90
This list was updated: 2017-05-05 Product number (Link to product page) Product name Reference(s) (with link) AS08 300 1 | PEB (4x) | protein extraction buffer Brouwer et al. (2011) TheImpact ofLightIntensity onShade- InducedLeaf Senescence. Plant Cell Environ. Dec. 15 (ahead of print). Kosawang et al. (2011) Hydrogen yield from a hydrogenase in Frankia R43 at different levels of the carbon source propionate. Journal of Environmental Management, Jan 26 AS12 2119 14-3-3 GRF | General regulatory element Barkla et al. (2016). Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt- responsive proteins. BMC Plant Biol. 2016 May 10;16(1):110. doi: 10.1186/s12870-016-0797-1. AS04 051 2 | Photosynthesis Tool Kit - quantitation MacKenzie et al (2005). Large reallocations of carbon, nitrogen and photosynthetic reductant among phycobilisomes, photosystems and Rubisco during light acclimation in Synechococcus elongatus are constrained in cells under low environmental inorganic carbon. Arch of Microbiol. 183: 190 - 202. Bouchard et al. (2006) UVB effects on the photosystem II-D1 protein of phytoplankton and natural phytoplankton communities. Photochem and Photobiol 82: 936-951. Morash et al. (2007) Macromolecular dynamics of the photosynthetic system over a seasonal developmental progression in Spartina alterniflora. Can J. of Bot. 85: 476-483(8) AS09 409 2 | Rubisco quantitation kit Mota et al. (2015). Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles. J Proteomics. 2015 Apr 29;120:75-94. doi: 10.1016/j.jprot.2015.03.004. Thamatrakoln et al. (2013). Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20123-8. doi: 10.1073/pnas.1304727110. Supplemental material describes western blot quantification method. AS01 011 2 | Set of 10 plant anti-Lhca and anti-Lhcb antibodies Yoshida et al. (2016). Hisabori T1.Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):E3967-76. doi: 10.1073/pnas.1604101113. Epub 2016 Jun 22. Pavlovič et al. (2016). A carnivorous sundew plant prefers protein over chitin as a source of nitrogen from its traps. Plant Physiol Biochem. 2016 Mar 5;104:11-16. doi: 10.1016/j.plaphy.2016.03.008 Xu et al. (2011). Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J. Ex. Bot. Dec 5 (ahead of print). Kang et al. (2010). Evaluation of light-harvesting complex proteins as senescence-related protein markers in detached rice leaves. Photosynthetica 47, 4:638-640. AS01 011 CHLAMYDOMONAS 2 | Set of 4 Chlamydomonas anti- Lhc antibodies Lhcb5 and Lhcbm5 - Takahashi et al. (2006). Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. PNAS 103:477-482

Product number Product name Reference(s) €€€€€€€€(with ... · Olsson MG et al. (2013). The radical-binding lipocalin A1M binds to a Complex I subunit and protects

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • This list was updated: 2017-05-05

    Product number (Link to product page)

    Product name Reference(s) (with link)

    AS08 3001 | PEB (4x) | protein extraction

    bufferBrouwer et al. (2011) TheImpact ofLightIntensity onShade-

    InducedLeaf Senescence. Plant Cell Environ. Dec. 15 (ahead of print).

    Kosawang et al. (2011) Hydrogen yield from a hydrogenase in

    Frankia R43 at different levels of the carbon source propionate.

    Journal of Environmental Management, Jan 26

    AS12 211914-3-3 GRF | General regulatory

    element

    Barkla et al. (2016). Single-cell-type quantitative proteomic and

    ionomic analysis of epidermal bladder cells from the halophyte

    model plant Mesembryanthemum crystallinum to identify salt-

    responsive proteins. BMC Plant Biol. 2016 May 10;16(1):110. doi:

    10.1186/s12870-016-0797-1.

    AS04 0512 | Photosynthesis Tool Kit -

    quantitation

    MacKenzie et al (2005). Large reallocations of carbon, nitrogen and

    photosynthetic reductant among phycobilisomes, photosystems and

    Rubisco during light acclimation in Synechococcus elongatus are

    constrained in cells under low environmental inorganic carbon. Arch

    of Microbiol. 183: 190 - 202.

    Bouchard et al. (2006) UVB effects on the photosystem II-D1 protein

    of phytoplankton and natural phytoplankton communities.

    Photochem and Photobiol 82: 936-951.

    Morash et al. (2007) Macromolecular dynamics of the

    photosynthetic system over a seasonal developmental progression

    in Spartina alterniflora. Can J. of Bot. 85: 476-483(8)

    AS09 409 2 | Rubisco quantitation kit

    Mota et al. (2015). Effects of heavy metals on Cyanothece sp. CCY

    0110 growth, extracellular polymeric substances (EPS) production,

    ultrastructure and protein profiles. J Proteomics. 2015 Apr

    29;120:75-94. doi: 10.1016/j.jprot.2015.03.004.

    Thamatrakoln et al. (2013). Death-specific protein in a marine

    diatom regulates photosynthetic responses to iron and light

    availability. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20123-8.

    doi: 10.1073/pnas.1304727110. Supplemental material describes

    western blot quantification method.

    AS01 0112 | Set of 10 plant anti-Lhca and

    anti-Lhcb antibodies

    Yoshida et al. (2016). Hisabori T1.Two distinct redox cascades

    cooperatively regulate chloroplast functions and sustain plant

    viability. Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):E3967-76. doi:

    10.1073/pnas.1604101113. Epub 2016 Jun 22.

    Pavlovič et al. (2016). A carnivorous sundew plant prefers protein

    over chitin as a source of nitrogen from its traps. Plant Physiol

    Biochem. 2016 Mar 5;104:11-16. doi: 10.1016/j.plaphy.2016.03.008

    Xu et al. (2011). Light-harvesting chlorophyll a/b-binding proteins

    are required for stomatal response to abscisic acid in Arabidopsis. J.

    Ex. Bot. Dec 5 (ahead of print).

    Kang et al. (2010). Evaluation of light-harvesting complex proteins as

    senescence-related protein markers in detached rice leaves.

    Photosynthetica 47, 4:638-640.

    AS01 011

    CHLAMYDOMONAS

    2 | Set of 4 Chlamydomonas anti-

    Lhc antibodiesLhcb5 and Lhcbm5 -

    Takahashi et al. (2006). Identification of the mobile light-harvesting

    complex II polypeptides for state transitions in Chlamydomonas

    reinhardtii. PNAS 103:477-482

    http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS08 300http://www.ncbi.nlm.nih.gov/pubmed/22171633http://www.ncbi.nlm.nih.gov/pubmed/22171633https://www.ncbi.nlm.nih.gov/pubmed/21276650https://www.ncbi.nlm.nih.gov/pubmed/21276650https://www.ncbi.nlm.nih.gov/pubmed/21276650http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS12 2119https://www.ncbi.nlm.nih.gov/pubmed/27160145https://www.ncbi.nlm.nih.gov/pubmed/27160145https://www.ncbi.nlm.nih.gov/pubmed/27160145https://www.ncbi.nlm.nih.gov/pubmed/27160145https://www.ncbi.nlm.nih.gov/pubmed/27160145http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS04 051http://www.ncbi.nlm.nih.gov/pubmed/15726330http://www.ncbi.nlm.nih.gov/pubmed/15726330http://www.ncbi.nlm.nih.gov/pubmed/15726330http://www.ncbi.nlm.nih.gov/pubmed/15726330http://www.ncbi.nlm.nih.gov/pubmed/15726330http://www.ncbi.nlm.nih.gov/pubmed/16620154http://www.ncbi.nlm.nih.gov/pubmed/16620154http://www.ncbi.nlm.nih.gov/pubmed/16620154http://www.ingentaconnect.com/content/nrc/cjb/2007/00000085/00000005/art00004;jsessionid=157o7g6spcp9c.alexandrahttp://www.ingentaconnect.com/content/nrc/cjb/2007/00000085/00000005/art00004;jsessionid=157o7g6spcp9c.alexandrahttp://www.ingentaconnect.com/content/nrc/cjb/2007/00000085/00000005/art00004;jsessionid=157o7g6spcp9c.alexandrahttp://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 409http://www.ncbi.nlm.nih.gov/pubmed/25779463http://www.ncbi.nlm.nih.gov/pubmed/25779463http://www.ncbi.nlm.nih.gov/pubmed/25779463http://www.ncbi.nlm.nih.gov/pubmed/25779463http://www.ncbi.nlm.nih.gov/pubmed/24277817http://www.ncbi.nlm.nih.gov/pubmed/24277817http://www.ncbi.nlm.nih.gov/pubmed/24277817http://www.ncbi.nlm.nih.gov/pubmed/24277817http://www.ncbi.nlm.nih.gov/pubmed/24277817http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS01 011https://www.ncbi.nlm.nih.gov/pubmed/27335455https://www.ncbi.nlm.nih.gov/pubmed/27335455https://www.ncbi.nlm.nih.gov/pubmed/27335455https://www.ncbi.nlm.nih.gov/pubmed/27335455http://www.ncbi.nlm.nih.gov/pubmed/26998942http://www.ncbi.nlm.nih.gov/pubmed/26998942http://www.ncbi.nlm.nih.gov/pubmed/26998942https://www.ncbi.nlm.nih.gov/pubmed/22143917https://www.ncbi.nlm.nih.gov/pubmed/22143917https://www.ncbi.nlm.nih.gov/pubmed/22143917https://d.docs.live.net/005b00892e4f90be/Dokument/Kang et al. (2010). Evaluation of light-harvesting complex proteins as senescence-related protein markers in detached rice leaves. Photosynthetica 47, 4:638-640.https://d.docs.live.net/005b00892e4f90be/Dokument/Kang et al. (2010). Evaluation of light-harvesting complex proteins as senescence-related protein markers in detached rice leaves. Photosynthetica 47, 4:638-640.https://d.docs.live.net/005b00892e4f90be/Dokument/Kang et al. (2010). Evaluation of light-harvesting complex proteins as senescence-related protein markers in detached rice leaves. Photosynthetica 47, 4:638-640.http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS01 011 CHLAMYDOMONAShttp://www.agrisera.com/shop?funk=visa_artikel&artnr=AS01 011 CHLAMYDOMONAShttps://d.docs.live.net/005b00892e4f90be/Dokument/Lhcb5 and Lhcbm5 - %3cbr /%3ehttp://www.ncbi.nlm.nih.gov/pubmed/16407170http://www.ncbi.nlm.nih.gov/pubmed/16407170http://www.ncbi.nlm.nih.gov/pubmed/16407170

  • AS16 3981 2b protein [Cucumber mosaic virus]Zhang et al (2006). Cucumber mosaic virus-encoded 2b suppressor

    inhibits Arabidopsis Argonaute1 cleavage activity to counter plant

    defense. Genes & development 20: 3255-3268.

    AS10 706-100 3-nitroY | Nitrotyrosine (100 µl)

    Girault et al. (2001).Immunodetection of 3-nitrotyrosine in the liver

    of zymosan-treated rats with a new monoclonal antibody:

    comparison to analysis by HPLC. Free Radical Biology and Medicine,

    31 (11): 1375-1387.

    Gow et al. (2004).Biological significance of nitric oxide-mediated

    protein modifications. Am J Physiol Lung Cell Mol Physiol. 287(2):

    L262-8.Antibody used in immunohistochemistry:

    Pfister et al. (2002). Inducible nitric oxide synthase and nitrotyrosine

    in listeric encephalitis: a cross-species study in ruminants. Vet

    Pathol. 39: 190-199.

    AS10 706-25 3-nitroY | Nitrotyrosine (25 µl)

    Girault et al. (2001).Immunodetection of 3-nitrotyrosine in the liver

    of zymosan-treated rats with a new monoclonal antibody:

    comparison to analysis by HPLC. Free Radical Biology and Medicine,

    31 (11): 1375-1387.

    Gow et al. (2004).Biological significance of nitric oxide-mediated

    protein modifications. Am J Physiol Lung Cell Mol Physiol. 287(2):

    L262-8.Antibody used in immunohistochemistry:

    Pfister et al. (2002). Inducible nitric oxide synthase and nitrotyrosine

    in listeric encephalitis: a cross-species study in ruminants. Vet

    Pathol. 39: 190-199.

    AS10 708-1008-Hydroxyguanosine | DNA/RNA

    oxidative damage (100 µg)

    Haigh and Drew (2015). Cavitation during the protein misfolding

    cyclic amplification (PMCA) method - The trigger for de novo prion

    generation? Biochem Biophys Res Commun. 2015 Apr 17. pii: S0006-

    291X(15)00726-3. doi: 10.1016/j.bbrc.2015.04.048.

    Poborilova et al. (2015). DNA hypomethylation concomitant with the

    overproduction of ROS induced by naphthoquinone juglone on

    tobacco BY-2 suspension cells. Environmental and Experimental

    Botany, Volume 113, May 2015, Pages 28–39.

    AS10 708-258-Hydroxyguanosine | DNA/RNA

    oxidative damage (25 µg)

    Haigh and Drew (2015). Cavitation during the protein misfolding

    cyclic amplification (PMCA) method - The trigger for de novo prion

    generation? Biochem Biophys Res Commun. 2015 Apr 17. pii: S0006-

    291X(15)00726-3. doi: 10.1016/j.bbrc.2015.04.048.

