ..................................................................................................................... 4

1.2.1. Definition ............................................................................................................. 4

1.2.2. Reservoir Characterization ................................................................................... 4

1.2.3. Reserve Estimation .............................................................................................. 5

1.3. Scope of the Work and Objectives ............................................................................... 7

2 REVIEW OF LITERATURE .......................................................................................................... 9

2.1. Tight Gas Reservoir Properties ..................................................................................... 9

2.1.1. Porosity and Permeability .................................................................................... 9

2.1.2. Capillary Pressure and Relative Permeability ........................................................ 9

2.2. Tight Gas Reservoir Type Completions (tight gas production methods) ...................... 11

2.3. Tight Gas Hydraulic Fracture Simulation..................................................................... 12

2.3.1. Well Model ........................................................................................................ 12

2.3.2. Combination of Fractures Simulators to Reservoir Simulator .............................. 14

2.4. Literature Search on Tight Gas Sand Reservoir Optimization ...................................... 17

2.5. Statement of Problem ............................................................................................... 18

2.5.1. Description of Tasks ........................................................................................... 18

2.5.2. Assumptions and Considerations ....................................................................... 19

3 METHODOLGY ....................................................................................................................... 21

3.1 Base Case: Simple Vertical Wells ................................................................................ 21

Page 6: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

iv

3.2 Vertical Wells with Hydraulic Fractures ...................................................................... 22

3.4 Well Architecture Analysis ......................................................................................... 24

3.4 Distance between Fractures Planes............................................................................ 26

3.4.1 Distance Between Transverse Fractures ............................................................. 26

3.4.2 Distance Between Hydraulic Fractures Planes of two Vertical Wells ................... 27

4 NUMERICAL SIMULATION ..................................................................................................... 29

4.1 General Description of Commercial Simulator Used ................................................... 29

4.2 Validation of the Simulator ........................................................................................ 29

4.3 Base Case Simulation and Model Description ............................................................. 32

4.4 Modeling Well Completion Features .......................................................................... 33

4.4.1 Well Model ........................................................................................................ 34

4.4.2 Hydraulic Fractures Modelling ............................................................................ 34

4.5 Case Studies .............................................................................................................. 36

4.5.1 Vertical Wells Comparison ................................................................................. 36

4.5.2 Architecture Analysis ......................................................................................... 36

4.5.3 Potential and Streamline Analysis ...................................................................... 36

4.5.4 Application......................................................................................................... 36

5 RESULTS AND DISCUSSION .................................................................................................... 37

5.1 Vertical Wells............................................................................................................. 37

5.2 Completion Architecture............................................................................................ 42

5.3 Special Well Completion Studies ................................................................................ 45

5.3.1 Collinear Fractures in Vertical Wells for Mitigating Flow Convergence ................ 45

5.3.2 Optimizing Spacing between two Consecutive Transverse Fractures (horizontal

well completion) ............................................................................................................... 47

5.3.3 Optimizing spacing between two consecutive vertical well fractures (vertical well

completion)....................................................................................................................... 49

5.4 Development of a New, Optimized Field Development Concept for Tight Gas

Sandstone Reservoir ............................................................................................................. 52

5.5 Economic Analysis ..................................................................................................... 54

6 CONCLUSIONS and RECOMMENDATIONS ............................................................................. 59

Page 7: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

v

6.1 Conclusions ............................................................................................................... 59

6.2 Recommendations ..................................................................................................... 60

REFERENCES ............................................................................................................................. 61

A ECONOMIC ANALYSIS ............................................................................................................ 64

B MODELING DATA FILES.......................................................................................................... 73

Page 8: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

vi

ABSTRACT

Tight gas sands have significant gas reserves, which require cost-effective well

completion technology and reservoir development plans for viable commercial

exploitation. In this study, a new approach for well completion method coupled with a

suitable reservoir development plan is proposed. Several well completion and well

placement options are examined for optimum gas recovery and maximum economic

returns. A commercially available numerical reservoir simulator (Exodus™ version 6.00)

has been used extensively to study the various reservoir development scenarios. A novel

hydraulic fracturing configuration involving a pair of vertical wells is proposed and is

found to show excellent performance compared to more traditional hydraulic fracturing

and horizontal well configurations.

Page 9: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

vii

LIST OF TABLES

1.1 Reserve Estimate Comparison of Conventional Gas Reservoir and Tight

Gas Sand ………………………………………………………………….

6

4.1 Numerical Reservoir Simulation Validation Data from SPE 108176 …… 30

4.2 Simulation Model Data ………………………………………………..… 32

4.3 Hydraulic Fractures Properties ...………………………………………… 34

5.1 Economic Data …………………………………………………………... 55

A.1 Economic Analysis Spreadsheet for Base Case …………………….…… 65

A.2 Economic Analysis Spreadsheet 9 Vertical Wells with Hydraulic

Fractures …………………………………………………………………...

66

A.3 Economic Analysis Spreadsheet 8 Wells with Hydraulic Fractures ……… 67

A.4 Economic Analysis Spreadsheet 6 Wells with Hydraulic Fractures ……… 68

A.5 Economic Analysis Spreadsheet 5 Wells with Hydraulic Fractures ……… 69

A.6 Economic Analysis Spreadsheet 4 Wells with Hydraulic Fractures 70

A.7 Economic Analysis Spreadsheet 2 Vertical Wells with Parallel Hydraulic

Fractures Planes ……………………………………………………………

71

A.8 Economic Analysis Spreadsheet 2 Vertical Wells with Collinear

Hydraulic Fractures Planes ………………………………………………...

72

Page 10: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

viii

LIST OF FIGURES

1.1 Natural Gas Resource Triangle ……………………………………..……... 2

1.2 U.S. Tight Gas Sand Basins (Law, 2003) ……………………………..…... 3

1.3 Decline Curve - Rate vs. Time - exponential, harmonic, hyperbolic…….… 7

2.1 Illustration of Capillary Pressure and Relative Permeability Relationships

in Conventional Gas Reservoir and in Tight Gas Sand Reservoir (Shanley

et al., 2004) …………………………………………………………………

10

2.2 Conceptual Representation of Hydraulically Fractured Reservoir Model

that Uses Separate Objects - DCN Model (Hoffman and Chang, 2009) …...

13

2.3 Example of Fracture Model Output Showing Fracture Conductivity

Distribution and Fracture Dimensions (Shaoul et al., 2007) …………….…

15

2.4 Detail of Fracture Properties for two Longitudinal Fractures along a

Horizontal Wellbore, corresponding to the Fracture Model Result from

Figure 2.3 (Shaoul et al., 2007) ………………………………………….…

16

2.5 Integrated Reservoir Modeling and Decision Making Tools for Spacing

Optimization (Turkarslan et al. 2010) ……………………………….……..

18

2.6 Thermodynamic Properties of the Gas (Volume Formation Factor and

Viscosity) …………………………………………………………….…….

19

2.7 Relative Permeability of Tight Gas Sand from Brooks and Corey

Equations …………………………………………………………………..

20

3.1 Base Case 16 Vertical Wells with 40 Acres Spacing (Exodus ™) …….…. 22

3.2 Schematic Illustration of Scenarios with Vertical Wells …………….…… 23

3.3 Schematic Illustration of 2 Vertical Wells with 500 ft half-length Hydraulic

fracture placed in parallel -Top View ……………………………..………

24

3.4 Schematic Illustration of 2 Vertical Wells with 500 ft half-length Hydraulic

fracture placed on the same line – Top View ………………………..…….

25

3.5 Schematic Illustration of 2 Horizontal Wells with 3 Transverse Hydraulic

Fractures each ……………………………………………………………..

26

3.6 Transverse Hydraulic Fracture Moving along the Horizontal Well Length 27

3.7 Wells and Hydraulic Fractures Displaced Horizontally ………………….. 28

4.1 Production Performance for Hydraulically Fractured well in a Single-layer

Reservoir (Cheng et al., 2008) …………………………………………….

31

4.2 Reservoir Simulation Validation Results …………………………………. 31

4.3 Exodus ™ Base Case Scenario Showing Well Locations and Porosity

Page 11: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

ix

Distribution ………………………………………………………………… 33

4.4 Illustration of Hydraulic Fracture Local Grid Refinement – Top View and

3-D View ……………………………………………………………………

35

5.1 Gas Rate of the 5 Cases with 500 ft Half-length Hydraulic Fracture and the

Base Case ……………………………………………………………...........

37

5.2 Cumulative Gas Production of the 5 Cases with 500 ft Half-length

Hydraulic Fracture and the Base Case ……………………………………...

38

5.3 Cumulative Gas Production as function of the Number of Wells with

Hydraulic Fractures …………………………………………………………

39

5.4 Cumulative Gas Production as function of the Number of Wells with

Hydraulic Fractures – Semilog ……………………………………………..

39

5.5 Gas Recovery as function of the Number of Wells with Hydraulic

Fractures …………………………………………………………………....

41

5.6 Gas Recovery as function of the Number of Wells with Hydraulic

Fractures – Semilog ………………………………………………………...

41

5.7 Pressure Distribution after 30 years of Production for all the Cases

Mentioned in Section ……………………………………………………….

42

5.8 Pressure Distribution for 2 Wells Analysis after Production …………….... 43

5.9 Gas Production Rate for 2 Wells Analysis ……………………………….... 44

5.10 Gas Cumulative Production for 2 Wells Analysis ……………………..…... 44

5.11 Radial Flow Around the Well …………………………………………..….. 45

5.12 Potential lines and Streamlines for Pressure after 30 years of production .... 46

5.13 Schematic Illustration of Fracture Distance Effect …………………..…….. 47

5.14 Cumulative Gas Production at Various Fracture Distance ………….……... 48

5.15 Relationship of Cumulative Gas and Distance Between 2 Transverse

Fractures on a Horizontal Well …………………………………..…………

49

5.16 Schematic Illustration of Fracture Distance Effect between 2 Fractured

Vertical Wells ………………………………………………..……………..

50

5.17 Cumulative Production at Various Distances between 2 Vertical Fractured

Wells ……………………………………………………………………….

51

5.18 Relationship of Cumulative Gas Production and Distance between Fracture

Planes of 2 Vertical Wells ………………………………………...………..

52

5.19 Schematic Illustration of the Proposed Scheme ………………….………... 53

5.20 Pressure Distribution of the Proposed Scheme at the End of the Project

Lifetime ………………………………………………………..……………

54

Page 12: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

x

5.21 Cumulative Discounted Cash Flow for Vertical Wells ……….…………… 56

5.22 Cumulative Discounted Cash Flow Comparing Completions ……..………. 57

5.23 Cumulative Cash Flow for the Proposed Case Showing Payout Time …..… 58

Page 13: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

xi

LIST OF ABBREVIATIONS

b: Arps decline curve constant or decline exponent

Bg: volume gas formation factor

CBM: Coalbed Methane

cp: centipoise

D: Non-Darcy gas flow constant

DCN: Discrete connection of nodes

Dp: diameter of the pipe

ECL: Economic limit

FOI: Folds of increase

ft: feet

h: thickness of the net pay zone

k: absolute permeability

Kf: fracture permeability

Kfi: grid block fracture permeability

KfWf: fracture conductivity

krg : gas relative permeability

Krw: water relative permeability

LGR: Local grid refinement

md: milliDarcy

Mscf/d: thousand standard cubic feet per day

NPV: Net Present Value

P: Pressure

PI: Productivity index

psi: pounds per square inch

psia: pounds per square inch, absolute

PVT: Pressure, Volume and Temperature

Pwf: bottom hole flowing pressure

qg: gas production rate

Page 14: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

xii

qi: Initial gas production rate

qt : Gas production rate at time t

rcf: Reservoir cubic feet

Re: Equivalent drainage radius

Rw: Wellbore radius

s: Skin factor

scf: standard cubic feet

Sgc : Critical gas saturation

Sw*: Normalized water saturation

Sw: Water saturation

Swc: Critical water saturation

Swirr: Irreducible gas saturation or Swr

T: Reservoir temperature

t: Time

Tcf: Trillion cubic feet

Tw: Well transmissibility

Wf: Fracture width

WPImult: Productivity index multiplier

Xf: Fracture half length

Zpg: Gas compressibility factor at pressure P

λ: Pore distribution index

ϕ: Porosity

ϕfi: Fractured gridblock porosity

∆yf: Gridblock fracture width

µ: Viscosity

µg: Gas viscosity

Page 15: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

1

CHAPTER 1

INTRODUCTION

1.1. Background – Unconventional Hydrocarbon Resources

Since tight sand gas is known as an unconventional resource, it is important to understand

the concept, the context and the importance of unconventional resources with respect to

energy supply in the world.

Initially considered as a marginal product in the energy industry for economical reasons,

hydrocarbon gas (natural gas) has become an important source of energy significantly

contributing to the world energy supply. Hydrocarbon gas has grown to be one of the

most favored source energy thanks to environmental concerns and development in

technology in both its production and its consumption.

„Unconventional‟ in the case of hydrocarbon energy is a term used to define those

resources that are not easily accessible and can only be produced at a higher cost than

those other resources that are considered „conventional‟.

To best illustrate the difference between conventional and unconventional resources, the

natural gas resource triangle shown below (Figure 1.1) was devised based on the concept

developed by Masters and Grey in the 1970‟s

Page 16: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

2

Figure 1.1 Natural Gas Resource Triangle

Easily accessible resources are at the top of the triangle and are small in quantity as

compared to unconventional resources which are available in large quantities but very

challenging with respect to exploration and production. Unconventional gas provides

over half of the US gas production

As far as natural gas is concerned, unconventional resource includes:

a) Gas Hydrates: the most abundant source of natural gas yet the most challenging

production-wise and most untapped. Gas Hydrates are ice-like crystal structure

solids formed from mixture of water and natural gas (usually methane) at high

pressure and low temperature. They are generally formed on most continental

margins near the sea floor below about 1600 ft of water depth, they can also be

found on land in Polar Regions. Estimates range anywhere from 7,000 Tcf to over

73,000 Tcf

b) Coalbed Methane (CBM): natural gas absorbed in coal matrix, due to technology

development in the early 1990‟s has become an important source of energy in

countries with abundant deposits of coal such as USA, for which it contributes

Page 17: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

3

over 1.6 trillion cubic feet of natural gas per year. In June 2009, the Potential Gas

Committee estimated that 163 Tcf of technically recoverable coalbed methane

existed in the United States, which made up 7.8 percent of the total natural gas

resource base.

c) Shale Gas, this is natural gas produced from shale generally considered as source

rock, it is stored in shale in various forms: free gas in porous regions, free gas in

natural fractures and gas absorbed in the matrix. Shale gas is expected to

contribute about half of the natural gas production in the next decade. A study has

suggested that shale gas resource in the U.S. range from 1,500 Tcf to 1,900 Tcf. As

of November 2008, FERC estimated there were 742 Tcf of technically recoverable

shale gas resources in the United States.

d) Tight sand gas: generally found in low permeability sand formation, tight sand

account for about half of natural gas production in the US with 7,406 Tcf of

reserve worldwide. Tight sand gas will be our main focus in this report.

Figure 1.2 U.S. Tight Gas Sand Basins (Law, 2003)

Page 18: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

4

1.2. Tight Gas

1.2.1. Definition

Tight sand gas is referred to as gas that is stuck in a very tight formation underground,

trapped in uncommonly low permeability hard rock, or in a sandstone formation in most

cases, however they could also be found carbonates such as limestone that is unusually

impermeable and non-porous (tight sand). Typically, these formations contain net pay

zone ranging from 25 to over 250 feet, original reservoir pressure from 1500 to 15,000

psi and porosity from 3 to 10 percent.

Tight sand gas reservoir was first defined by US government in the 1970‟s for political

use in an attempt to define which gas wells will receive government incentive for

producing gas from deemed tight reservoirs. As such, a tight sand gas reservoir is defined

as any reservoir with a value of permeability to gas flow less than 0.1 md. However

political, this definition intrinsically combines fundamental fluid and reservoir parameters

in the well known Darcy‟s equation of fluid flow in porous media applied to gas as

follows (Holditch, 2006):

(1.1)

In equation 1.1 reservoir properties are accounted for, as well as fluid properties. Well

stimulation is represented by composite skin, s

1.2.2. Reservoir Characterization

One of the particularities of tight gas reservoir is the versatility of its characteristics as

such; in the characterization of the reservoir one must consider the following:

a) Geology: this defining regional thermal gradients, the regional pressure

gradients as well as the stratigraphy of the region.

b) Reservoir Continuity: this affects particularly the characteristics of the

drainage area, and the orientation of hydraulic fractures as it is

Page 19: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

5

conditioned by horizontal stresses in all of the reservoir layers. Reservoir

continuity depends essentially on regional tectonics.

c) Reservoir data acquisition: this is done in two ways, and the most

important and the most economical being the openhole well logging that

helps determine the volumetric (porosity, saturation), and the

petrophysical (resistivity, density) properties of the reservoir, some cases

may include special logs such wellbore image and nuclear magnetic

resonance. The second type of data acquisition is coring, this provides

essentially fluid flow properties and mechanical properties of the rock

d) Mechanical Properties: Most tight gas reservoir must be stimulated

before it is economically produced; the most popular method is hydraulic

fractures. For such procedure to be successful one must be aware the

mechanical properties of the pay zone and its surroundings, these

properties include: in-situ stress, Young‟s modulus and Poisson‟s ratio.

e) Permeability Distribution: This is an important concept to be considered

when it comes to forecasting gas flow. Holditch determined that most

tight gas reservoir follow the similar log normal permeability distribution

pattern. Therefore, the median permeability value is the best

approximation for central tendency as opposed to the arithmetic mean

values which tend to overestimate permeability values.

