24
Impact of Solar X-ray Flares on the Earth lower ionosphere relating LYRA – GOES - VLF data Vida Žigman , UNG, Nova Gorica,Slovenia Davorka Grubor, UB, Belgrade, Serbia Desanka Šulić, IP, Belgrade, Serbia Craig Rodger, James Brundell, Department of Physics, University of Otago, Dunedin, New Zealand Mark Clilverd, British Antarctic Survey, Cambridge,UK ESWW9 / PROBA2 splinter JOINT WORKING GROUP

PROBA-2 - Impact of Solar X-ray Flares on the Earth lower ...proba2.oma.be/Presentations/20121105_ESWW9/Impact_Solar...2012/11/05  · 2) 17072004 X1.1 0757 UT 110µW/m 2 C7.3 1137

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Impact of Solar X-ray Flares on the Earth lower ionosphere

    relating LYRA – GOES - VLF data

    Vida Žigman, UNG, Nova Gorica,SloveniaDavorka Grubor, UB, Belgrade, Serbia

    Desanka Šulić, IP, Belgrade, SerbiaCraig Rodger, James Brundell, Department of Physics,

    University of Otago, Dunedin, New ZealandMark Clilverd, British Antarctic Survey, Cambridge,UK

    ESWW9 / PROBA2 splinter

    JOINT WORKING GROUP

  • GOES

    SDO

    In Space:

    Observe and

    measure

    Flares!

    LYRA?

    SOHO

    OBSERVATIONS

    • Observations of the effects of Solar X-ray flares from Earth –VLF transmission

    • How we correlate with space based measurements – GOES

    • How we model: N(t,h), LWPM• Can we exploit LYRA data? • Results• Summary

    OUTLINE

  • 74 km

    On Earth:

    D-region

    Radiowavepropagation(Supported by NOSC LWPC)

    Tx:NWC

    Rx:AbsPAL,AwesomeBeograd

    Solar Lyman Alpha (121.6 nm)during flares: Solar X-rays measure

    AMPLITUDE& PHASE

    DISTURBANCESVLF

    f < 30 kHz

    OBSERVATIONS:

  • Radiowave propagation

    TRANSMITTER Tx:Harold E. HoltNorth West CapeNWC (21.S ;114.2 E)

    RECEIVERs Rx:Beograd (44.85 N; 20.38 E)

    AbsPAL

    AWESOME

  • View from ArcticNAA/24.0 kHz

    Antarctic-ArcticRadiation-belt Dynamic) Deposition –VLF Atmospheric Research Konsortia

    e.g.Tx: :NAA/24.0 kHz :(44.65 N; 67.3 W)

    GQD/22.1 kHz :(54.72 N; 02.88 W) ICV/20.3 kHz:(40.92 N;9.73W)NWC/19.8 kHz:(21.8S; 114.2 E)

    BGAbsPAL

    Rx:

  • Scott

    Gde je NPM?

    Casey Scott B.

    NWC/19.8 kHz

    SCIENCE TOPICS

    • SPE• REP• SOLAR FLARES

    NPM/21.4 kHz

  • 00:00 04:00 08:00 12:00 16:00 20:00 24:00

    1E-6

    1E-5

    1E-4

    -68

    -66

    -64

    -62

    -60

    -58

    -100

    0

    100

    200

    10-3

    time UT

    0200 UTC4.7

    I x [w

    /m-2]

    0353 M6.3

    0.1-0.8 nm GOES15_20120309

    0128 UTC2

    NWC20120309_Casey_1min

    ampl

    itude

    [dB

    ]

    0350.5 UT0350.5 UT

    NWC - Casey : VLF Amplitude & Phase

    I [W

    /m2 ]

    0357 UT 6-20 nm + X ray

    1E-6

    1E-5

    1E-4

    1E-3

    -96

    -90

    -84

    -78

    -72

    -66

    00:00 04:00 08:00 12:00 16:00 20:00 24:00

    10-3

    -450

    0

    450

    0348 UT

    I [w

    /m-2]

    I x

    [w/m

    -2]

    0353 UTM6.3

    0.1-0.8 nm GOES15_20120309VLF NPM20120309_Casey

    ampl

    itude

    [dB

    ]

    0357 UT ch2-4(Zr); 6-20 nm + X ray

    time UT

    NPM - Casey : VLF Amplitude & Phase

    pha

    se [d

    eg]

