65
Priority choice two-qubit tomography Karol Bartkiewicz [email protected] Faculty of Physics, Adam Mickiewicz University in Poznań, Poland July 8, 2015

Priority choice two-qubit tomographyzon8.physd.amu.edu.pl/~bartkiewicz/presentation_CEWQO2015.pdf · Prioritychoicetwo-qubittomography KarolBartkiewicz [email protected] FacultyofPhysics,AdamMickiewiczUniversityinPoznań,Poland

  • Upload
    ngotruc

  • View
    215

  • Download
    1

Embed Size (px)

Citation preview

  • Priority choice two-qubit tomographyKarol Bartkiewicz

    [email protected] of Physics, AdamMickiewicz University in Pozna, Poland

    July 8, 2015

  • bg=whiteIn collaborationwith

    Antonn CernochKarel LemrAdamMiranowicz

    ARTICLE K. Bartkiewicz, A. Cernoch, K. Lemr,A.Miranowicz, arXiv:1506.01317

    Karol Bartkiewicz |Priority choice two-qubit tomography 2/42

  • bg=whiteOutline of the presentation

    1 IntroductionQuantum tomographyTomographic stability

    2 Error analysisMaximum errorStandard error

    3 Optimal tomographyTheoryExperiment

    4 Conclusions

    Karol Bartkiewicz |Priority choice two-qubit tomography 3/42

  • bg=whiteQuantum state tomography

    Platos Allegory of the Cave by Jan Saenredam,according to Cornelis van Haarlem, 1604, Albertina, Vienna

    Karol Bartkiewicz |Priority choice two-qubit tomography 4/42

  • bg=whiteQuantum state tomography (QST)

    ApplicationsFull characterization of physical realityquantum states (full information)quantum processesquantum detectors

    Negativity for mixed two-qubit statesFull QST: 16measurementsInvariants: 9 fundamental or 6 composite

    ARTICLE K. Bartkiewicz, J. Beran, K. Lemr,M. Norek, A.Miranowicz,Phys. Rev. A 91, 022323 (2015).

    ARTICLE K. Bartkiewicz, P. Horodecki, K. Lemr, A.Miranowicz, K. yczkowski,Phys. Rev. A 91, 032315 (2015).

    Karol Bartkiewicz |Priority choice two-qubit tomography 5/42

  • bg=whiteQuantum state tomography (QST)

    ApplicationsFull characterization of physical realityquantum states (full information)quantum processesquantum detectors

    Negativity for mixed two-qubit statesFull QST: 16measurementsInvariants: 9 fundamental or 6 composite

    ARTICLE K. Bartkiewicz, J. Beran, K. Lemr,M. Norek, A.Miranowicz,Phys. Rev. A 91, 022323 (2015).

    ARTICLE K. Bartkiewicz, P. Horodecki, K. Lemr, A.Miranowicz, K. yczkowski,Phys. Rev. A 91, 032315 (2015).

    Karol Bartkiewicz |Priority choice two-qubit tomography 5/42

  • bg=whiteQuantum state tomography

    Approacheslinear inversionleast-squares inversionBayesianmean estimationlinear regression estimationThere exists a number of QST protocols and choosing the best oneappeared to be not a simple task.

    ARTICLE A.Miranowicz, K. Bartkiewicz, J. Perina Jr., M. Koashi, N. Imoto,F. Nori, Phys. Rev. A 90, 062123 (2014).

    Karol Bartkiewicz |Priority choice two-qubit tomography 6/42

  • bg=whiteQuantum state tomography

    Approacheslinear inversionleast-squares inversionBayesianmean estimationlinear regression estimationThere exists a number of QST protocols and choosing the best oneappeared to be not a simple task.

    ARTICLE A.Miranowicz, K. Bartkiewicz, J. Perina Jr., M. Koashi, N. Imoto,F. Nori, Phys. Rev. A 90, 062123 (2014).

    Karol Bartkiewicz |Priority choice two-qubit tomography 6/42

  • bg=whiteQuantum state tomography

    Two-qubit density matrix is an array of real numbers x1, ..., x16 with its elements givenas follows

    (x) =

    x1 x2 + ix3 x4 + ix5 x6 + ix7

    x2 ix3 x8 x9 + ix10 x11 + ix12x4 ix5 x9 ix10 x13 x14 + ix15x6 ix7 x11 ix12 x14 ix15 x16

    Our approach can be generalized to d-dimensional states.