1.2.3. Reserve Estimation

Estimating reserves in tight gas reservoir is a delicate task as conventional well known

methods such as volumetric method, and material balance method rarely apply due to

assumptions used in developing these methods, Table 1.1 below elaborates on each and

their range of application. Literature abound with variations of material balance methods

adapted to tight gas reservoir most of them are based compartmental reservoir approach

these include the Payne (1996) method and the Hagoort and Hoostra (1999) method. The

most common methods as far as tight gas reservoirs are concerned are curve analysis

Page 20: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

6

(decline and type) and reservoir models when simulators are available. The focus in this

section is decline curve analyses since readily available and less cumbersome than others.

Table 1.1 Reserve Estimate Comparison of Conventional Gas Reservoir and Tight Gas

Sand (Holditch, 2006)

Method Conventional Gas

Reservoir

Tight Gas Sand

Reservoir

Volumetrics Accurate in blanket

reservoirs

Used only when n wells

have been drilled

Material Balance Accurate in depletion drive

reservoirs Should never be used

Decline Curves Exponential Decline usually

accurate

Must use Hyperbolic

Decline

Reservoirs Models Used to simulate the field Used to simulate

individual wells

Declines curve analysis is based on production history and uses plots of flow rate vs. time

and cumulative production (Cartesian or log-log scale) to determine reservoir parameters,

reserves and predict future production. Arps in the 1940‟s determined that production rate

decline behaviors were similar to one of the hyperbolic family of curves. Depending on

the curvature, decline behavior can be group as follow: exponential, harmonic and

hyperbolic. These behavior are illustrated in the figure below

Page 21: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

7

Figure 1.3 Decline Curve - Rate vs. Time - exponential, harmonic, hyperbolic

Tight gas reservoirs decline predominantly as hyperbolic decline type and are analyzed

with semi-log plot of production rate vs. time and obey to the following relationships

(1.2)

(1.3)

Di and b are determined iteratively from historical production data. Where 0 < b < 1,

1.3. Scope of the Work and Objectives

After elaborating on the background and the evolution of unconventional resources, it is

clear that unconventional resources are contributing increasingly and in a fast rate to our

energy supply, therefore the future of our energy supply lies essentially on

unconventional resources among which is tight sand gas. The affordability of

Page 22: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

8

unconventional resources is conditioned by how cost effective its development and its

extraction are. It is important to develop adequate extraction methods and techniques to

effectively produce tight sand gas reservoir.

Planning the development of the field is one of the most important steps in the extraction

process after geological, geophysical and petrophysical study of the field have been

executed. Nowadays numerical simulators have become handy tools to accomplish such

purpose.

Conventionally, a lot of wells must be drilled to get most of the gas out of these tight

formations. This study is using a reservoir simulation approach to optimize the potential

of a hypothetical gas field by comparing various completion methods ranging from

simple vertical wells to multistage hydraulically fractured horizontal wells and also by

determining the optimum number of wells to be drilled.

Page 23: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

9

CHAPTER 2

REVIEW OF LITERATURE

2.1. Tight Gas Reservoir Properties

Tight gas reservoirs are characterized by small pore throats and crack-like

interconnection between pores. These microscopic features result in some macroscopic

features such as high capillary pressure, low porosity, high irreducible wetting phase

saturation and low permeability.

2.1.1. Porosity and Permeability

Porosity in tight gas sand reservoir is made of a complex combination of various pore

shapes and the matrix cracks. Smith et al. (2009) demonstrated using sonic log that

velocities profile could not be analyzed without considering microcracks on the matrix.

Most of the permeability in tight sand reservoirs is attributed to cracks or microfractures.

It has been proven that permeability in tight sand reservoir is log normally distributed.

Low permeability in tight gas reservoirs results from the combine effects of stress

distribution, matrix composition and partial brine saturation.

2.1.2. Capillary Pressure and Relative Permeability

The most significant differences between conventional reservoirs and low-permeability

reservoirs lie in the low-permeability structure itself, the response to overburden stress,

and the impact that the low-permeability structure has on effective permeability

relationships under conditions of multiphase saturation (Naik, 2006). Shanley et al.

(2006) demonstrated that low permeability reservoir are generally characterized with high

capillary pressure at relatively low wetting-phase saturations as compare to conventional

reservoir. This trend is illustrated in the figure below where capillary pressure and

relative permeability of both conventional reservoir and low permeability reservoir are

compared.

Page 24: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

10

Figure 2.1 Illustration of Capillary Pressure and Relative Permeability Relationships in

Conventional Gas Reservoir and in Tight Gas Sand Reservoir (Shanley et al., 2004)

Critical water saturation (Swc), critical gas saturation (Sgc), and irreducible water

saturation (Swirr) are shown. In conventional reservoirs, irreducible water saturation and

critical water saturation are similar. In low-permeability reservoirs, however, irreducible

Page 25: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

11

water saturation and critical water saturation can be significantly different. Conventional

reservoirs are dominated with a wide range of water saturation for which multi phase

flow is observed. On the other hand, in low-permeability reservoirs such tight gas, there

is a broad range of water saturations in which neither gas nor water can flow. In some

very low-permeability reservoirs, there is virtually no mobile water phase even at very

high water saturations (Shanley et al., 2004).

Since relative permeability data are not readily available, and based on the above

observations, relative permeability can be calculated using computational technique as

indicated by Brooks and Corey equation and the lab measured capillary pressure. This

technique uses the following equations:

(2.1)

(2.2)

Where:

(2.3)

- λ represents the characteristics of the pore structure is the slope of the log-log plot of

Sw* versus Pc

Based on the desorption measurements, Ward and Morrow (1987) suggested that

irreducible water saturation for tight formation should be set at 30%.

2.2. Tight Gas Reservoir Type Completions (tight gas production

methods)

The successful exploitation of tight gas reservoirs relies on some combination of

horizontal drilling, multi-stage completions, innovative fracturing, and fracture mapping

to engineer economic completions (Warpinski et al., 2008). Unless faults are present,

tight gas reservoirs are known to yield relatively simple and planar fractures pattern after

hydraulic fracturing treatments. As oppose to shale gas reservoir, heavy network of

Page 26: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

12

hydraulic fractures are not required, instead marginal existing natural fractures most be

preserved and not damage in the process of fracturing.

2.3. Tight Gas Hydraulic Fracture Simulation

Experience have shown that artificially fractured low permeability reservoir can yield up

to 10 folds of increase in production (FOI) compare to non-fractured reservoir. This

contribution due to artificial fractures is significantly high not to be included in reservoir

management. In such cases, artificial fractures should be properly included in the

reservoir simulation models and the question is how should we do that? To answer this

question various methods varying from analytical (skin) to numerical (LGR) have been

documented in the literature. We will be discussing some of these methods

2.3.1. Well Model

Hoffman and Chang (2009) proposed to treat the hydraulic fracture as a discrete object

that is neither gridded nor included in the skin term of a traditional well model. Fractures

are modeled as a discrete connection of nodes (DCN). Practically hydraulic fracture is

represented as a well that does not produce to the surface. Since well can be connected to

any number of gridblocks, fractures are represented as shut-in wells that allow crossflow.

(Figure 2.2)

Page 27: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

13

Figure 2.2 Conceptual Representation of Hydraulically Fractured Reservoir Model that

Uses Separate Objects - DCN Model (Hoffman and Chang, 2009)

Two basic features of wells in common reservoir simulators help to tune the well to fit

physical and flow capacity of the fracture:

a) Well friction factor: this depends on well diameter and is used to account for

permeability in the fracture, as such; permeability can be sized by varying well

diameter. Knowing the permeability of the fracture, Hoffman and Chang proposed

to solve the following equation 2.4 for diameter of the pipe Dp to get the right

value to be input in the simulator.

(2.4)

Where kf is fracture permeability and is porosity

b) Well productivity index (PI) multipliers allow flow from the reservoir to the

fracture to be modeled differently than flow to a well. This parameter allows us to

modify fracture transmissibility to suit hydraulic fractures, it is quantified as well

productive index multiplier (WPImult) and is calculated from equation 2.5

assuming well transmissibility (Tw) equals fracture transmissibility, the effective

drainage radius is e (exponential), the well radius is one and skin is 0.

Page 28: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

14

(2.5)

Hoffman and Chang concluded that the use of wells to model fractures is more

fundamental. From a mathematical standpoint, wells are simply source/sink terms that

remove or add fluids to the grid at specific locations. Source/sink terms do not have to

remove fluid or add new fluid to the reservoir (although they usually do that when

modeling wells). They can simply move fluid from one gridblock to another as needed

for a fracture.

2.3.2. Combination of Fractures Simulators to Reservoir Simulator

Noticing that predicting production from hydraulically fractured wells has always been a

challenge and approximated through three basic approaches such as analytical solutions

to fracture conductivity, negative skin factor to represent fracture stimulation and manual

grid refinement to represent hydraulic fractures, all of which are not physical

representation of the hydraulic fractures. Shaoul et al. (2007) opted for a different

approach by building a tool that consists of generating models of fractures using

hydraulic fracture simulator and combining them with commercial or any numerical

reservoir simulator.

Fracture model. This is built based on a 3D commercial fracture simulator which can

handle both proppant and acid fractures; the advantage of such method is that all physical

properties of the fractures are available for transmission to the reservoir simulator. The

most important outputs for reservoir simulation are fracture dimension and fracture

conductivity; these properties are illustrated in Figure 2.3.

Page 29: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

15

Figure 2.3 Example of Fracture Model Output Showing Fracture Conductivity Distribution

and Fracture Dimensions (Shaoul et al., 2007)

The spatial variation (physical dimensions) observed on the fracture simulator output is

converted to a rectangular grid for reservoir simulator. Due to heterogeneity of both the

fracture width and fracture conductivity, the gridblocks width being constant,

permeability of each fracture gridblock is adjusted to obtain equivalent fracture

conductivity; an illustration is shown on Figure 2.4.

Page 30: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

16

Figure 2.4 Detail of Fracture Properties for two Longitudinal Fractures along a Horizontal

Wellbore, corresponding to the Fracture Model Result from Figure 2.3 (Shaoul et al., 2007)

The reservoir simulator interface. This is articulated in 5 important steps:

a) Reservoir Data: the input file is created from the fracture growth model

previously prepared

b) Wellbore and Fracture Geometry: these options are readily available in most

reservoir simulators, the well inflow is handled by the Peaceman approach

c) Automatic Grid Generation: a grid generation algorithm is created to adapt the

grid to the geometry of the reservoir, the fracture and the well; and also to

optimize the gridblocks numbers with respect to the CPU usage. This step also

include the optimization of the local grid refinement (LGR)

d) Initialization of Grid Properties: every gridblock in the host grid and the LGR is

assigned value of each distributed reservoir characteristic. This is done by using t

equation 2.6 and equation 2.7 to convert fracture properties into corresponding

gridblock values:

Page 31: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

17

(2.6)

(2.7)

Where k and are permeability and porosity respectively, b is actual fracture width,

∆y gridblock width, subscript f denotes gridblock property and subscript fi denotes

actual fracture property.

e) Model Run Time: the time it takes to generate input data for the reservoir simulator is

very short ranging from 1 to 5 second, the execution of the final reservoir simulation

depends on various factors such as the computer used, number of gridlocks and

number of fractures. Additional inputs are needed in order to complete a successful

simulation; these include PVT and relative permeability data, production wellbore

configuration, and production constraints.

2.4. Literature Search on Tight Gas Sand Reservoir Optimization

In the early days of tight gas sand reservoir exploitation, Holditch et al. study well

spacing and fracture length and constructed a series of plots could be used to optimize

tight formations. They found out that these tools depend essentially on the permeability

of the reservoir. They concluded that for reservoir with permeability above 0.05 md the

optimum length of the fracture should be about one-half of the optimum drainage radius

whereas for reservoir below 0.01 md the focus should be long fracture and smaller well

spacing. Holditch 1978

Warpinski et al. in attempt to maximize gas production warns that in tight gas reservoir,

network fractures are not as likely to develop, so maximizing drainage efficiency

probably involves minimizing damage of any natural fracture system by fluid damage

which is the direct opposite to shale gas (Warpinski et al., 2009). According to Warpinski

et al. tight reservoir optimization should focus should focus on fracture length, number

fracture per well and fracture clean up.

Page 32: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

18

After remarking that early planification of reservoir development through optimal

spacing can help protect the environment and enhance profitability by avoiding

overdrilling, Turkaslan et al. based their spacing optimization models on statistical

approach. No generalized solution is proposed but a framework leading to spacing

optimization is proposed and as illustrated in Figure 2.5 (Turkaslan et al., 2010)

Figure 2.5 Integrated Reservoir Modeling and Decision Making Tools for Spacing

Optimization (Turkarslan et al. 2010)

2.5. Statement of Problem

A section of 640 acres and a net pay of 150 ft at a depth of 7200 ft was considered for

this study. This is a dry gas reservoir with no aquifer pressure support (no liquid and

condensate produced). This reservoir has an initial pressure of 5000 psia and is produced

until economic limit set at 50 Mscf/d or, the duration of the project life set at 30 years,

whichever is earlier.

2.5.1. Description of Tasks

The purpose of this study is to develop several reservoir management and well

completion scenarios, and study each using a commercially available numerical reservoir

Page 33: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

19

simulator. Total field production data are used to run economic analysis and the best case

is picked on the basis of relevant economic parameters for the project.

2.5.2. Assumptions and Considerations

It assumed that this reservoir is homogeneous with porosity 8%, horizontal permeability

0.01 md and vertical permeability 0.001 md. The thermodynamic properties of the gas are

calculated using Standing‟s correlation (Figure 2.6).

Relative permeability data are calculated using Brooks-Corey equations for gas and

water. λ is assigned the value 2 and plug into equations 2.1 and 2.2 to obtain relative

permeability values for gas and water that will mimic the permeability jail profile (see

Figure 2.7).

Figure 2.6 Thermodynamic Properties of the Gas (Volume Formation Factor and Viscosity)

Page 34: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

20

Figure 2.7 Relative Permeability of Tight Gas Sand from Brooks and Corey Equations

Page 35: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

21

CHAPTER 3

METHODOLGY

Synthetic data are used to build the model used for this project as illustrated in the next

chapter. Cumulative gas production is used to gauge each type of completion considered

in this project and economic analysis is used for decision making.

3.1 Base Case: Simple Vertical Wells

This case consist of 16 wells placed on equal spaces of 40 acres it is produced until

economic limits or end of the project set at 30 years (10,950 days). These wells are

completed vertically with no hydraulic fractures and connected on the entire pay zone.

This is used benchmark for this project. This combines radial flow around the well and

early potential interference between streamlines.

Page 36: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

22

Figure 3.1 Base Case 16 Vertical Wells with 40 Acres Spacing (Exodus ™)

3.2 Vertical Wells with Hydraulic Fractures

A decreasing number of vertical wells hydraulic fractures are placed on the field so that

the effect of hydraulic fractures could be analyzed and compared to the base case. The

half-length of the fracture is set to 500 ft to remain conservative in the analysis. The

different scenarios ran are chosen in such a way that drainage area is the same for each

wells. The number wells chosen are respectively 9, 8, 5, 4, and 2. Figure 3.2 illustrate all

these scenarios except 2 vertical wells scenario shown in Figure 3.3

Page 37: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

23

Figure 3.2 Schematic Illustration of Scenarios with Vertical Wells

The equivalent number of vertical wells with 500 ft half-length hydraulic fracture is

obtained by plotting the recovery against the number of vertical wells with hydraulic

fractures and fitting a trend line which is then used to calculate the equivalent number of

vertical wells with hydraulic fractures knowing the recovery factor of the base case.

Page 38: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

24

3.4 Well Architecture Analysis

To analyze well patterns, two wells are considered and placed on the section with respect

to the following patterns.

a) 2 vertical wells with 500 ft half length hydraulic fractures placed parallel to

each other. (see Figure 3.3)

Figure 3.3 Schematic Illustration of 2 Vertical Wells with 500 ft half-length Hydraulic

fracture placed in parallel -Top View

b) 2 vertical wells with 500 ft half length hydraulic fractures placed on the same

horizontal line. (see Figure 3.4)

Page 39: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

25

Figure 3.4 Schematic Illustration of 2 Vertical Wells with 500 ft half-length Hydraulic

fracture placed on the same line – Top View

c) 2 horizontal wells with well length of 1680 ft placed on the same line.

Equivalent well length is determined using graphical method by Brown and Economides

(1992). This method uses the fracture half-length of vertical wells to determine the

corresponding horizontal well length for various permeability values. For this case

permeability less than 0.1 md is used.

d) 2 horizontal wells with 3 transverse fractures on each wells and fracture half-

length 500 ft, both wells are placed on the same horizontal line. (see Figure 3.5)

Page 40: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

26

Figure 3.5 Schematic Illustration of 2 Horizontal Wells with 3 Transverse Hydraulic

Fractures each

3.4 Distance between Fractures Planes

3.4.1 Distance Between Transverse Fractures

Distance between 2 transverse fracture is analyzed by considering a single horizontal well

with well length 1680 ft. One fracture is kept fix at the heel of the well and the other

initially set close to the first one is moved towards the toe of the well as illustrated on

Figure 3.6, at increment distance as could be allowed by grid cells size, in this case

increments of 80 ft.