    0349 UT

    OBSERVATIONS

    NPM/21.4 kHz

    VLF: AMPLITUDEPHASEat

    CASEY

    Flare – active 9March 2012

    Solar Irradiance

    GOES 15 LYRA

    NWC/19.8 kHz

  • Maine NAA/24.0 kHz at BELGRADE Flare – active 17July 2004

    -1 5 0-1 0 0

    -5 00

    5 01 0 0

    4 04 55 05 56 06 5

    1 0 -71 0 -6

    1 x 1 0 -51 x 1 0 -4

    NAA/24.0 kHz

    phas

    e (d

    eg)

    t ime UT

    1 7 0 7 20 0 4

    1 7 0 7 20 0 4

    1 9 5 016 5 01 3 5 01 0 5 0

    NAA/24.0 kHz

    ampl

    itude

    (r

    elat

    ive

    dB)

    0 7 50

    GO ES-120.1-0.8 nm

    I (W

    /m2 )

    1 7 0 7 20 0 4

    X1.1 0757 UT 110µW/m2

    C7.3 1137 UT 7.3µW/m2

    M2.5 1651 UT 25.4µW/m2

    dB5min3

    =∆=∆

    At

    M2.5

    dB3min2

    =∆=∆

    At

    C7.3

    56

    58

    60

    62

    64

    1639 1659 1719 1739 1759

    10-6

    1x10-5

    50

    100

    150

    200GOES-12 0.1-0.8 nm

    1654 UT

    1651 UT

    ampl

    itude

    (re

    lativ

    e d

    B)

    17072004

    NAA/24.0 kHz

    I (W

    /m2 )

    time UT

    phas

    e (d

    eg)

  • LWPC model

    For quiet ionosphereInitial concentration N(t=0, h)

    Wait model of the quiet ionosphere (1970)

    -sharpness, H’ – reflection heightβ

    NOSC: Computer programme for the assessment of long wave Propagation Long Wavelength Propagation Capability,

    Input :Tx and Rx coordinates Time Angle of magnetic inclination Conductivity

    For solar-flare conditions:N(h),

    To validate the N(t,h) model

    β H’

    Output :VLF amplitude and phase along the trace, from Tx to Rx

    0 2000 4000 6000 8000 10000 1200030

    60

    90

    120

    am

    plitu

    de [d

    B]

    D [km] along GCP

    LWPC quiet

    NPM-Cas 07/03/12; LWPC for X1.4 at 01:15 UT

    -400

    -200

    0

    200

    400

    pha

    se [d

    eg]

    NPM-Cas 07/03/12; LWPC for X1.4 at 01:15 UT

    0 2000 4000 6000 8000 10000 12000

    D [km] along GCP

  • NAA/24.0 kHz 17July 2004, 1651 UT

    OBSERVATIONS - MODELLING:

    Time delay (Appleton,1953, Journal of Atm. Terrestrial Physics JATP, 3, 282) “slugishness”(time shift of maximum N with respect to regular diurnal fluxat χ=0)

    Amax , Imax ,, I(Amax) , A(Imax)

    maxmax IAttt −=∆

    KEY parameters:MEASUREMENTS:2004 -2007…2010...2012I(t), A(t), P(t)

    maxmax NAtt ≡

    )()( maxmax N IA I ≡

    Assumption:

    56

    58

    60

    62

    64

    1639 1659 1719 1739 1759

    10-6

    1x10-51654 UT

    1651 UT

    ampl

    itude

    [dB

    ]

    17072004 NAA/24 [kHz]

    I X x

    106

    [W/m

    2 ]

    time UT

    t∆ > 0A∆ > 0A∆ < 0

    300 , 250 events

  • Multicomponent hydrodynamics N,N+,N-

    q = (C/eH )I

    q( t ) = k I (t)

    q - rate of electron productionC –number of electrons per unit of energyH - scale height– solar zenith angle e –base of natural logarithm

    ?,αk

    2Nqdt

    dN α−=

    χcos

    χcoseH

    Ck ≡

    ( )λλα

    λ +−−

    +=

    1

    1

    )1(2

    dt

    dNN

    q

    dt

    dN

    Continuity equationelementary process kinetics

    - effective electron recombination coefficient

    MODELLING:

    time dependence!

    11.4 11.5 11.6 11.7 11.8 11.9 12

    1× 109

    2× 109

    3× 109

    4× 109

    5× 109

    6× 109

    7× 109

    Time UT

    I (t)

    from NOAAwww.sec.noaa.gov

    From LWPC or IRI:preflare N(t=0)

    α

    χ

    Why not LYRA?