    Poborilova et al. (2015). DNA hypomethylation concomitant with the

    overproduction of ROS induced by naphthoquinone juglone on

    tobacco BY-2 suspension cells. Environmental and Experimental

    Botany, Volume 113, May 2015, Pages 28–39.

    AS08 281

    95 kDa Lcm (phycobilisome - to-

    thylakoid core linker with

    phycocyanobilin chromophore)

    Redlinger & Gantt (1982) A Mr 95,000 polypeptide in Porphyridium

    cruentum phycobilisomes and thylakoids: PNAS 79:5542.

    Redlinger & Gantt (1981). Phycobilisome structure of Porphyridium

    cruentum. Plant Physiol. 68:1375.

    AS01 015 A1AGP | Alpha-1-acid glycoproteinOlofsson et al. (2002) Positional identification of Ncf1 as a gene that

    regulates arthritis severity in rats. Nat Genet, 33, 25-32.

    Olofsson et al. (2003) Identification and isolaton of dominant

    sesceptibility loci for pristane-induced arthritis. J Immunol, 171, 407-

    16.

    AS07 272 A1i3 | alpha-1-inhibitor 3 Kim et al. (2008) 2-D DIGE and MS/MS analysis of protein serum

    expression in rats housed in concrete and clay cages in winter.

    Proteomics, 8(17):3632-44.

    AS13 2670A1M | Human alpha-1-

    microglobulin

    Rutardottir et al. (2016). The cysteine 34 residue of A1M/α1-

    microglobulin is essential for protection of irradiated cell cultures

    and reduction of carbonyl groups. Free Radic Res. 2013 Jul;47(6-

    7):541-50. doi: 10.3109/10715762.2013.801555. Epub 2013 May 29.

    http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS16 3981http://www.ncbi.nlm.nih.gov/pubmed/17158744http://www.ncbi.nlm.nih.gov/pubmed/17158744http://www.ncbi.nlm.nih.gov/pubmed/17158744http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 706-100http://www.ncbi.nlm.nih.gov/pubmed/11728809http://www.ncbi.nlm.nih.gov/pubmed/11728809http://www.ncbi.nlm.nih.gov/pubmed/11728809http://www.ncbi.nlm.nih.gov/pubmed/11728809http://www.ncbi.nlm.nih.gov/pubmed/15246980http://www.ncbi.nlm.nih.gov/pubmed/15246980http://www.ncbi.nlm.nih.gov/pubmed/15246980http://www.ncbi.nlm.nih.gov/pubmed/12009057http://www.ncbi.nlm.nih.gov/pubmed/12009057http://www.ncbi.nlm.nih.gov/pubmed/12009057http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 706-25http://www.ncbi.nlm.nih.gov/pubmed/11728809http://www.ncbi.nlm.nih.gov/pubmed/11728809http://www.ncbi.nlm.nih.gov/pubmed/11728809http://www.ncbi.nlm.nih.gov/pubmed/11728809http://www.ncbi.nlm.nih.gov/pubmed/15246980http://www.ncbi.nlm.nih.gov/pubmed/15246980http://www.ncbi.nlm.nih.gov/pubmed/15246980http://www.ncbi.nlm.nih.gov/pubmed/12009057http://www.ncbi.nlm.nih.gov/pubmed/12009057http://www.ncbi.nlm.nih.gov/pubmed/12009057http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 708-100http://www.ncbi.nlm.nih.gov/pubmed/25892519http://www.ncbi.nlm.nih.gov/pubmed/25892519http://www.ncbi.nlm.nih.gov/pubmed/25892519http://www.ncbi.nlm.nih.gov/pubmed/25892519http://www.sciencedirect.com/science/article/pii/S0098847215000143http://www.sciencedirect.com/science/article/pii/S0098847215000143http://www.sciencedirect.com/science/article/pii/S0098847215000143http://www.sciencedirect.com/science/article/pii/S0098847215000143http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 708-25http://www.ncbi.nlm.nih.gov/pubmed/25892519http://www.ncbi.nlm.nih.gov/pubmed/25892519http://www.ncbi.nlm.nih.gov/pubmed/25892519http://www.ncbi.nlm.nih.gov/pubmed/25892519http://www.sciencedirect.com/science/article/pii/S0098847215000143http://www.sciencedirect.com/science/article/pii/S0098847215000143http://www.sciencedirect.com/science/article/pii/S0098847215000143http://www.sciencedirect.com/science/article/pii/S0098847215000143http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS08 281http://www.ncbi.nlm.nih.gov/pubmed/16593227http://www.ncbi.nlm.nih.gov/pubmed/16593227http://www.ncbi.nlm.nih.gov/pubmed/16662111http://www.ncbi.nlm.nih.gov/pubmed/16662111http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS01 015http://www.ncbi.nlm.nih.gov/pubmed/12461526http://www.ncbi.nlm.nih.gov/pubmed/12461526http://www.ncbi.nlm.nih.gov/pubmed/12817024http://www.ncbi.nlm.nih.gov/pubmed/12817024http://www.ncbi.nlm.nih.gov/pubmed/12817024http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS07 272http://www.ncbi.nlm.nih.gov/pubmed/18686296http://www.ncbi.nlm.nih.gov/pubmed/18686296http://www.ncbi.nlm.nih.gov/pubmed/18686296http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS13 2670https://www.ncbi.nlm.nih.gov/pubmed/23642167https://www.ncbi.nlm.nih.gov/pubmed/23642167https://www.ncbi.nlm.nih.gov/pubmed/23642167https://www.ncbi.nlm.nih.gov/pubmed/23642167

  • Olsson MG et al. (2013). The radical-binding lipocalin A1M binds to a

    Complex I subunit and protects mitochondrial structure and

    function. Antioxid Redox Signal. 2013 Jun 1;18(16):2017-28.

    AS09 446ABA | Abscisic acid (C1) (for

    immunolocalization)

    Escandón et al. (2016). Integrated physiological and hormonal

    profile of heat-induced thermotolerance in Pinus radiata. Tree

    Physiol. 2016 Jan;36(1):63-77. doi: 10.1093/treephys/tpv127. Epub

    2016 Jan 12.

    Ondzighi-Assoume et al. (2016). Environmental Nitrate Stimulates

    Root Tip Abscisic Acid Accumulation via Release from Inactive

    Stores. Plant Cell. 2016 Feb 17. pii: TPC2015-00946-RA.

    Jesus et al. (2015). Salicylic acid application modulates physiological

    and hormonal changes in Eucalyptus globulus under water deficit.

    Environ and Exp Botany, Volume 118, October 2015, Pages 56–66.

    Lacuesta et al. (2013). Immunolocalization of IAA and ABA in roots

    and needles of radiata pine (Pinus radiata) during drought and

    rewatering. Tree Physiol. May;33(5):537-49.

    AS08 328Abeta (1-42) | Amyloid-beta

    peptide 1-42

    Lindhagen-Persson et al. (2010). Amyloid-β oligomer specificity

    mediated by the IgM isotype--implications for a specific protective

    mechanism exerted by endogenous auto-antibodies. PLoS One.

    2010 Nov 10;5(11):e13928. doi: 10.1371/journal.pone.0013928.

    AS12 1861 ABI1 | Abscisic acid insensitive 1

    Mitula et al. (2015). Arabidopsis ABA-Activated Kinase MAPKKK18 is

    Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin-

    Proteasome Pathway. Plant Cell Physiol. 2015 Dec;56(12):2351-67.

    doi: 10.1093/pcp/pcv146. Epub 2015 Oct 6.

    AS12 1871 ABI2 | Abscisic acid insensitive 2

    Mitula et al. (2015). Arabidopsis ABA-Activated Kinase MAPKKK18 is

    Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin-

    Proteasome Pathway. Plant Cell Physiol. 2015 Dec;56(12):2351-67.

    doi: 10.1093/pcp/pcv146. Epub 2015 Oct 6.

    AS11 1783 ACD1 | Accelerated cell death 1 Kim et al. (2013). Mutation of the Arabidopsis NAC016 Transcription

    Factor Delays Leaf Senescence.'Plant Cell Physiol. Aug 21.

    Nagane et al. (2010). Involvement of AtNAP1 in thre reulation of

    chlorophyll degradation in Arabiopsis thaliana. Planta (4):939-949.

    Hirashima et al. (2009). Light-independent cell death induced by

    accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell

    Physiol. (4):719-729.

    AS10 707-100 Acetylated lysine (100 µl)Vigushin & Coombes (2004). Targeted histone deacetylase inhibition

    for cancer therapy. Curr. Cancer Drug Targets 4: 205-218.

    AS10 707-25 Acetylated lysine (25 µl)Vigushin & Coombes (2004). Targeted histone deacetylase inhibition

    for cancer therapy. Curr. Cancer Drug Targets 4: 205-218.

    AS09 521 ACO1 | Aconitase

    Rurek et al. (2015). Biogenesis of mitochondria in cauliflower

    (Brassica oleracea var. botrytis) curds subjected to temperature

    stress and recovery involves regulation of the complexome,

    respiratory chain activity, organellar translation and ultrastructure.

    Biochim Biophys Acta. 2015 Jan 21. pii: S0005-2728(15)00016-X. doi:

    10.1016/j.bbabio.2015.01.005.

    Setién et al. (2014). Root phosphoenolpyruvate carboxylase and

    NAD-malic enzymes activity increase the ammonium-assimilating

    capacity in tomato. J Plant Physiol. 171:49-63.

    Birke et al. (2012). Cysteine biosynthesis, in concert with a novel

    mechanism, contributes to sulfide detoxification in mitochondria of

    Arabidopsis thaliana. Biochem J. May 2, ahead of print.

    http://www.ncbi.nlm.nih.gov/pubmed/23157686http://www.ncbi.nlm.nih.gov/pubmed/23157686http://www.ncbi.nlm.nih.gov/pubmed/23157686http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 446http://www.ncbi.nlm.nih.gov/pubmed/26764270http://www.ncbi.nlm.nih.gov/pubmed/26764270http://www.ncbi.nlm.nih.gov/pubmed/26764270http://www.ncbi.nlm.nih.gov/pubmed/26764270http://www.ncbi.nlm.nih.gov/pubmed/26887919http://www.ncbi.nlm.nih.gov/pubmed/26887919http://www.ncbi.nlm.nih.gov/pubmed/26887919http://www.sciencedirect.com/science/article/pii/S0098847215001136http://www.sciencedirect.com/science/article/pii/S0098847215001136http://www.sciencedirect.com/science/article/pii/S0098847215001136http://www.ncbi.nlm.nih.gov/pubmed/23677119http://www.ncbi.nlm.nih.gov/pubmed/23677119http://www.ncbi.nlm.nih.gov/pubmed/23677119http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS08 328http://www.ncbi.nlm.nih.gov/pubmed/21085663http://www.ncbi.nlm.nih.gov/pubmed/21085663http://www.ncbi.nlm.nih.gov/pubmed/21085663http://www.ncbi.nlm.nih.gov/pubmed/21085663http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS12 1861http://www.ncbi.nlm.nih.gov/pubmed/26443375http://www.ncbi.nlm.nih.gov/pubmed/26443375http://www.ncbi.nlm.nih.gov/pubmed/26443375http://www.ncbi.nlm.nih.gov/pubmed/26443375http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS12 1871http://www.ncbi.nlm.nih.gov/pubmed/26443375http://www.ncbi.nlm.nih.gov/pubmed/26443375http://www.ncbi.nlm.nih.gov/pubmed/26443375http://www.ncbi.nlm.nih.gov/pubmed/26443375http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS11 1783http://www.ncbi.nlm.nih.gov/pubmed/23926065http://www.ncbi.nlm.nih.gov/pubmed/23926065http://www.ncbi.nlm.nih.gov/pubmed/20087600http://www.ncbi.nlm.nih.gov/pubmed/20087600http://www.ncbi.nlm.nih.gov/pubmed/19273468http://www.ncbi.nlm.nih.gov/pubmed/19273468http://www.ncbi.nlm.nih.gov/pubmed/19273468http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 707-100http://www.ncbi.nlm.nih.gov/pubmed/15032670http://www.ncbi.nlm.nih.gov/pubmed/15032670http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 707-25http://www.ncbi.nlm.nih.gov/pubmed/15032670http://www.ncbi.nlm.nih.gov/pubmed/15032670http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 521http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.sciencedirect.com/science/journal/01761617http://www.sciencedirect.com/science/journal/01761617http://www.sciencedirect.com/science/journal/01761617http://www.ncbi.nlm.nih.gov/pubmed/22551219http://www.ncbi.nlm.nih.gov/pubmed/22551219http://www.ncbi.nlm.nih.gov/pubmed/22551219

  • Bernard et al. (2009). An allelic mutant series of ATM3 reveals its key

    role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis.

    Plant Physiol. 151:590-602.

    AS13 2640 ACT | ActinQiu et al. (2015). Soy 14-3-3 protein SGF14c, a new regulator of

    tolerance to salt–alkali stress. Plant Biotechnology Reports pp 1-9.

    Shaw et al. (2015). β-aminobutyric acid mediated drought stress

    alleviation in maize (Zea mays L.). Environ Sci Pollut Res Int. 2015

    Sep 29.