Page 41: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

27

Figure 3.6 Transverse Hydraulic Fracture Moving along the Horizontal Well Length

3.4.2 Distance Between Hydraulic Fractures Planes of two Vertical Wells

Two wells with hydraulic fractures are initially placed at the centre of the section, 160 ft

apart from each other with the fracture planes parallel to each other. The wells are then

moved on the same horizontal in incremental distance to observe the effect of distance

between fracture planes on the recovery. Figure 3.7 illustrates the mechanism of wells

and fracture movement.

Page 42: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

28

Figure 3.7 Wells and Hydraulic Fractures Displaced Horizontally

Page 43: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

29

CHAPTER 4

NUMERICAL SIMULATION

4.1 General Description of Commercial Simulator Used

The need to predict hydrocarbon reservoir performance is of a fundamental importance in

petroleum industry decision making for reservoir management; the most accurate method

in achieving such a goal is reservoir simulation. It is therefore very important that the

model created be precise and as close as possible to the real reservoir. One of the

challenges of reservoir simulation is modeling micro-systems such as fractures (generally

hydraulically fractured reservoir) in the reservoir.

In this project we will be using Exodus ™ v. 6.00 from T. T. & Associates Inc. in

Canada. Exodus™ v. 6.00 is K-compositional reservoir simulator. Exodus internally

converts black oil data into compositional equivalents. It can simulate three dimensions

problems in either Cartesian or cylindrical coordinates. Exodus™ v. 6.00 is fully implicit

and uses Newton Raphson methods to ensure maximum stability and adaptability.

Exodus is by default a block centered reservoir simulator. Exodus has functionalities such

as:

- Dual porosity/dual permeability modeling

- Coarse grid modeling

- Local grid refinement

- Modeling single well hydraulic fractures

More than just reservoir simulation, Exodus™ v. 6.00 has additional components such as

a map digitizer and a Pre-Tax economic analysis tool.

4.2 Validation of the Simulator

Before using the simulator for the planned studies, a level of confidence is required to

ascertain the accuracy the simulator. This is usually done by a benchmark test. In this

study, a benchmark test was performed using published data in a relevant SPE

Page 44: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

30

comparative paper (Cheng et al., 2008). Table 4.1 shows the data used for the simulator

validation and figure 4.1 shows the result from a different simulator used for the paper.

Figure 4.2 represents the results of Exodus™ simulated data compared with the digitized

results obtained from Figure 4.1. Given that, fracture width of 0.02 in and the minimum

size of a cell on Exodus™ is 1 ft, Hydraulic fracture width on the simulator is represented

by 1 ft width of local grid refined cell. The permeability of the refined cell is adjusted

accordingly to reflect the conductivity of the actual fracture which is 100 md-ft. since

relative permeability data were not provided by the authors, Brooks and Corey equations

were used. Also gas volume formation factor and gas viscosity was calculated from gas

gravity and using Standings correlations.

Table 4.1 Numerical Reservoir Simulation Validation Data from Cheng et al. (2008)

Reservoir and Fracture Properties

Reservoir Temperature 250 oF

Initial Reservoir Pressure 5,000 psi

Net-pay Thickness 150 ft

Drainage Area 80 Acres

Gas Porosity 0.06

Gas Permeability 0.006 md

Fracture Length 450 ft

Fracture Conductivity 100 md-ft

Bottomhole Flowing Pressure 1,000 psi

Fluid Properties

Gas Gravity (air = 1.0) 0.65

Initial Gas Viscosity 0.025 cp

Initial Gas Compressibility 1.2 x 10-4 psi-1

Initial Gas Production Rate 2,000 Mscf/D

Page 45: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

31

Figure 4.1 Production Performance for Hydraulically Fractured well in a Single-layer

Reservoir (Cheng et al. 2008)

Figure 4.2 Reservoir Simulation Validation Results

Page 46: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

32

4.3 Base Case Simulation and Model Description

The model for this project is created by using a section (640 acres) and net pay of 150 ft

divided in 3 equal thickness layers. The grid sizes in x and y directions are chosen with

respect to the wells distribution for each case. Table 4.2 below shows hypothetical data

representative of a tight gas sandstone reservoir and grid size for the base case. (sample

data file included in Appendix B)

Table 4.2 Simulation Model Data

Reservoir Model

Model Size, feet 5280x5280x150

Model Area, Acres 640

Number of Layers 3

Net Thickness, feet/layer 50

Top Depth of the Reservoir, feet 7,200

Porosity, fraction 0.08

X Permeability, md 0.01

Y Permeability, md 0.01

Z Permeability, md 0.001

Rock Compressibility, v/v/psi 3.00E-06

Initial Datum Pressure, psia 5,000

Datum Depth, feet 7,200

Gas-Water Contact, feet 7,500

Reservoir Temperature, oF 250

Fluid Properties

Gas Gravity (air = 1.0) 0.72

Water Density, lbs/ft3 62.41

Water Viscosity, cp 0.2332

Well Flow Parameters

Well Index Peaceman

Well Radius, ft 0.3

Flowing Bottom Hole Pressure, psia 1,000

Minimum Gas Rate, Mscf/d 50

Page 47: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

33

Figure 4.3 Exodus ™ Base Case Scenario Showing Well Locations and Porosity Distribution

4.4 Modeling Well Completion Features

As Indicated, the various reservoir development scenarios include several well

completion options as follow:

- Vertical well completion

- Horizontal well completion

- Vertical with fractures (by hydraulic fracturing)

- Horizontal with transverse fractures or with longitudinal fractures (by hydraulic

fracturing)

Page 48: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

34

4.4.1 Well Model

All vertical wells are completed on the entire thickness of the pay zone. For each wells

there are three connections, one for each layers. Well productivity index is automatically

calculated using Peaceman method.

Horizontal wells are completed through the second (middle) layer and the x-direction.

The number of connection is determined by the length.

All the wells are block centered and flow data are included in the previous section.

4.4.2 Hydraulic Fractures Modelling

Hydraulic fractures are simulated using local grid refinement (LGR). Actual fracture data

are represented in the table below. A fracture width of 0.02 in is represented by 1 ft LGR

fracture width since it is the minimum size of an LGR cell. The permeability of the LGR

fracture is adjusted accordingly to the conductivity of the actual fracture. LGR hydraulic

fracture is illustrated on Figure 4.4. (sample data file included in Appendix B)

Table 4.3 Hydraulic Fractures Properties

Half-length, Xf 500 ft

Width, Wf 0.02 ft

Conductivity KfWf 100 md-ft

LGR Frac Width 1 ft

Hydraulic Fracture

Page 49: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

35

Figure 4.4 Illustration of hydraulic fracture Local Grid Refinement – Top view and 3-D view

Page 50: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

36

4.5 Case Studies

The above well completion features are used in various ways to create several reservoir

management plays as described below:

4.5.1 Vertical Wells Comparison

- Base Case 16 vertical wells

- 9 vertical wells with 500 ft half length fracture (9 V Wells HF 500)

- 8 vertical wells with 500 ft half length fracture (8 V Wells HF 500)

- 5 vertical wells with 500 ft half length fracture (5 V Wells HF 500)

- 4 vertical wells with 500 ft half length fracture (4 V Wells HF 500)

- 2 vertical wells with 500 ft half length fracture parallel (2 V Wells HF 500)

4.5.2 Architecture Analysis

- 2 vertical wells with 500 ft half length fracture parallel (2 VP Wells HF 500)

- 2 vertical wells with 500 ft half length fracture collinear (2 VL Wells HF 500)

- 2 horizontal wells with 1680 ft well length collinear (2 H Wells 1680)

- 2 horizontal wells with 1680 ft well length collinear and 3 transverse fracture of

500 ft (2 H Wells 3 HFT 500)

4.5.3 Potential and Streamline Analysis

- 2 vertical wells with 1,000 ft half length fracture collinear (2 VL Wells HF

1,000)

4.5.4 Application

- 6 vertical wells with 500 ft half length fracture ( V Wells HF 500)

Page 51: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

37

CHAPTER 5

RESULTS AND DISCUSSION

As elaborated in chapter 3, different types of completions were analyzed to both find the

best well architecture for tight gas and also to understand the flow pattern for each

completion setup.

5.1 Vertical Wells

16 vertical wells on equal spacing of 40 acres were compared to different numbers of

vertical wells with hydraulic fractures of half length 500 ft and the results (Gas rate and

cumulative gas produced) are graphed below.

Figure 5.1 Gas Rate of the 5 Cases with 500 ft Half-length Hydraulic Fracture and the Base

Case

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000

Ave

rage

Gas

Rat

e, M

Mcf

/d

Time (Days)

Field Gas Rate Decline

16 V Wells 8 V Wells HF 500

9 V Wells HF 500 5 V Wells HF 500

4 V Wells HF 500 2 V Wells HF 500

Page 52: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

38

Figure 5.2 Cumulative Gas Production of the 5 Cases with 500 ft Half-length Hydraulic

Fracture and the Base Case

As could be seen on the plot above, the base case falls between 5 and 8 wells with 500 ft

half length hydraulic fractures. In order to find the equivalent number of wells

representing the base case, the cumulative gas produced at the end of 30 years is plotted

against the number of wells with hydraulic fractures, below are the Cartesian and the

semi-log representation respectively

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0 2000 4000 6000 8000 10000 12000

Cu

m G

as P

rod

uct

ion

, MM

SCF

Time Days

Field Gas Cummulative Production

16 V Wells 9 V Wells HF 500

8 V Wells HF 500 5 V Wells HF 500

4 V Wells HF 500 2 V Wells HF 500

Page 53: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

39

Figure 5.3 Cumulative Gas Production as function of the Number of Wells with Hydraulic

Fractures

Figure 5.4 Cumulative Gas Production as function of the Number of Wells with Hydraulic

Fractures - Semilog

Gp = 14655ln(Nhfw) + 1322.6R² = 0.9952

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0 2 4 6 8 10

Cu

m P

rod

uct

ion

-X

f =

500'

(M

Mcf

)

Number of HF Wells (Nhfw)

Cummulative Production vs. Number of HF V Wells (Xf = 500')

Gp = 14655ln(Nhfw) + 1322.6R² = 0.9952

100

1,000

10,000

100,000

0 2 4 6 8 10

Cu

m P

rod

uct

ion

-X

f =

500'

(M

Mcf

)

Number of HF Wells (Nhfw)

Cumulative Production vs. Number of HF V Wells (Xf = 500')

Page 54: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

40

2 methods could be used obtained equivalent number of wells from the graph above:

- Graphical method, knowing the cumulative production, number of equivalent

could be obtained by extending a line from the cumulative gas production value

on the y axis to the curve and reading the corresponding number of wells on the x

axis.

- Using the equation obtained from the trendline the number of equivalent wells

could be calculated as follows:

Given,

Gp = 14655ln(Nhfw) + 1322.6 (5.1)

Solving for Nhfw gives,

(5.2)

A generalized method is obtained by using recovery factor instead of cumulative gas

produced. Dividing cumulative gas produced by the original gas in place and plotting the

result, the following pair of plot was obtained:

Page 55: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

41

Figure 5.5 Gas Recovery as function of the Number of Wells with Hydraulic Fractures

Figure 5.6 Gas Recovery as function of the Number of Wells with Hydraulic Fractures -

Semilog

Rf = 0.2391ln(Nhfw) + 0.0216R² = 0.9952

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

Re

cove

ry F

acto

r

Number of HF Wells (Nhfw)

Recovery vs. Number of HF V Wells (Xf = 500')

Rf = 0.2391ln((Nhfw) + 0.0216R² = 0.9952

0.01

0.1

1

0 2 4 6 8 10

Rec

ove

ry F

acto

r

Number of HF Wells (Nhfw)

Recovery vs. Number of HF V Wells (Xf = 500')

Page 56: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

42

Similarly, the number of equivalent wells with hydraulic fracture is given by:

(5.3)

Pressure distribution profile after 30 years of production of each case is shown in Figure

5.7

Figure 5.7 Pressure Distribution after 30 years of Production for all the Cases Mentioned in

Section 5.1

5.2 Completion Architecture

To optimize completion architecture, 4 completion scenarios were compared by coupling

two wells ( 2 vertical wells with hydraulic fractures in parallel, 2 vertical wells with

fracture in the same horizontal line, 2 horizontal wells and 2 horizontal wells with 3

transverse hydraulic fractures of half 500 ft) to better understand and measure interaction

mechanisms. The respective results for both flow rates and cumulative production are

plotted below, preceded by the top view of the reservoir for each case.

Page 57: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

43

Figure 5.8 Pressure Distribution for 2 Wells Analysis after Production

Page 58: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

44

Figure 5.9 Gas Production Rate for 2 Wells Analysis

Figure 5.10 Gas Cumulative Production for 2 Wells Analysis

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000 12000

Gas

Pro

du

ctio

n R

ate

(MM

scf/

d)

Time Days

Gas Production Rate (2 wells)

2 H wells 3Layers 16802 H wells 3 HFT 5002 VP Wells HF 5002 VL Wells HF 500

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

0 2000 4000 6000 8000 10000 12000

Cu

m P

rod

MM

scf

Time Days

Cumulative Gas MMscf (2 wells)

2 H wells 16802 H wells 3 HFT 5002 VP Wells HF 5002 VL Wells HF 500

Page 59: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

45

As could be seen from the figure 5.9 and figure 5.10, two horizontal wells with transverse

hydraulic fractures are in a class of their own and yield a better recovery.

5.3 Special Well Completion Studies

5.3.1 Collinear Fractures in Vertical Wells for Mitigating Flow Convergence

As far vertical wells are concerned, one the factors that leads to poor performance is flow

convergence around the well as shown in Figure 5.11, this type of flow in the reservoir

should be avoided as flow competition around the wellbore leads to high drawdown.

Wells with collinear hydraulic fractures yielded a better recovery than wells with parallel

hydraulic fractures. Therefore wells with larger collinear hydraulic fractures were

analyzed to understand the flow pattern and the following potential (pressure) and

streamline map was obtained after 30 years of production.

Figure 5.11 Radial Flow Around the Well

Page 60: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

46

Figure 5.12 Potential lines and Streamlines for Pressure after 30 years of production

Observing Figure 5.12, it is easily noticed that most of the flow through the reservoir is

linear, and there is interference in the streamline.

Page 61: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

47

5.3.2 Optimizing Spacing between two Consecutive Transverse Fractures

(horizontal well completion)

The effect of the distance between 2 transverse hydraulic fractures was analyzed by

moving one of the hydraulic fractures along the horizontal well length as the other one is

kept fix. The pressure distribution at the low, medium and high range distances was

captured and shown on Figure 5.13 to illustrate flow interference between fractures. The

graph on Figure 5.14 was then obtained after producing each case for 30 years.

Figure 5.13 Schematic Illustration of Fracture Distance Effect

Page 62: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

48

Figure 5.14 Cumulative Gas Production at Various Fracture Distance

Cumulative gas production for each distance between fractures was then used to plot the

following graph (figure 5.15) which shows a close to inverted parabolic relationship

between transverse fractures distance and cumulative production or gas recovery. This

plot can be used as tool to determine optimum distance between transverse fractures.

Page 63: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

49

Figure 5.15 Relationship of Cumulative Gas and Distance Between 2 Transverse Fractures

on a Horizontal Well

5.3.3 Optimizing spacing between two consecutive vertical well fractures (vertical

well completion)

Similarly as in section 5.3.1, distance between 2 wells with hydraulic fractures was

analyzed and the pressure profile after 30 years of production is shown in Figure 5.16.

Interaction between the wells at lower distance is so strong that both wells act like a

single well with a larger fracture.

7,140

7,160

7,180

7,200

7,220

7,240

7,260

7,280

7,300

0 200 400 600 800 1000 1200 1400 1600

Cu

mu

lati

ve G

as M

Msc

f

Fracs Distance

Cumulative Gas Production vs. Transverse Fracture Distance

Page 64: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

50

Figure 5.16 Schematic Illustration of Fracture Distance Effect between 2 Fractured Vertical

Wells

The cumulative production after 30 years of production for each distance analyzed in

summarized in Figure 5.17

Page 65: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

51

Figure 5.17 Cumulative Production at Various Distances between 2 Vertical Fractured

Wells

Cumulative gas production for each distance between fractures was then used to plot the

graph on Figure 5.18, which shows a linear relationship between transverse fractures

distance and cumulative production or gas recovery. This plot can be used as tool to

determine optimum distance between transverse fractures.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

0 2000 4000 6000 8000 10000 12000

Cu

mu

lati

ve G

as M

Msc

f

Time, Days

Cumulative Gas Production, Distance between 2 Fractured Wells

1440 ft 1280 ft 1120 ft960 ft 640 ft 480 ft320 ft 160 ft

Page 66: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

52

Figure 5.18 Relationship of cumulative gas production and distance between fracture planes

of 2 vertical wells

5.4 Development of a New, Optimized Field Development Concept for

Tight Gas Sandstone Reservoir

An application of the combination of results in the previous sections leads to the optimum

completion architecture. The number of equivalent vertical wells with 500 ft half length

hydraulic fractures was found by using equation 5.2 to be 6. In order to reduce flow

interference in the space between fracture planes and favor linear flow, the best practice

is to put the maximum number of wells in a linear pattern. The proposed architecture for

the 640 acre section is shown in figure 5.18 below. The 6 wells are split into 2 groups of

3 fractured collinear wells. These groups are placed apart enough to minimize early

interference. Economic analysis in the next section will help confirm it relevance of this

scheme.

y = 2.3179x + 8774.4R² = 0.9773

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

0 200 400 600 800 1000 1200 1400

Cu

mu

lati

ve G

as M

Msc

f

Fracs Distance, ft

Cumulative Gas Production vs. Distance between 2 Fractures

Page 67: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

53

Figure 5.19 Schematic Illustration of the Proposed Scheme

Page 68: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

54

Figure 5.20 Pressure Distribution of the Proposed Scheme at the End of the Project

Lifetime

After 30 years of production, the pressure distribution on Figure 5.19 shows most of the

flow in the reservoir is linear.

