24
Eng . Haytham Besaiso 1 6 Geometric design of shallow foundations and Mat footing 1) Geometric design of isolated footing:  Most economical type .  Can be rectangular ,circular or square . It is preferred that the footing matches the shape of its column .  Used in case of light columns loads and when columns are not closely spaced 1- Find the net allowable bearing capacity (Soil pressure):    s c  f  c c all u net u net all u all h  D h q  FS q q  FS q q  FS q q  FS q q        2- Find the required area of footing:  L  D net all req  P  P Q q Q  A   Note: We can use gross allowable bearing capacity to find the Area of footing, but the load Q should be also gross so that it Includes the weight of foundation and soil above it.  s c  f   soil c c  foot  soil  foot  L  D Gross all Gross req h  D  B  L W h  B  L W W W  P  P Q q Q  A       

Problems on Foundation Design

Embed Size (px)

Citation preview

Page 1: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 1/24

Page 2: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 2/24

Eng . Haytham Besaiso2

2)  Geometric design of rectangular combined footing:  Used under closely spaced and heavily loaded columns where individual footings , if

they were provided , would be either very close or overlap each other .

  Used as an alternative to an eccentrically loaded footing that has a property line

restriction so that the edge columns is linked to an interior column .

  rectangular combined footing is more preferred than trapezoidal combined footing

due to its simplicity in both design and construction .

Case I) No limitations:

1-  Find the required area:

net all 

reqq

QQ A   21   

2-  Find the resultant force location (Xr):

 R X  LQ

Q M 

QQ R

r  

22

1

21

00.0@  

3-  To ensure uniform soil pressure, the resultant force (R) should be in the center ofrectangular footing:

 L

 A B

 X  L L

 X  L L

1

1

2

2

 

Page 3: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 3/24

Eng . Haytham Besaiso3

Case II) Limitation that we have known length or width of footing:

  Find center  M  @ :

1-  If center  M  @ =0.00, uniform soil pressure

And find the required area:

 L

 A B

q

QQ A

net all 

req

  21

 

2-  if 00.0@     center  M   so that there is a value M

 by means of eccentricity so that the soil pressure will not

 be uniform.

  Calculate the soil pressure:

 

 

 

 

 

  

 

 L

e

 L B

 Rq

 L

e

 L B

 Rq

61

61

min

max

 

  Find the width of footing B, by equating maxq  

With net all q .

  Check adequacy of footing width B that is 00.0min  q  

Page 4: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 4/24

Eng . Haytham Besaiso4

3)  Geometric design of trapezoidal combined footing:

Trapezoidal combined footing is used rather than rectangular combined footing and

will be more economical in the following two cases :

  There are limitations on footing's longitudinal projection beyond the two columns.

  There is a large difference between the magnitudes of the columns loads .

1-  Find the required area:

net all 

reqq

QQ A   21 

 

As the area of trapezoidal is given by ))((5.0 21   L B B A    

So put  A Areq   to get an equation which is function of 21 & B B .

2-  Determine the resultant force location by taking as example 0@ 1    Q M   

3-  Put the resultant force location at the centroid of trapezoid to achieve uniform soil

 pressure.

The centroid equation is:

 

 

 

 

21

21   2

3   B B

 B B L

 X    So we will have another equation of  21 & B B , solve them to

get 21 & B B  where ,

B1 : the edge from which the centroid is measured .

B2: the other edge .

Please try to derive the centroid equation .

Page 5: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 5/24

Eng . Haytham Besaiso5

4)  Geometric design of strap footing (Cantilever):  Used when there is a property line which disables the footing to be extended beyond the

face of the edge column. In addition to that the edge column is relatively far from the

interior column so that the rectangular combined footing will be too narrow and long

which increases the cost .

  There is a "strap beam" which connects two separated footings . The edge footing is

eccentrically loaded and the interior footing is centrically loaded . The purpose of the

 beam is to prevent overturning of the eccentrically loaded footing . 

1-  Find the resultant force location:

 R X Q

Q M 

QQ R

r  

Lc

00.0@

2

1

21

 

2-  Assume the width of the exterior (edge) footing B1.

3-  Find the distance X1 , X2 :

22

111

 Bc X  X  r      , X2 = Lc  –  Xr  

4-  Find the resultant of each soil pressure:

12

22112   100.0@

 R R R

 R Find  X  R X  X  R R M 

 

5-  Find the required area for each foot:

net all 

net all 

q

 R A

q

 R A

2

2

1

1

 

Page 6: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 6/24

Eng . Haytham Besaiso6

5)  Geometric and structural design of Mat foundation:

  Geometric design (Service loads):

1-  Find the center of gravity of mat footing:

i

ii

i

ii

 A

 AY 

 A

 A X 

~

 Yg 

~

 Xg  

2-  Find the resultant force R:

iQ R    

3-  Find the location of the resultant force:

i

rii

 R

i

rii

 RQ

Y QY 

Q

 X Q X 

 

That means, the moment of the resultant equals the sum of forces' moments

i A : shape's area . i

 X  : distance between y-axis and the centroid of the shape

iY  : 

distance between x-axis and the centroid of the shapeiQ :The load of column i

ri X  : distance between column's center and y-axis

riY  : distance between column's center and y-axis 

Note : Xg , Yg ,XR and YR are all measured from the same axis.

Page 7: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 7/24

Eng . Haytham Besaiso7

4-  Find the eccentricities:'  Y Y e X  X e  R y R x    

5-  Find the following :

i y X    Qe M     ….. moment of the columns loads about x-axis

i x y   Qe M    ….. moment of the columns loads about y-axis

12

3 L B I  x   ….. moment of inertia of the mat's area about its centroidal x-axis

12

1   3 B L I  y   …..  moment of inertia of the mat's area about its centroidal y-axis

6-  Find the stresses:

gravityof centerthe point tothefromDistances:,Y  X 

Y  I 

 M  X 

 I 

 M 

 A

Qq

 X 

 X 

 y

mat 

i

 

 Now check that:

00.0min

max

q

qqnet all 

 

Otherwise increase the dimensions of the mat foundation

  Structural design (Ultimate loads):

The mat foundation is divided into strips in both directions. The width of the strip is directly

 proportion to the loads of the column included in this strip.

For the previous mat let we take a strip of width B1 for the columns 13-14-15-16

  Locate the points E and F at the middle of strip edges.

  Find the stresses at E and F and be careful that we use ultimate loads:

  ui X uY 

ui yu X 

 X 

u X 

uY 

mat 

ui

Qe M 

Qe M 

Y  I 

 M  X 

 I 

 M 

 A

Qq

 

  Find the average stress:

2

 F  E avg 

qqq

   

  Find the summation of loads of the strip StripuiQ .

  Check that:

StripuiQ =  stripavg    Aq    

Page 8: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 8/24

Eng . Haytham Besaiso8

If ok, draw the SFD and BMD and design the mat.

Otherwise;

We have to make adjustment for the loads as follow:

2 loadAverage

  stripavg Stripui   AqQ    

  Find the modified column loads:

 stripui

uiuiQ

QQ

  loadAverage

mod 

  Find the modified soil pressure:

 stripavg u

avg uavg u Aq

qq

,

,mod,

loadAverage 

 Now we must have that:

StripuiQ =  stripavg    Aq    

Draw SFD and BMD.

Page 9: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 9/24

Eng . Haytham Besaiso9

Example1

Find the Dimensions of the combined footing for the columns A and B that spaced 6.0m

center to center, column A is 40cm x 40cm carrying dead loads of 50tons and 30tons live

load and column B is 40cm x 40cm carrying 70tons dead load and 50 tons live loads.

  ./15   2mt q net all     

Solution

1-  Find the required area:

2

21 33.1315

12080mq

QQ A

net all 

req  

 

2-  Find the resultant force location (Xr):

m X  X 

Q M 

tonsQQ R

r r    6.32006120

00.0@

20012080

1

21

 

3-  To ensure uniform soil pressure, the resultant force (R) should be in the center of

rectangular footing:

m B

m L

 L

76.16.7

333.13

6.78.32

2.06.3

2

 

Page 10: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 10/24

Eng . Haytham Besaiso10

Example 2. Design a rectangular combined footing, given that

net all q = 5 ksf , Df = 5 feet, the edge of

column 1 is at the property line, and the spacing between columns is 18 feet center-to-

center (c.c.).