  • Time delay , but for the active ionosphere:

    tIN

    ∆=

    α21

    )( max ),,,( maxmaxmax IktNN α∆= (1)

    α)(

    )( maxmaxNkI

    N DE =2Nqdt

    dN α−= (2)

    Agreement of (1) i (2) yields:

    .constk =αq( t ) = k I (t), χcos

    eH

    Ck ≡

  • 5× 1012

    1× 1013

    1.5× 1013

    2× 1013

    5× 10-13

    1× 10-12

    1.5× 10-12

    2× 10-12

    0

    1

    2

    3

    4

    5

    5× 1012

    1× 1013

    1.5× 1013

    5× 101× 10-12

    1.5× 10-12

    2× 10

    1/Jm][k

    min][t∆

    ]sm[ -13α

    5× 10121× 1013

    1.5× 1013

    2× 1013

    5× 10-13

    1× 10-12

    1.5× 10-12

    2× 10-12

    0

    1

    2

    3

    4

    5

    5× 101× 10-12

    1.5× 10-12

    0

    1

    2

    3

    4

    ]sm[ -13α1/Jm][k

    min][t∆

    0 5× 1012 1× 1013 1.5× 1013 2× 10130

    5× 10-13

    1× 10-12

    1.5× 10-12

    2× 10-12

    .constk =αFriedrich et al. 1999, Adv. Space Res. Osepian et al. 2009 ,

    Ann.Geophys

    RECENT advances - extension to different heights

    170704_1137 C7.3

    e.g.

  • min)',( tt ∆∆(2, 1.92)

    = 8.75 10-13 m3 s-1

    q(t) = 3.73 1012 I(t) [m-3 s-1]

    11.4 11.5 11.6 11.7 11.8 11.9 12

    1× 109

    2× 109

    3× 109

    4× 109

    5× 109

    6× 109

    7× 109

    Time UT

    N [m

    -3],

    I x

    1015

    [Wm

    -2]

    17072004_1137 C7.3

    Nmax= 5.23 109 m-3

    N(Imax)= 4.86 109 m-3Height: 74km,

    N(t=0):2.18 x 108 m-3

    RESULTS

    NAA/24.0 KHz

    Žigman et al., 2007, Grubor et al., 2008,Journal of Atm. Solar-Terrestrial Physics Ann. Geophys

    α

  • 60 65 70 75 80 85 90

    108

    109

    1010

    1011

    1012

    X3.9X1.1M2.5M1.6C8.8C2.5M1.0X1.4

    Nm

    ax [m

    -3]

    height [km]

    C2.5_70705_1228 ibid, Osepian et al. r.c. C8.8_50510_1152 M1.0_180211_1408 M1.6_160505_908 M2.5_60706_836 X1.1_170704_757 X3.9_170105_952 X1.4_70312_115 LWPM

    Nmax height profile from N(t,h): t∆ from X flux 0.1-0.8 nm

  • How to apply the N(t,h) model to Lyra data ?

    Ohshio M, et al. 1966Height distribution of local ionization efficiency,Journal of the Radio Research Laboratories, 13, no 70, 245- 261

    Local ionization efficiencies ?

    How they change with:

    •Wavelength

    •Height

    from: J.K.Hargreaves,1992, The solar-terrestrial environment

    Production rate / irradiance for vertical incidenceat 90 km for 6-20 nm

    1210≅k [mJ]

  • -112

    -104

    -96

    -88

    -80

    -72

    -450

    0

    450

    00:00 04:00 08:00 12:00 16:00 20:00 24:00

    10-6

    1x10-5

    1x10-4

    10-3

    10-2

    10-3

    10-20118 UT

    0020 UT

    0115 UTX1.4

    ch2-4(Zr); 6-20 nm + X ray

    I [W

    /m2 ]

    VLF NPM20120307_Casey

    ampl

    itude

    [dB

    ]

    0028 UT p

    hase

    [deg

    ]

    time UT

    0.1-0.8 nm GOES15_20120307

    0024 UTX5.4

    Ix [

    W/m

    2 ]

    data missing

    data missing

    2012_03_07

  • time UT1.2 1.4 1.6 1.8

    2× 1011

    4× 1011

    6× 1011

    8× 1011

    -120

    -100

    -80

    -600

    0

    600

    00:00 02:00

    10-6

    1x10-5

    1x10-4

    10-3

    10-2

    10-3

    10-2

    0117.5 UT

    0020 UT

    0115 UTX1.4

    ch2-4(Zr); 6-20 nm + X ray

    I [W

    /m2 ]

    VLF NPM20120307_Casey

    ampl

    itude

    [dB

    ]

    0028 UT p

    hase

    [deg

    ]

    time UT

    0.1-0.8 nm GOES15_20120307

    0024 UTX5.4

    I x [W

    /m2 ]

    2012_03_07_0115_X1.4 H=90 km : I(t), N(t) GOES - LYRA

    GOES LYRA

    Nmax [m-3]: AMP 8.30 ×1011 7.66 × 1011

    t(Imax ) UT 0115 0115

    (∆t ∆t ′) [min] (2.5, 2.52) (2.5, 2.36)

    Nmax [m-3]: PHA 8.82 × 1011

    N(t) according to LYRA decreases slower than N(t) according to GOES

    N [m-3], I x 1015 [Wm-2]

    I x 1014 [Wm-2]

    Nmax [m-3]: LWPM 1.13 × 1012

  • 1E-6

    1E-5

    1E-4

    1E-3

    -96

    -90

    -84

    -78

    -72

    -66

    00:00 04:00 08:00 12:00 16:00 20:00 24:00

    10-3

    -450

    0

    450

    0348 UT

    I [w

    /m-2]

    I x

    [w/m

    -2]

    0353 UTM6.3

    0.1-0.8 nm GOES15_20120309VLF NPM20120309_Casey

    ampl

    itude

    [dB

    ]

    0357 UT ch2-4(Zr); 6-20 nm + X ray

    time UT

    pha

    se [d

    eg]

    0349 UT

    2012_03_09

  • 5 10 15 20

    0.00001

    0.00002

    0.00003

    0.00004

    0.00005

    0.00006

    1.8 1.9 2 2.1 2.2 2.3

    1× 10-6

    2× 10-6

    3× 10-6

    4× 10-6

    5 10 15 20

    0.0015

    0.002

    0.0025

    0.003

    0.0035

    0.004

    1.8 1.9 2 2.1 2.2 2.3 2.4

    0.0002

    0.0004

    0.0006

    0.0008

    0.001

    LYRA ch(2- 4) 6 - 20 nm +XrayLyra peaks at 0201 UT

    Irr [W/m2] on 2012_03_09GOES15 0.1- 0.8 nm; 0200 UT_C4.7

    Time UT Time UT

  • 1.8 1.9 2 2.1 2.2 2.3

    2× 1010

    4× 1010

    6× 1010

    8× 1010

    GOES15 LYRA

    2012_03_09_0200_C4.7 H=90 km : I(t), N(t)

    I scaled 1014I scaled 2 x 1016

    1.9 2 2.1 2.2 2.3 2.4

    1.2× 1011

    1.4× 1011

    1.6× 1011

    1.8× 1011

    2× 1011

    Nmax [m-3]: 4.22×1010 1.17× 1011

    t(Imax ) UT 0200 0201

    t(Nmax ) UT (ev) 2.079 2.08

    (∆t ∆t ′) [min] (4.5, 4.6) (3.5, 3.8)

    Ns according to both GOES and LYRA peak simultaneously

    Time UT Time UT

    N [m-3], N [m-3],

    Nmax [m-3]: LWPM 3.92 ×1010

  • X-ray flare ionization is efficient in the range 60-90km, more efficient than any other radiation in the lower D-region.

    At the D-region upper limit Ly-Alpha and EUV are mo re efficient.

    The diagnostics by Lyra time delay is more approp riate for the D-region upper limit, and is expected to give more realistic N estimates.

    Apparently there is no reason to retrieve N from GO ES at 90 km height.But GOES time delay will give more realistic values of N for 74 km height and below.

    VLF data A and P give N ( 60- 90 km) independetly o f the particular radiation. A na P bear the integral signature of th e event.

    REMARKS

  • To estimate D- region electron density enhancements during Solar X-ray flares, as diagnostic tools use:

    For the lower D-region limit and its vicinity - GOES X-ray data

    For the upper D-region limit - LYRA data

    For the whole D-region - VLF data

    Summary

  • Thanks to

    Proba2 Science Centre

    LYRA team Ingolf Dammasch

    Antarctica logistic providers