5.5 Economic Analysis

The data in Table 5.1 were used for economic analysis. These data were obtained from

literature mainly SPE 125526 and SPE 125975. Cost for each case was derived from

these basic data and multiply proportionally to obtained corresponding values.

Page 69: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

55

Table 5.1 Economic Data

After plotting cumulative discounted cash flow against time for each vertical wells cases

as shown in Figure 5.21, it was determined that the base case has the highest investment

and the highest payout time contrasting with a very low Net Present Value (NPV)

Economics

Royality 12.5 %

Working Interest 100 %

Gas Price 5 $/Mscf

Rate of Return 15 %

Drilling Cost

Vertical Section 200 $/ft

Horizontal Section 350 $/ft

Completion and Stimulation

Completion 0.05 M$/Stage

Stimulation 1.2 $/ft2

Operation Cost

Well Cost 30 $/day/well

Gas Cost 0.29 $/Mscf

Page 70: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

56

Figure 5.21 Cumulative Discounted Cash Flow for Vertical Wells

Examining economics for completion architecture, the graph on Figure 5.22 was plotted.

Although wells with transverse fractured have yielded better recovery, they are not the

most economical, they require high investment and give low NPV. On the other hand

vertical wells with collinear fractures require low investment and gives better NPV and

early payout.

-30,000

-20,000

-10,000

0

10,000

20,000

30,000

0 5 10 15 20 25 30

Cu

mu

lati

ve C

ash

Flo

w (

x$1,

000)

Years

Cumulative Discounted Cash Flow

Base Case 9 V Wells HF

8 V Wells HF 5 V Wells HF 500

4 V Wells HF 500 2 V Wells HF 500

Page 71: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

57

Figure 5.22 Cumulative Discounted Cash Flow Comparing Completions

After taking into consideration the above observations, economic analysis was

performed on the proposed completion scheme and resulting discounted cash flow is

shown on Figure 5.23. With an initial investment of about $10 millions, the payout is

right around the middle of the first year of production and the NPV is $23.292 million

after 30 years of production at 15% of annual discount rate. The rate of return is

estimated 67.4%. Combining all these economic beacons, leads to a conclusion favoring

the proposed completion scheme as compare to other scenarios evaluated and

summarized in Table 5.2 below. (see Appendix A for detailed economic analysis)

-6,000

-4,000

-2,000

0

2,000

4,000

6,000

8,000

10,000

0 5 10 15 20 25 30

Cu

mu

lati

ve C

ash

Flo

w (

x$1,

000)

Years

Cumulative Discounted Cash Flow

2 H wells 1680

2 H wells 3 HFT 500

2 VP Wells HF 500

2 VL Wells HF 500

Page 72: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

58

Figure 5.23 Cumulative Cash Flow for the Proposed Case Showing Payout Time

Table 5.2 Economic Analysis

-12,000

-8,000

-4,000

0

4,000

8,000

12,000

16,000

20,000

24,000

0 5 10 15 20 25 30

Cu

mu

lati

ve C

ash

Flo

w (

x$1,

000)

Years

Cumulative Discounted Cash Flow Proposed Case

Cases

Number of

Wells Investment ECL Payout

Rate of

Return NPV

MM$ Mscf/d Years % MM$

Base Case 16 24.5 50 11.5 19.2 5.13

9 15.4 50 2 55 26.45

8 13.7 50 2 56.4 24.72

5 8.55 50 1.5 69 20.88

4 6.84 50 2 60 15.00

2 3.42 50 2 60.5 7.80

2 4.44 50 2 59.5 9.54

2 (3 THF) 5.52 50 2.7 46 8.57

Proposed Scheme 6 10.26 50 1.5 67.4 23.29

Vertical Completion

Horizontal Compltion

Page 73: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

59

CHAPTER 6

CONCLUSIONS and RECOMMENDATIONS

6.1 Conclusions

• Production in tight gas reservoir does not only depend on the fracture surface

area, it also depends on the area of the fracture connection to the well. It is

important to maximize surface area and connection to the well as much as

possible in tight gas reservoir.

• The linearity of the flow in the reservoir is a component to be considered when

planning reservoir development.

• A linear relationship exists between recovery and the distance (d) between

fracture planes of 2 vertical wells with hydraulic fractures (for d < 1440 ft)

• A parabolic (bell shape) relationship exist between recovery and transverse

fractures separation distance on a horizontal well

• Spacing between the hydraulic fractures should be optimized to avoid early

interference, protect marginal natural fractures and favor linear flow in the

reservoir.

• A tool was developed to help estimating the number wells with hydraulic

fractures from cumulative production and from gas recovery factor.

Page 74: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

60

6.2 Recommendations

• Distance of stationary transverse fracture from the heel of the horizontal well

could be investigated by using other values than 160 ft used for this study.

• Distance between fracture planes of 2 vertical wells could be investigated for

values larger than 1440 ft around the boundaries of the reservoir to see if the

linear relationship is affected by boundary effect

• Different numerical simulators could be used to perform these investigations

• The impact of the permeability jail on the simulation result should study and

considered for future applications.

• Natural fractures should be considered and included in the simulation modeling as

it plays an important role in tight gas reservoir performance.

• Heterogeneous reservoir should also be considered for the same study performed

in this report.

Page 75: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

61

REFERENCES

Abacioglu, Y., Sebastian, H. M., and Oluwa, J. B. “Advancing Reservoir Simulation

Capabilities for Tight Gas Reservoirs” Paper SPE 122793, SPE Rocky Mountain

Petroleum Technology Conference, 14-16 April 2009, Denver, Colorado

Aghighi, M.A., Chen, Z. and Rahman, S.S. “A Holistic Approach to the Design and

Evaluation of Hydraulic-Fracture Treatments in Tight Gas Reservoirs” Paper 102880,

SPE Production & Operations, Volume 23, Number 3, August 2008, pp. 362-372

Aghighi, M.A., Rahman S.S. and Rahman, M.M. “Effect of Formation Stress Distribution

on Hydraulic Fracture Reorientation in Tight Gas Sands” Paper SPE 122723 presented

at SPE Asia Pacific Oil and Gas Conference and Exhibition, 4-6 August 2009, Jakarta,

Indonesia

Ahmed, T., and McKinney, P. D., “Advanced Reservoir Engineering” Gulf Professional

Publishing, Elsevier 2005, Linacre House, Jordan Hill, Oxford, UK

Ali, L., Bordoloi, S., and Wardinsky, S. H. “Modeling Permeability in Tight Gas Sands

Using Intelligent and Innovative Data Mining Techniques” Paper SPE 116583,

presented at SPE Annual Technical Conference and Exhibition, 21-24 September

2008, Denver, Colorado, US

Brown, J.E., and Economides, M.J., “An Analysis of Horizontally Fractured Horizontal

Wells” Paper SPE 24322, SPE Rocky Mountain Regional Meeting, 18-21 May 1992,

Casper, Wyoming, US

Cheng, Y., Lee, W.J., and McVay, D.A. “Improving Reserves Estimates From Decline-

Curve Analysis of Tight and Multilayer Gas Wells” Paper SPE 108176, SPE

Reservoir Evaluation & Engineering, Volume 11, Number 5, October 2008, pp. 912-

920

Cox, S.A. Sutton, R.P., Stoltz, R.P. and Knobloch, T. “Determination of Effective

Drainage Area for Tight Gas Wells” Paper SPE 98035 presented at SPE Eastern

Regional Meeting, 14-16 September 2005, Morgantown, West Virginia

Ehrl, E. and Schueler, S.K. ”Simulation of a Tight Gas Reservoir with Horizontal

Multifractured Wells” SPE 65108 presented at SPE European Petroleum Conference,

24-25 October 2000, Paris, France

Hagoort, J. and Hoogstra, R. “Numerical Solution of the Material Balance Equations of

Compartmented Gas Reservoirs” paper SPE 57655, SPE Reservoir Evaluation &

Engineering, Volume 2 Number 4, August 1999

Page 76: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

62

Holditch, Stephen A. “Tight Gas Sands” Paper SPE 103356, Journal of Petroleum

Technology, Volume 58, Number 6, June 2006, pp. 86-93

Holditch, Stephen A., Jennings, James W., Neuse, Stephen H., and Wyman, Richard E.,

“The Optimization of Well Spacing and Fracture Length in low Permeability Gas

Reservoirs” Paper SPE 7496 presented at SPE Annual Fall Technical Conference and

Exhibition, 1-3 October 1978, Houston, Texas

Honarpour, M.M., Nagarajan, N.R. and Sampath, K. “Rock/Fluid Characterization and

Their Integration - Implications on Reservoir Management” Paper SPE 103358,

Journal of Petroleum Technology, Volume 58, Number 9, September 2006, pp. 120-

130

Iwere, F.O., Moreno, J.E. and Apaydin, O.G. “Numerical Simulation of Thick, Tight

Fluvial Sands” Paper SPE 90630 SPE Reservoir Evaluation & Engineering,

Volume 9, Number 4, August 2006, pp. 374-381

Larkin, S.D., et al., “Stimulation Design and Post Fracture Production Analysis: A Tight

Gas Sand Case History” Paper SPE 74361, presented at SPE International Petroleum

Conference and Exhibition in Mexico, 10-12 February 2002, Villahermosa, Mexico

Payne, David A “Material-Balance Calculations in Tight-Gas Reservoirs: The Pitfalls of

p/z Plots and a More Accurate Technique” Paper SPE 36702, SPE Reservoir

Engineering, Volume 11 Number 4, November 1996

Rushing, J.A., Newsham, K.E., and Blasingame, T.A. “Rock Typing - Keys to

Understanding Productivity in Tight Gas Sands” Paper SPE 114164 presented at SPE

Unconventional Reservoirs Conference, 10-12 February 2008, Keystone, Colorado,

USA

Rushing, J.A., Perego, A.D., Sullivan, R.B. and Blasingame, T.A. “Estimating Reserves

in Tight Gas Sands at HP/HT Reservoir Conditions: Use and Misuse of an Arps

Decline Curve Methodology” Paper SPE 109625, presented at SPE Annual Technical

Conference and Exhibition, 11-14 November 2007, Anaheim, California, U.S.A

Shanley, K. W., Cluff, R. M. and Robinson, J. W. “Factors controlling prolific gas

production from low-permeability sandstone reservoirs: Implications for resource

assessment, prospect development, and risk analysis” AAPG Bulletin, Volume 88,

Number 8, August 2004, pp. 1083–1121

Page 77: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

63

Ward, J. S., and Morrow, N. R., “Capillary Pressures and Gas Relative Permeabilities of

Low-Permeability Sandstone”, Paper SPE 13882 SPE Formation Evaluation

Volume 2, Number 3, September 1987

Wells, J.D., Amaefule, J.O., “Capillary Pressure and Permeability Relationships in Tight

Gas Sands” Paper SPE 13879 presented at SPE/DOE Low Permeability Gas

Reservoirs Symposium, 19-22 March 1985, Denver, Colorado

Page 78: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

64

APPENDIX A

ECONOMIC ANALYSIS

Microsoft Excel Spreadsheet was used for Economic Analysis (illustration in the tables

below). Cumulative gas production for each of the 30 years of the life time of the project

and for cases studied is obtained from Exodus™, these values are used as input data in

the spread sheet preliminarily filled with economic data included in Table 5.1.

Investments for all cases are assumed to be done during year 0, prior to the first year of

production. For each case, investment is calculated using specific information about the

number wells and the type of completion to be executed.

This analysis is done before Federal Income Tax however state such as Ad Valorem

(7.5%) and Severance (2.5%) taxes are included in the analysis and the interest discount

rate is set 15%.

Operating cost is split into 2: a fixed cost of $30.00/well/day and variable cost that is

function of production and is set at $0.29/Mscf.

The discounted cash flow for each year is obtained by multiplying the undiscounted or

future values (F) for each year by the corresponding present value factor (PV factor)

calculated as follow

(A.1)

The net present value (NPV) for each year is obtained as follow

(A.2)

Page 79: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

65

Table A. 1 Economic Analysis Spreadsheet for Base Case

DISCOUNT RATE 15.00% GAS PRICE 5.00 $/Mscf

Working Interest 100.00% % OPERATING EXPENSES

Royality Burden 12.50% % Gas 0.29 $/Mscf

Water 10.00 $/B

INVESTMENT Fixed 98,550.00 $/YEAR

Drilling 26.68 MM$

Completion 0.16 MM$ TAXES

Stimulation MM$ Ad Valorem Taxes 0.075

Severance Taxes 0.025

Total Investment 26.8 MM$ YEAR 2009 Federal Income Tax 0

Undiscounted Discounted

YEAR TIME NET PV NET Undiscounted Discounted

CASHFLOW FACTOR CASHFLOW NET NET

MM$ GAS WATER GAS GAS GAS CASHFLOW CASHFLOW

Mscf Bbls x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000

2009 0 26,840 0 0 0.000 0.000 0 0 0 -26,840 1.0000 -26,840 -26,840 -26,840

2010 1 1,807,354 0 7,907 623 593.038 197.679 6,494 0 6,494 6,494 0.8696 5,647 -20,346 -21,193

2011 2 1,591,651 0 6,963 560 522.260 174.087 5,707 0 5,707 5,707 0.7561 4,315 -14,639 -16,878

2012 3 1,495,173 0 6,541 532 490.604 163.535 5,355 0 5,355 5,355 0.6575 3,521 -9,284 -13,357

2013 4 1,400,138 0 6,126 505 459.420 153.140 5,008 0 5,008 5,008 0.5718 2,864 -4,276 -10,493

2014 5 1,338,635 0 5,857 487 439.240 146.413 4,784 0 4,784 4,784 0.4972 2,379 508 -8,115

2015 6 1,272,420 0 5,567 468 417.513 139.171 4,543 0 4,543 4,543 0.4323 1,964 5,051 -6,151

2016 7 1,210,419 0 5,296 450 397.169 132.390 4,316 0 4,316 4,316 0.3759 1,623 9,367 -4,528

2017 8 1,148,050 0 5,023 431 376.704 125.568 4,089 0 4,089 4,089 0.3269 1,337 13,456 -3,191

2018 9 1,094,570 0 4,789 416 359.156 119.719 3,894 0 3,894 3,894 0.2843 1,107 17,350 -2,085

2019 10 1,044,540 0 4,570 401 342.740 114.247 3,711 0 3,711 3,711 0.2472 917 21,062 -1,167

2020 11 1,000,920 0 4,379 389 328.427 109.476 3,552 0 3,552 3,552 0.2149 764 24,614 -404

2021 12 955,770 0 4,181 376 313.612 104.537 3,388 0 3,388 3,388 0.1869 633 28,002 230

2022 13 913,900 0 3,998 364 299.873 99.958 3,235 0 3,235 3,235 0.1625 526 31,237 755

2023 14 874,200 0 3,825 352 286.847 95.616 3,090 0 3,090 3,090 0.1413 437 34,327 1,192

2024 15 839,940 0 3,675 342 275.605 91.868 2,965 0 2,965 2,965 0.1229 364 37,292 1,556

2025 16 803,690 0 3,516 332 263.711 87.904 2,833 0 2,833 2,833 0.1069 303 40,125 1,859

2026 17 772,760 0 3,381 323 253.562 84.521 2,720 0 2,720 2,720 0.0929 253 42,845 2,112

2027 18 743,250 0 3,252 314 243.879 81.293 2,612 0 2,612 2,612 0.0808 211 45,457 2,323

2028 19 717,230 0 3,138 307 235.341 78.447 2,518 0 2,518 2,518 0.0703 177 47,975 2,500

2029 20 688,610 0 3,013 298 225.950 75.317 2,413 0 2,413 2,413 0.0611 147 50,388 2,647

2030 21 663,490 0 2,903 291 217.708 72.569 2,322 0 2,322 2,322 0.0531 123 52,709 2,771

2031 22 639,560 0 2,798 284 209.856 69.952 2,234 0 2,234 2,234 0.0462 103 54,944 2,874

2032 23 618,150 0 2,704 278 202.830 67.610 2,156 0 2,156 2,156 0.0402 87 57,100 2,961

2033 24 594,530 0 2,601 271 195.080 65.027 2,070 0 2,070 2,070 0.0349 72 59,170 3,033

2034 25 573,590 0 2,509 265 188.209 62.736 1,994 0 1,994 1,994 0.0304 61 61,164 3,093

2035 26 553,440 0 2,421 259 181.598 60.532 1,920 0 1,920 1,920 0.0264 51 63,084 3,144

2036 27 535,700 0 2,344 254 175.777 58.592 1,855 0 1,855 1,855 0.0230 43 64,939 3,187

2037 28 516,010 0 2,258 248 169.316 56.439 1,784 0 1,784 1,784 0.0200 36 66,723 3,222