    Buxa et al. (2015). Phytoplasma infection in tomato is associated

    with re-organization of plasma membrane, ER stacks, and actin

    filaments in sieve elements. ront Plant Sci. 2015; 6: 650. Published

    online 2015 Aug 19.

    Zheng et al. (2014). iTRAQ-based quantitative proteomics analysis

    revealed alterations of carbohydrate metabolism pathways and

    mitochondrial proteins in a male sterile cybrid pummelo. J Proteome

    Res. 2014 May 13.

    AS16 3141 ACT | Actin (monoclonal)

    Kandasamy, M.K. et al. (2012). Plant vegetative and animal

    cytoplasmic actins share functional competence for spatial

    development with protists. Plant Cell. 24, 2012 May;24(5):2041-57.

    doi: 10.1105/tpc.111.095281

    Kandasamy, M.K. et al. (2001). One plant actin isovariant, ACT7, is

    induced by auxin and required for normal callus formation. Plant

    Cell. Jul;13(7):1541-54

    Kandasamy, M.K. et al. (1999). The late pollen-specific actins in

    angiosperms. Plant Journal. Jun;18(6):681-91.

    AS16 3139 ACT 1,3,4,12 | Actin 1, 3, 4, 12

    Kandasamy, M.K. et al. (2012). Plant vegetative and animal

    cytoplasmic actins share functional competence for spatial

    development with protists. Plant Cell. 24, 2012 May;24(5):2041-57.

    doi: 10.1105/tpc.111.095281

    Kandasamy, M.K. et al. (2001). One plant actin isovariant, ACT7, is

    induced by auxin and required for normal callus formation. Plant

    Cell. Jul;13(7):1541-54

    Kandasamy, M.K. et al. (1999). The late pollen-specific actins in

    angiosperms. Plant Journal. Jun;18(6):681-91.

    AS16 3140 ACT 2,8,11 | Actin 2, 8, 11

    Kandasamy, M.K., et al. (2012). Plant vegetative and animal

    cytoplasmic actins share functional competence for spatial

    development with protists. Plant Cell May;24(5):2041-57. doi:

    10.1105/tpc.111.095281.

    Kandasamy, M.K., et al. (2001). One plant actin isovariant, ACT7, is

    induced by auxin and required for normal callus formation. Plant

    Cell. Jul;13(7):1541-54.

    Kandasamy, M.K., et al. (1999). The late pollen-specific actins in

    angiosperms. Plant Journal. Jun;18(6):681-9.

    AS10 702 Actin-11

    Hashimoto et al. (2016). EXA1, a GYF domain protein, is responsible

    for loss-of-susceptibility to plantago asiatica mosaic virus in

    Arabidopsis thaliana. Plant J. 2016 Oct;88(1):120-131. doi:

    10.1111/tpj.13265. Epub 2016 Sep 19.

    Deng et al. (2015). Proteomic analysis of conidia germination in

    Fusarium oxysporum f. sp. cubense tropical race 4 reveals new

    targets in ergosterol biosynthesis pathway for controlling Fusarium

    wilt of banana. Appl Microbiol Biotechnol. 2015 Sep;99(17):7189-

    207. doi: 10.1007/s00253-015-6768-x. Epub 2015 Jul 1.

    Dmitrović et al. (2015). Essential oils of two Nepeta species inhibit

    growth and induce oxidative stress in ragweed (Ambrosia

    artemisiifolia L.) shoots in vitro. Acta Physiologiae Plantarum,

    February 2015, 37:64.

    Weiste and Dröge-Laser (2014). The Arabidopsis transcription factor

    bZIP11 activates auxin-mediated transcription by recruiting the

    histone acetylation machinery. Nat Commun. 2014 May 27;5:3883.

    doi: 10.1038/ncomms4883.

    http://www.ncbi.nlm.nih.gov/pubmed/19710232http://www.ncbi.nlm.nih.gov/pubmed/19710232http://www.ncbi.nlm.nih.gov/pubmed/19710232http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS13 2640http://link.springer.com/article/10.1007/s11816-015-0374-3http://link.springer.com/article/10.1007/s11816-015-0374-3http://www.ncbi.nlm.nih.gov/pubmed/26416125http://www.ncbi.nlm.nih.gov/pubmed/26416125http://www.ncbi.nlm.nih.gov/pubmed/26416125http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541602/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541602/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541602/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541602/http://www.ncbi.nlm.nih.gov/pubmed/24824475http://www.ncbi.nlm.nih.gov/pubmed/24824475http://www.ncbi.nlm.nih.gov/pubmed/24824475http://www.ncbi.nlm.nih.gov/pubmed/24824475http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS16 3141http://www.ncbi.nlm.nih.gov/pubmed/22589468http://www.ncbi.nlm.nih.gov/pubmed/22589468http://www.ncbi.nlm.nih.gov/pubmed/22589468http://www.ncbi.nlm.nih.gov/pubmed/22589468http://www.ncbi.nlm.nih.gov/pubmed/11449050http://www.ncbi.nlm.nih.gov/pubmed/11449050http://www.ncbi.nlm.nih.gov/pubmed/11449050http://www.ncbi.nlm.nih.gov/pubmed/10417720http://www.ncbi.nlm.nih.gov/pubmed/10417720http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS16 3139http://www.ncbi.nlm.nih.gov/pubmed/22589468http://www.ncbi.nlm.nih.gov/pubmed/22589468http://www.ncbi.nlm.nih.gov/pubmed/22589468http://www.ncbi.nlm.nih.gov/pubmed/22589468http://www.ncbi.nlm.nih.gov/pubmed/11449050http://www.ncbi.nlm.nih.gov/pubmed/11449050http://www.ncbi.nlm.nih.gov/pubmed/11449050http://www.ncbi.nlm.nih.gov/pubmed/10417720http://www.ncbi.nlm.nih.gov/pubmed/10417720http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS16 3140http://www.ncbi.nlm.nih.gov/pubmed/22589468http://www.ncbi.nlm.nih.gov/pubmed/22589468http://www.ncbi.nlm.nih.gov/pubmed/22589468http://www.ncbi.nlm.nih.gov/pubmed/22589468http://www.ncbi.nlm.nih.gov/pubmed/11449050http://www.ncbi.nlm.nih.gov/pubmed/11449050http://www.ncbi.nlm.nih.gov/pubmed/11449050http://www.ncbi.nlm.nih.gov/pubmed/10417720http://www.ncbi.nlm.nih.gov/pubmed/10417720http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 702https://www.ncbi.nlm.nih.gov/pubmed/27402258https://www.ncbi.nlm.nih.gov/pubmed/27402258https://www.ncbi.nlm.nih.gov/pubmed/27402258https://www.ncbi.nlm.nih.gov/pubmed/27402258http://www.ncbi.nlm.nih.gov/pubmed/26129952http://www.ncbi.nlm.nih.gov/pubmed/26129952http://www.ncbi.nlm.nih.gov/pubmed/26129952http://www.ncbi.nlm.nih.gov/pubmed/26129952http://www.ncbi.nlm.nih.gov/pubmed/26129952http://link.springer.com/article/10.1007%2Fs11738-015-1810-2http://link.springer.com/article/10.1007%2Fs11738-015-1810-2http://link.springer.com/article/10.1007%2Fs11738-015-1810-2http://link.springer.com/article/10.1007%2Fs11738-015-1810-2http://www.ncbi.nlm.nih.gov/pubmed/24861440http://www.ncbi.nlm.nih.gov/pubmed/24861440http://www.ncbi.nlm.nih.gov/pubmed/24861440http://www.ncbi.nlm.nih.gov/pubmed/24861440

  • Weits et al. (2014). Plant cysteine oxidases control the oxygen-

    dependent branch of the N-end-rule pathway. Nat Commun. 2014

    Mar 6;5:3425. doi: 10.1038/ncomms4425.

    AS10 685ADH | Alcohol dehydrogenase

    (hypoxia marker)

    Giuntoli et al. (2014). A trihelix DNA binding protein counterbalances

    hypoxia-responsive transcriptional activation in Arabidopsis. PLoS

    Biol. 2014 Sep 16;12(9):e1001950. doi:

    10.1371/journal.pbio.1001950. eCollection 2014.

    AS10 748ADH/ALDH | Alcohol/acetaldehyde

    dehydrogenase, bacterial/algal

    Laurenceau et al. (2015). Conserved Streptococcus pneumoniae

    Spirosomes Suggest a Single Type of Transformation Pilus in

    Competence. PLoS Pathog. 2015 Apr 15;11(4):e1004835. doi:

    10.1371/journal.ppat.1004835.

    Kukuczka et al. (2014). Proton Gradient Regulation5-Like1-Mediated

    Cyclic Electron Flow Is Crucial for Acclimation to Anoxia and

    Complementary to Nonphotochemical Quenching in Stress

    Adaptation. Plant Physiol. 2014 Jun 19;165(4):1604-1617.

    AS09 527 AGO1 | Argonaute 1

    Schalk et al. (2017). Small RNA-mediated repair of UV-induced DNA

    lesions by the DNA DAMAGE-BINDING PROTEIN 2 and ARGONAUTE

    1. Proc Natl Acad Sci U S A. 2017 Mar 21. pii: 201618834. doi:

    10.1073/pnas.1618834114.

    Pumplin et al. (2016). DNA Methylation Influences the Expression of

    DICER-LIKE4 Isoforms, Which Encode Proteins of Alternative

    Localization and Function. The Plant Cell November 14, 2016

    tpc.00554.2016 . Advance Publication November 14, 2016.

    Minoia et al. (2014). Specific Argonautes Selectively Bind Small RNAs

    Derived from Potato Spindle Tuber Viroid and Attenuate Viroid

    Accumulation In Vivo. J Virol. 2014 Oct 15;88(20):11933-45. doi:

    10.1128/JVI.01404-14. Epub 2014 Aug 6.

    AS09 527-100 AGO1 | Argonaute 1 (100 µg)

    Minoia et al. (2014). Specific Argonautes Selectively Bind Small RNAs

    Derived from Potato Spindle Tuber Viroid and Attenuate Viroid

    Accumulation In Vivo. J Virol. 2014 Oct 15;88(20):11933-45. doi:

    10.1128/JVI.01404-14. Epub 2014 Aug 6.

    AS09 617 AGO4 | Argonaute 4Li et al. (2016). Biogenesis of phased siRNAs on membrane-bound

    polysomes in Arabidopsis. Elife. 2016 Dec 12;5. pii: e22750. doi:

    10.7554/eLife.22750.

    Zhai et al. (2015). A One Precursor One siRNA Model for Pol IV-

    Dependent siRNA Biogenesis. Cell. 2015 Oct 8;163(2):445-55. doi:

    10.1016/j.cell.2015.09.032.

    Han et al. (2014). SUVR2 is involved in transcriptional gene silencing

    by associating with SNF2-related chromatin-remodeling proteins in

    Arabidopsis. Cell Res. 2014 Nov 25. doi: 10.1038/cr.2014.156.

    (coimmunoprecipitation)

    Zhang et al. (2013). DTF1 is a core component of RNA-directed DNA

    methylation and may assist in the recruitment of Pol IV. PNAS, May

    14.

    Havecker et al. (2010) The RNA-directed DNA methylation

    Arabidopsis Argonautes functionally diverge based on expression

    and interaction with target loci. Plant Cell 22(2): 321-34.

    AS09 617-1mg AGO4 | Argonaute 4 (1mg)Zhai et al. (2015). A One Precursor One siRNA Model for Pol IV-

    Dependent siRNA Biogenesis. Cell. 2015 Oct 8;163(2):445-55. doi:

    10.1016/j.cell.2015.09.032.

    Han et al. (2014). SUVR2 is involved in transcriptional gene silencing

    by associating with SNF2-related chromatin-remodeling proteins in

    Arabidopsis. Cell Res. 2014 Nov 25. doi: 10.1038/cr.2014.156.