Column1 (18'' *18'') Column 2 (24'' *24'')

DL 80 kips 130 kips

LL 175 kips 200 kips

Solution:

1-  Find the required area:

221 117

5

330255 ft 

q

QQ A

net all 

req  

 

2-  Find the resultant force location (Xr):

 ft  X  X 

Q M 

kipsQQ R

r r    15.1058518330

00.0@

585330255

1

21

 

3-  To ensure uniform soil pressure, the resultant force (R) should be in the center of

rectangular footing:

L = (0.7

5+10.15) * 2 = 21.8 ft =22 ft (approximately)

 Note : This round off isn't required but it can be accepted

B = A/L = 117/22 = 5.31 ft = 5 ft- 4 in

4-  Evaluate the net factored soil pressure :

uQ1

 = 1.4 *80 + 1.7 *175 = 410 kips

uQ2

=1.4 *130 + 1.7*200 = 522 kips

net 

uq  

  

  =   ksf  96.7

1175225.409

 

So, the uniform soil pressure along footing's length q' =net 

uq  

  

 * B = 7.96 * 5.31=42.3 k/ft

Page 11: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 11/24

Eng . Haytham Besaiso11

5-   Now, The column loads are treated as concentrated loads acting at the centers of the

columns. The shear and moment diagrams are

Page 12: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 12/24

Eng . Haytham Besaiso12

Example3

Find the Dimensions of the trapezoidal combined footing for the columns A and B that

spaced 4.0m center to center, column A is 40cm x 40cm carrying dead loads of 80tons

and 40tons live load and column B is 30cm x 30cm carrying 50tons dead load and 25 tons

live loads.   ./85.18   2mt q net all     

Solution

1-  Find the required area:

221 34.10

85.18

75120m

q

QQ A

net all 

req  

 

As the area of trapezoidal is given by ))((5.0 21   L B B A    

So put  A Areq   to get an equation which is function of 21 & B B .

  75.434.1035.45.0 2121    B B B B

...............1

2-  Determine the resultant force

m X  X 

Q M 

r r    55.1195475

0@ 1

 

Page 13: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 13/24

Eng . Haytham Besaiso13

3-  Put the resultant force location at the centroid of trapezoid to achieve uniform soil

 pressure.

The centroid equation is:

21

21

21

21 2305.075.4

2

3

35.42

3 B B X 

 B B

 B B

 B B L X   

 

  

   

 

 

 

 

 

For uniform soil pressure:

1.55 + 0.2 = X   

  75.12305.0

75.1

21  

 B B

m X  

75.52 21     B B .........................2

Solve 1 and 2:

m B   75.31   

m B   12   

Example 4

Design a strap footing to support two columns, that spaced 4.0m center to center exterior

column is 80cm x 80cm carrying 1500 KN and interior column is 80cm x 80cm carrying

2500KN.

  ./200   2m KN qnet all     

Page 14: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 14/24

Eng . Haytham Besaiso14

1-  Find the resultant force location:

m X  X 

Q M 

 KN QQ R

r r    5400082500

00.0@

400025001500

1

21

 

2-  Assume the length of any foot, let we assume L1=2m.

3-  Find the distance X1 , X2 :

m4.42

2

2

8.05X1     , X2 = 8-5 = 3.0 m

4-  Find the resultant of each soil pressure:

 KN  R R R

 KN  R R R M 

4.23786.16214000

6.1621340004.700.0@

12

112

 

5-  Find the required area for each foot:

m B A

m Bm Aext 

45.3892.11892.11200

4.2378

1.42

108.8108.8

200

6.1621

2

1

2

 

Page 15: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 15/24

Eng . Haytham Besaiso15

Example 5 

Design a strap-footing for net all q = 2.5 ksf . The edge of column 1 is placed at the

property line, and the center of the columns are 25 feet center-to-center (c.c.).  Column1 (12'' *12'') Column 2(16'' *16'')

DL 80 kips 120 kips

LL 60 kips 110 kips

Solution:

1-  Find the resultant force location:

 ft  X  X 

Q M 

 KipsQQ R

r r    54.1537025230

00.0@

370230140

1

21

 

2-  Assume the length of any foot, let we assume L1=7ft.

