15
Problem statement: parametrized weak form Exact parametrized elastodynamic problem Initial conditions: Boundary conditions: Space-time quantity of interest: m 2 u e ( x , t ; μ) t 2 , v; μ + c u e ( x , t ; μ) t , v; μ + au e ( x , t ; μ), v; μ ( ) = g( t )f ( v; μ), v H 0 1 ( Ω) ( ) d , t [0, T ], μ D u i e ( x , 0; μ) = 0; u i e t ( x , 0; μ) = 0 u i e x , t ; μ ( ) = 0, x ∈ ∂Ω D σ ij e x , t ; μ ( ) ˆ n j = t i , x ∈ ∂Ω N s e ( μ) = u e Γ o 0 T ( x , t ; μ) Σ ( x , t ) dxdt = 0 T u e ( x , t ; μ) ( ) dt μ u e ( μ) ( ) s e ( μ)?

Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

Problemstatement:parametrizedweakform

• Exactparametrized elastodynamic problem

• Initialconditions:• Boundaryconditions:

• Space-timequantityofinterest:

m∂2

ue(x,t;µ)

∂t2,v;µ

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟+ c

∂ue(x,t;µ)

∂t,v;µ

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟+ a u

e(x,t;µ),v;µ( ) = g(t)f (v;µ),

∀v ∈ H01(Ω)( )d ,t ∈ [0,T ],µ ∈ D

ui

e(x,0;µ) = 0;∂ui

e

∂t(x,0;µ) = 0

ui

e x,t;µ( ) = 0, ∀x ∈ ∂ΩD

σij

e x,t;µ( )n̂j = ti, ∀x ∈ ∂ΩN

se(µ) = ue

Γo∫0

T

∫ (x,t;µ)Σ(x,t)dxdt = ℓ0

T

∫ ue(x,t;µ)( )dt

µ → ue(µ)( )→ se(µ)?

Page 2: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

Problemstatement…

• Bi/linearforms

• Bilinearforms arecontinuous andcoercive.• Assumeaffineparameterdependenceofthebi/linearforms

m w,v;µ( ) = ρ

Ω∫ vi∂2wi

∂t2dΩ

i∑

c w,v;µ( ) = α

Ω∫ ρviwidΩi∑ + β

∂vi

∂xjΩ∫ Cijkl

∂wk

∂xl

dΩi,j,k,l∑

a w,v;µ( ) =

∂vi

∂xjΩ∫ Cijkl

∂wk

∂xl

dΩi,j,k,l∑

f v;µ( ) = bivi dΩΩ∫i

∑ + viti dΓ∂ΩN∫

i∑

m,a

Page 3: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

• “MethodofLines”: spatialdiscretize (FE)+temporaldiscretize(Newmark)

–Discretizethetimespan into–Solve followingellipticsystems

–FEquantityofinterest:

Finiteelementdiscretization

[0,T ] [t

k,tk+1], 0 ≤ k ≤ K −1

(K −1)

A uk+1(µ),v;µ( ) = F(v), ∀v ∈Y h,µ ∈ D, 1 ≤ k ≤ K −1

A uk+1(µ),v;µ( ) =

1

Δt2m(uk+1(µ),v;µ) +

12Δt

c(uk+1(µ),v;µ) +14a(uk+1(µ),v;µ)

F(v) = −1

Δt2m(uk−1(µ),v;µ) +

12Δt

c(uk−1(µ),v;µ)−14a(uk−1(µ),v;µ)

+2

Δt2m(uk(µ),v;µ)−

12a(uk(µ),v;µ) + geq(tk )f (v;µ)

u(µ,t0) = 0;

∂u(µ,t0)

∂t= 0

s(µ) = ℓ

tk

tk+1

∫k=0

K−1

∑ u(x,t;µ)( )dt

Trapezoidalscheme

µ → u(µ)( )→ s(µ)?