    Karol Bartkiewicz |Priority choice two-qubit tomography 7/42

  • bg=whiteQuantum state tomography

    Two-qubit density matrix is an array of real numbers x1, ..., x16 with its elements givenas follows

    (x) =

    x1 x2 + ix3 x4 + ix5 x6 + ix7

    x2 ix3 x8 x9 + ix10 x11 + ix12x4 ix5 x9 ix10 x13 x14 + ix15x6 ix7 x11 ix12 x14 ix15 x16

    Our approach can be generalized to d-dimensional states.

    Karol Bartkiewicz |Priority choice two-qubit tomography 7/42

  • bg=whiteQuantum state tomography

    Linear inversion

    Ax = b x = A1b

    A is the coefficient matrixb is the observation vectorx = vec() = [11,Re12, Im12,Re13, Im13, ..., 44]

    T

    is a real vector describing an unknown state

    Karol Bartkiewicz |Priority choice two-qubit tomography 8/42

  • bg=whiteTomographic stability

    An examplex = A1b

    A =

    [6 75 6

    ] A1 =

    [6 75 6

    ]b = [0.7, 0.6]T x = [0, 0.1]T

    b = [0.71, 0.59]T x = [0.13,0.01]T

    IfA is almost singular, then small deviations in observations b causelarge deviations in reconstructed values x!

    Karol Bartkiewicz |Priority choice two-qubit tomography 9/42

  • bg=whiteTomographic stability

    An examplex = A1b

    A =

    [6 75 6

    ] A1 =

    [6 75 6

    ]b = [0.7, 0.6]T x = [0, 0.1]T

    b = [0.71, 0.59]T x = [0.13,0.01]T

    IfA is almost singular, then small deviations in observations b causelarge deviations in reconstructed values x!

    Karol Bartkiewicz |Priority choice two-qubit tomography 9/42

  • bg=whiteTomographic stability

    An examplex = A1b

    A =

    [6 75 6

    ] A1 =

    [6 75 6

    ]b = [0.7, 0.6]T x = [0, 0.1]T

    b = [0.71, 0.59]T x = [0.13,0.01]T

    IfA is almost singular, then small deviations in observations b causelarge deviations in reconstructed values x!

    Karol Bartkiewicz |Priority choice two-qubit tomography 9/42

  • bg=whiteTomographic stability

    An examplex = A1b

    A =

    [6 75 6

    ] A1 =

    [6 75 6

    ]b = [0.7, 0.6]T x = [0, 0.1]T

    b = [0.71, 0.59]T x = [0.13,0.01]T

    IfA is almost singular, then small deviations in observations b causelarge deviations in reconstructed values x!

    Karol Bartkiewicz |Priority choice two-qubit tomography 9/42

  • bg=whiteTomographic stability

    Gastinel-Kahan theoremdist,(A) := min

    {A P,A,

    : P is singular

    },

    dist,(A) =1

    cond,(A).

    ARTICLE W.Kahan,Numerical linear algebra,Canad. Math. Bull. 9, 757(1966).

    Yu. I. Bogdanov, G. Brida, M. Genovese, S. P. Kulik, E. V. Moreva, andA. P. Shurupov, Phys. Rev. Lett. 105, 010404 (2010).

    Karol Bartkiewicz |Priority choice two-qubit tomography 10/42

  • bg=whiteTomographic stability

    Gastinel-Kahan theoremdist,(A) := min

    {A P,A,

    : P is singular

    },

    dist,(A) =1

    cond,(A).

    ARTICLE W.Kahan,Numerical linear algebra,Canad. Math. Bull. 9, 757(1966).

    Yu. I. Bogdanov, G. Brida, M. Genovese, S. P. Kulik, E. V. Moreva, andA. P. Shurupov, Phys. Rev. Lett. 105, 010404 (2010).

    Karol Bartkiewicz |Priority choice two-qubit tomography 10/42

  • bg=whiteTomographic stability

    Condition numbercond,(A) = A, A1,

    A, = maxx 6=0 Axxcond,(A) = + for a singular matrixAcond,(A) 1

    ARTICLE A.M. Turing, Rounding-off errors in matrix processes,Quart. J. Mech. Appl. Math. 1, 287 (1948).