    (coimmunoprecipitation)

    http://www.ncbi.nlm.nih.gov/pubmed/24599061http://www.ncbi.nlm.nih.gov/pubmed/24599061http://www.ncbi.nlm.nih.gov/pubmed/24599061http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 685http://www.ncbi.nlm.nih.gov/pubmed/25226037http://www.ncbi.nlm.nih.gov/pubmed/25226037http://www.ncbi.nlm.nih.gov/pubmed/25226037http://www.ncbi.nlm.nih.gov/pubmed/25226037http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 748http://www.ncbi.nlm.nih.gov/pubmed/25876066http://www.ncbi.nlm.nih.gov/pubmed/25876066http://www.ncbi.nlm.nih.gov/pubmed/25876066http://www.ncbi.nlm.nih.gov/pubmed/25876066http://www.ncbi.nlm.nih.gov/pubmed/24948831http://www.ncbi.nlm.nih.gov/pubmed/24948831http://www.ncbi.nlm.nih.gov/pubmed/24948831http://www.ncbi.nlm.nih.gov/pubmed/24948831http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 527https://www.ncbi.nlm.nih.gov/pubmed/28325872https://www.ncbi.nlm.nih.gov/pubmed/28325872https://www.ncbi.nlm.nih.gov/pubmed/28325872https://www.ncbi.nlm.nih.gov/pubmed/28325872http://www.plantcell.org/content/early/2016/11/14/tpc.16.00554.abstracthttp://www.plantcell.org/content/early/2016/11/14/tpc.16.00554.abstracthttp://www.plantcell.org/content/early/2016/11/14/tpc.16.00554.abstracthttp://www.plantcell.org/content/early/2016/11/14/tpc.16.00554.abstracthttp://www.ncbi.nlm.nih.gov/pubmed/25100851http://www.ncbi.nlm.nih.gov/pubmed/25100851http://www.ncbi.nlm.nih.gov/pubmed/25100851http://www.ncbi.nlm.nih.gov/pubmed/25100851http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 527-100http://www.ncbi.nlm.nih.gov/pubmed/25100851http://www.ncbi.nlm.nih.gov/pubmed/25100851http://www.ncbi.nlm.nih.gov/pubmed/25100851http://www.ncbi.nlm.nih.gov/pubmed/25100851http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 617https://www.ncbi.nlm.nih.gov/pubmed/27938667https://www.ncbi.nlm.nih.gov/pubmed/27938667https://www.ncbi.nlm.nih.gov/pubmed/27938667http://www.ncbi.nlm.nih.gov/pubmed/26451488http://www.ncbi.nlm.nih.gov/pubmed/26451488http://www.ncbi.nlm.nih.gov/pubmed/26451488http://www.ncbi.nlm.nih.gov/pubmed/25420628http://www.ncbi.nlm.nih.gov/pubmed/25420628http://www.ncbi.nlm.nih.gov/pubmed/25420628http://www.ncbi.nlm.nih.gov/pubmed/25420628http://www.ncbi.nlm.nih.gov/pubmed/23637343http://www.ncbi.nlm.nih.gov/pubmed/23637343http://www.ncbi.nlm.nih.gov/pubmed/23637343http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 617-1mghttp://www.ncbi.nlm.nih.gov/pubmed/26451488http://www.ncbi.nlm.nih.gov/pubmed/26451488http://www.ncbi.nlm.nih.gov/pubmed/26451488http://www.ncbi.nlm.nih.gov/pubmed/25420628http://www.ncbi.nlm.nih.gov/pubmed/25420628http://www.ncbi.nlm.nih.gov/pubmed/25420628http://www.ncbi.nlm.nih.gov/pubmed/25420628

  • Zhang et al. (2013). DTF1 is a core component of RNA-directed DNA

    methylation and may assist in the recruitment of Pol IV. PNAS, May

    14.

    Havecker et al. (2010) The RNA-directed DNA methylation

    Arabidopsis Argonautes functionally diverge based on expression

    and interaction with target loci. Plant Cell 22(2): 321-34.

    AS10 672 AGO6 | Argonaute 6

    Havecker, E.R., Wallbridge, L.M., Hardcastle, T.J., Bush, M.S., Kelly,

    K.A., Dunn, R.M., Schwach, F., and Baulcombe, D.C. The RNA-

    directed DNA methylation Arabidopsis Argonautes functionally

    diverge based on expression and interaction with target loci.

    manuscript revisions submitted, awaiting acceptance.

    AS10 673 AGO9 | Argonaute 9Havecker et al. (2010) The RNA-directed DNA methylation

    Arabidopsis Argonautes functionally diverge based on expression

    and interaction with target loci. Plant Cell 22(2): 321-34.

    AS10 1353 A-I | apolipoprotein A1

    Teixeira et al. (2014). Definition of human apolipoprotein A-I

    epitopes recognized by autoantibodies present in patients with

    cardiovascular diseases. J Biol Chem. 2014 Aug 28. pii:

    jbc.M114.589002.

    AS09 463 AKIN ß gammaEmanuelle et al. (2015). SnRK1 from Arabidopsis thaliana is an

    atypical AMPK. Plant J. 2015 Mar 3. doi: 10.1111/tpj.12813.

    AS10 919

    AKIN10 | SNF1-related protein

    kinase catalytic subunit alpha

    KIN10

    Nukarinen et al. (2016). Quantitative phosphoproteomics reveals the

    role of the AMPK plant ortholog SnRK1 as a metabolic master

    regulator under energy deprivation. Sci Rep. 2016 Aug 22;6:31697.

    doi: 10.1038/srep31697.

    Castro et al. (2015). SIZ1-Dependent Post-Translational Modification

    by SUMO Modulates Sugar Signalling and Metabolism in Arabidopsis

    thaliana. Plant Cell Physiol. 2015 Oct 14. pii: pcv149.

    Emanuelle et al. (2015). SnRK1 from Arabidopsis thaliana is an

    atypical AMPK. Plant J. 2015 Mar 3. doi: 10.1111/tpj.12813.

    Rodrigues et al. (2013). ABI1 and PP2CA Phosphatases Are Negative

    Regulators of Snf1-Related Protein Kinase1 Signaling in Arabidopsis.

    Plant Cell, Oct 31.

    AS10 920

    AKIN11 | SNF1-related protein

    kinase catalytic subunit alpha

    KIN11

    Emanuelle et al. (2015). SnRK1 from Arabidopsis thaliana is an

    atypical AMPK. Plant J. 2015 Mar 3. doi: 10.1111/tpj.12813.

    AS09 460AKINB1 | SNF1-related protein

    kinase regulatory subunit beta-1Emanuelle et al. (2015). SnRK1 from Arabidopsis thaliana is an

    atypical AMPK. Plant J. 2015 Mar 3. doi: 10.1111/tpj.12813.

    AS09 462AKINB2 | SNF1-related protein

    kinase regulatory subunit beta-2 Emanuelle et al. (2015). SnRK1 from Arabidopsis thaliana is an

    atypical AMPK. Plant J. 2015 Mar 3. doi: 10.1111/tpj.12813.

    AS09 613AKING1 | SNF1-related protein

    kinase regulatory subunit gamma 1Emanuelle et al. (2015). SnRK1 from Arabidopsis thaliana is an

    atypical AMPK. Plant J. 2015 Mar 3. doi: 10.1111/tpj.12813.

    Ramon et al. (2013). The hybrid Four-CBS-Domain KINβγ-subunit

    SnRK1. Plant j. April 1.

    AS09 516 AKT1 | Potassium channel AKT1

    Safiarian et al. (2015). Lost in traffic? The K+ channel of lily pollen,

    LilKT1, is detected at the endomembranes inside yeast cells, tobacco

    leaves and lily pollen. Front. Plant Sci. | doi:

    10.3389/fpls.2015.00047.

    Honsbein et al. (2009). A tripartite SNARE-K+ channel complex

    mediates in channel-dependent K+ nutrition in Arabidopsis. The

    Plant Cell 21:2859-2877.

    http://www.ncbi.nlm.nih.gov/pubmed/23637343http://www.ncbi.nlm.nih.gov/pubmed/23637343http://www.ncbi.nlm.nih.gov/pubmed/23637343http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 672http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 673http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.ncbi.nlm.nih.gov/pubmed/20173091http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 1353http://www.ncbi.nlm.nih.gov/pubmed/25170076http://www.ncbi.nlm.nih.gov/pubmed/25170076http://www.ncbi.nlm.nih.gov/pubmed/25170076http://www.ncbi.nlm.nih.gov/pubmed/25170076http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 463http://www.ncbi.nlm.nih.gov/pubmed/25736509http://www.ncbi.nlm.nih.gov/pubmed/25736509http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 919https://www.ncbi.nlm.nih.gov/pubmed/27545962https://www.ncbi.nlm.nih.gov/pubmed/27545962https://www.ncbi.nlm.nih.gov/pubmed/27545962https://www.ncbi.nlm.nih.gov/pubmed/27545962http://www.ncbi.nlm.nih.gov/pubmed/26468507http://www.ncbi.nlm.nih.gov/pubmed/26468507http://www.ncbi.nlm.nih.gov/pubmed/26468507http://www.ncbi.nlm.nih.gov/pubmed/25736509http://www.ncbi.nlm.nih.gov/pubmed/25736509http://www.ncbi.nlm.nih.gov/pubmed/24179127http://www.ncbi.nlm.nih.gov/pubmed/24179127http://www.ncbi.nlm.nih.gov/pubmed/24179127http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 920http://www.ncbi.nlm.nih.gov/pubmed/25736509http://www.ncbi.nlm.nih.gov/pubmed/25736509http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 460http://www.ncbi.nlm.nih.gov/pubmed/25736509http://www.ncbi.nlm.nih.gov/pubmed/25736509http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 462http://www.ncbi.nlm.nih.gov/pubmed/25736509http://www.ncbi.nlm.nih.gov/pubmed/25736509http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 613http://www.ncbi.nlm.nih.gov/pubmed/25736509http://www.ncbi.nlm.nih.gov/pubmed/25736509http://www.ncbi.nlm.nih.gov/pubmed/23551663http://www.ncbi.nlm.nih.gov/pubmed/23551663http://www.ncbi.nlm.nih.gov/pubmed/23551663http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 516http://journal.frontiersin.org/Journal/10.3389/fpls.2015.00047/abstracthttp://journal.frontiersin.org/Journal/10.3389/fpls.2015.00047/abstracthttp://journal.frontiersin.org/Journal/10.3389/fpls.2015.00047/abstracthttp://journal.frontiersin.org/Journal/10.3389/fpls.2015.00047/abstracthttp://www.ncbi.nlm.nih.gov/pubmed/19794113http://www.ncbi.nlm.nih.gov/pubmed/19794113http://www.ncbi.nlm.nih.gov/pubmed/19794113

  • AS08 294ALD | Fructose-1,6 bisphosphate

    aldolase

    Parveen et al. (2016). Chickpea Ferritin CaFer1 Participates in

    Oxidative Stress Response, and Promotes Growth and Development.

    Sci Rep. 2016 Aug 9;6:31218. doi: 10.1038/srep31218.

    Yam et al. (2016). Characterization of the Plasmodium Interspersed

    Repeats (PIR) proteins of Plasmodium chabaudi indicates functional

    diversity. Sci Rep. 2016 Mar 21;6:23449. doi: 10.1038/srep23449.

    Dixit (2015). Sulfur alleviates arsenic toxicity by reducing its

    accumulation and modulating proteome, amino acids and thiol

    metabolism in rice leaves. Sci Rep. 2015 Nov 10;5:16205. doi:

    10.1038/srep16205.

    Vera-Estrella et al. (2014). Comparative 2D-DIGE analysis of salinity

    responsive microsomal proteins from leaves of salt-sensitive

    Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. J

    Proteomics. 2014 Jun 2. pii: S1874-3919(14)00288-7. doi:

    10.1016/j.jprot.2014.05.018.

    AS10 698 Alkaline lipase (glyoxysomal lipase)Patui et al. (2014). Lipase activity and antioxidant capacity in coffee

    (Coffea arabica L.) seeds during germination. Plant Sci. 2014 Apr;219-

    220:19-25. doi: 10.1016/j.plantsci.2013.12.014. Epub 2014 Jan 3.

    AS01 014 AMBP | Alpha-1-microglobulinSanchez et al. (2002) Expression of the AMBP gene transcript and its

    two protein products, alpha(1)-microglobulin and bikunin, in mouse

    embryogenesis. Mech Dev, 117:293-8.

    Ostendorf et al. (2006) Antagonism of PDGF-D by human antibody

    CR002 prevents renal scarring in experimental glomerulonephritis. J

    Am Soc Nephrol, 17:1054-62.

    AS06 173 AMBP | BikuninOlsson et al. (2007) Up-regulation of alpha1-microglobulin by

    hemoglobin and reactive oxygen species in hepatoma and blood cell

    lines.Free Radic Biol Med. 42(6):842-51.

    AS04 040 AMBP | BikuninSánchez et al. (2002). Expression of the AMBP gene transcript and its

    two protein products, alpha(1)-microglobulin and bikunin, in mouse

    embryogenesis. Mech Dev. 2002 Sep;117(1-2):293-8.

    AS10 932Amyloid beta oligomer-specific

    monoclonal antibody (OMAB)

    Zhao et al. (2016). Antiamyloidogenic Activity of Aβ42-Binding

    Peptoid in Modulating Amyloid Oligomerization. Small. 2016 Oct 7.

    doi: 10.1002/smll.201602857.

    Richman et al. (2013). In Vitro and Mechanistic Studies of an Anti-

    Amyloidogenic Self-Assembled Cyclic D,L-#-Peptide Architecture. J.

    Americal Chemical Societ, Jan 19.

    Lindhagen-Persson et al. (2010). Amyloid-β Oligomer Specificity

    Mediated by the IgM Isotype – Implications for a Specific Protective

    Mechanism Exerted by Endogenous Auto-Antibodies. PLoS ONE.

    AS10 932B

    Amyloid beta oligomer-specific

    monoclonal antibody (OMAB),

    Biotinylated

    Richman et al. (2013). In Vitro and Mechanistic Studies of an Anti-

    Amyloidogenic Self-Assembled Cyclic D,L-#-Peptide Architecture. J.

    Americal Chemical Societ, Jan 19.

    Lindhagen-Persson et al. (2010). Amyloid-β Oligomer Specificity

    Mediated by the IgM Isotype – Implications for a Specific Protective

    Mechanism Exerted by Endogenous Auto-Antibodies. PLoS ONE.

    AS06 184 AO | Apoplastic ascorbate oxidase

    Kielbowicz et al. (2008) The organ-dependent abundance of a

    Solanum lipid transfer protein is up-regulated upon osmotic

    constraints and associated with cold acclimation ability. J. Expo Bot.

    59:2191-2203.