3-  Find the distance X1 , X2 : ft 54.12

2

7

2

154.15X1     , X2 = 25-15.54 = 9.46 ft

4-  Find the resultant of each soil pressure:

 ft  R R R

kips R R R M 

9.2101.159370

1.15946.93702200.0@

12

112

 

5-  Find the required area for each footing:

 ft  B ft  A

 ft  L ft  A

2.936.8436.845.2

9.210

97

64.6364.63

5.2

1.159

22

1

2

1

 

1-  Evaluate the net factored soil pressure :

uQ1

 = 1.4 *80 + 1.7 *60 = 214 kips

uQ2

=1.4 *120 + 1.7*110 = 355 kips

Repeat the usual steps to find out R 1 = 243 kips and R 2 = 326 kips

Edge footing :net 

uq  

  

 1  =   ksf  85.3

9*7

243  

So, the uniform soil pressure along footing's width q' =net 

uq   

   * L = 3.85 * 9=34.65k/ft

Interior footing :net 

uq  

  

 2

 =   ksf  85.32.9*2.9

326  

So, the uniform soil pressure along footing's length q' =net 

uq  

  

 * B = 3.85 * 9=34.65 k/ft

Page 16: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 16/24

Eng . Haytham Besaiso16

Page 17: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 17/24

Eng . Haytham Besaiso17

Example 6

For the shown mat foundation:

Interior columns Edge columns Corner columns

Column dimension 60cm x 60cm 60cm x 40cm 40cm x 40cm

Service loads 1800KN 1200KN 600KN

Ultimate loads 2700KN 1800KN 900KN

    ./150   2m KN qnet all     

  Check the adequacy of the foundation dimensions.

  Calculate the modified soil pressure under the strip ABCD which is 2m width.

  Draw SFD and BMD for the strip.

Check the adequacy of the foundati on dimensions.

1)  Find the center of gravity of mat footing:

Xg = 13.4/2 –  0.2 = 6.5 m , Yg = 17.4/2 –  0.2 = 8.5 m

The distances are taken from (x-y) axes shown in the figure.

Page 18: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 18/24

Eng . Haytham Besaiso18

2)  Find the resultant force R:

 KN Q R i   200,1312006180026004    

3)  Find the location of the resultant force:

mY 

m X 

 R

 R

18.8200,13

6002120017120021800121200218004

81.5

200,13

1312002136002518002512002

 

4)  Find the eccentricities:

me

m.e

 y

 x

32.05.818.8

 6905.681.5

 

5)  Find the following :

m KN  M 

m KN  M 

 y

 X 

.108,9200,1369.0

.224,4200,1332.0

 

43

43

627.882,5 4.134.1712

1

851.488,3 4.174.1312

1

m I 

m I 

 x

 y

 

6)  Find the stresses:

  2

min

2

max

/87.327.8627.882,5

224,47.6

85.488,3

108,9

4.174.13

200,13

/35.807.8627.882,5

224,47.6

85.488,3

108,9

4.174.13

200,13

gravityof centerthe point tothefromDistances:,

627.882,5

224,4

85.488,3

108,9

4.174.13

200,13

m KN q

m KN q

Y  X 

Y  X q

 

OK q

OK qqnet all 

00.0min

max 

Calculate the modif ied soil pressure under the str ip ABCD which is 2m width .

  Locate the points E and F at the middle of strip edges.

  Find the stresses at E and F and notice that we use ultimate loads:

Page 19: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 19/24

Eng . Haytham Besaiso19

  2

2

/6.1167.8627.882,5

336,67.5

85.488,3

662,13

4.174.13

800,19

/8.977.8627.882,5

336,67.5

85.488,3

662,13

4.174.13

800,19627.882,5

336,6

85.488,3

662,13

4.174.13

800,19

336,6800,1932.0

662,13800,1969.0

800,1927002180069004

m KN q

m KN q

Y  X q

 KN  M 

 KN  M 

 KN Q

 F 

 E 

u X 

uY 

ui

 

  Find the average stress:

2/2.1072

6.1168.97

2m KN 

qqq   F  E avg 

 

 

    KN QStripui   5400180029002   .