    Karol Bartkiewicz |Priority choice two-qubit tomography 11/42

  • bg=whiteTomographic stability

    Spectral normA2 = max[svd(A)] max(A)

    where the function svd(A) returns the singular values ofA.Singular value decomposition

    x = A1b = (V D1UT )b =ni=1

    uTi b

    ivi

    U = [u1, ..., un] and V = [v1, ..., vn] are the left- andright-hand singular vectors forAD = diag([1, ..., n]) is a diagonal matrix of the singularvalues i forA

    Karol Bartkiewicz |Priority choice two-qubit tomography 12/42

  • bg=whiteTomographic stability

    Spectral normA2 = max[svd(A)] max(A)

    where the function svd(A) returns the singular values ofA.Singular value decomposition

    x = A1b = (V D1UT )b =ni=1

    uTi b

    ivi

    U = [u1, ..., un] and V = [v1, ..., vn] are the left- andright-hand singular vectors forAD = diag([1, ..., n]) is a diagonal matrix of the singularvalues i forA

    Karol Bartkiewicz |Priority choice two-qubit tomography 12/42

  • bg=whiteTomographic stability

    Condition number (A) cond2(A) =

    max[svd(A)]

    min[svd(A)]

    svd(A) returns the singular values ofA(A) = 1 for the optimal tomography

    Karol Bartkiewicz |Priority choice two-qubit tomography 13/42

  • bg=whiteTomographic stability

    Condition number

    (A) cond2(A) =

    max[eig(AA)]

    min[eig(AA)]

    eig(AA) returns the eigenvalues ofAA

    Karol Bartkiewicz |Priority choice two-qubit tomography 14/42

  • bg=whiteTomographic stability

    Atkinsons inequality1

    (A)

    bb xx

    (A)bb

    ARTICLE K. E. Atkinson, An Introduction to Numerical Analysis(Wiley, New York, 1989).

    Karol Bartkiewicz |Priority choice two-qubit tomography 15/42

  • bg=whiteError analysis

    Modified Atkinsons inequality1

    (A)

    b||b + b||

    xx + x

    (A) bb + b

    .

    This follows directly from linearity of the inversion problem.ARTICLE K. Bartkiewicz, A. Cernoch, K. Lemr, A.Miranowicz,

    arXiv:1506.01317

    Karol Bartkiewicz |Priority choice two-qubit tomography 16/42

  • bg=whiteError analysis

    Modified Atkinsons inequality1

    (A)

    b||b + b||

    xx + x

    (A) bb + b

    .

    This follows directly from linearity of the inversion problem.ARTICLE K. Bartkiewicz, A. Cernoch, K. Lemr, A.Miranowicz,

    arXiv:1506.01317

    Karol Bartkiewicz |Priority choice two-qubit tomography 16/42

  • bg=whiteError analysis

    Implications of Atkinsons inequalitykR

    4d2(A)

    E kR22

    State dimension d = 4ErrorE T [(x), (x+ x)] = 1

    2Tr

    ()2

    0 k := b/(b) 2

    2 for the Poissonian statisticsThe distance between a physical state and its tomographicestimate + is limited!

    Karol Bartkiewicz |Priority choice two-qubit tomography 17/42

  • bg=whiteError analysis

    Implications of Atkinsons inequalitykR

    4d2(A)

    E kR22

    State dimension d = 4ErrorE T [(x), (x+ x)] = 1

    2Tr

    ()2

    0 k := b/(b) 2

    2 for the Poissonian statisticsThe distance between a physical state and its tomographicestimate + is limited!

    Karol Bartkiewicz |Priority choice two-qubit tomography 17/42

  • bg=whiteError analysis

    Maximum error

    Emax R 2d (A)

    (b)x + xb + b

    know your (A) and state dimension d = 4measure b+ b and estimate (b)calculate x+ x = A1(b+ b)

    The limit onmaximum error is independent!

    Karol Bartkiewicz |Priority choice two-qubit tomography 18/42

  • bg=whiteError analysis

    Maximum error

    Emax R 2d (A)

    (b)x + xb + b

    know your (A) and state dimension d = 4measure b+ b and estimate (b)calculate x+ x = A1(b+ b)

    The limit onmaximum error is independent!