Page 4: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

• Introduce ;andnestedLagrangian RBspaces

–Galerkin projection:

–Solvethefollowingellipticsystems

–RBquantityofinterest:

RBapproximation:Galerkin projection

YN = span{ζn,1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax

S* = {µ1 ∈ D,µ2 ∈ D,…,µN ∈ D}, 1 ≤ N ≤ Nmax

sN (µ) = ℓ

tk

tk+1

∫k=0

K−1

∑ uN (x,t;µ)( )dt

A uN

k+1(µ),v;µ( ) = F(v), ∀v ∈YN ,µ ∈ D, 1 ≤ k ≤ K −1

uN (µ,tk ) = uN n

n=1

N

∑ (µ,tk ) ζn, ∀ζn ∈YN , 1 ≤ k ≤ K

µ → uN (µ)( )→ sN (µ)?

Page 5: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

• DualWeightedResidual(DWR)method

–Solveadditionallyanadjoint problem–Removethesnapshotscausesmallerror– keeptheonescauselargeerror

• Buildoptimalgoal-orientedbasisfunctionsbasedonallPODsnapshots–Useadjoint techniquetobuildoptimallybasisfunctionsbasedonallPODsnapshots

• Wewanttobuildoptimallygoal-orientedbasisfunctionswithoutcomputing/storingallthesnapshots?

Approachestobuildgoal-orientedbasisfunctions?

[Meyeretal.2003][Grepl etal. 2005][Bangerth etal.2001][Bangerth etal.2010]

[Buietal.2007][Willcox etal. 2005]

RB+Greedysamplingstrategy [Rozza,Huynh, Patera 2008]

Page 6: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

1)Where:givenasetofsnapshotsthePODspace isdefinedas:

»

»• or,writtenas:

»»

• 2)Projectionerror:

»3)Residual

StandardPOD-Greedyalgorithm

(a) Set

(b) Set

(c) While

(d)

(e)

(f)

(g)

(h)

(i)

(j) end.

YNst = 0

µ*st = µ0

N ≤ Nmaxst

W st = eproj

st (µ*st,tk ),0 ≤ k ≤ K{ }

YN +Mst ←YN

st⊕POD(W st,M )

N ← N + M

µ*st = arg max

µ∈Ξtrain

Δu(µ)

uNst(µ,tk )

Y

2

k=1K∑

⎪⎪⎪⎪

⎩⎪⎪⎪⎪

⎪⎪⎪⎪

⎭⎪⎪⎪⎪

S*

st ← S*st µ*

st{ }∪

(k) Δu(µ) = Rst(v;µ,tk )

′Y

2

k=1K∑

MW

WM = POD {ξ

1,…, ξM

max

},M( )

{ξk}k=1

Mmax

WM = arg minVM⊂span{ξ1,…,ξMmax

}

1Mmax

infαk∈!M

k=1

Mmax

∑ ξk − αmk

m=1

M

∑ vm

2⎛

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

eproj

k (µ) = uk(µ)− projYNuk(µ)

R(v;µ,tk ) = F(v)−A uNk+1(µ),v;µ( ),1 ≤ k ≤ K −1

[Haasdonk etal.2008][Hoangetal.2013]

Page 7: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

Goal-orientedvs.standardPOD-Greedyalgorithm(a) Set

(b) Set

(c) While

(d)

(e)

(f)

(g)

(h)

(i)

(j) end.

YNgo = 0

µ*go = µ0

N ≤ Nmaxgo

W go = eproj

go (µ*go,tk ),0 ≤ k ≤ K{ }

YN +Mgo ←YN

go⊕POD(W go,M )

N ← N + M

µ*

go = arg maxµ∈Ξtrain

Δs(µ)

s !Nst(µ)

⎧⎨⎪⎪

⎩⎪⎪

⎫⎬⎪⎪

⎭⎪⎪

S*

go ← S*go µ*

go{ }∪

(k) Δs(µ) = s !Nst(µ)− sN

go(µ)

Asymptoticoutputerrorestimation

Find !N s.t.∀µ ∈ Ξn

st ⊂ Ξn+1st ⊂ S*

st( )

ηT ≤

Δs(µ)

s(µ)− sNgo(µ)

≤ 2− ηT

(a) Set

(b) Set

(c) While

(d)

(e)

(f)

(g)

(h)

(i)

(j) end.