2038 29 499,190 0 2,184 243 163.797 54.599 1,722 0 1,722 1,722 0.0174 30 68,445 3,252

2039 30 480,020 0 2,100 238 157.507 52.502 1,652 0 1,652 1,652 0.0151 25 70,097 3,277

BASE CASE

OCIBFIT FIT OCIAFIT

CUMULATIVE

INVESTMENTGROSS PRODUCTION

VOLUMESREVENUEEXPENSES

AD

VALOREMSEVERANCE

Page 80: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

66

Table A. 2 Economic Analysis Spreadsheet 9 Vertical Wells with Hydraulic Fractures

DISCOUNT RATE 15.00% GAS PRICE 5.00 $/Mscf

Working Interest 100.00% % OPERATING EXPENSES

Royality Burden 12.50% % Gas 0.29 $/Mscf

Water 10.00 $/B

INVESTMENT Fixed 175,200.00 $/YEAR

Drilling 13.32 MM$

Completion 0.45 MM$ TAXES

Stimulation 1.62 MM$ Ad Valorem Taxes 0.075

Severance Taxes 0.025

Total Investment 15.4 MM$ YEAR 2009 Federal Income Tax 0

Undiscounted Discounted

YEAR TIME NET PV NET Undiscounted Discounted

CASHFLOW FACTOR CASHFLOW NET NET

MM$ GAS WATER GAS GAS GAS CASHFLOW CASHFLOW

Mscf Bbls x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000

2009 0 15,390 0 0 0.000 0.000 0 0 0 -15,390 1.0000 -15,390 -15,390 -15,390

2010 1 2,884,628 0 12,620 1,012 946.519 315.506 10,346 0 10,346 10,346 0.8696 8,997 -5,044 -6,393

2011 2 2,382,608 0 10,424 866 781.793 260.598 8,515 0 8,515 8,515 0.7561 6,439 3,472 46

2012 3 2,143,444 0 9,378 797 703.318 234.439 7,643 0 7,643 7,643 0.6575 5,025 11,115 5,071

2013 4 1,947,517 0 8,520 740 639.029 213.010 6,928 0 6,928 6,928 0.5718 3,961 18,043 9,032

2014 5 1,815,713 0 7,944 702 595.781 198.594 6,448 0 6,448 6,448 0.4972 3,206 24,491 12,238

2015 6 1,679,290 0 7,347 662 551.017 183.672 5,950 0 5,950 5,950 0.4323 2,572 30,441 14,810

2016 7 1,565,160 0 6,848 629 513.568 171.189 5,534 0 5,534 5,534 0.3759 2,080 35,975 16,891

2017 8 1,457,500 0 6,377 598 478.242 159.414 5,141 0 5,141 5,141 0.3269 1,681 41,116 18,571

2018 9 1,363,890 0 5,967 571 447.526 149.175 4,800 0 4,800 4,800 0.2843 1,364 45,915 19,936

2019 10 1,274,710 0 5,577 545 418.264 139.421 4,474 0 4,474 4,474 0.2472 1,106 50,389 21,042

2020 11 1,198,300 0 5,243 523 393.192 131.064 4,196 0 4,196 4,196 0.2149 902 54,585 21,944

2021 12 1,124,080 0 4,918 501 368.839 122.946 3,925 0 3,925 3,925 0.1869 734 58,510 22,677

2022 13 1,060,620 0 4,640 483 348.016 116.005 3,693 0 3,693 3,693 0.1625 600 62,203 23,277

2023 14 1,002,500 0 4,386 466 328.945 109.648 3,481 0 3,481 3,481 0.1413 492 65,685 23,769

2024 15 950,280 0 4,157 451 311.811 103.937 3,291 0 3,291 3,291 0.1229 404 68,976 24,174

2025 16 894,550 0 3,914 435 293.524 97.841 3,088 0 3,088 3,088 0.1069 330 72,063 24,504

2026 17 846,490 0 3,703 421 277.755 92.585 2,912 0 2,912 2,912 0.0929 271 74,976 24,774

2027 18 802,760 0 3,512 408 263.406 87.802 2,753 0 2,753 2,753 0.0808 222 77,729 24,997

2028 19 764,980 0 3,347 397 251.009 83.670 2,615 0 2,615 2,615 0.0703 184 80,344 25,181

2029 20 725,900 0 3,176 386 238.186 79.395 2,473 0 2,473 2,473 0.0611 151 82,816 25,332

2030 21 691,700 0 3,026 376 226.964 75.655 2,348 0 2,348 2,348 0.0531 125 85,164 25,456

2031 22 660,040 0 2,888 367 216.576 72.192 2,232 0 2,232 2,232 0.0462 103 87,396 25,560

2032 23 632,200 0 2,766 359 207.441 69.147 2,131 0 2,131 2,131 0.0402 86 89,527 25,645

2033 24 602,600 0 2,636 350 197.728 65.909 2,023 0 2,023 2,023 0.0349 71 91,550 25,716

2034 25 575,310 0 2,517 342 188.774 62.925 1,923 0 1,923 1,923 0.0304 58 93,473 25,774

2035 26 548,730 0 2,401 334 180.052 60.017 1,826 0 1,826 1,826 0.0264 48 95,299 25,823

2036 27 525,440 0 2,299 328 172.410 57.470 1,741 0 1,741 1,741 0.0230 40 97,041 25,863

2037 28 501,160 0 2,193 321 164.443 54.814 1,653 0 1,653 1,653 0.0200 33 98,694 25,896

2038 29 480,150 0 2,101 314 157.549 52.516 1,576 0 1,576 1,576 0.0174 27 100,270 25,923

2039 30 456,990 0 1,999 308 149.950 49.983 1,492 0 1,492 1,492 0.0151 23 101,761 25,945

9 VERTICAL WELLS WITH HYDRAULIC FRACTURES

OCIBFIT FIT OCIAFIT

CUMULATIVE

INVESTMENTGROSS PRODUCTION

VOLUMESREVENUEEXPENSES

AD

VALOREMSEVERANCE

Page 81: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

67

Table A. 3 Economic Analysis Spreadsheet 8 Wells with Hydraulic Fractures

DISCOUNT RATE 15.00% GAS PRICE 5.00 $/Mscf

Working Interest 100.00% % OPERATING EXPENSES

Royality Burden 12.50% % Gas 0.29 $/Mscf

Water 10.00 $/B

INVESTMENT Fixed 87,600.00 $/YEAR

Drilling 11.84 MM$

Completion 0.4 MM$ TAXES

Stimulation 1.44 MM$ Ad Valorem Taxes 0.075

Severance Taxes 0.025

Total Investment 13.7 MM$ YEAR 2009 Federal Income Tax 0

Undiscounted Discounted

YEAR TIME NET PV NET Undiscounted Discounted

CASHFLOW FACTOR CASHFLOW NET NET

MM$ GAS WATER GAS GAS GAS CASHFLOW CASHFLOW

Mscf Bbls x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000

2009 0 13,680 0 0 0.000 0.000 0 0 0 -13,680 1.0000 -13,680 -13,680 -13,680

2010 1 2,652,656 0 11,605 857 870.403 290.134 9,588 0 9,588 9,588 0.8696 8,337 -4,092 -5,343

2011 2 2,165,616 0 9,475 716 710.593 236.864 7,811 0 7,811 7,811 0.7561 5,907 3,719 564

2012 3 1,938,611 0 8,481 650 636.107 212.036 6,983 0 6,983 6,983 0.6575 4,592 10,703 5,156

2013 4 1,762,775 0 7,712 599 578.411 192.804 6,342 0 6,342 6,342 0.5718 3,626 17,045 8,782

2014 5 1,643,742 0 7,191 564 539.353 179.784 5,908 0 5,908 5,908 0.4972 2,937 22,953 11,719

2015 6 1,527,730 0 6,684 531 501.286 167.095 5,485 0 5,485 5,485 0.4323 2,371 28,438 14,090

2016 7 1,431,540 0 6,263 503 469.724 156.575 5,134 0 5,134 5,134 0.3759 1,930 33,572 16,020

2017 8 1,338,590 0 5,856 476 439.225 146.408 4,795 0 4,795 4,795 0.3269 1,567 38,367 17,588

2018 9 1,258,770 0 5,507 453 413.034 137.678 4,504 0 4,504 4,504 0.2843 1,280 42,870 18,868

2019 10 1,183,910 0 5,180 431 388.470 129.490 4,231 0 4,231 4,231 0.2472 1,046 47,101 19,914

2020 11 1,119,390 0 4,897 412 367.300 122.433 3,995 0 3,995 3,995 0.2149 859 51,096 20,773

2021 12 1,055,820 0 4,619 394 346.441 115.480 3,764 0 3,764 3,764 0.1869 703 54,860 21,476

2022 13 1,000,540 0 4,377 378 328.302 109.434 3,562 0 3,562 3,562 0.1625 579 58,422 22,055

2023 14 949,640 0 4,155 363 311.601 103.867 3,376 0 3,376 3,376 0.1413 477 61,798 22,532

2024 15 905,300 0 3,961 350 297.052 99.017 3,214 0 3,214 3,214 0.1229 395 65,013 22,927

2025 16 858,080 0 3,754 336 281.557 93.852 3,042 0 3,042 3,042 0.1069 325 68,055 23,252

2026 17 815,640 0 3,568 324 267.632 89.211 2,887 0 2,887 2,887 0.0929 268 70,942 23,521

2027 18 777,050 0 3,400 313 254.970 84.990 2,747 0 2,747 2,747 0.0808 222 73,689 23,743

2028 19 743,490 0 3,253 303 243.958 81.319 2,624 0 2,624 2,624 0.0703 184 76,313 23,927

2029 20 708,190 0 3,098 293 232.375 77.458 2,496 0 2,496 2,496 0.0611 152 78,809 24,079

2030 21 677,230 0 2,963 284 222.216 74.072 2,383 0 2,383 2,383 0.0531 127 81,191 24,206

2031 22 648,750 0 2,838 276 212.871 70.957 2,279 0 2,279 2,279 0.0462 105 83,470 24,311

2032 23 623,620 0 2,728 268 204.625 68.208 2,187 0 2,187 2,187 0.0402 88 85,657 24,399

2033 24 596,270 0 2,609 261 195.651 65.217 2,087 0 2,087 2,087 0.0349 73 87,744 24,472

2034 25 572,530 0 2,505 254 187.861 62.620 2,001 0 2,001 2,001 0.0304 61 89,745 24,533

2035 26 550,230 0 2,407 247 180.544 60.181 1,919 0 1,919 1,919 0.0264 51 91,664 24,584

2036 27 529,960 0 2,319 241 173.893 57.964 1,845 0 1,845 1,845 0.0230 42 93,510 24,626

2037 28 506,980 0 2,218 235 166.353 55.451 1,762 0 1,762 1,762 0.0200 35 95,272 24,661

2038 29 486,720 0 2,129 229 159.705 53.235 1,688 0 1,688 1,688 0.0174 29 96,959 24,690

2039 30 464,160 0 2,031 222 152.303 50.768 1,605 0 1,605 1,605 0.0151 24 98,565 24,715

8 VERTICAL WELLS WITH HYDRAULIC FRACTURES

CUMULATIVEGROSS PRODUCTION

VOLUMESINVESTMENT REVENUEEXPENSES

AD

VALOREMSEVERANCE OCIBFIT FIT OCIAFIT

Page 82: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

68

Table A. 4 Economic Analysis Spreadsheet 6 Wells with Hydraulic Fractures

DISCOUNT RATE 15.00% GAS PRICE 5.00 $/Mscf

Working Interest 100.00% % OPERATING EXPENSES

Royality Burden 12.50% % Gas 0.29 $/Mscf

Water 10.00 $/B

INVESTMENT Fixed 65,700.00 $/YEAR

Drilling 8.88 MM$

Completion 0.3 MM$ TAXES

Stimulation 1.08 MM$ Ad Valorem Taxes 0.075

Severance Taxes 0.025

Total Investment 10.26 MM$ YEAR 2009 Federal Income Tax 0

Undiscounted Discounted

YEAR TIME NET PV NET Undiscounted Discounted

CASHFLOW FACTOR CASHFLOW NET NET

MM$ GAS WATER GAS GAS GAS CASHFLOW CASHFLOW

Mscf Bbls x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000

2009 0 10,260 0 0 0.000 0.000 0 0 0 -10,260 1.0000 -10,260 -10,260 -10,260

2010 1 2,335,751 0 10,219 743 766.418 255.473 8,454 0 8,454 8,454 0.8696 7,351 -1,806 -2,909

2011 2 1,846,499 0 8,078 601 605.882 201.961 6,669 0 6,669 6,669 0.7561 5,043 4,863 2,134

2012 3 1,645,014 0 7,197 543 539.770 179.923 5,934 0 5,934 5,934 0.6575 3,902 10,798 6,036

2013 4 1,494,246 0 6,537 499 490.299 163.433 5,385 0 5,385 5,385 0.5718 3,079 16,182 9,115

2014 5 1,401,842 0 6,133 472 459.979 153.326 5,048 0 5,048 5,048 0.4972 2,510 21,230 11,624

2015 6 1,316,378 0 5,759 447 431.937 143.979 4,736 0 4,736 4,736 0.4323 2,047 25,966 13,672

2016 7 1,245,940 0 5,451 427 408.824 136.275 4,479 0 4,479 4,479 0.3759 1,684 30,445 15,356

2017 8 1,173,010 0 5,132 406 384.894 128.298 4,213 0 4,213 4,213 0.3269 1,377 34,657 16,733

2018 9 1,111,160 0 4,861 388 364.599 121.533 3,987 0 3,987 3,987 0.2843 1,133 38,645 17,866

2019 10 1,056,210 0 4,621 372 346.569 115.523 3,787 0 3,787 3,787 0.2472 936 42,432 18,802

2020 11 1,008,440 0 4,412 358 330.894 110.298 3,613 0 3,613 3,613 0.2149 777 46,044 19,579

2021 12 959,730 0 4,199 344 314.911 104.970 3,435 0 3,435 3,435 0.1869 642 49,479 20,221

2022 13 917,380 0 4,014 332 301.015 100.338 3,280 0 3,280 3,280 0.1625 533 52,759 20,754

2023 14 877,460 0 3,839 320 287.917 95.972 3,135 0 3,135 3,135 0.1413 443 55,894 21,197

2024 15 840,880 0 3,679 310 275.914 91.971 3,001 0 3,001 3,001 0.1229 369 58,896 21,566

2025 16 801,660 0 3,507 298 263.045 87.682 2,858 0 2,858 2,858 0.1069 305 61,754 21,871

2026 17 767,620 0 3,358 288 251.875 83.958 2,734 0 2,734 2,734 0.0929 254 64,488 22,125

2027 18 736,200 0 3,221 279 241.566 80.522 2,620 0 2,620 2,620 0.0808 212 67,108 22,337

2028 19 708,720 0 3,101 271 232.549 77.516 2,519 0 2,519 2,519 0.0703 177 69,627 22,514

2029 20 679,410 0 2,972 263 222.931 74.310 2,412 0 2,412 2,412 0.0611 147 72,040 22,662

2030 21 654,040 0 2,861 255 214.607 71.536 2,320 0 2,320 2,320 0.0531 123 74,360 22,785

2031 22 630,010 0 2,756 248 206.722 68.907 2,232 0 2,232 2,232 0.0462 103 76,592 22,888

2032 23 608,740 0 2,663 242 199.743 66.581 2,155 0 2,155 2,155 0.0402 87 78,747 22,974

2033 24 585,510 0 2,562 235 192.120 64.040 2,070 0 2,070 2,070 0.0349 72 80,816 23,047

2034 25 565,250 0 2,473 230 185.473 61.824 1,996 0 1,996 1,996 0.0304 61 82,812 23,107

2035 26 545,930 0 2,388 224 179.133 59.711 1,926 0 1,926 1,926 0.0264 51 84,738 23,158

2036 27 528,400 0 2,312 219 173.381 57.794 1,862 0 1,862 1,862 0.0230 43 86,600 23,201

2037 28 508,130 0 2,223 213 166.730 55.577 1,788 0 1,788 1,788 0.0200 36 88,387 23,237

2038 29 490,280 0 2,145 208 160.873 53.624 1,723 0 1,723 1,723 0.0174 30 90,110 23,267

2039 30 469,680 0 2,055 202 154.114 51.371 1,647 0 1,647 1,647 0.0151 25 91,757 23,292

6 VERTICAL WELLS WITH HYDRAULIC FRACTURES

OCIBFIT FIT OCIAFIT

CUMULATIVE

INVESTMENTGROSS PRODUCTION

VOLUMESREVENUEEXPENSES

AD

VALOREMSEVERANCE

Page 83: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

69

Table A. 5 Economic Ayalysis Spreadsheet 5 Wells with Hydraulic Fractures

DISCOUNT RATE 15.00% GAS PRICE 5.00 $/Mscf

Working Interest 100.00% % OPERATING EXPENSES

Royality Burden 12.50% % Gas 0.29 $/Mscf

Water 10.00 $/B

INVESTMENT Fixed 54,750.00 $/YEAR

Drilling 7.4 MM$

Completion 0.25 MM$ TAXES

Stimulation 0.9 MM$ Ad Valorem Taxes 0.075

Severance Taxes 0.025

Total Investment 8.55 MM$ YEAR 2009 Federal Income Tax 0

Undiscounted Discounted

YEAR TIME NET PV NET Undiscounted Discounted

CASHFLOW FACTOR CASHFLOW NET NET

MM$ GAS WATER GAS GAS GAS CASHFLOW CASHFLOW

Mscf Bbls x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000

2009 0 8,550 0 0 0.000 0.000 0 0 0 -8,550 1.0000 -8,550 -8,550 -8,550

2010 1 1,999,412 0 8,747 635 656.057 218.686 7,238 0 7,238 7,238 0.8696 6,294 -1,312 -2,256