    AS06 152 AOX1 | Alternative oxidase 1Zalutskaya et al. (2015). The Chlamydomonas reinhardtii alternative

    oxidase 1 is regulated by heat stress. Plant Physiol Biochem. 2015

    Dec;97:229-34. doi: 10.1016/j.plaphy.2015.10.014.

    http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS08 294https://www.ncbi.nlm.nih.gov/pubmed/PMC4977498https://www.ncbi.nlm.nih.gov/pubmed/PMC4977498https://www.ncbi.nlm.nih.gov/pubmed/PMC4977498https://www.ncbi.nlm.nih.gov/pubmed/26996203https://www.ncbi.nlm.nih.gov/pubmed/26996203https://www.ncbi.nlm.nih.gov/pubmed/26996203http://www.ncbi.nlm.nih.gov/pubmed/26552588http://www.ncbi.nlm.nih.gov/pubmed/26552588http://www.ncbi.nlm.nih.gov/pubmed/26552588http://www.ncbi.nlm.nih.gov/pubmed/26552588http://www.ncbi.nlm.nih.gov/pubmed/24892798http://www.ncbi.nlm.nih.gov/pubmed/24892798http://www.ncbi.nlm.nih.gov/pubmed/24892798http://www.ncbi.nlm.nih.gov/pubmed/24892798http://www.ncbi.nlm.nih.gov/pubmed/24892798http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 698http://www.ncbi.nlm.nih.gov/pubmed/24576760http://www.ncbi.nlm.nih.gov/pubmed/24576760http://www.ncbi.nlm.nih.gov/pubmed/24576760http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS01 014http://www.ncbi.nlm.nih.gov/pubmed/12204273http://www.ncbi.nlm.nih.gov/pubmed/12204273http://www.ncbi.nlm.nih.gov/pubmed/12204273http://www.ncbi.nlm.nih.gov/pubmed/16510766http://www.ncbi.nlm.nih.gov/pubmed/16510766http://www.ncbi.nlm.nih.gov/pubmed/16510766http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS06 173http://www.ncbi.nlm.nih.gov/pubmed/17320766http://www.ncbi.nlm.nih.gov/pubmed/17320766http://www.ncbi.nlm.nih.gov/pubmed/17320766http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS04 040http://www.ncbi.nlm.nih.gov/pubmed/12204273http://www.ncbi.nlm.nih.gov/pubmed/12204273http://www.ncbi.nlm.nih.gov/pubmed/12204273http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 932https://www.ncbi.nlm.nih.gov/pubmed/27714968https://www.ncbi.nlm.nih.gov/pubmed/27714968https://www.ncbi.nlm.nih.gov/pubmed/27714968http://pubs.acs.org/doi/abs/10.1021/ja310064vhttp://pubs.acs.org/doi/abs/10.1021/ja310064vhttp://pubs.acs.org/doi/abs/10.1021/ja310064vhttp://www.ncbi.nlm.nih.gov/pubmed/21085663http://www.ncbi.nlm.nih.gov/pubmed/21085663http://www.ncbi.nlm.nih.gov/pubmed/21085663http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 932Bhttp://pubs.acs.org/doi/abs/10.1021/ja310064vhttp://pubs.acs.org/doi/abs/10.1021/ja310064vhttp://pubs.acs.org/doi/abs/10.1021/ja310064vhttp://www.ncbi.nlm.nih.gov/pubmed/21085663http://www.ncbi.nlm.nih.gov/pubmed/21085663http://www.ncbi.nlm.nih.gov/pubmed/21085663http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS06 184http://www.ncbi.nlm.nih.gov/pubmed/18441337http://www.ncbi.nlm.nih.gov/pubmed/18441337http://www.ncbi.nlm.nih.gov/pubmed/18441337http://www.ncbi.nlm.nih.gov/pubmed/18441337http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS06 152http://www.ncbi.nlm.nih.gov/pubmed/26492131http://www.ncbi.nlm.nih.gov/pubmed/26492131http://www.ncbi.nlm.nih.gov/pubmed/26492131

  • Dang et al. (2014). Combined Increases in Mitochondrial

    Cooperation and Oxygen Photoreduction Compensate for Deficiency

    in Cyclic Electron Flow in Chlamydomonas reinhardtii. Plant Cell.

    2014 Jul 2. pii: tpc.114.126375.

    Inman (2013). Characterization of the Alternative Oxidase from the

    Psychrophilic Green Alga Chlamydomonas sp. UWO241. Thesis.

    Bohne et al. (2013). Reciprocal Regulation of Protein Synthesis and

    Carbon Metabolism for Thylakoid Membrane Biogenesis. PLOS,

    Open Access.

    AS04 054AOX1/2 | Plant alternative oxidase

    1 and 2Zhao et al. (2016). Nitrogen deprivation induces cross-tolerance of

    Poa annua callus to salt stress. Biologia Plantarum 60 (3): 543–554.

    Solti et al. (2016). Does a voltage-sensitive outer envelope transport

    mechanism contributes to the chloroplast iron uptake? Planta. 2016

    Dec;244(6):1303-1313. Epub 2016 Aug 19.

    Zhang et al. (2016). A High Temperature-Dependent Mitochondrial

    Lipase EXTRA GLUME1 Promotes Floral Phenotypic Robustness

    against Temperature Fluctuation in Rice (Oryza sativa L.). PLoS

    Genet. 2016 Jul 1;12(7):e1006152. doi:

    10.1371/journal.pgen.1006152. eCollection 2016.

    Meng et al. (2016). Physiological and proteomic responses to salt

    stress in chloroplasts of diploid and tetraploid black locust (Robinia

    pseudoacacia L.). Sci Rep. 2016 Mar 15;6:23098. doi:

    10.1038/srep23098

    Pavlovič et al. (2016). Light-induced gradual activation of

    photosystem II in dark-grown Norway spruce seedlings. Biochim

    Biophys Acta. 2016 Feb 18. pii: S0005-2728(16)30028-7. doi:

    10.1016/j.bbabio.2016.02.009.

    Konert et al.(2015). Protein phosphatase 2A (PP2A) regulatory

    subunit B'γ interacts with cytoplasmic ACONITASE 3 and modulates

    the abundance of AOX1A and AOX1D in Arabidopsis thaliana. New

    Phytol. 2015 Feb;205(3):1250-63. doi: 10.1111/nph.13097. Epub

    2014 Oct 13.

    AS04 054AOX1/2 | Plant alternative oxidase

    1 and 2

    Wang et al. (2015). Proteomic analysis of changes in the Kandelia

    candel chloroplast proteins reveals pathways associated with salt

    tolerance. Plant Sci. 2015 Feb;231:159-72. doi:

    10.1016/j.plantsci.2014.11.013. Epub 2014 Dec 4.

    Dimkovikj and Van Hoewyk (2014). Selenite activates the alternative

    oxidase pathway and alters primary metabolism in Brassica napus

    roots: evidence of a mitochondrial stress response. BMC Plant Biol.

    2014 Sep 30;14:259. doi: 10.1186/s12870-014-0259-6.

    Tsaniklidis et al. (2014). Study of alternative oxidase in seeded and

    parthenocarpic cherry tomato fruits during their development and

    postharvest storage. Acta Physiologiae Plantarum, September 2014.

    (immunolocalization)

    Zubo et al. (2014). Inhibition of the electron transport strongly

    affects transcription and transcript levels in Arabidopsis

    mitochondria. Mitochondrion. 2014 Mar 31. pii: S1567-

    7249(14)00037-3. doi: 10.1016/j.mito.2014.03.011

    AS08 277APC | allophycocyanin alpha and

    beta

    Gandini et al. (2017). The transporter SynPAM71 is located in the

    plasma membrane and thylakoids, and mediates manganese

    tolerance in Synechocystis PCC6803. New Phytol. 2017 Mar 20. doi:

    10.1111/nph.14526.

    Gunnelius et al. (2014). The omega subunit of the RNA polymerase

    core directs transcription efficiency in cyanobacteria. Nucleic Acids

    Res. 2014 Jan 29.

    http://www.ncbi.nlm.nih.gov/pubmed/24989042http://www.ncbi.nlm.nih.gov/pubmed/24989042http://www.ncbi.nlm.nih.gov/pubmed/24989042http://www.ncbi.nlm.nih.gov/pubmed/24989042http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3267&context=etdhttp://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3267&context=etdhttp://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001482http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001482http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001482http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS04 054http://link.springer.com/article/10.1007/s10535-016-0626-2http://link.springer.com/article/10.1007/s10535-016-0626-2https://www.ncbi.nlm.nih.gov/pubmed/27541495https://www.ncbi.nlm.nih.gov/pubmed/27541495https://www.ncbi.nlm.nih.gov/pubmed/27541495https://www.ncbi.nlm.nih.gov/pubmed/27367609https://www.ncbi.nlm.nih.gov/pubmed/27367609https://www.ncbi.nlm.nih.gov/pubmed/27367609https://www.ncbi.nlm.nih.gov/pubmed/27367609https://www.ncbi.nlm.nih.gov/pubmed/27367609http://www.ncbi.nlm.nih.gov/pubmed/26975701http://www.ncbi.nlm.nih.gov/pubmed/26975701http://www.ncbi.nlm.nih.gov/pubmed/26975701http://www.ncbi.nlm.nih.gov/pubmed/26975701http://www.ncbi.nlm.nih.gov/pubmed/26901522http://www.ncbi.nlm.nih.gov/pubmed/26901522http://www.ncbi.nlm.nih.gov/pubmed/26901522http://www.ncbi.nlm.nih.gov/pubmed/26901522http://www.ncbi.nlm.nih.gov/pubmed/25307043http://www.ncbi.nlm.nih.gov/pubmed/25307043http://www.ncbi.nlm.nih.gov/pubmed/25307043http://www.ncbi.nlm.nih.gov/pubmed/25307043http://www.ncbi.nlm.nih.gov/pubmed/25307043http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS04 054http://www.ncbi.nlm.nih.gov/pubmed/25576001http://www.ncbi.nlm.nih.gov/pubmed/25576001http://www.ncbi.nlm.nih.gov/pubmed/25576001http://www.ncbi.nlm.nih.gov/pubmed/25576001http://www.ncbi.nlm.nih.gov/pubmed/25267309http://www.ncbi.nlm.nih.gov/pubmed/25267309http://www.ncbi.nlm.nih.gov/pubmed/25267309http://www.ncbi.nlm.nih.gov/pubmed/25267309http://link.springer.com/article/10.1007/s11738-014-1663-0http://link.springer.com/article/10.1007/s11738-014-1663-0http://link.springer.com/article/10.1007/s11738-014-1663-0http://link.springer.com/article/10.1007/s11738-014-1663-0http://www.ncbi.nlm.nih.gov/pubmed/24699356http://www.ncbi.nlm.nih.gov/pubmed/24699356http://www.ncbi.nlm.nih.gov/pubmed/24699356http://www.ncbi.nlm.nih.gov/pubmed/24699356http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS08 277https://www.ncbi.nlm.nih.gov/pubmed/28318016https://www.ncbi.nlm.nih.gov/pubmed/28318016https://www.ncbi.nlm.nih.gov/pubmed/28318016https://www.ncbi.nlm.nih.gov/pubmed/28318016http://www.ncbi.nlm.nih.gov/pubmed/24476911http://www.ncbi.nlm.nih.gov/pubmed/24476911http://www.ncbi.nlm.nih.gov/pubmed/24476911

  • Hernandez-Prieto et al. (2011). The small CAB-like proteins of the

    cyanobacterium Synechocystis sp. PCC 6803: Their involvement in

    chlorophyll biogenesis for Photosystem II. Bioch.Bioph. Acta.

    Gantt & Lipschultz (1974). Phycobilisome structure by immuno-

    electron microscopy. J. Phycology, Vol. 13:3, pages: 185-192.

    (immunolocalization)

    Gantt & Lipschultz (1974). Phycobilisomes of Porphyridium

    cruentum: Pigment Analysis. Biochem. 13:2960. Gantt E & C

    Lipschultz (1977). Probing phycobilisome structure by immuno-

    electron microscopy. J Phycol. 13:18

    AS08 368 APX | L-ascorbate peroxidase

    Ko et al. (2016). Constitutive expression of a fungus-inducible

    carboxylesterase improves disease resistance in transgenic pepper

    plants. Planta. 2016 Aug; 244(2):379-92. doi: 10.1007/s00425-016-

    2514-6. Epub 2016 Apr 13.

    Yin et al. (2016). Comprehensive Mitochondrial Metabolic Shift

    during the Critical Node of Seed Ageing in Rice. PLoS One. 2016 Apr

    28;11(4):e0148013. doi: 10.1371/journal.pone.0148013. eCollection

    2016.

    Vuleta et al. (2016). Adaptive flexibility of enzymatic antioxidants

    SOD, APX and CAT to high light stress: The clonal perennial monocot

    Iris pumila as a study case. Plant Physiol Biochem. 2016

    Mar;100:166-73. doi: 10.1016/j.plaphy.2016.01.011. Epub 2016 Jan

    19

    Hattab et al. (2015). Characterisation of lead-induced stress

    molecular biomarkers in Medicago sativa plants. Environm. Exp.

    Botany. Volume 123, March 2016, Pages 1–12.

    Parys et al. (2014). Metabolic Responses to Lead of Metallicolous

    and Nonmetallicolous Populations of Armeria maritima. Arch

    Environ Contam Toxicol. 2014 Jul 29.

    Feifei et al. (2014). Comparison of Leaf Proteomes of Cassava

    (Manihot esculenta Crantz) Cultivar NZ199 Diploid and

    Autotetraploid Genotypes. PLoS One. 2014 Apr 11;9(4):e85991. doi:

    10.1371/journal.pone.0085991. eCollection 2014.

    AS08 368 APX | L-ascorbate peroxidase Sobrino-Plata et al. (2014). Glutathione is a key antioxidant

    metabolite to cope with mercury and cadmium stress. Plant Soil,

    DOI 10.1007/s11104-013-2006-4.

    AS08 325 ARF1 | ADP-ribosylation factor 1

    Ma et al. (2016). Phosphatidylserine Synthase Controls Cell

    Elongation Especially in the Uppermost Internode in Rice by

    Regulation of Exocytosis. PLoS One. 2016 Apr 7;11(4):e0153119. doi:

    10.1371/journal.pone.0153119. eCollection 2016.

    Yüzbaşıoğlu et al. (2016). Functional specialization of Arf paralogs in

    nodules of model legume, Medicago truncatula. Plant Growth Regul.

    DOI: 10.1007/s10725-016-0227-2.

    Marais et al. (2015). The Qb-SNARE Memb11 interacts specifically

    with Arf1 in the Golgi apparatus of Arabidopsis thaliana. J Exp Bot.

    2015 Jul 24. pii: erv373.

    Wang et al. (2015). UDP-D-galactose synthesis by UDP-glucose 4-

    epimerase 4 is required for organization of the trans-Golgi

    network/early endosome in Arabidopsis thaliana root epidermal

    cells. J. Plant Res. 2015 May 27. (immunogold application)

    Komsic-Buchmann et al. (2014). The Contractile Vacuole as a Key

    Regulator of Cellular Water Flow in Chlamydomonas reinhardtii.

    Eukaryotic cell (13), Issue 11: 1421-30.

    http://w3.ualg.pt/~mfutschik/miguel.2011.pdfhttp://w3.ualg.pt/~mfutschik/miguel.2011.pdfhttp://w3.ualg.pt/~mfutschik/miguel.2011.pdfhttp://onlinelibrary.wiley.com/doi/10.1111/j.1529-8817.1977.tb02912.x/abstracthttp://onlinelibrary.wiley.com/doi/10.1111/j.1529-8817.1977.tb02912.x/abstracthttp://onlinelibrary.wiley.com/doi/10.1111/j.1529-8817.1977.tb02912.x/abstracthttp://www.ncbi.nlm.nih.gov/pubmed/4407620http://www.ncbi.nlm.nih.gov/pubmed/4407620http://www.ncbi.nlm.nih.gov/pubmed/4407620http://www.ncbi.nlm.nih.gov/pubmed/4407620http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS08 368https://www.ncbi.nlm.nih.gov/pubmed/27074836https://www.ncbi.nlm.nih.gov/pubmed/27074836https://www.ncbi.nlm.nih.gov/pubmed/27074836https://www.ncbi.nlm.nih.gov/pubmed/27074836https://www.ncbi.nlm.nih.gov/pubmed/27124767https://www.ncbi.nlm.nih.gov/pubmed/27124767https://www.ncbi.nlm.nih.gov/pubmed/27124767https://www.ncbi.nlm.nih.gov/pubmed/27124767http://www.ncbi.nlm.nih.gov/pubmed/26841194http://www.ncbi.nlm.nih.gov/pubmed/26841194http://www.ncbi.nlm.nih.gov/pubmed/26841194http://www.ncbi.nlm.nih.gov/pubmed/26841194http://www.ncbi.nlm.nih.gov/pubmed/26841194http://www.sciencedirect.com/science/article/pii/S0098847215300265http://www.sciencedirect.com/science/article/pii/S0098847215300265http://www.sciencedirect.com/science/article/pii/S0098847215300265http://www.ncbi.nlm.nih.gov/pubmed/25070267http://www.ncbi.nlm.nih.gov/pubmed/25070267http://www.ncbi.nlm.nih.gov/pubmed/25070267http://www.ncbi.nlm.nih.gov/pubmed/24727655http://www.ncbi.nlm.nih.gov/pubmed/24727655http://www.ncbi.nlm.nih.gov/pubmed/24727655http://www.ncbi.nlm.nih.gov/pubmed/24727655http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS08 368http://link.springer.com/article/10.1007%2Fs11104-013-2006-4http://link.springer.com/article/10.1007%2Fs11104-013-2006-4http://link.springer.com/article/10.1007%2Fs11104-013-2006-4http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS08 325https://www.ncbi.nlm.nih.gov/pubmed/27055010https://www.ncbi.nlm.nih.gov/pubmed/27055010https://www.ncbi.nlm.nih.gov/pubmed/27055010https://www.ncbi.nlm.nih.gov/pubmed/27055010http://link.springer.com/article/10.1007/s10725-016-0227-2http://link.springer.com/article/10.1007/s10725-016-0227-2http://link.springer.com/article/10.1007/s10725-016-0227-2http://www.ncbi.nlm.nih.gov/pubmed/26208648http://www.ncbi.nlm.nih.gov/pubmed/26208648http://www.ncbi.nlm.nih.gov/pubmed/26208648http://www.ncbi.nlm.nih.gov/pubmed/26013532http://www.ncbi.nlm.nih.gov/pubmed/26013532http://www.ncbi.nlm.nih.gov/pubmed/26013532http://www.ncbi.nlm.nih.gov/pubmed/26013532http://www.ncbi.nlm.nih.gov/pubmed/25217463http://www.ncbi.nlm.nih.gov/pubmed/25217463http://www.ncbi.nlm.nih.gov/pubmed/25217463

  • Frescatada-Rosa et al. (2014). High Lipid Order of Arabidopsis Cell

    Plate Membranes Mediated by Sterol and DYNAMIN-RELATED

    PROTEIN1A Function. Plant J. 2014 Sep 18. doi: 10.1111/tpj.12674.

    Ranocha et al. (2013). Arabidopsis WAT1 is a vacuolar auxin

    transport facilitator required for auxin homoeostasis. Nat Commun.

    2013;4:2625. doi: 10.1038/ncomms3625.

    Liu et al. (2013). Brittle Culm1, a COBRA-Like Protein, Functions in

    Cellulose Assembly through Binding Cellulose Microfibrils. PLoS

    Genet 9(8): e1003704. doi:10.1371/journal.pgen.1003704 (Oryza

    sativa, western blot)

    AS15 3083ARSA | targeting of tail-anchored

    proteins

    Formigheri et al. (2013). Biogenesis of photosynthetic complexes in

    the chloroplast of Chlamydomonas reinhardtii requires ARSA1, a

    homolog of prokaryotic arsenite transporter and eukaryotic TRC40

    for guided entry of tail-anchored proteins. Plant J. 2013

    Mar;73(5):850-61. doi: 10.1111/tpj.12077. Epub 2012 Dec 28.

    AS14 2816ASH1 | Histone-lysine N-

    methyltransferase ASH1

    Kahn et al. (2016). Interdependence of PRC1 and PRC2 for

    recruitment to Polycomb Response Elements. Nucleic Acids Res.

    2016 Aug 23. pii: gkw701. [Epub ahead of print].

    Lee et al. (2015). Genome-wide activities of Polycomb complexes

    control pervasive transcription. Genome Res. 2015 Aug;25(8):1170-

    81. doi: 10.1101/gr.188920.114. Epub 2015 May 18.

    AS08 288ASNA1 | Arsenical pump-driving

    ATPase

    Hemmingsson et al. (2009) ASNA1, an ATPase targeting tail-

    anchored proteins, regulates melanoma cell growth and sensitivity

    to cisplatin and arsenite. Cancer Chemother.Pharmacol. 3:491-9.

    AS08 323ASY1 | Asynaptic phenotype

    protein 1

    Boden et al. (2007). Expression and functional analysis of TaASY1

    during meiosis of bread wheat (Triticum aestivum).BMC Mol. Biol.

    8:65

    AS13 2717ASyO2 | Mouse anti-human alpha-

    synuclein | oligomer-specific Brännström et al. (2014). A Generic Method for Design of Oligomer-

    Specific Antibodies. PLoS ONE. DOI: 10.1371/journal.pone.0090857.

    AS13 2717B

    ASyO2-biotinylated | Mouse anti-

    human alpha-synuclein | oligomer-

    specific

    Brännström et al. (2014). A Generic Method for Design of Oligomer-

    Specific Antibodies. PLoS ONE. DOI: 10.1371/journal.pone.0090857.

    AS13 2718ASyO5 | Mouse anti-human alpha-

    synuclein | oligomer-specific

    Svarcbahs et al. (2016). Inhibition of Prolyl Oligopeptidase Restores

    Spontaneous Motor Behavior in the α-Synuclein Virus Vector-Based

    Parkinson's Disease Mouse Model by Decreasing α-Synuclein

    Oligomeric Species in Mouse Brain. J Neurosci. 2016 Dec

    7;36(49):12485-12497.

    Brännström et al. (2014). A Generic Method for Design of Oligomer-

    Specific Antibodies. PLoS ONE. DOI: 10.1371/journal.pone.0090857.

    AS13 2718B

    ASyO5-biotinylated | Mouse anti-

    human alpha-synuclein | oligomer-

    specific

    Brännström et al. (2014). A Generic Method for Design of Oligomer-

    Specific Antibodies. PLoS ONE. DOI: 10.1371/journal.pone.0090857.

    AS09 483AtCCaP1 | vacuolar calcium-

    binding protein-related

    Ide et al. (2007). Transcriptional Induction of Two Genes for CCaPs,

    Novel Cytosolic Proteins, in Arabidopsis thaliana in the Dark. Plant

    Cell Physiol. 1:54-65.

    AS15 2831 ATG4 | Autophagy protein 4Pérez-Pérez et al. (2016). Control of Autophagy in Chlamydomonas

    Is Mediated through Redox-Dependent Inactivation of the ATG4

    Protease. Plant Physiol. 2016 Dec;172(4):2219-2234.

    Chen et al. (2016). The role of nitric oxide signalling in response to

    salt stress in Chlamydomonas reinhardtii. Planta. 2016

    Sep;244(3):651-69. doi: 10.1007/s00425-016-2528-0. Epub 2016

    Apr 26.

    http://www.ncbi.nlm.nih.gov/pubmed/25234576http://www.ncbi.nlm.nih.gov/pubmed/25234576http://www.ncbi.nlm.nih.gov/pubmed/25234576http://www.ncbi.nlm.nih.gov/pubmed/24129639http://www.ncbi.nlm.nih.gov/pubmed/24129639http://www.ncbi.nlm.nih.gov/pubmed/24129639http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1003704#s4http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1003704#s4http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1003704#s4http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1003704#s4http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS15 3083http://www.ncbi.nlm.nih.gov/pubmed/23167510http://www.ncbi.nlm.nih.gov/pubmed/23167510http://www.ncbi.nlm.nih.gov/pubmed/23167510http://www.ncbi.nlm.nih.gov/pubmed/23167510http://www.ncbi.nlm.nih.gov/pubmed/23167510http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS14 2816https://www.ncbi.nlm.nih.gov/pubmed/27557709https://www.ncbi.nlm.nih.gov/pubmed/27557709https://www.ncbi.nlm.nih.gov/pubmed/27557709http://www.ncbi.nlm.nih.gov/pubmed/25986499http://www.ncbi.nlm.nih.gov/pubmed/25986499http://www.ncbi.nlm.nih.gov/pubmed/25986499http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS08 288http://www.ncbi.nlm.nih.gov/pubmed/18478230http://www.ncbi.nlm.nih.gov/pubmed/18478230http://www.ncbi.nlm.nih.gov/pubmed/18478230http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS08 323http://www.ncbi.nlm.nih.gov/pubmed/17683575http://www.ncbi.nlm.nih.gov/pubmed/17683575http://www.ncbi.nlm.nih.gov/pubmed/17683575http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS13 2717http://www.ncbi.nlm.nih.gov/pubmed/24618582http://www.ncbi.nlm.nih.gov/pubmed/24618582http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS13 2717Bhttp://www.ncbi.nlm.nih.gov/pubmed/24618582http://www.ncbi.nlm.nih.gov/pubmed/24618582http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS13 2718https://www.ncbi.nlm.nih.gov/pubmed/27927963https://www.ncbi.nlm.nih.gov/pubmed/27927963https://www.ncbi.nlm.nih.gov/pubmed/27927963https://www.ncbi.nlm.nih.gov/pubmed/27927963https://www.ncbi.nlm.nih.gov/pubmed/27927963http://www.ncbi.nlm.nih.gov/pubmed/24618582http://www.ncbi.nlm.nih.gov/pubmed/24618582http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS13 2718Bhttp://www.ncbi.nlm.nih.gov/pubmed/24618582http://www.ncbi.nlm.nih.gov/pubmed/24618582http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 483http://www.ncbi.nlm.nih.gov/pubmed/17145720http://www.ncbi.nlm.nih.gov/pubmed/17145720http://www.ncbi.nlm.nih.gov/pubmed/17145720http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS15 2831https://www.ncbi.nlm.nih.gov/pubmed/27756818https://www.ncbi.nlm.nih.gov/pubmed/27756818https://www.ncbi.nlm.nih.gov/pubmed/27756818https://www.ncbi.nlm.nih.gov/pubmed/27116428https://www.ncbi.nlm.nih.gov/pubmed/27116428https://www.ncbi.nlm.nih.gov/pubmed/27116428https://www.ncbi.nlm.nih.gov/pubmed/27116428

  • AS14 2769 ATG8 | Autophagy-related protein

    Chen et al. (2016). The role of nitric oxide signalling in response to

    salt stress in Chlamydomonas reinhardtii. Planta. 2016

    Sep;244(3):651-69. doi: 10.1007/s00425-016-2528-0. Epub 2016

    Apr 26.

    Gorovits et al. (2016). Tomato yellow leaf curl virus confronts host

    degradation by sheltering in small/midsized protein aggregates.

    Virus Res. 2016 Feb 2;213:304-13. doi:

    10.1016/j.virusres.2015.11.020. Epub 2015 Dec 1

    AS08 304AtpA | Alpha subunit of ATP

    synthase, chloroplastic

    Murcha et al. (2016). Plant specific Preprotein and Amino Acid

    Transporter proteins are required for tRNA import into

    mitochondria. Plant Physiol. 2016 Oct 27. pii: pp.01519.2016.

    Camejo et al. (2015). Proteomic identification of mitochondrial

    carbonylated proteins in two maturation stages of pepper fruits.

    Proteomics. 2015 Aug;15(15):2634-42. doi:

    10.1002/pmic.201400370.

    Yang et al. (2015). Purification and biochemical characterization of

    the ATP synthase from Heliobacterium modesticaldum. Protein Expr

    Purif. 2015 May 12. pii: S1046-5928(15)00111-4. doi:

    10.1016/j.pep.2015.05.006.

    AS08 370ATPase | ATP synthase, whole

    enzyme

    Liu et al. (2011). Identification of differentially expressed salt-

    responsive proteins in roots of two perennial grass species

    contrasting in salinity tolerance. J Plant Physiol. Nov 7

    AS03 030

    AtpB | Beta subunit of ATP

    synthase, chloroplastic +

    mitochondrial (chicken)

    Quesada et al. (2011). Arabidopsis RUGOSA2 encodes an mTERF

    family member required for mitochondrion, chloroplast and leaf

    development. Plant J. Nov;68(4):738-53. doi: 10.1111/j.1365-

    313X.2011.04726.x. Epub 2011 Sep 13.

    Andersson et. al (2009). Co-localization of P-glycerate kinase, P-

    ribulokinase, ADP-glucose pyrophosphorylase and Rubisco activase

    with CF1 in pea leaf chloroplasts. Plant Science 177:136-14.

    (immunolocalization)

    Morash et al. (2007). Macromolecular dynamics of the

    photosynthetic system over a seasonal developmental progression

    in Spartina alterniflora. Canadian J. of Botany, 2007, 85(5): 476-483,

    10.1139/B07-043.

    AS05 085

    AtpB | Beta subunit of ATP

    synthase, chloroplastic +

    mitochondrial (rabbit)

    Nikolova et al. (2017). Temperature induced remodeling of the

    photosynthetic machinery tunes photosynthesis in a thermophyllic

    alga. Plant Physiol. 2017 Mar 7. pii: pp.00110.2017. doi:

    10.1104/pp.17.00110.

    Jiang et al. (2017). IFT57 stabilizes the assembled intraflagellar

    transport complex and mediates transport of motility-related

    flagellar cargo. J Cell Sci. 2017 Mar 1;130(5):879-891. doi:

    10.1242/jcs.199117.

    Li et al. (2016). Characterization of a novel β-barrel protein

    (AtOM47) from the mitochondrial outer membrane of Arabidopsis

    thaliana. J Exp Bot. 2016 Nov;67(21):6061-6075. Epub 2016 Oct 6.

    Jallet et al. (2016). Photosynthetic physiology and biomass

    partitioning in the model diatom Phaeodactylum tricornutum grown

    in a sinusoidal light regime. Algal research,

    doi:10.1016/j.algal.2016.05.014.

    Ferroni et al. (2016). Light acclimation in the lycophyte Selaginella

    martensii depends on changes in the amount of photosystems and

    on the flexibility of the light-harvesting complex II antenna

    association with both photosystems. New Phytol. 2016 Apr 5. doi:

    10.1111/nph.13939.

    Heinnickel et al. (2016). Tetratricopeptide repeat protein protects

    photosystem I from oxidative disruption during assembly. Proc Natl

    Acad Sci U S A. 2016 Mar 8;113(10):2774-9. doi:

    10.1073/pnas.1524040113

    http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS14 2769https://www.ncbi.nlm.nih.gov/pubmed/27116428https://www.ncbi.nlm.nih.gov/pubmed/27116428https://www.ncbi.nlm.nih.gov/pubmed/27116428https://www.ncbi.nlm.nih.gov/pubmed/27116428http://www.ncbi.nlm.nih.gov/pubmed/26654789http://www.ncbi.nlm.nih.gov/pubmed/26654789http://www.ncbi.nlm.nih.gov/pubmed/26654789http://www.ncbi.nlm.nih.gov/pubmed/26654789http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS08 304https://www.ncbi.nlm.nih.gov/pubmed/27789739https://www.ncbi.nlm.nih.gov/pubmed/27789739https://www.ncbi.nlm.nih.gov/pubmed/27789739http://www.ncbi.nlm.nih.gov/pubmed/25913852http://www.ncbi.nlm.nih.gov/pubmed/25913852http://www.ncbi.nlm.nih.gov/pubmed/25913852http://www.ncbi.nlm.nih.gov/pubmed/25913852http://www.ncbi.nlm.nih.gov/pubmed/25979464http://www.ncbi.nlm.nih.gov/pubmed/25979464http://www.ncbi.nlm.nih.gov/pubmed/25979464http://www.ncbi.nlm.nih.gov/pubmed/25979464http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS08 370http://www.ncbi.nlm.nih.gov/pubmed/22070977http://www.ncbi.nlm.nih.gov/pubmed/22070977http://www.ncbi.nlm.nih.gov/pubmed/22070977http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS03 030http://www.ncbi.nlm.nih.gov/pubmed/21790815http://www.ncbi.nlm.nih.gov/pubmed/21790815http://www.ncbi.nlm.nih.gov/pubmed/21790815http://www.ncbi.nlm.nih.gov/pubmed/21790815http://www.sciencedirect.com/science/article/pii/S0168945209001253http://www.sciencedirect.com/science/article/pii/S0168945209001253http://www.sciencedirect.com/science/article/pii/S0168945209001253http://www.sciencedirect.com/science/article/pii/S0168945209001253http://www.nrcresearchpress.com/doi/abs/10.1139/B07-043#.VSeMWuTFveghttp://www.nrcresearchpress.com/doi/abs/10.1139/B07-043#.VSeMWuTFveghttp://www.nrcresearchpress.com/doi/abs/10.1139/B07-043#.VSeMWuTFveghttp://www.nrcresearchpress.com/doi/abs/10.1139/B07-043#.VSeMWuTFveghttp://www.agrisera.com/shop?funk=visa_artikel&artnr=AS05 085https://www.ncbi.nlm.nih.gov/pubmed/28270628https://www.ncbi.nlm.nih.gov/pubmed/28270628https://www.ncbi.nlm.nih.gov/pubmed/28270628https://www.ncbi.nlm.nih.gov/pubmed/28270628https://www.ncbi.nlm.nih.gov/pubmed/28104816https://www.ncbi.nlm.nih.gov/pubmed/28104816https://www.ncbi.nlm.nih.gov/pubmed/28104816https://www.ncbi.nlm.nih.gov/pubmed/28104816https://www.ncbi.nlm.nih.gov/pubmed/27811077https://www.ncbi.nlm.nih.gov/pubmed/27811077https://www.ncbi.nlm.nih.gov/pubmed/27811077http://www.sciencedirect.com/science/article/pii/S2211926416301709http://www.sciencedirect.com/science/article/pii/S2211926416301709http://www.sciencedirect.com/science/article/pii/S2211926416301709http://www.sciencedirect.com/science/article/pii/S2211926416301709https://www.ncbi.nlm.nih.gov/pubmed/27058989https://www.ncbi.nlm.nih.gov/pubmed/27058989https://www.ncbi.nlm.nih.gov/pubmed/27058989https://www.ncbi.nlm.nih.gov/pubmed/27058989https://www.ncbi.nlm.nih.gov/pubmed/27058989http://www.ncbi.nlm.nih.gov/pubmed/26903622http://www.ncbi.nlm.nih.gov/pubmed/26903622http://www.ncbi.nlm.nih.gov/pubmed/26903622http://www.ncbi.nlm.nih.gov/pubmed/26903622

  • Dixit (2015). Sulfur alleviates arsenic toxicity by reducing its

    accumulation and modulating proteome, amino acids and thiol

    metabolism in rice leaves. Sci Rep. 2015 Nov 10;5:16205. doi:

    10.1038/srep16205.

    Shah and Duncan (2015). Aerobic growth of Escherichia coli is

    reduced and ATP synthesis is selectively inhibited when five C-

    terminal residues are deleted from the ϵ subunit of ATP synthase. J

    Biol Chem. 2015 Jul 9. pii: jbc.M115.665059.

    Rurek et al. (2015). Biogenesis of mitochondria in cauliflower

    (Brassica oleracea var. botrytis) curds subjected to temperature

    stress and recovery involves regulation of the complexome,

    respiratory chain activity, organellar translation and ultrastructure.

    Biochim Biophys Acta. 2015 Jan 21. pii: S0005-2728(15)00016-X. doi:

    10.1016/j.bbabio.2015.01.005.

    Eom et al. (2014). Bacillus subtilis HJ18-4 from Traditional

    Fermented Soybean Food Inhibits Bacillus cereus Growth and Toxin-

    Related Genes. J Food Sci. 2014 Nov;79(11):M2279-87. doi:

    10.1111/1750-3841.12569. Epub 2014 Oct 30.

    Lintala et al. (2013). Arabidopsis tic62 trol mutant lacking thylakoid

    bound ferredoxin-NADP+ oxidoreductase shows distinct metabolic

    phenotype. Mol Plant Sep 16.

    Teng et al. (2013). Mitochondrial Genes of Dinoflagellates Are

    Transcribed by a Nuclear-Encoded Single-Subunit RNA Polymerase.

    PLOS ONE, June 2013. (immuofluorescence)

    Rasala et al. (2013). Expanding the spectral palette of fluorescent

    proteins for the green microalga Chlamydomonas reinhardtii. Plant

    J. March 23.

    Heinnickel et al. (2013). Novel thylakoid membrane greencut protein

    cpld38 impacts accumulation of the cytochrome b6f complex and

    associated regulatory processes. J. Biol. Chem. Jan 9.

    AS05 085-10

    AtpB | Beta subunit of ATP

    synthase, chloroplastic +

    mitochondrial (rabbit) (10 µl)

    Rurek et al. (2015). Biogenesis of mitochondria in cauliflower

    (Brassica oleracea var. botrytis) curds subjected to temperature

    stress and recovery involves regulation of the complexome,

    respiratory chain activity, organellar translation and ultrastructure.

    Biochim Biophys Acta. 2015 Jan 21. pii: S0005-2728(15)00016-X. doi:

    10.1016/j.bbabio.2015.01.005.

    Eom et al. (2014). Bacillus subtilis HJ18-4 from Traditional

    Fermented Soybean Food Inhibits Bacillus cereus Growth and Toxin-

    Related Genes. J Food Sci. 2014 Nov;79(11):M2279-87. doi:

    10.1111/1750-3841.12569. Epub 2014 Oct 30.

    Lintala et al. (2013). Arabidopsis tic62 trol mutant lacking thylakoid

    bound ferredoxin-NADP+ oxidoreductase shows distinct metabolic

    phenotype. Mol Plant Sep 16.

    Teng et al. (2013). Mitochondrial Genes of Dinoflagellates Are

    Transcribed by a Nuclear-Encoded Single-Subunit RNA Polymerase.

    PLOS ONE, June 2013. (immuofluorescence)

    Rasala et al. (2013). Expanding the spectral palette of fluorescent

    proteins for the green microalga Chlamydomonas reinhardtii. Plant

    J. March 23.

    Heinnickel et al. (2013). Novel thylakoid membrane greencut protein

    cpld38 impacts accumulation of the cytochrome b6f complex and

    associated regulatory processes. J. Biol. Chem. Jan 9.