   KN  Aq  stripavg    76.37304.1722.107    

    StripuiQ  stripavg    Aq    

We have to make adjustment for the loads as follow:

 KN 4.45652

76.37305400 loadAverage  

 

  Find the modified column loads:

0.845 byloadcolumneach

845.05400

4565.4mod

 Multiply

QQQ uiuiui    

  Find the modified soil pressure:

  2

mod,   /2.13176.3730

4565.42.107   m KN q avg u    

Draw SFD and BMD.

Page 20: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 20/24

Eng . Haytham Besaiso20

Example 7For the mat foundation shown below. All column dimensions are 50 cm x 50 cm with the

load schedule shown below. The allowable soil pressure is qall =60 kPa. 

1) Check the adequacy of the foundation dimensions 

2)  Draw shear and moment diagrams for the strip AMOJ 

Page 21: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 21/24

Eng . Haytham Besaiso21

DL, kN LL, kN Column 

200 200  A 

250 250 B 

250 200 C 

800 700 D 

800 700 E 

650 550 F 

800 700 G 

800 700 H 

650 550 I 

200 200 J 

250 250 K 

200 150 L 

Solution

1-  Find the center of gravity of mat footing:

Xg = 8.25 m , Yg =10.75 m

The distances are taken from (x-y) axes shown in the figure.

2-  Find the resultant force R:

 KN Q R i   000,11  

3-  Find the location of the resultant force:

m X 

 R

 R

10000,11

)450500400(25.21)120015002(25.14)120021500(25.7)350500400(25.0

81.7000,11

)12002450350(25.16)150025002(25.8)150024002(25.0

 

4-  Find the eccentricities:

me

m.e

 y

 x

1.075.1085.10

 44052.881.7

 

5-  Find the following :

m KN  M 

m KN  M 

 y

 X 

.840,,4000,1144.0

.100,1000,111.0

 

Page 22: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 22/24

Eng . Haytham Besaiso22

43

43

048,8 5.215.1612

1

665,13 5.165.2112

1

m I 

m I 

 x

 y

 

6-  Find the stresses:

  2

min

2

max

/62.2675.10

048,8

110025.8

665,13

840,,4

5.21*5.16

000,11

/4.3575.10048,8

110025.8

665,13

840,,4

5.21*5.16

000,11

gravityof centerthe point tothefromDistances:,

048,8

1100

665,13

5390

5.21*5.16

000,11

m KN q

m KN q

Y  X 

Y  X q

 

OK q

OK qqnet all 

00.0min

max 

So, the mat dimensions are ok

Now, to draw shear and moment diagrams, factored forces are considered

  2

2

/84.4875.10048,8

1694.5125.6

665,13

8.455,7

5.21*5.16

16945

/37.5375.10048,8

1694.5125.6

665,13

8.455,7

5.21*5.16

16945

048,8

1694.5

665,13

8.455,7

5.21*5.16

16945

1694.5169451.0

8.455,71694544.0

16945

m KN q

m KN q

Y  X q

 KN  M 

 KN  M 

 KN Q

b

a

u X 

uY 

ui

 

  Find the average stress:

2/105.512

84.4837.53

2m KN 

qqq   baavg   

 

    KN QStripui   5860 .

   KN  Aq  stripavg    46705.2125.4105.51    

    StripuiQ  stripavg    Aq    

We have to make adjustment for the loads as follow:

 KN 52652

46705860 loadAverage  

 

Page 23: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 23/24

Eng . Haytham Besaiso23

  Find the modified column loads:

0.9 byloadcolumneach

9.05860

5265mod

 Multiply

QQQ uiuiui    

  Find the modified soil pressure:

  2

mod,   /62.574670

5265105.51   m KN q avg u    

The shear and bending moment diagrams for the selected strip in are shown below.

Page 24: Problems on Foundation Design

8/13/2019 Problems on Foundation Design

http://slidepdf.com/reader/full/problems-on-foundation-design 24/24

 Note : This moment diagram could be mirrored about the horizontal axis to get

BMD we are used to (i.e, Moment drawn on tension side)