2011 2 1,581,099 0 6,917 513 518.798 172.933 5,712 0 5,712 5,712 0.7561 4,319 4,400 2,063

2012 3 1,421,300 0 6,218 467 466.364 155.455 5,129 0 5,129 5,129 0.6575 3,373 9,530 5,436

2013 4 1,302,062 0 5,697 432 427.239 142.413 4,695 0 4,695 4,695 0.5718 2,684 14,224 8,120

2014 5 1,230,293 0 5,383 412 403.690 134.563 4,433 0 4,433 4,433 0.4972 2,204 18,657 10,324

2015 6 1,161,884 0 5,083 392 381.243 127.081 4,183 0 4,183 4,183 0.4323 1,809 22,840 12,133

2016 7 1,105,733 0 4,838 375 362.819 120.940 3,978 0 3,978 3,978 0.3759 1,496 26,819 13,628

2017 8 1,047,277 0 4,582 358 343.638 114.546 3,765 0 3,765 3,765 0.3269 1,231 30,584 14,859

2018 9 996,820 0 4,361 344 327.082 109.027 3,581 0 3,581 3,581 0.2843 1,018 34,165 15,877

2019 10 951,580 0 4,163 331 312.237 104.079 3,416 0 3,416 3,416 0.2472 844 37,581 16,721

2020 11 912,880 0 3,994 319 299.539 99.846 3,275 0 3,275 3,275 0.2149 704 40,856 17,425

2021 12 872,520 0 3,817 308 286.296 95.432 3,128 0 3,128 3,128 0.1869 585 43,984 18,010

2022 13 837,700 0 3,665 298 274.870 91.623 3,001 0 3,001 3,001 0.1625 488 46,985 18,498

2023 14 805,450 0 3,524 288 264.288 88.096 2,883 0 2,883 2,883 0.1413 407 49,868 18,905

2024 15 777,010 0 3,399 280 254.956 84.985 2,779 0 2,779 2,779 0.1229 342 52,647 19,247

2025 16 744,910 0 3,259 271 244.424 81.475 2,662 0 2,662 2,662 0.1069 285 55,310 19,531

2026 17 716,680 0 3,135 263 235.161 78.387 2,559 0 2,559 2,559 0.0929 238 57,869 19,769

2027 18 690,180 0 3,020 255 226.465 75.488 2,463 0 2,463 2,463 0.0808 199 60,332 19,968

2028 19 667,000 0 2,918 248 218.859 72.953 2,378 0 2,378 2,378 0.0703 167 62,710 20,135

2029 20 641,840 0 2,808 241 210.604 70.201 2,286 0 2,286 2,286 0.0611 140 64,996 20,275

2030 21 620,040 0 2,713 235 203.451 67.817 2,207 0 2,207 2,207 0.0531 117 67,203 20,392

2031 22 599,500 0 2,623 229 196.711 65.570 2,132 0 2,132 2,132 0.0462 98 69,335 20,491

2032 23 581,560 0 2,544 223 190.824 63.608 2,066 0 2,066 2,066 0.0402 83 71,401 20,574

2033 24 561,390 0 2,456 218 184.206 61.402 1,993 0 1,993 1,993 0.0349 70 73,394 20,643

2034 25 543,770 0 2,379 212 178.425 59.475 1,929 0 1,929 1,929 0.0304 59 75,323 20,702

2035 26 527,060 0 2,306 208 172.942 57.647 1,868 0 1,868 1,868 0.0264 49 77,191 20,751

2036 27 512,580 0 2,243 203 168.190 56.063 1,815 0 1,815 1,815 0.0230 42 79,006 20,793

2037 28 496,100 0 2,170 199 162.783 54.261 1,755 0 1,755 1,755 0.0200 35 80,760 20,828

2038 29 481,610 0 2,107 194 158.028 52.676 1,702 0 1,702 1,702 0.0174 30 82,462 20,857

2039 30 463,490 0 2,028 189 152.083 50.694 1,636 0 1,636 1,636 0.0151 25 84,098 20,882

5 VERTICAL WELLS WITH HYDRAULIC FRACTURES

OCIBFIT FIT OCIAFIT

CUMULATIVE

INVESTMENTGROSS PRODUCTION

VOLUMESREVENUEEXPENSES

AD

VALOREMSEVERANCE

Page 84: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

70

Table A. 6 Economic Analysis Spreadsheet 4 Wells with Hydraulic Fractures

DISCOUNT RATE 15.00% GAS PRICE 5.00 $/Mscf

Working Interest 100.00% % OPERATING EXPENSES

Royality Burden 12.50% % Gas 0.29 $/Mscf

Water 10.00 $/B

INVESTMENT Fixed 43,800.00 $/YEAR

Drilling 5.92 MM$

Completion 0.2 MM$ TAXES

Stimulation 0.72 MM$ Ad Valorem Taxes 0.075

Severance Taxes 0.025

Total Investment 6.84 MM$ YEAR 2009 Federal Income Tax 0

Undiscounted Discounted

YEAR TIME NET PV NET Undiscounted Discounted

CASHFLOW FACTOR CASHFLOW NET NET

MM$ GAS WATER GAS GAS GAS CASHFLOW CASHFLOW

Mscf Bbls x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000

2009 0 6,840 0 0 0.000 0.000 0 0 0 -6,840 1.0000 -6,840 -6,840 -6,840

2010 1 1,351,916 0 5,915 436 443.597 147.866 4,887 0 4,887 4,887 0.8696 4,250 -1,953 -2,590

2011 2 1,115,574 0 4,881 367 366.048 122.016 4,025 0 4,025 4,025 0.7561 3,044 2,073 454

2012 3 1,021,286 0 4,468 340 335.109 111.703 3,681 0 3,681 3,681 0.6575 2,421 5,754 2,874

2013 4 955,042 0 4,178 321 313.373 104.458 3,440 0 3,440 3,440 0.5718 1,967 9,194 4,841

2014 5 919,215 0 4,022 310 301.617 100.539 3,309 0 3,309 3,309 0.4972 1,645 12,503 6,486

2015 6 882,978 0 3,863 300 289.727 96.576 3,177 0 3,177 3,177 0.4323 1,373 15,680 7,859

2016 7 851,697 0 3,726 291 279.463 93.154 3,063 0 3,063 3,063 0.3759 1,151 18,742 9,011

2017 8 818,831 0 3,582 281 268.679 89.560 2,943 0 2,943 2,943 0.3269 962 21,685 9,973

2018 9 791,037 0 3,461 273 259.559 86.520 2,842 0 2,842 2,842 0.2843 808 24,527 10,781

2019 10 765,209 0 3,348 266 251.084 83.695 2,747 0 2,747 2,747 0.2472 679 27,274 11,460

2020 11 743,275 0 3,252 259 243.887 81.296 2,667 0 2,667 2,667 0.2149 573 29,941 12,033

2021 12 718,560 0 3,144 252 235.778 78.593 2,577 0 2,577 2,577 0.1869 482 32,518 12,515

2022 13 697,130 0 3,050 246 228.746 76.249 2,499 0 2,499 2,499 0.1625 406 35,017 12,921

2023 14 677,150 0 2,963 240 222.190 74.063 2,426 0 2,426 2,426 0.1413 343 37,444 13,264

2024 15 659,200 0 2,884 235 216.300 72.100 2,361 0 2,361 2,361 0.1229 290 39,804 13,554

2025 16 637,340 0 2,788 229 209.127 69.709 2,281 0 2,281 2,281 0.1069 244 42,085 13,797

2026 17 618,500 0 2,706 223 202.945 67.648 2,212 0 2,212 2,212 0.0929 206 44,297 14,003

2027 18 600,950 0 2,629 218 197.187 65.729 2,148 0 2,148 2,148 0.0808 174 46,445 14,177

2028 19 585,940 0 2,563 214 192.262 64.087 2,093 0 2,093 2,093 0.0703 147 48,539 14,324

2029 20 568,490 0 2,487 209 186.536 62.179 2,030 0 2,030 2,030 0.0611 124 50,569 14,448

2030 21 553,260 0 2,421 204 181.538 60.513 1,974 0 1,974 1,974 0.0531 105 52,543 14,553

2031 22 538,650 0 2,357 200 176.745 58.915 1,921 0 1,921 1,921 0.0462 89 54,464 14,641

2032 23 526,320 0 2,303 196 172.699 57.566 1,876 0 1,876 1,876 0.0402 75 56,340 14,717

2033 24 511,760 0 2,239 192 167.921 55.974 1,823 0 1,823 1,823 0.0349 64 58,163 14,780

2034 25 499,080 0 2,183 189 163.761 54.587 1,777 0 1,777 1,777 0.0304 54 59,939 14,834

2035 26 486,980 0 2,131 185 159.790 53.263 1,732 0 1,732 1,732 0.0264 46 61,672 14,880

2036 27 476,530 0 2,085 182 156.361 52.120 1,694 0 1,694 1,694 0.0230 39 63,366 14,919

2037 28 463,760 0 2,029 178 152.171 50.724 1,648 0 1,648 1,648 0.0200 33 65,014 14,952

2038 29 452,060 0 1,978 175 148.332 49.444 1,605 0 1,605 1,605 0.0174 28 66,619 14,980

2039 30 437,290 0 1,913 171 143.486 47.829 1,551 0 1,551 1,551 0.0151 23 68,170 15,003

4 VERTICAL WELLS WITH HYDRAULIC FRACTURES

OCIBFIT FIT OCIAFIT

CUMULATIVE

INVESTMENTGROSS PRODUCTION

VOLUMESREVENUEEXPENSES

AD

VALOREMSEVERANCE

Page 85: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

71

Table A. 7 Economic Analysis Spreadsheet 2 Vertical Wells with Parallel Hydraulic Fractures Planes

DISCOUNT RATE 15.00% GAS PRICE 5.00 $/Mscf

Working Interest 100.00% % OPERATING EXPENSES

Royality Burden 12.50% % Gas 0.29 $/Mscf

Water 10.00 $/B

INVESTMENT Fixed 21,900.00 $/YEAR

Drilling 2.96 MM$

Completion 0.1 MM$ TAXES

Stimulation 0.36 MM$ Ad Valorem Taxes 0.075

Severance Taxes 0.025

Total Investment 3.42 MM$ YEAR 2009 Federal Income Tax 0

Undiscounted Discounted

YEAR TIME NET PV NET Undiscounted Discounted

CASHFLOW FACTOR CASHFLOW NET NET

MM$ GAS WATER GAS GAS GAS CASHFLOW CASHFLOW

Mscf Bbls x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000

2009 0 3,420 0 0 0.000 0.000 0 0 0 -3,420 1.0000 -3,420 -3,420 -3,420

2010 1 675,960 0 2,957 218 221.799 73.933 2,444 0 2,444 2,444 0.8696 2,125 -976 -1,295

2011 2 557,910 0 2,441 184 183.064 61.021 2,013 0 2,013 2,013 0.7561 1,522 1,037 227

2012 3 511,310 0 2,237 170 167.774 55.925 1,843 0 1,843 1,843 0.6575 1,212 2,880 1,439

2013 4 479,339 0 2,097 161 157.283 52.428 1,726 0 1,726 1,726 0.5718 987 4,606 2,426

2014 5 463,246 0 2,027 156 152.003 50.668 1,668 0 1,668 1,668 0.4972 829 6,274 3,255

2015 6 447,489 0 1,958 152 146.832 48.944 1,610 0 1,610 1,610 0.4323 696 7,884 3,951

2016 7 435,259 0 1,904 148 142.819 47.606 1,566 0 1,566 1,566 0.3759 589 9,450 4,540

2017 8 421,748 0 1,845 144 138.386 46.129 1,516 0 1,516 1,516 0.3269 496 10,967 5,036

2018 9 411,011 0 1,798 141 134.863 44.954 1,477 0 1,477 1,477 0.2843 420 12,444 5,456

2019 10 401,455 0 1,756 138 131.727 43.909 1,442 0 1,442 1,442 0.2472 357 13,886 5,812

2020 11 393,764 0 1,723 136 129.204 43.068 1,414 0 1,414 1,414 0.2149 304 15,301 6,116

2021 12 384,607 0 1,683 133 126.199 42.066 1,381 0 1,381 1,381 0.1869 258 16,682 6,374

2022 13 377,230 0 1,650 131 123.779 41.260 1,354 0 1,354 1,354 0.1625 220 18,036 6,594

2023 14 370,301 0 1,620 129 121.505 40.502 1,329 0 1,329 1,329 0.1413 188 19,364 6,782

2024 15 364,697 0 1,596 128 119.666 39.889 1,308 0 1,308 1,308 0.1229 161 20,673 6,943

2025 16 357,472 0 1,564 126 117.296 39.099 1,282 0 1,282 1,282 0.1069 137 21,955 7,080

2026 17 351,626 0 1,538 124 115.377 38.459 1,261 0 1,261 1,261 0.0929 117 23,215 7,197

2027 18 346,062 0 1,514 122 113.552 37.851 1,240 0 1,240 1,240 0.0808 100 24,456 7,297

2028 19 341,688 0 1,495 121 112.116 37.372 1,224 0 1,224 1,224 0.0703 86 25,680 7,383

2029 20 335,682 0 1,469 119 110.146 36.715 1,203 0 1,203 1,203 0.0611 73 26,883 7,457

2030 21 330,621 0 1,446 118 108.485 36.162 1,184 0 1,184 1,184 0.0531 63 28,067 7,520

2031 22 325,427 0 1,424 116 106.781 35.594 1,165 0 1,165 1,165 0.0462 54 29,232 7,574

2032 23 321,284 0 1,406 115 105.421 35.140 1,150 0 1,150 1,150 0.0402 46 30,382 7,620

2033 24 315,572 0 1,381 113 103.547 34.516 1,129 0 1,129 1,129 0.0349 39 31,511 7,659

2034 25 310,960 0 1,360 112 102.034 34.011 1,112 0 1,112 1,112 0.0304 34 32,623 7,693

2035 26 306,550 0 1,341 111 100.587 33.529 1,096 0 1,096 1,096 0.0264 29 33,719 7,722

2036 27 303,150 0 1,326 110 99.471 33.157 1,084 0 1,084 1,084 0.0230 25 34,803 7,747

2037 28 298,210 0 1,305 108 97.850 32.617 1,066 0 1,066 1,066 0.0200 21 35,869 7,768

2038 29 294,230 0 1,287 107 96.544 32.181 1,051 0 1,051 1,051 0.0174 18 36,920 7,786

2039 30 287,970 0 1,260 105 94.490 31.497 1,028 0 1,028 1,028 0.0151 16 37,949 7,802

2 VERTICAL PARALLEL WELLS WITH HYDRAULIC FRACTURES

OCIBFIT FIT OCIAFIT

CUMULATIVE

INVESTMENTGROSS PRODUCTION

VOLUMESREVENUEEXPENSES

AD

VALOREMSEVERANCE

Page 86: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

72

Table A. 8 Economic Analysis Spreadsheet 2 Vertical Wells with Collinear Hydraulic Fractures Planes

DISCOUNT RATE 15.00% GAS PRICE 5.00 $/Mscf Operating Cash Income Before Fed Income Tax

Working Interest 100.00% % OPERATING EXPENSES

Royality Burden 12.50% % Gas 0.29 $/Mscf

Water 10.00 $/B

INVESTMENT Fixed 21,900.00 $/YEAR

Drilling 2.96 MM$

Completion 0.1 MM$ TAXES

Stimulation 0.36 MM$ Ad Valorem Taxes 0.075

Severance Taxes 0.025

Total Investment 3.42 MM$ YEAR 2009 Federal Income Tax 0

Undiscounted Discounted

YEAR TIME NET PV NET Undiscounted Discounted

CASHFLOW FACTOR CASHFLOW NET NET

MM$ GAS WATER GAS GAS GAS CASHFLOW CASHFLOW

Mscf Bbls x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000 x $1,000

2009 0 3,420 0 0 0.000 0.000 0 0 0 -3,420 1.0000 -3,420 -3,420 -3,420

2010 1 795,109 0 3,479 252 260.895 86.965 2,878 0 2,878 2,878 0.8696 2,503 -542 -917

2011 2 631,748 0 2,764 205 207.292 69.097 2,282 0 2,282 2,282 0.7561 1,726 1,741 809

2012 3 572,692 0 2,506 188 187.915 62.638 2,067 0 2,067 2,067 0.6575 1,359 3,808 2,168

2013 4 531,131 0 2,324 176 174.277 58.092 1,915 0 1,915 1,915 0.5718 1,095 5,723 3,263

2014 5 508,817 0 2,226 169 166.956 55.652 1,834 0 1,834 1,834 0.4972 912 7,557 4,175

2015 6 488,009 0 2,135 163 160.128 53.376 1,758 0 1,758 1,758 0.4323 760 9,315 4,935

2016 7 472,139 0 2,066 159 154.921 51.640 1,700 0 1,700 1,700 0.3759 639 11,015 5,574