    Karol Bartkiewicz |Priority choice two-qubit tomography 18/42

  • bg=whiteError analysis

    S0 R0 S R

    Uncertainty disk = +

    R0 =R

    2d2(A)

    R = 2d (A) (b)x+xb+b

    The physical state is located on a disk of radius betweenR0 andR.The size of uncertainty disc is limited byR.

    Karol Bartkiewicz |Priority choice two-qubit tomography 19/42

  • bg=whiteError analysis

    S0 R0 S R

    Uncertainty disk = +

    R0 =R

    2d2(A)

    R = 2d (A) (b)x+xb+b

    The physical state is located on a disk of radius betweenR0 andR.The size of uncertainty disc is limited byR.

    Karol Bartkiewicz |Priority choice two-qubit tomography 19/42

  • bg=whiteError analysis

    Standard error

    Estandard d

    2(A)

    (b)x + xb + b

    =R

    22

    if k = 1 the deviations b (b)

    The limit on standard error is independent!

    Karol Bartkiewicz |Priority choice two-qubit tomography 20/42

  • bg=whiteError analysis

    Themost probable range of errorskR

    4d2(A)

    E kR22

    Chebyshevs inequality: 1 1/k2 Pr(E kR/22)Let S = R/2, then

    Pr (0 E S) 12

    The Chebyshevs inequality holds if R/22 is a good estimate ofEstandard, but also ifEstandard R/22 (it is the case!).

    Karol Bartkiewicz |Priority choice two-qubit tomography 21/42

  • bg=whiteError analysis

    S0 R0 S R

    Standard error = +

    S =d (A) (b)x+xb+b

    S0 =S

    2d2(A)

    With probability > 1/2 the physical state is located on a disk ofradius between S0 and S.

    Karol Bartkiewicz |Priority choice two-qubit tomography 22/42

  • bg=whiteError analysis

    S0 R0 S R

    Standard error = +

    S =d (A) (b)x+xb+b

    S0 =S

    2d2(A)

    With probability > 1/2 the physical state is located on a disk ofradius between S0 and S.

    Karol Bartkiewicz |Priority choice two-qubit tomography 22/42

  • bg=whiteError analysis

    S0 R0 S R

    Error estimation = +

    R = 2d (A) (b)x+xb+b

    R0 =R

    2d2(A)

    S = R/2

    S0 = R0/2

    R or S (A) appear to be a good indicators of error robustness.

    Karol Bartkiewicz |Priority choice two-qubit tomography 23/42

  • bg=whiteError analysis

    S0 R0 S R

    Error estimation = +

    R = 2d (A) (b)x+xb+b

    R0 =R

    2d2(A)

    S = R/2

    S0 = R0/2

    R or S (A) appear to be a good indicators of error robustness.

    Karol Bartkiewicz |Priority choice two-qubit tomography 23/42

  • bg=whiteOptimal tomography

    Overview of tomographies(A) = 1 Optimal tomography: 16measurements(A) =

    2 Pauli matrices: 16measurements

    (A) =

    5 MUB tomography: 20measurements(A) =

    9 Standard tomography: 36measurements

    (A) =

    60.1 [James et al., 2001]: 16measurementsARTICLE A.Miranowicz, K. Bartkiewicz, J. Perina Jr., M. Koashi, N. Imoto,

    F. Nori, Phys. Rev. A 90, 062123 (2014).ARTICLE K. Bartkiewicz, A. Cernoch, K. Lemr, A.Miranowicz,

    arXiv:1506.01317R (A)

    Karol Bartkiewicz |Priority choice two-qubit tomography 24/42

  • bg=whiteOptimal tomography

    Overview of tomographies(A) = 1 Optimal tomography: 16measurements(A) =

    2 Pauli matrices: 16measurements

    (A) =

    5 MUB tomography: 20measurements(A) =

    9 Standard tomography: 36measurements

    (A) =

    60.1 [James et al., 2001]: 16measurementsARTICLE A.Miranowicz, K. Bartkiewicz, J. Perina Jr., M. Koashi, N. Imoto,

    F. Nori, Phys. Rev. A 90, 062123 (2014).ARTICLE K. Bartkiewicz, A. Cernoch, K. Lemr, A.Miranowicz,

    arXiv:1506.01317R (A)