YNst = 0

µ*st = µ0

N ≤ Nmaxst

W st = eproj

st (µ*st,tk ),0 ≤ k ≤ K{ }

YN +Mst ←YN

st⊕POD(W st,M )

N ← N + M

µ*st = arg max

µ∈Ξtrain

Δu(µ)

uNst(µ,tk )

Y

2

k=1K∑

⎪⎪⎪⎪

⎩⎪⎪⎪⎪

⎪⎪⎪⎪

⎭⎪⎪⎪⎪

S*

st ← S*st µ*

st{ }∪

(k) Δu(µ) = Rst(v;µ,tk )

′Y

2

k=1K∑

CVprocess

Page 8: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

Cross-validationprocess

Page 9: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

Numericalexample:3Ddentalimplantmodel

N = 26343

T = 0.001s

Δt = 2×10−6s

K = 500

Ξ

train= 900

Page 10: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

• Materialproperties

• Explicitbi/linearforms:

3DDentalimplantmodelproblem…

m(w,v) = ρrwivi dΩΩr

∫i∑

r=1

5

a(w,v;µ) =

∂vi

∂xj

Cijklr ∂wk

∂xl

dΩΩr∫

i,j,k,l∑

r=1,r≠3

5

∑ + µ1∂vi

∂xj

Cijkl3 ∂wk

∂xl

dΩΩ3∫

i,j,k,l∑

c(w,v;µ) = βr

r=1,r≠3

5

∑∂vi

∂xj

Cijklr ∂wk

∂xl

dΩΩr∫

i,j,k,l∑ + µ2µ1

∂vi

∂xj

Cijkl3 ∂wk

∂xl

dΩΩ3∫

i,j,k,l∑

f (v) = viφi dΓΓl

∫i∑

ℓ(v) =

1| Γo |

v1Γo∫ dΓ

µ = E,β( )∈ D ≡ [1×106Pa,25×106 ]×[5×10−6,5×10−5 ]⊂ !P=2

Page 11: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

Numericalresults…StandardPOD-Greedyalgorithm

GOPOD-Greedyalgorithm

Page 12: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

Numericalresults…Cross-validation(CV)process

AlltrueerrorsofsolutionandQoI

Page 13: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

Numericalresults:QoITrueerrorsvs Errorapprox.forcase1Gaussload

Maxandmineffectivities forcase1Gaussload

Page 14: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

Numericalresults…

• Computationaltime(onlinestage)

• AllcalculationswereperformedonadesktopIntel(R)Core(TM)[email protected],RAM32GB,64-bitOperatingSystem.

Page 15: Problem statement: parametrizedweak form RB slides.pdf · Problem statement… • Bi/linear forms • Bilinear forms are continuousand coercive. • Assume affine parameter dependence

References1. Wang,S.,Liu,G.R.,Hoang,K.C.,&Guo,Y.(2010).Identifiable rangeof

osseointegration ofdentalimplantsthrough resonancefrequencyanalysis.Medicalengineering&physics, 32(10), 1094-1106.

2. Hoang,K.C.,Khoo,B.C.,Liu,G.R.,Nguyen,N.C.,&Patera,A.T.(2013).Rapididentificationofmaterialpropertiesoftheinterfacetissueindentalimplantsystemsusing reducedbasismethod. InverseProblemsinScienceandEngineering, 21(8),1310-1334.

3. Hoang,K.C.,Kerfriden,P.,Khoo,B.C.,&Bordas,S.P.A.(2015).Anefficientgoal-orientedsamplingstrategyusing reducedbasismethod forparametrizedelastodynamic problems. NumericalMethodsforPartialDifferentialEquations,31(2),575-608.

4. Hoang,K.C.,Kerfriden,P.,&Bordas,S.(2015).Afast,certifiedand"tuning-free"two-fieldreducedbasismethod forthemetamodelling ofparametrised elasticityproblems. ComputerMethodsinAppliedMechanicsandEngineering,accepted.

5. Hoang,K.C.,Fu,Y.,&Song, J.H.(2015).Anhp-ProperOrthogonalDecomposition-MovingLeastSquaresapproachformoleculardynamicssimulation.ComputerMethodsinAppliedMechanicsandEngineering,accepted.