    AS03 030SAtpB | Positive

    control/quantitation standard

    Fraser et al. (2013). Photophysiological and Photosynthetic Complex

    Changes during Iron Starvation in Synechocystis sp. PCC 6803 and

    Synechococcus elongatus PCC 7942. PLOS ONE.

    http://www.ncbi.nlm.nih.gov/pubmed/26552588http://www.ncbi.nlm.nih.gov/pubmed/26552588http://www.ncbi.nlm.nih.gov/pubmed/26552588http://www.ncbi.nlm.nih.gov/pubmed/26552588http://www.ncbi.nlm.nih.gov/pubmed/26160173http://www.ncbi.nlm.nih.gov/pubmed/26160173http://www.ncbi.nlm.nih.gov/pubmed/26160173http://www.ncbi.nlm.nih.gov/pubmed/26160173http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25359543http://www.ncbi.nlm.nih.gov/pubmed/25359543http://www.ncbi.nlm.nih.gov/pubmed/25359543http://www.ncbi.nlm.nih.gov/pubmed/25359543http://www.ncbi.nlm.nih.gov/pubmed/24043709http://www.ncbi.nlm.nih.gov/pubmed/24043709http://www.ncbi.nlm.nih.gov/pubmed/24043709http://www.plosone.org/article/info:doi/10.1371/journal.pone.0065387http://www.plosone.org/article/info:doi/10.1371/journal.pone.0065387http://www.plosone.org/article/info:doi/10.1371/journal.pone.0065387http://www.ncbi.nlm.nih.gov/pubmed/23521393http://www.ncbi.nlm.nih.gov/pubmed/23521393http://www.ncbi.nlm.nih.gov/pubmed/23521393http://www.ncbi.nlm.nih.gov/pubmed/23303190http://www.ncbi.nlm.nih.gov/pubmed/23303190http://www.ncbi.nlm.nih.gov/pubmed/23303190http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS05 085-10http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25617518http://www.ncbi.nlm.nih.gov/pubmed/25359543http://www.ncbi.nlm.nih.gov/pubmed/25359543http://www.ncbi.nlm.nih.gov/pubmed/25359543http://www.ncbi.nlm.nih.gov/pubmed/25359543http://www.ncbi.nlm.nih.gov/pubmed/24043709http://www.ncbi.nlm.nih.gov/pubmed/24043709http://www.ncbi.nlm.nih.gov/pubmed/24043709http://www.plosone.org/article/info:doi/10.1371/journal.pone.0065387http://www.plosone.org/article/info:doi/10.1371/journal.pone.0065387http://www.plosone.org/article/info:doi/10.1371/journal.pone.0065387http://www.ncbi.nlm.nih.gov/pubmed/23521393http://www.ncbi.nlm.nih.gov/pubmed/23521393http://www.ncbi.nlm.nih.gov/pubmed/23521393http://www.ncbi.nlm.nih.gov/pubmed/23303190http://www.ncbi.nlm.nih.gov/pubmed/23303190http://www.ncbi.nlm.nih.gov/pubmed/23303190http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS03 030Shttp://www.plosone.org/article/info:doi/10.1371/journal.pone.0059861http://www.plosone.org/article/info:doi/10.1371/journal.pone.0059861http://www.plosone.org/article/info:doi/10.1371/journal.pone.0059861

  • AS08 312AtpC | Gamma subunit of ATP

    synthase, chloroplastic

    Naranjo et al. (2015). The chloroplast NADPH thioredoxin reductase

    C, NTRC, controls non-photochemical quenching of light energy and

    photosynthetic electron transport in Arabidopsis. Plant Cell Environ.

    2015 Oct 17. doi: 10.1111/pce.12652.

    Dwyer et al. (2012). Antisense reductions in the PsbO protein of

    photosystem II leads to decreased quantum yield but similar

    maximal photosynthetic rates. J. Ex. Bot. 63(13):4781-95.

    AS10 931

    AtPCaP1 | Arabidopsis thaliana

    plasma membrane cation-binding

    protein-1

    Ide et al. (2007) Molecular properties of a novel, hydrophilic cation-

    binding protein associated with the plasma membrane. J. Exp.

    Botany, 58: 1173-1183.

    Nagasaki et al. (2008) A hydrophilic cation-binding protein of

    Arabidopsis thaliana, AtPCaP1, is localized to plasma membrane via

    N-myristoylation and interacts with calmodulin and the

    posphatidylinositol phosphates PtdIns(3,4,5)P3 and PtdIns(3,5)P2.

    FEBS J. 275: 2267-2282.

    AS10 1604 AtpF | CF0I subunit of ATP synthase

    Grieco et al. (2015). Light-harvesting II antenna trimers connect

    energetically the entire photosynthetic machinery - including both

    photosystems II and I. Biochim Biophys Acta. 2015 Jun-Jul;1847(6-

    7):607-19. doi: 10.1016/j.bbabio.2015.03.004. Epub 2015 Apr 3.

    Yap at al. (2015). AEF1/MPR25 is implicated in RNA editing of plastid

    atpF and mitochondrial nad5 and also promotes atpF splicing in

    Arabidopsis and rice. Plant J. 2015 Jan 13. doi: 10.1111/tpj.12756.

    AS05 071AtpH | ATP synthase subunit c,

    chloroplastic

    Nath et al. (2016). A Nitrogen-Fixing Subunit Essential for

    Accumulating 4Fe-4S-Containing Photosystem I Core Proteins. Plant

    Physiol. 2016 Dec;172(4):2459-2470. Epub 2016 Oct 26.

    Lawrence et al. (2010). Recombinant production and purification of

    the subunit c of chloroplast ATP synthase. Protein Expression and

    Purification 76: 15-24.

    AS09 591AtpH | ATP synthase subunit c,

    chloroplastic

    Schulz et al. (2017). Molecular architecture of the N-type ATPase

    rotor ring from Burkholderia pseudomallei. EMBO Rep. 2017

    Apr;18(4):526-535. doi: 10.15252/embr.201643374.

    AS12 1858BAK1 | Brassinosteroid insensitive

    1-associated receptor kinase 1

    Bundy et al. (2016). A mutation in the catalytic subunit of the

    glycosylphosphatidyl inositol transamidase disrupts growth, fertility

    and stomata forma formation in Arabidopsis. Plant Physiology.

    DOI:10.1104/pp.16.00339.

    Tateda et al. (2014). Salicylic Acid Regulates Arabidopsis Microbial

    Pattern Receptor Kinase Levels and Signaling.Plant Cell. 2014 Oct 14.

    pii: tpc.114.131938.

    AS11 1737

    Beta-CA1, beta-CA2 | carbonic

    anhydrase | mitochondrial |

    Chlamydomonas

    Muranaka et al. (2015). TEF30 interacts with photosystem II

    monomers and is involved in the repair of photodamaged

    photosystem II in Chlamydomonas reinhardtii. Plant Physiol. 2015

    Dec 7. pii: pp.01458.2015.

    Tirumani et al. (2014). Regulation of CCM genes in Chlamydomonas

    reinhardtii during conditions of light-dark cycles in synchronous

    cultures. Plant Mol Biol. 2014 Mar 4.

    Renberg et al. (2010). A Metabolomic Approach to Study Major

    Metabolite Changes during Acclimation to Limiting CO2 in

    Chlamydomonas reinhardtii. Plant physiol. 154: 187-196.

    AS09 481 BiP | Lumenal-binding protein Je et al. (2016). Signaling from maize organ primordia via FASCIATED

    EAR3 regulates stem cell proliferation and yield traits. Nat Genet.

    2016 Jul;48(7):785-91. doi: 10.1038/ng.3567. Epub 2016 May 16.

    http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS08 312http://www.ncbi.nlm.nih.gov/pubmed/26476233http://www.ncbi.nlm.nih.gov/pubmed/26476233http://www.ncbi.nlm.nih.gov/pubmed/26476233http://www.ncbi.nlm.nih.gov/pubmed/26476233http://www.ncbi.nlm.nih.gov/pubmed/22922640http://www.ncbi.nlm.nih.gov/pubmed/22922640http://www.ncbi.nlm.nih.gov/pubmed/22922640http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 931http://www.ncbi.nlm.nih.gov/pubmed/17264065http://www.ncbi.nlm.nih.gov/pubmed/17264065http://www.ncbi.nlm.nih.gov/pubmed/17264065http://www.ncbi.nlm.nih.gov/pubmed/18397324http://www.ncbi.nlm.nih.gov/pubmed/18397324http://www.ncbi.nlm.nih.gov/pubmed/18397324http://www.ncbi.nlm.nih.gov/pubmed/18397324http://www.ncbi.nlm.nih.gov/pubmed/18397324http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS10 1604http://www.ncbi.nlm.nih.gov/pubmed/25843550http://www.ncbi.nlm.nih.gov/pubmed/25843550http://www.ncbi.nlm.nih.gov/pubmed/25843550http://www.ncbi.nlm.nih.gov/pubmed/25843550http://www.ncbi.nlm.nih.gov/pubmed/25585673http://www.ncbi.nlm.nih.gov/pubmed/25585673http://www.ncbi.nlm.nih.gov/pubmed/25585673http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS05 071https://www.ncbi.nlm.nih.gov/pubmed/27784767https://www.ncbi.nlm.nih.gov/pubmed/27784767https://www.ncbi.nlm.nih.gov/pubmed/27784767http://www.ncbi.nlm.nih.gov/pubmed/21040791http://www.ncbi.nlm.nih.gov/pubmed/21040791http://www.ncbi.nlm.nih.gov/pubmed/21040791http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 591https://www.ncbi.nlm.nih.gov/pubmed/28283532https://www.ncbi.nlm.nih.gov/pubmed/28283532https://www.ncbi.nlm.nih.gov/pubmed/28283532http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS12 1858http://www.plantphysiol.org/content/early/2016/04/04/pp.16.00339.full.pdfhttp://www.plantphysiol.org/content/early/2016/04/04/pp.16.00339.full.pdfhttp://www.plantphysiol.org/content/early/2016/04/04/pp.16.00339.full.pdfhttp://www.plantphysiol.org/content/early/2016/04/04/pp.16.00339.full.pdfhttp://www.ncbi.nlm.nih.gov/pubmed/25315322http://www.ncbi.nlm.nih.gov/pubmed/25315322http://www.ncbi.nlm.nih.gov/pubmed/25315322http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS11 1737http://www.ncbi.nlm.nih.gov/pubmed/26644506http://www.ncbi.nlm.nih.gov/pubmed/26644506http://www.ncbi.nlm.nih.gov/pubmed/26644506http://www.ncbi.nlm.nih.gov/pubmed/26644506http://www.ncbi.nlm.nih.gov/pubmed/24590314http://www.ncbi.nlm.nih.gov/pubmed/24590314http://www.ncbi.nlm.nih.gov/pubmed/24590314http://www.plantphysiol.org/cgi/content/short/154/1/187http://www.plantphysiol.org/cgi/content/short/154/1/187http://www.plantphysiol.org/cgi/content/short/154/1/187http://www.agrisera.com/shop?funk=visa_artikel&artnr=AS09 481https://www.ncbi.nlm.nih.gov/pubmed/27182966https://www.ncbi.nlm.nih.gov/pubmed/27182966https://www.ncbi.nlm.nih.gov/pubmed/27182966

  • Craddock et al. (2016). Cyclin-dependent kinase activity enhances

    phosphatidylcholine biosynthesis in Arabidopsis by repressing

    phosphatidic acid phosphohydrolase activity. Plant J. 2016 Sep 6.

    doi: 10.1111/tpj.13321. [Epub ahead of print]

    Ghandi et al. (2016). Tomato yellow leaf curl virus infection

    mitigates the heat stress response of plants grown at high

    temperature. Sci Rep. 2016 Jan 21;6:19715. doi: 10.1038/srep19715

    Botella et al. (2015). ALA10, a phospholipid flippase, controls

    FAD2/FAD3 desaturation of phosphatidylcholine in the ER, and

    affects chloroplast lipid composition in Arabidopsis thaliana. Plant

    Physiol. 2015 Nov 30. pii: pp.01557.2015.

    Hu et al. (2015). Re-examination of chlorophyllase function implies

    its involvement in defense against chewing herbivores. Plant Physiol.

    2015 Jan 12. pii: pp.114.252023.

    Ivanov et al. (2014). SORTING NEXIN1 Is Required for Modulating the

    Trafficking and Stability of the Arabidopsis IRON-REGULATED

    TRANSPORTER1. Plant Cell. 2014 Mar 4.

    Bommert et al. (2013). The maize Gα gene COMPACT PLANT2

    functions in CLAVATA signalling to control shoot meristem size.

    Nature,Sep 11. doi: 10.1038/nature12583. (western blot, Zea mays)

    Tanaka et al. (2013). Cell Polarity and Patterning by PIN Trafficking

    through Early Endosomal Compartments in Arabidopsis thaliana.

    PLoS Genet. May;9(5). (immunolocalization).

    AS09 614 BiP | Lumenal-binding protein

    Bennett et al. (2014). Plasma Membrane-Targeted PIN Proteins

    Drive Shoot Development in a Moss. Curr Biol. 2014 Dec

    1;24(23):2776-85. doi: 10.1016/j.cub.2014.09.054. Epub 2014 Nov

    13.

    AS09 615 BiP | lumenal-binding protein Narusaka et al (2016). Leucine zipper motif in RRS1 is crucial for the

    regulation of Arabidopsis dual resistance protein complex

    RPS4/RRS1. Sci Rep. 2016 Jan 11;6:18702. doi: 10.1038/srep18702.

    AS09 481-100BiP | Lumenal-binding protein (100

    µg)

    Hu et al. (2015). Re-examination of chlorophyllase function implies

    its involvement in defense against chewing herbivores. Plant Physiol.

    2015 Jan 12. pii: pp.114.252023.

    Ivanov et al. (2014). SORTING NEXIN1 Is Required for Modulating the

    Trafficking and Stability of the Arabidopsis IRON-REGULATED

    TRANSPORTER1. Plant Cell. 2014 Ma