    Karol Bartkiewicz |Priority choice two-qubit tomography 24/42

  • bg=whiteOptimal tomography

    Overview of tomographies(A) = 1 Optimal tomography: 16measurements(A) =

    2 Pauli matrices: 16measurements

    (A) =

    5 MUB tomography: 20measurements(A) =

    9 Standard tomography: 36measurements

    (A) =

    60.1 [James et al., 2001]: 16measurementsARTICLE A.Miranowicz, K. Bartkiewicz, J. Perina Jr., M. Koashi, N. Imoto,

    F. Nori, Phys. Rev. A 90, 062123 (2014).ARTICLE K. Bartkiewicz, A. Cernoch, K. Lemr, A.Miranowicz,

    arXiv:1506.01317R (A)

    Karol Bartkiewicz |Priority choice two-qubit tomography 24/42

  • bg=whiteOptimal tomography

    Overview of tomographies(A) = 1 Optimal tomography: 16measurements(A) =

    2 Pauli matrices: 16measurements

    (A) =

    5 MUB tomography: 20measurements(A) =

    9 Standard tomography: 36measurements

    (A) =

    60.1 [James et al., 2001]: 16measurementsARTICLE R. B. A. Adamson and A.M. Steinberg, Phys. Rev. Lett. 105,

    030406 (2010).R (A)

    Karol Bartkiewicz |Priority choice two-qubit tomography 25/42

  • bg=whiteOptimal tomography

    Overview of tomographies(A) = 1 Optimal tomography: 16measurements(A) =

    2 Pauli matrices: 16measurements

    (A) =

    5 MUB tomography: 20measurements(A) =

    9 Standard tomography: 36measurements

    (A) =

    60.1 [James et al., 2001]: 16measurementsARTICLE J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, Advances in Atomic,

    Molecular, andOptical Physics 52, 105 (2005).R (A)

    Karol Bartkiewicz |Priority choice two-qubit tomography 26/42

  • bg=whiteOptimal tomography

    Overview of tomographies(A) = 1 Optimal tomography: 16measurements(A) =

    2 Pauli matrices: 16measurements

    (A) =

    5 MUB tomography: 20measurements(A) =

    9 Standard tomography: 36measurements

    (A) =

    60.1 [James et al., 2001]: 16measurementsARTICLE D. F. V. James, P. G. Kwiat,W. J.Munro, and A. G.White, Phys. Rev.

    A 64, 052312 (2001).R (A)

    Karol Bartkiewicz |Priority choice two-qubit tomography 27/42

  • bg=whiteOptimal tomography

    MatrixA

    AT =

    1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

    Karol Bartkiewicz |Priority choice two-qubit tomography 28/42

  • bg=whiteOptimal tomography

    Separable (local) observablesb1

    = |HHHH|, b2 = |HV HV |,b3

    = |V HV H|, b4 = |V V V V |,

    b5=

    1

    2|HH| 1, b6 =

    1

    2|HH| 2,

    b7=

    1

    21 |HH|, b8 =

    1

    22 |HH|,

    b9=

    1

    2|V V | 1, b10 =

    1

    2|V V | 2,

    b11=

    1

    21 |V V |, b12 =

    1

    22 |V V |...

    Pauli matrices: 1 = |DD| |AA|, 2 = |LL| |RR|

    Karol Bartkiewicz |Priority choice two-qubit tomography 29/42

  • bg=whiteOptimal tomography

    Separable (local) observablesb1

    = |HHHH|, b2 = |HV HV |,b3

    = |V HV H|, b4 = |V V V V |,

    b5=

    1

    2|HH| 1, b6 =

    1

    2|HH| 2,

    b7=

    1

    21 |HH|, b8 =

    1

    22 |HH|,

    b9=

    1

    2|V V | 1, b10 =

    1

    2|V V | 2,

    b11=

    1

    21 |V V |, b12 =

    1

    22 |V V |...

    Pauli matrices: 1 = |DD| |AA|, 2 = |LL| |RR|

    Karol Bartkiewicz |Priority choice two-qubit tomography 29/42

  • bg=whiteOptimal tomography

    Global observablesb13

    = 12(|++| ||),

    b14= 12(|

    ++| ||),b15

    = 12(|++| ||),

    b16= 12(|

    ++| ||).