2017 8 456,153 0 1,996 154 149.675 49.892 1,642 0 1,642 1,642 0.3269 537 12,657 6,111

2018 9 443,420 0 1,940 150 145.497 48.499 1,595 0 1,595 1,595 0.2843 454 14,253 6,564

2019 10 431,968 0 1,890 147 141.740 47.247 1,554 0 1,554 1,554 0.2472 384 15,807 6,948

2020 11 422,095 0 1,847 144 138.500 46.167 1,518 0 1,518 1,518 0.2149 326 17,324 7,275

2021 12 410,688 0 1,797 141 134.757 44.919 1,476 0 1,476 1,476 0.1869 276 18,800 7,550

2022 13 401,389 0 1,756 138 131.706 43.902 1,442 0 1,442 1,442 0.1625 234 20,242 7,785

2023 14 392,887 0 1,719 136 128.916 42.972 1,411 0 1,411 1,411 0.1413 199 21,654 7,984

2024 15 386,051 0 1,689 134 126.673 42.224 1,386 0 1,386 1,386 0.1229 170 23,040 8,155

2025 16 377,612 0 1,652 131 123.904 41.301 1,355 0 1,355 1,355 0.1069 145 24,395 8,299

2026 17 370,613 0 1,621 129 121.607 40.536 1,330 0 1,330 1,330 0.0929 124 25,725 8,423

2027 18 363,978 0 1,592 127 119.430 39.810 1,306 0 1,306 1,306 0.0808 106 27,031 8,529

2028 19 358,632 0 1,569 126 117.676 39.225 1,286 0 1,286 1,286 0.0703 90 28,317 8,619

2029 20 351,651 0 1,538 124 115.385 38.462 1,261 0 1,261 1,261 0.0611 77 29,578 8,696

2030 21 345,958 0 1,514 122 113.517 37.839 1,240 0 1,240 1,240 0.0531 66 30,818 8,762

2031 22 340,524 0 1,490 121 111.734 37.245 1,220 0 1,220 1,220 0.0462 56 32,038 8,818

2032 23 336,196 0 1,471 119 110.314 36.771 1,204 0 1,204 1,204 0.0402 48 33,242 8,867

2033 24 330,220 0 1,445 118 108.353 36.118 1,183 0 1,183 1,183 0.0349 41 34,425 8,908

2034 25 325,280 0 1,423 116 106.733 35.577 1,165 0 1,165 1,165 0.0304 35 35,589 8,943

2035 26 320,530 0 1,402 115 105.174 35.058 1,147 0 1,147 1,147 0.0264 30 36,737 8,974

2036 27 316,780 0 1,386 114 103.943 34.648 1,134 0 1,134 1,134 0.0230 26 37,870 9,000

2037 28 311,440 0 1,363 112 102.191 34.064 1,114 0 1,114 1,114 0.0200 22 38,984 9,022

2038 29 307,100 0 1,344 111 100.767 33.589 1,098 0 1,098 1,098 0.0174 19 40,083 9,041

2039 30 300,410 0 1,314 109 98.572 32.857 1,074 0 1,074 1,074 0.0151 16 41,156 9,057

2 VERTICAL LINEAR WELLS WITH HYDRAULIC FRACTURES

OCIBFIT FIT OCIAFIT

CUMULATIVE

INVESTMENTGROSS PRODUCTION

VOLUMESREVENUEEXPENSES

AD

VALOREMSEVERANCE

Page 87: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

73

APPENDIX B

MODELING DATA FILES

B.1 Base Case

*UNLI 5808,5808,16,48,0,3,1,1,10,0,16,0,1,1,0,0

0,0,0,0,0,0,0,0,0,0

*VER

6 *COM

*TT1 16 Wells Base 640

*TT2

RUN # 1 *FLG

1,0,0,-1,1850878,1024,0,0,.01,1,1,0,0,0,0,0,0,0,0,0

*NEW

0,1,0,0,1000,0,0 *DIM

44,44,3,0,10950,2010,1,1

10000,10,-1,-.0001,.01,0,0,1,0,0,0,0 *PCR

1

30,.72,250,15,5200,20,1.0001

*PVT 1

.72,54.69698,0,62.41,15,15,0

0,0,0 15,1.10614,.87,1.33715,1.783,.01412,1.05885,.2332

385.4,1.07992,20.71,.05059,1.753,.01439,1.05762,.2332

755.7,1.07941,21.43,.02518,2.043,.01484,1.05638,.2332 1126.1,1.07923,22.14,.01648,2.437,.01544,1.05515,.2332

1496.4,1.07914,22.86,.01219,2.945,.01617,1.05392,.2332

1866.8,1.07909,23.57,.00965,3.58,.01703,1.05268,.2332

2237.1,1.07905,24.29,.00801,4.363,.018,1.05145,.2332 2607.5,1.07903,25,.00688,5.314,.01905,1.05022,.2332

2977.9,1.07901,25.71,.00607,6.456,.02016,1.04898,.2332

3348.2,1.07899,26.43,.00547,7.812,.0213,1.04775,.2332 3718.6,1.07898,27.14,.00501,9.407,.02245,1.04652,.2332

4088.9,1.07897,27.86,.00465,11.261,.02361,1.04528,.2332

4459.3,1.07896,28.57,.00436,13.395,.02475,1.04405,.2332 4829.6,1.07896,29.29,.00413,15.824,.02587,1.04282,.2332

Page 88: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

74

5200,1.07895,30,.00394,18.56,.02696,1.04158,.2332

*HON 1

0,0,0,0,0,0,0,0,0,0,0,0,0,0

*HIR

1 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

*SAT

1 1,10,10,0

.26,0,.001,0,0,0

.34,.0001,.000889,0,0,0

.42,.0022,.000778,0,0,0

.5,.0111,.000667,0,0,0

.58,.035,.000556,0,0,0

.66,.0854,.000444,0,0,0

.74,.177,.000333,0,0,0

.82,.328,.000222,0,0,0

.9,.5595,.000111,0,0,0

.98,.8962,0,0,0,0

.26,1,0,0,0,0

.34,.7862,.000111,0,0,0

.42,.5856,.000222,0,0,0

.5,.4085,.000333,0,0,0

.58,.2619,.000444,0,0,0

.66,.1494,.000556,0,0,0

.74,.0715,.000667,0,0,0

.82,.0253,.000778,0,0,0

.9,.0046,.000889,0,0,0

.98,0,.001,0,0,0

*END

*SIZ

44,44,3 *OUT

5808*1

*KEY 5808*1

*GRD 0,0

0,0

0,0

0,0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Page 89: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

75

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

*DXC

5808*120

*DYC

5808*120

*DZC

5808*50

*TIC

5808*7200

*POR

5808*0.08

*KXH

5808*0.01

*KYH 5808*0.01

*KZH 5808*0.001

*CRK

5808*0.000003

*END

*PIC

5808*5000

*DPI

5808*7200

*DGO 5808*7500

*DWO 5808*7500

Page 90: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

76

*PSC

5808*5000

*END

*TIM

1 0,1,.1,32,.2,2000,31,-1,1095,300,.05,10000,-1,-1,.05,.005,.005

*LOC

48 0,1,"GAS001",6,6,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,1,"GAS001",6,6,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,1,"GAS001",6,6,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,2,"GAS002",6,17,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,2,"GAS002",6,17,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,2,"GAS002",6,17,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,3,"GAS003",6,28,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,3,"GAS003",6,28,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,3,"GAS003",6,28,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,4,"GAS004",6,39,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,4,"GAS004",6,39,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,4,"GAS004",6,39,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,5,"GAS005",17,6,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,5,"GAS005",17,6,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,5,"GAS005",17,6,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,6,"GAS006",17,17,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,6,"GAS006",17,17,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,6,"GAS006",17,17,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,7,"GAS007",17,28,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,7,"GAS007",17,28,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,7,"GAS007",17,28,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,8,"GAS008",17,39,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,8,"GAS008",17,39,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,8,"GAS008",17,39,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,9,"GAS009",28,6,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,9,"GAS009",28,6,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,9,"GAS009",28,6,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,10,"GAS010",28,17,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,10,"GAS010",28,17,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,10,"GAS010",28,17,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,11,"GAS011",28,28,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,11,"GAS011",28,28,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,11,"GAS011",28,28,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,12,"GAS012",28,39,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,12,"GAS012",28,39,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,12,"GAS012",28,39,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,13,"GAS013",39,6,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,13,"GAS013",39,6,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,13,"GAS013",39,6,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

Page 91: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

77

0,14,"GAS014",39,17,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,14,"GAS014",39,17,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,14,"GAS014",39,17,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,15,"GAS015",39,28,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,15,"GAS015",39,28,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,15,"GAS015",39,28,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,16,"GAS016",39,39,1,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,16,"GAS016",39,39,2,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,16,"GAS016",39,39,3,0,0,0,-1,"Z",1,0,1,0,0,0,0,0,0,0 *WEL

16

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1 0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,5,1 0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,6,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,7,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,8,1 0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,9,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,10,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,11,1 0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,12,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,13,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,14,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,15,1 0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,16,1

*SRT

65 1 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 19 20 21

22 23 24 18 25 26 27 28 29 30 31 32 16 17 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 15 14 13 12 11 10 9 8 7 6 5

4 3 2 34 33 *END

Page 92: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

78

B.2 Vertical Wells with Hydraulic Fractures (9 wells)

*UNLI

28755,28755,9,27,0,3,1,1,10,0,9,0,1,1,0,0

0,0,0,0,0,0,0,0,0,0 *VER

6

*COM

*TT1

9 HF Wells 500 Base 640

*TT2 RUN # 1

*FLG

1,0,0,-1,1850878,1024,0,0,.01,1,1,0,0,0,0,0,0,0,0,0 *NEW

0,1,0,0,7200,0,0

*DIM

63,63,3,0,10950,2010,1,1 10000,10,-1,-.0001,.01,0,0,2,0,0,0,0

*PCR

1 30,.72,250,15,5200,20,1.0001

*PVT

1 .72,54.69698,0,62.41,15,15,0

0,0,0

15,1.10614,.87,1.33715,1.783,.01412,1.05885,.2332

385.4,1.07992,20.71,.05059,1.753,.01439,1.05762,.2332 755.7,1.07941,21.43,.02518,2.043,.01484,1.05638,.2332

1126.1,1.07923,22.14,.01648,2.437,.01544,1.05515,.2332

1496.4,1.07914,22.86,.01219,2.945,.01617,1.05392,.2332 1866.8,1.07909,23.57,.00965,3.58,.01703,1.05268,.2332

2237.1,1.07905,24.29,.00801,4.363,.018,1.05145,.2332

2607.5,1.07903,25,.00688,5.314,.01905,1.05022,.2332 2977.9,1.07901,25.71,.00607,6.456,.02016,1.04898,.2332

3348.2,1.07899,26.43,.00547,7.812,.0213,1.04775,.2332

3718.6,1.07898,27.14,.00501,9.407,.02245,1.04652,.2332

4088.9,1.07897,27.86,.00465,11.261,.02361,1.04528,.2332 4459.3,1.07896,28.57,.00436,13.395,.02475,1.04405,.2332

4829.6,1.07896,29.29,.00413,15.824,.02587,1.04282,.2332

5200,1.07895,30,.00394,18.56,.02696,1.04158,.2332 *HON

1

0,0,0,0,0,0,0,0,0,0,0,0,0,0

*HIR 1

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Page 93: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

79

*SAT

1 1,10,10,0

.26,0,.001,0,0,0

.34,.0001,.000889,0,0,0

.42,.0022,.000778,0,0,0

.5,.0111,.000667,0,0,0

.58,.035,.000556,0,0,0

.66,.0854,.000444,0,0,0

.74,.177,.000333,0,0,0

.82,.328,.000222,0,0,0

.9,.5595,.000111,0,0,0

.98,.8962,0,0,0,0

.26,1,0,0,0,0

.34,.7862,.000111,0,0,0

.42,.5856,.000222,0,0,0

.5,.4085,.000333,0,0,0

.58,.2619,.000444,0,0,0

.66,.1494,.000556,0,0,0

.74,.0715,.000667,0,0,0

.82,.0253,.000778,0,0,0

.9,.0046,.000889,0,0,0

.98,0,.001,0,0,0

*END

*SIZ

63,63,3 *LGR

634*0,13*70701,9*0,13*70701,7*0,13*70701,1331*0,13*70701,9*0,13*70701

7*0,13*70701,1205*0,13*70701,9*0,13*70701,7*0,13*70701,1268*0,13*70701 9*0,13*70701,7*0,13*70701,1331*0,13*70701,9*0,13*70701,7*0,13*70701

1205*0,13*70701,9*0,13*70701,7*0,13*70701,1268*0,13*70701,9*0,13*70701

7*0,13*70701,1331*0,13*70701,9*0,13*70701,7*0,13*70701,1205*0,13*70701

9*0,13*70701,7*0,13*70701,634*0 *OUT

28755*1

*KEY 28755*1

*GRD 0,0

0,0

0,0

0,0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Page 94: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

80

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

*F2G 9,0,0,0

"001 GAS001",0,0,0,1,3,500,.02,100,0,0,7,7,2,"X","",1

"002 GAS002",0,0,0,1,3,500,.02,100,0,0,7,7,2,"X","",1 "003 GAS003",0,0,0,1,3,500,.02,100,0,0,7,7,2,"X","",1

"004 GAS004",0,0,0,1,3,500,.02,100,0,0,7,7,2,"X","",1

"005 GAS005",0,0,0,1,3,500,.02,100,0,0,7,7,2,"X","",1

"006 GAS006",0,0,0,1,3,500,.02,100,0,0,7,7,2,"X","",1 "007 GAS007",0,0,0,1,3,500,.02,100,0,0,7,7,2,"X","",1

"008 GAS008",0,0,0,1,3,500,.02,100,0,0,7,7,2,"X","",1

"009 GAS009",0,0,0,1,3,500,.02,100,0,0,7,7,2,"X","",1

*DXC

634*83.80952,637*11.97279,9*83.80952,637*11.97279,7*83.80952,637*11.97279,1331*83.80952

637*11.97279,9*83.80952,637*11.97279,7*83.80952,637*11.97279,1205*83.80952,637*11.972

79

9*83.80952,637*11.97279,7*83.80952,637*11.97279,1268*83.80952,637*11.97279,9*83.80952 637*11.97279,7*83.80952,637*11.97279,1331*83.80952,637*11.97279,9*83.80952,637*11.972

79

7*83.80952,637*11.97279,1205*83.80952,637*11.97279,9*83.80952,637*11.97279,7*83.80952 637*11.97279,1268*83.80952,637*11.97279,9*83.80952,637*11.97279,7*83.80952,637*11.972

79

1331*83.80952,637*11.97279,9*83.80952,637*11.97279,7*83.80952,637*11.97279,1205*83.80

952 637*11.97279,9*83.80952,637*11.97279,7*83.80952,637*11.97279,634*83.80952

*DYC 634*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

9*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

7*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492 7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

Page 95: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

81

1331*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492 7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

9*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492 7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

7*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492 1205*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492 9*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

7*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492 7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

1268*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492 7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

9*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

7*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492 1331*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

9*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

7*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492 7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

Page 96: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

82

1205*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492 7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

9*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492 7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

7*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492 1268*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492 9*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

7*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492 7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

1331*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492 7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

9*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

7*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492 1205*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

9*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492

7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2 42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

7*83.80952,21*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492 7*2,42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2

42*13.63492,7*2,42*13.63492,7*2,42*13.63492,7*2,21*13.63492

Page 97: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

83

634*83.80952

*DZC

28755*50

*TIC 28755*7200

*POR 28755*0.08

*KXH 28755*0.01

*KYH

28755*0.01

*KZH

28755*0.001

*CRK

28755*0.000003

*US1 Frac KfWf

658*0,4*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100 42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,3*100,58*0,4*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0 7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,3*100,56*0,4*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0 7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

3*100,1380*0,4*100,42*0,7*100,42*0,7*100 42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,3*100,58*0 4*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,3*100,56*0,4*100,42*0 7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100 42*0,3*100,1254*0,4*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100

Page 98: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

84

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,3*100 58*0,4*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,3*100,56*0,4*100 42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0 7*100,42*0,3*100,1317*0,4*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100 42*0,7*100,42*0,7*100,42*0,7*100,42*0

3*100,58*0,4*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100 42*0,7*100,42*0,7*100,42*0,3*100,56*0

4*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0 7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,3*100,1380*0,4*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100 42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,3*100,58*0,4*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100 42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,3*100

56*0,4*100,42*0,7*100,42*0,7*100,42*0 7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,3*100,1254*0,4*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0 7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,3*100,58*0,4*100,42*0,7*100 42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0 3*100,56*0,4*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,3*100,1317*0 4*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100 42*0,7*100,42*0,3*100,58*0,4*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100

Page 99: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

85

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100 42*0,3*100,56*0,4*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,3*100 1380*0,4*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0 7*100,42*0,7*100,42*0,3*100,58*0,4*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100 42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,3*100,56*0,4*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100 42*0,7*100,42*0,7*100,42*0,7*100,42*0

3*100,1254*0,4*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,7*100,42*0 7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,7*100,42*0,3*100,58*0

4*100,42*0,7*100,42*0,7*100,42*0,7*100 42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,7*100,42*0,3*100,56*0,4*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100 42*0,7*100,42*0,7*100,42*0,7*100,42*0

7*100,42*0,7*100,42*0,7*100,42*0,7*100

42*0,3*100,659*0

*END

*PIC 28755*5000

*DPI 28755*7200

*DGO 28755*7500

*DWO

28755*7500

*PSC

28755*5000

*END

Page 100: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

86

*TIM

1 0,1,.1,32,.2,2000,31,-1,1095,300,.05,10000,-1,-1,.05,.005,.005

*LOC

27

0,1,"GAS001",11,11,1,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,1,"GAS001",11,11,2,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,1,"GAS001",11,11,3,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,2,"GAS002",11,33,1,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,2,"GAS002",11,33,2,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,2,"GAS002",11,33,3,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,4,"GAS004",33,11,1,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,4,"GAS004",33,11,2,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,4,"GAS004",33,11,3,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,5,"GAS005",33,33,1,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,5,"GAS005",33,33,2,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,5,"GAS005",33,33,3,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,6,"GAS006",33,53,1,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,6,"GAS006",33,53,2,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,6,"GAS006",33,53,3,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,3,"GAS003",11,53,1,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,3,"GAS003",11,53,2,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,3,"GAS003",11,53,3,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,7,"GAS007",53,11,1,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,7,"GAS007",53,11,2,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,7,"GAS007",53,11,3,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,8,"GAS008",53,33,1,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,8,"GAS008",53,33,2,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,8,"GAS008",53,33,3,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0 0,9,"GAS009",53,53,1,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,9,"GAS009",53,53,2,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

0,9,"GAS009",53,53,3,4,4,1,-1,"Z",1,0,1,0,0,0,0,0,0,0

*WEL 9

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,0,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,1 0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,0,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,0,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,0,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,5,1 0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,0,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,6,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,0,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,7,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,0,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,8,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,0,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,9,1 *TGD

18

0,5,5,11,1,4,4,1,17,11,3,3,4,1,50 0,7,5,11,1,4,4,1,17,11,2,3,4,1,.51

0,5,5,33,1,4,4,1,17,33,3,3,4,1,50

Page 101: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

87

0,7,5,33,1,4,4,1,17,33,2,3,4,1,.51

0,5,5,53,1,4,4,1,17,53,3,3,4,1,50 0,7,5,53,1,4,4,1,17,53,2,3,4,1,.51

0,5,27,11,1,4,4,1,39,11,3,3,4,1,50

0,7,27,11,1,4,4,1,39,11,2,3,4,1,.51

0,5,27,33,1,4,4,1,39,33,3,3,4,1,50 0,7,27,33,1,4,4,1,39,33,2,3,4,1,.51

0,5,27,53,1,4,4,1,39,53,3,3,4,1,50

0,7,27,53,1,4,4,1,39,53,2,3,4,1,.51 0,5,47,11,1,4,4,1,59,11,3,3,4,1,50

0,7,47,11,1,4,4,1,59,11,2,3,4,1,.51

0,5,47,33,1,4,4,1,59,33,3,3,4,1,50 0,7,47,33,1,4,4,1,59,33,2,3,4,1,.51

0,5,47,53,1,4,4,1,59,53,3,3,4,1,50

0,7,47,53,1,4,4,1,59,53,2,3,4,1,.51

*TGC 18

"[001 GAS001] "

"[001 GAS001] " "[002 GAS002] "

"[002 GAS002] "

"[003 GAS003] " "[003 GAS003] "

"[004 GAS004] "

"[004 GAS004] "

"[005 GAS005] " "[005 GAS005] "

"[006 GAS006] "

"[006 GAS006] " "[007 GAS007] "

"[007 GAS007] "

"[008 GAS008] "

"[008 GAS008] " "[009 GAS009] "

"[009 GAS009] "

*SRT 55

1 36 37 35 34 33 32 31 30 29 12 13 14 15 16 17 11 9 10 20

21 22 23 24 25 26 27 2 8 7 6 5 4 3 18 19 28 47 39 40 41 42 43 44 45 46 38 48 49 50 51 52 53 54 55

*END

Page 102: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

88

B.3 Horizontal Wells with Transverse Hydraulic Fractures (2 wells)

*UNLI

41346,41346,2,42,0,3,1,1,10,0,2,0,1,1,0,0

0,0,0,0,0,0,0,0,0,0 *VER

6

*COM

*TT1

2 H Wells 1680

*TT2 RUN # 1

*FLG

1,0,0,-1,1850878,1024,0,0,.01,1,1,0,0,0,0,0,0,0,0,0 *NEW

0,0,0,0,7200,0,0

*DIM

66,67,3,0,10950,2010,1,1 10000,10,-1,-.0001,.01,0,0,2,0,0,0,0

*PCR

1 30,.72,250,15,5200,20,1.0001

*PVT

1 .72,54.69698,0,62.41,15,15,0

0,0,0

15,1.10614,.87,1.33715,1.783,.01412,1.05885,.2332

385.4,1.07992,20.71,.05059,1.753,.01439,1.05762,.2332 755.7,1.07941,21.43,.02518,2.043,.01484,1.05638,.2332

1126.1,1.07923,22.14,.01648,2.437,.01544,1.05515,.2332

1496.4,1.07914,22.86,.01219,2.945,.01617,1.05392,.2332 1866.8,1.07909,23.57,.00965,3.58,.01703,1.05268,.2332

2237.1,1.07905,24.29,.00801,4.363,.018,1.05145,.2332

2607.5,1.07903,25,.00688,5.314,.01905,1.05022,.2332 2977.9,1.07901,25.71,.00607,6.456,.02016,1.04898,.2332

3348.2,1.07899,26.43,.00547,7.812,.0213,1.04775,.2332

3718.6,1.07898,27.14,.00501,9.407,.02245,1.04652,.2332

4088.9,1.07897,27.86,.00465,11.261,.02361,1.04528,.2332 4459.3,1.07896,28.57,.00436,13.395,.02475,1.04405,.2332

4829.6,1.07896,29.29,.00413,15.824,.02587,1.04282,.2332

5200,1.07895,30,.00394,18.56,.02696,1.04158,.2332 *HON

1

0,0,0,0,0,0,0,0,0,0,0,0,0,0

*HIR 1

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Page 103: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

89

*SAT

1 1,10,10,0

.26,0,.001,0,0,0

.34,.0001,.000889,0,0,0

.42,.0022,.000778,0,0,0

.5,.0111,.000667,0,0,0

.58,.035,.000556,0,0,0

.66,.0854,.000444,0,0,0

.74,.177,.000333,0,0,0

.82,.328,.000222,0,0,0

.9,.5595,.000111,0,0,0

.98,.8962,0,0,0,0

.26,1,0,0,0,0

.34,.7862,.000111,0,0,0

.42,.5856,.000222,0,0,0

.5,.4085,.000333,0,0,0

.58,.2619,.000444,0,0,0

.66,.1494,.000556,0,0,0

.74,.0715,.000667,0,0,0

.82,.0253,.000778,0,0,0

.9,.0046,.000889,0,0,0

.98,0,.001,0,0,0

*END

*SIZ

66,67,3 *LGR

1790*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101

7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101

16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101

7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101

7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101

7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101

7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101

7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101

7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101

7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101

7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101

16*0, 111101 7*0, 111101 7*0, 111101 3580*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101

7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101

16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101

7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101

Page 104: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

90

16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101

7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101

16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101

7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101

7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101

7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101

7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101

7*0, 111101 3580*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101

7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101

7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101

7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101

16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101

7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101

16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101

7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101

16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101

7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101

16*0, 111101 7*0, 111101 7*0, 111101 16*0, 111101 7*0, 111101

7*0, 111101 16*0, 111101 7*0, 111101 7*0, 111101 1790*0 *OUT

41346*1

*KEY 41346*1

*GRD

0,0 0,0

0,0

0,0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Page 105: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

91

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 *F2G

6,1,0,0

"001 GAS01",0,9,34,1,3,500,.02,100,0,0,11,11,1,"Y","",1

"001 GAS01",0,17,34,1,3,500,.02,100,0,0,11,11,1,"Y","",1 "001 GAS01",0,25,34,1,3,500,.02,100,0,0,11,11,1,"Y","",1

"002 GAS02",0,42,34,1,3,500,.02,100,0,0,11,11,1,"Y","",1

"002 GAS02",0,50,34,1,3,500,.02,100,0,0,11,11,1,"Y","",1 "002 GAS02",0,58,34,1,3,500,.02,100,0,0,11,11,1,"Y","",1

*DXC

1790*80,5*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9

1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9

1,10*7.9,1,10*7.9,1,5*7.9,7*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9

1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,16*80,5*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9

1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9

1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,16*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,16*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,16*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,16*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,16*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 16*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

Page 106: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

92

10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,16*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,16*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,16*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,16*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,5*7.9,16*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,5*7.9,16*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 16*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,16*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,16*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

Page 107: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

93

10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,16*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,16*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,16*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,16*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 16*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,16*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,16*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,16*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,16*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

Page 108: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

94

10*7.9,1,5*7.9,3580*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,16*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 16*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,16*80,5*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,16*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,16*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,16*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,16*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,16*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 16*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

Page 109: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

95

10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,16*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,16*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,16*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,16*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,5*7.9,16*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,5*7.9,16*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 16*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,16*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,16*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

Page 110: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

96

10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,16*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,16*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,16*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,16*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 16*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,16*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,16*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,3580*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,16*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

Page 111: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

97

10*7.9,1,5*7.9,16*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,16*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 16*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,16*80,5*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,16*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,16*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,16*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,16*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,16*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 16*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

Page 112: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

98

10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,16*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,16*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,16*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,16*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,5*7.9,16*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,5*7.9,16*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 16*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,16*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,16*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

Page 113: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

99

10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,16*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,7*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

5*7.9,16*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 7*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,5*7.9,16*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80

5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,7*80,5*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,5*7.9,16*80,5*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 5*7.9,7*80,5*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,5*7.9,7*80,5*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1 10*7.9,1,10*7.9,1,10*7.9,1,5*7.9 16*80,5*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,5*7.9,7*80,5*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,5*7.9,7*80 5*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,10*7.9,1,10*7.9,1,10*7.9,1

10*7.9,1,10*7.9,1,10*7.9,1,10*7.9 1,5*7.9,1790*80

*DYC 1790*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.8059

7

121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179

7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597 121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179

7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597

121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179 16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597

121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179

7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597 121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179

7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597

121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179

16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597 121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179

7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597

121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179 7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597

121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179

Page 114: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

100

16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597

121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179 7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597

121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179

7*78.80597,121*7.164179,3580*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597

121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179 16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597

121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179

7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597 121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179

7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597

121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179 16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597

121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179

7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597

121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179 7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597

121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179

16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597 121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179

7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597

121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179 7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597

121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179

16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597

121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179 7*78.80597,121*7.164179,7*78.80597,121*7.164179,3580*78.80597,121*7.164179,7*78.80597

121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179

7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597 121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179

16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597

121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179

7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597 121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179

7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597

121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179 16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597

121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179

7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597 121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179

7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597

121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179

16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597 121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179

7*78.80597,121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597

121*7.164179,7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179 7*78.80597,121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597

121*7.164179,16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179

Page 115: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

101

16*78.80597,121*7.164179,7*78.80597,121*7.164179,7*78.80597,121*7.164179,1790*78.8059

7

*DZC

41346*50

*TIC

41346*7200

*POR

41346*0.08

*KXH

41346*0.01

*KYH 41346*0.01

*KZH 41346*0.001

*CRK 41346*0.000003

*US1 Frac KfWf

1806*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,28*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,28*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,37*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,28*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,28*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,26*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,26*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,17*0

Page 116: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

102

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 26*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,17*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,17*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,26*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,17*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,17*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,26*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 17*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,17*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,26*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,17*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,26*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,17*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

17*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,26*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,26*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,17*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 26*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

Page 117: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

103

100,17*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,17*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,26*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,17*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,26*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 17*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,17*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,26*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,17*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,17*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,26*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,17*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

17*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,26*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,26*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,17*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

26*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,17*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,17*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

Page 118: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

104

100,10*0,100,26*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,17*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,26*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 17*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,17*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,26*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,17*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,26*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,17*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

17*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,26*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,26*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,39*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,39*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,48*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,39*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,39*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

3623*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,28*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,28*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,37*0,100,10*0

Page 119: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

105

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,28*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,28*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,26*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,26*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,17*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

26*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,17*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,17*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,26*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,17*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,26*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 17*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,17*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,26*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,17*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,17*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,26*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,17*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

17*0,100,10*0,100,10*0,100,10*0

Page 120: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

106

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,26*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,17*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,26*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,17*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,17*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

26*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,17*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,26*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,17*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,26*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 17*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,17*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,26*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,17*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,26*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,17*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 17*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,26*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0

Page 121: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

107

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,17*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,26*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,17*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

26*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,17*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,26*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,17*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,26*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 17*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,17*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,26*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,17*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,26*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,17*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 17*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,26*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,17*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,17*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,26*0,100,10*0

Page 122: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

108

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,39*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,39*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,48*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,39*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,39*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

3623*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,28*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,28*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,37*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,28*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,28*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,26*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,17*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,26*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,17*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,17*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

26*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,17*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,26*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,17*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,26*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

Page 123: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

109

100,10*0,100,10*0,100,10*0,100 17*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,17*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,26*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,17*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,26*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,17*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

17*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,26*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,17*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,17*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,26*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,17*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

26*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,17*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,26*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,17*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,26*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 17*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,17*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

Page 124: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

110

100,10*0,100,10*0,100,10*0,100 10*0,100,26*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,17*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,26*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,17*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

17*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,26*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,26*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,17*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,17*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 26*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,17*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,26*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,17*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,17*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,26*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 17*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,17*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,26*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

Page 125: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

111

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,17*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,26*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,17*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

17*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0 100,26*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,17*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,17*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,26*0,100,10*0 100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,39*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0 100,10*0,100,10*0,100,39*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,48*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 10*0,100,10*0,100,10*0,100,39*0 100,10*0,100,10*0,100,10*0,100

10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,39*0,100,10*0,100 10*0,100,10*0,100,10*0,100,10*0

100,10*0,100,10*0,100,10*0,100 1817*0

*END

*PIC

41346*5000

*DPI 41346*7200

*DGO 41346*7500

*DWO 41346*7500

*PSC

41346*5000

*END

*TIM 1

0,1,.1,32,.2,2000,31,-1,1095,300,.05,10000,-1,-1,.05,.005,.005

Page 126: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

112

*LOC

42 0,1,"GAS01",27,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",26,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",25,34,2,6,6,1,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",24,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0 0,1,"GAS01",23,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",22,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",21,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0 0,1,"GAS01",20,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",19,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",18,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0 0,1,"GAS01",17,34,2,6,6,1,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",16,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",15,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",14,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0 0,1,"GAS01",13,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",12,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",11,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0 0,1,"GAS01",10,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",9,34,2,6,6,1,-1,"X",1,0,1,0,0,0,0,0,0,0

0,1,"GAS01",8,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0 0,1,"GAS01",7,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",40,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",41,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",42,34,2,6,6,1,-1,"X",1,0,1,0,0,0,0,0,0,0 0,2,"GAS02",43,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",44,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",45,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0 0,2,"GAS02",46,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",47,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",48,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",49,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0 0,2,"GAS02",50,34,2,6,6,1,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",51,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",52,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0 0,2,"GAS02",53,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",54,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",55,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0 0,2,"GAS02",56,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",57,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",58,34,2,6,6,1,-1,"X",1,0,1,0,0,0,0,0,0,0

0,2,"GAS02",59,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0 0,2,"GAS02",60,34,2,0,0,0,-1,"X",1,0,1,0,0,0,0,0,0,0

*WEL

2 0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1

0,1,.01,.3,-1,0,0,0,0,0,0,0,0,0,0,50,0,1000,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,1

Page 127: Production Optimization of a Tight Sandstone Gas Reservoir

Texas Tech University, Cyrille Defeu, December 2010

113

*TGD

12 0,6,9,28,1,6,2,1,9,40,3,6,9,1,100

0,7,9,28,1,6,2,1,9,40,2,6,9,1,1.01

0,6,17,28,1,6,2,1,17,40,3,6,9,1,100

0,7,17,28,1,6,2,1,17,40,2,6,9,1,1.01 0,6,25,28,1,6,2,1,25,40,3,6,9,1,100

0,7,25,28,1,6,2,1,25,40,2,6,9,1,1.01

0,6,42,28,1,6,2,1,42,40,3,6,9,1,100 0,7,42,28,1,6,2,1,42,40,2,6,9,1,1.01

0,6,50,28,1,6,2,1,50,40,3,6,9,1,100

0,7,50,28,1,6,2,1,50,40,2,6,9,1,1.01 0,6,58,28,1,6,2,1,58,40,3,6,9,1,100

0,7,58,28,1,6,2,1,58,40,2,6,9,1,1.01

*TGC

12 "[001 GAS01] "

"[001 GAS01] "

"[001 GAS01] " "[001 GAS01] "

"[001 GAS01] "

"[001 GAS01] " "[002 GAS02] "

"[002 GAS02] "

"[002 GAS02] "

"[002 GAS02] " "[002 GAS02] "

"[002 GAS02] "

*SRT 57

1 45 44 5 4 7 2 9 10 3 6 8 13 14 11 16 17 18 19 20

21 12 15 24 25 26 27 28 22 30 31 32 33 34 35 36 37 38 39 40

41 42 43 23 29 52 47 48 49 50 51 46 53 54 55 56 57 *END