    Entangled states | = (|HH |V V )/2, | = (|HV |V H)/

    2, | = (|HH i|V V )/2, | = (|HV

    i|V H)/

    2 can be transformed into each other by local transforma-tions. It is enough to have a singlet | detector!

    For composite measurements b is given by the Skellam distribution.

    Karol Bartkiewicz |Priority choice two-qubit tomography 30/42

  • bg=whiteOptimal tomography

    Global observablesb13

    = 12(|++| ||),

    b14= 12(|

    ++| ||),b15

    = 12(|++| ||),

    b16= 12(|

    ++| ||).

    Entangled states | = (|HH |V V )/2, | = (|HV |V H)/

    2, | = (|HH i|V V )/2, | = (|HV

    i|V H)/

    2 can be transformed into each other by local transforma-tions. It is enough to have a singlet | detector!

    For composite measurements b is given by the Skellam distribution.

    Karol Bartkiewicz |Priority choice two-qubit tomography 30/42

  • bg=whiteOptimal tomography

    Global observablesb13

    = 12(|++| ||),

    b14= 12(|

    ++| ||),b15

    = 12(|++| ||),

    b16= 12(|

    ++| ||).

    Entangled states | = (|HH |V V )/2, | = (|HV |V H)/

    2, | = (|HH i|V V )/2, | = (|HV

    i|V H)/

    2 can be transformed into each other by local transforma-tions. It is enough to have a singlet | detector!

    For composite measurements b is given by the Skellam distribution.

    Karol Bartkiewicz |Priority choice two-qubit tomography 30/42

  • bg=whiteExperimental two-qubit tomography

    Experimental setup

    MT

    INPU

    T

    STATEPREP.

    STATETOMOGRAPHY

    QWP HWP

    QWP HWPQWP

    HWP

    QWPHWP

    HWP

    BS

    POL

    POL

    DETE

    CTION

    Detectiondata collection: 5slocal: BS outnonlocal: BS in

    Photon pairs were generated by SPDC occurring in a pair of BBOcrystals (2.103 cc. per second for 200mWpumping@ 355nm)

    ARTICLE K. Bartkiewicz, A. Cernoch, K. Lemr, A.Miranowicz,arXiv:1506.01317

    Karol Bartkiewicz |Priority choice two-qubit tomography 31/42

  • bg=whiteExperimental two-qubit tomography

    Experimental setup

    MT

    INPU

    T

    STATEPREP.

    STATETOMOGRAPHY

    QWP HWP

    QWP HWPQWP

    HWP

    QWPHWP

    HWP

    BS

    POL

    POL

    DETE

    CTION

    Detectiondata collection: 5slocal: BS outnonlocal: BS in

    Photon pairs were generated by SPDC occurring in a pair of BBOcrystals (2.103 cc. per second for 200mWpumping@ 355nm)

    ARTICLE K. Bartkiewicz, A. Cernoch, K. Lemr, A.Miranowicz,arXiv:1506.01317

    Karol Bartkiewicz |Priority choice two-qubit tomography 31/42

  • bg=whiteExperimental two-qubit tomography

    Experimental setup

    MT

    INPU

    T

    STATEPREP.

    STATETOMOGRAPHY

    QWP HWP

    QWP HWPQWP

    HWP

    QWPHWP

    HWP

    BS

    POL

    POL

    DETE

    CTION

    Detectiondata collection: 5slocal: BS outnonlocal: BS in

    Photon pairs were generated by SPDC occurring in a pair of BBOcrystals (2.103 cc. per second for 200mWpumping@ 355nm)

    ARTICLE K. Bartkiewicz, A. Cernoch, K. Lemr, A.Miranowicz,arXiv:1506.01317

    Karol Bartkiewicz |Priority choice two-qubit tomography 31/42

  • bg=whiteExperimental two-qubit tomography

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    0.02 0.12 0.22 0.32 0.42 0.52 0.62 0.72 0.82

    E

    Standard error

    S0 R0 S R

    With probability 1/2 the physical state is closer to than the upper limit of a bar.

    Karol Bartkiewicz |Priority choice two-qubit tomography 32/42

  • bg=whiteExperimental two-qubit tomography

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    0.02 0.12 0.22 0.32 0.42 0.52 0.62 0.72 0.82

    E

    Standard error

    S0 R0 S R

    With probability 1/2 the physical state is closer to than the upper limit of a bar.

    Karol Bartkiewicz |Priority choice two-qubit tomography 32/42

  • bg=whiteExperimental two-qubit tomography

    Relatively placed uncertainty discsO optimal,M MUB, S standardQSTcentresmeasured states relative positions given by trace distanceintersections contain the physical statesintersections are closest toO

    Karol Bartkiewicz |Priority choice two-qubit tomography 33/42

  • bg=whiteExperimental two-qubit tomography

    Relatively placed uncertainty discsO optimal,M MUB, S standardQSTcentresmeasured states relative positions given by trace distanceintersections contain the physical statesintersections are closest toO

    Karol Bartkiewicz |Priority choice two-qubit tomography 33/42

  • bg=whiteExperimental two-qubit tomography

    Representative statesThe reconstructed states can be approximatedwith n = |nn|:|4 = (|DR i|AL)/

    2

    |7 = |HV |9 = (|HV |V H)/

    2

    |14 = |e1ae1bwhere |e1a = (0.6556 + 0.6248i)|H+ 0.4241|V and |e1b = (0.1415 0.7165i)|H+ 0.6831|V .

    Karol Bartkiewicz |Priority choice two-qubit tomography 34/42

  • bg=whiteExperimental two-qubit tomography

    moremethodsmore dimensions for graphical comparison

    Karol Bartkiewicz |Priority choice two-qubit tomography 35/42

  • bg=whiteConclusions

    Various QSTs implementedwith the same setupQST errors estimatedwithout knowing the physical stateBest error estimates for the optimal QSTOptimal tomography is themost error robust

    Karol Bartkiewicz |Priority choice two-qubit tomography 36/42

  • bg=whiteSupported by

    Quantum engineering and quantumphase transitions in optical and

    low-dimensional condensedmattersystems

    Registry No.:DEC-2011/03/B/ST2/01903

    Karol Bartkiewicz |Priority choice two-qubit tomography 37/42

  • bg=whiteSupported by

    Nonlinear properties of lowdimesional quantum states: directmeasurement and applications inquantum information processing

    Registry No.:DEC-2013/11/D/ST2/02638

    Karol Bartkiewicz |Priority choice two-qubit tomography 38/42

  • bg=white

    Thank you for yourattention!

    ARTICLE K. Bartkiewicz, A. Cernoch, K. Lemr,A.Miranowicz, arXiv:1506.01317

    ARTICLE

    A.Miranowicz, K. Bartkiewicz, J. Perina Jr.,M. Koashi, N. Imoto, F. Nori,Phys. Rev. A 90, 062123 (2014).

    Karol Bartkiewicz |Priority choice two-qubit tomography 39/42

  • bg=whiteUncertainty discs

    Karol Bartkiewicz |Priority choice two-qubit tomography 40/42

  • bg=whiteMeasured states

    Wehave prepared 17 different states of high purity, which approximately correspond to:

    |1 = (|HH |V V )/2, |2 = (|HH+ |V V )/

    2,

    |3 = (|HH i|V V )/2, |4 = (|DR i|AL)/

    2,

    |5 = (|HV + i|V H)/2, |6 = (|HV + |V H)/

    2,

    |7 = |HV , |8 = (|HH+ i|V V )/2,

    |9 = (|HV |V H)/2, |10 = (|HV i|V H)/

    2,

    |11 = (|DL+ i|AR)/2, |12 = (|DL i|AR)/

    2,

    |13 = |e1ae1b, |14 = |e2ae2b,|15 = 0.79|HV 0.61|V H, |16 = 0.50|HV 0.87|V H,

    |17 = 0.35|HV 0.94|V H;

    where |e1a = (0.6556 + 0.6248i)|H+ 0.4241|V ,|e1b = (0.1415 0.7165i)|H+ 0.6831|V ,|e2a = (0.9608 + 0.2091i)|H+ 0.1822|V ,and |e2b = (0.2613 + 0.7338i)|H+ 0.6271|V .

    Karol Bartkiewicz |Priority choice two-qubit tomography 41/42

  • bg=whiteMaximum likelihood estimation

    Karol Bartkiewicz |Priority choice two-qubit tomography 42/42

    IntroductionQuantum tomographyTomographic stability

    Error analysisMaximum errorStandard error

    Optimal tomographyTheoryExperiment

    Conclusions

    fd@rm@0: fd@rm@1: