21
11/13/2013 1 CEE 697K ENVIRONMENTAL REACTION KINETICS Introduction David A. Reckhow CEE697K Lecture #17 1 Updated: 13 November 2013 Print version Lecture #17 Kinetic Modeling: Computer Models Case Study: Chloramination II Brezonik, pp. HAAs: Chlorine vs Chloramine Dihalo products, but little trihalo R'' C CCl 2 O C R' O R'' C CCl 2 O C OH O C OH O Cl 2 HC C OH O Cl 3 C CHCl 3 NOM R'' C CHCl 2 O R'' C CCl 3 O Oxidation & Substitution (chlorine & chloramines) Hydrolysis Hydrolysis Substitution (free chlorine only) Hydrolysis Oxidative Hydrolysis DCAA TCAA THM Hydrolysis & Oxidation Slow David A. Reckhow CEE697K Lecture #17 2

Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

1

CEE 697KENVIRONMENTAL REACTION KINETICS

IntroductionDavid A. Reckhow

CEE697K Lecture #17 1Updated: 13 November 2013

Print version

Lecture #17

Kinetic Modeling: Computer ModelsCase Study: Chloramination IIBrezonik, pp.

HAAs: Chlorine vs Chloramine

Dihalo products, but little trihalo

R'' C CCl2

O

C R'

O

R'' C CCl2

O

C OH

O

C OH

O

Cl2HC

C OH

O

Cl3CCHCl3

NOM

R'' C CHCl2

O

R'' C CCl3

O

Oxidation & Substitution (chlorine & chloramines)

Hydrolysis Hydrolysis

Substitution (free chlorine only)

Hydrolysis Oxidative Hydrolysis

DCAA

TCAATHM

Hydrolysis & Oxidation

Slow

David A. ReckhowCEE697K Lecture #17

2

Page 2: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

2

TH

M C

onc

entr

atio

n (

ug/L

)

0

20

40

60

80

100

4 hr. chlorination 4 hr. chlorination plus 48 hr. chloramination

+51%

+18%+47%

+62%

+33%

+36%

+23%

+21% +14%

pH 6

, tem

p=2C

, 1.5

mg/

L C

l 2

pH 6

, tem

p=2C

, 3.5

mg/

L C

l 2

pH 6

, tem

p=20

C, 1

.5 m

g/L

Cl 2

pH 6

, tem

p=20

C, 3

.5 m

g/L

Cl 2

pH 8

, tem

p=2C

, 1.5

mg/

L C

l 2

pH 8

, tem

p=2C

, 3.5

mg/

L C

l 2

pH 8

, tem

p=20

c, 1

.5 m

g/L

Cl 2

pH 8

, tem

p=20

C, 3

.5 m

g/L

Cl 2

pH 7

.6, t

emp=

20C

, 3.5

mg/

L C

l 2

1.5

mg/

L P

O4

THMs: Chlorination followed by Chloramination

The UMass-MWRA Study David A. ReckhowCEE697K Lecture #17

3

HA

A C

once

ntr

atio

n (

ug/L

)

0

10

20

30

40

50

60

70

80

+24%

+6%

+31%

+20%

+29%+20%

pH 6

, tem

p=2C

, 1.5

mg/

L C

l 2

pH 6

, tem

p=2C

, 3.5

mg/

L C

l 2

pH 6

, tem

p=20

C, 1

.5 m

g/L

Cl 2

pH6,

tem

p=20

C, 3

.5 m

g/L

Cl 2

pH 8

, tem

p=2C

, 1.5

mg/

L C

l 2

pH 8

, tem

p=2C

, 3.5

mg/

L C

l 2

pH 8

, tem

p=20

C, 1

.5 m

g/L

Cl 2

pH 8

, tem

p=20

C, 3

.5 m

g/L

Cl 2

pH 7

.6, t

emp=

20C

, 3.5

mg/

L C

l 2

1.5

mg/

L P

O4

4 hr. chlorination plus 48 hr. chloramination4 hr. chlorination

+5%

+14%

The UMass-MWRA Study

HAAs:Chlorination followed by Chloramination

David A. ReckhowCEE697K Lecture #17

4

Page 3: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

3

Precursors & BehaviorMono & Dihalo-DBPs

Trihalo-DBPs PrecursorOrigins

Coag. or Oxidation

Biodreg-radation

Haloacids (DCAA) THMs General NOM Average Average

Aldehydes

Ketones (Dichloropropanone)

Aldehydes (Chloral Hydrate)

Ketones (Trichloropropanone)

Oxidized NOM(bacterial, solar, ozone)

Poor Good

Nitroalkanes Nitroalkanes(Chloropicrin)

reactive Nitrogen species

Nitriles(Dichloroacetonitrile)

Amides (Dichloroacetamide)Cyanogen Halides(CNCl, CNBr)

Nitriles(Trichloroacetonitrile)

Amides (Trichloroacetamide)

Algal (autochthonous)

Average Average

Halobenzoquinones? Haloacids (TCAA) Terrestrial -Lignin(allochthonous)

Good Poor

David A. Reckhow 5Preferentially formed by Chloramination

General Trends

Removal by:

CEE697K Lecture #17

DBP control with DS management

Para-meter

THM Tri-HAAs

Di-HAAs

HANs TCP DCP CP Iodo-DBPs

Time

Cl2Dose

~

pH ~

Cl2 to NH2Cl

~ ~ ~

Temp ~

6

Dri

ven

by R

egul

atio

ns

Notes:

HANs: haloacetontriles, including DCANTCP: trichloropropanone, a haloketoneDCP: dichloropropanone: a haloketoneCP: chloropicrin: a halonitromethaneIodo-DBPs: include iodinated THMs, HAAs, etc David A. ReckhowCEE697K Lecture #17

Page 4: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

4

Chloramines vs Free Chlorine

DBPs Lower levels of trihalogenated byproducts Easier to meet current DBP regulations

Less impact on dihalogenated compound Some are higher with chloramines

More of some types of N-DBPs Organic chloramines, nitriles, amides, nitro compds

Other concerns Growth of ammonia oxidizing bacteria Loss of residual, formation of reactive intermediates

Reduction of Lead (IV) Public perception & direct health effects

7

David A. ReckhowCEE697K Lecture #17

Theoretical Breakpoint Curve

HOCl + OCl-

NCl30

2

4

6

8

0 2 4 6 8 10 12 14 16

Chlorine Dose, mg Cl2/mg NH4-N

Ch

lori

ne

Res

idu

al

mg

Cl 2

/mg

NH

4-N

NHCl2

NH2Cl

David A. ReckhowCEE697K Lecture #17

8

Page 5: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

5

Distribution Diagram for Chloramine Species with pH

Monochloramine

Dichloramine

NitrogenTrichloride

Tot

al C

ombi

ned

Chl

orin

e (%

)

20

40

60

80

100

3 5 6 7 8

pHDavid A. ReckhowCEE697K Lecture #17

9

Jafvert & Valentine Model

David A. ReckhowCEE697K Lecture #17

10

Jafvert, C. T. and R. L. Valentine (1992). "Reaction Scheme for the Chlorination of Ammoniacal Water." Environmental Science & Technology 26(3): 577-586.

Page 6: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

6

Model Equations

David A. ReckhowCEE697K Lecture #17

11# Reaction Rate coefficient/equilibrium constant (25°C)

References

1.1 HOCl+NH3→NH2Cl+H2O k1.1=1.5×1010 M−1 h−1 Morris and Isaac (1981)

1.2 NH2Cl+H2O→HOCl+NH3 k1.2=7.6×10−2 h−1 Morris and Isaac (1981)

1.3 HOCl+NH2Cl→NHCl2+H2O k1.3=1.0×106 M−1 h−1 Margerum et al. (1978)

1.4 NHCl2+H2O→HOCl+NH2Cl k1.4=2.3×10−3 h−1 Margerum et al. (1978)

1.5 NH2Cl+NH2Cl→NHCl2+NH3 kda Vikesland et al. (2001)

1.6 NHCl2+NH3→NH2Cl+NH2Cl k1.6=2.2×108 M−2 h−1 Hand and Margerum (1983)

1.7 NHCl2+H2O→I k1.7=4.0×105 M−1 h−1 Jafvert and Valentine (1987)

1.8 I+NHCl2→HOCl+products k1.8=1.0×108 M−1 h−1 Leao (1981)

1.9 I+NH2Cl→products k1.9=3.0×107 M−1 h−1 Leao (1981)

1.10 NH2Cl+NHCl2→products k1.10=55.0 M−1 h−1 Leao (1981)

1.11 HOCl→H++OCl− pKa=7.5 Snoeyink and Jenkins (1980)

1.12 NH4+→NH3+H+ pKa=9.3 Snoeyink and Jenkins (1980)

1.13 H2CO3→HCO3−+H+ pKa=6.3 Snoeyink and Jenkins (1980)

1.14 HCO3−→CO3

2−+H+ pKa=10.3 Snoeyink and Jenkins (1980)

Vikesland, P. J., K. Ozekin, et al. (2001). "Monochloramine decay in model and distribution system waters." Water Research 35(7): 1766-1776.

Vikesland modification

David A. ReckhowCEE697K Lecture #17

12

Modified version of equation #5 for carbonate kd=kH

+[H+]+kH2CO3[H2CO3]+kHCO3[HCO3]

Where kH

+ = 2.5 x 107 M-2h-1

kH2CO3 = 4 x 104 M-2h-1

kHCO3 = 800 M-2h-1

I is the unidentified monochloramine auto-decomposition intermediate Vikesland, P. J., K. Ozekin, et al. (2001).

"Monochloramine decay in model and distribution system waters." Water Research 35(7): 1766-1776.

Page 7: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

7

Temperature Effects

David A. ReckhowCEE697K Lecture #17

13

Reaction Rate coefficient/equilibrium constant References

HOCl+NH3→NH2Cl+H2O k1.1=2.37×1012 exp(−1510/T) M−1 h−1 Morris and Isaac (1981)

NH2Cl+H2O→HOCl+NH3 k1.2=6.7×1011 exp(−8800/T) h−1 Morris and Isaac (1981)

HOCl+NH2Cl→NHCl2+H2O k1.3=1.08×109exp(−2010/T) M−1 h−1 Margerumet al.(1978)

NH2Cl+NH2Cl→NHCl2+NH3 k1.5=kH+[H+]+kHCO3[HCO3−]+kH2CO3[H2CO3]

kH+=3.78×1010exp(−2169/T) M−2 h−1 Granstrom (1954)

kHCO3=1.5×1035 exp(−22144/T) M−2 h−1 Vikesland et al. (2001)

kH2CO3=2.95×1010 exp(−4026/T) M−2 h−1 Vikesland et al. (2001)

H2CO

3⇌HCO

3−+H+ pka=1.48×10−4 (T)2−9.39×10−2 (T)+21.2 Snoeyink and Jenkins (1980)

HCO3−⇌H++CO

32− pka=1.19×10−4 (T)2−7.99×10−2 (T)+23.6 Snoeyink and Jenkins (1980)

NH4+⇌NH

3+H+ pka=1.03×10−4 (T)2−9.21×10−2(T)+27.6 Bates and Pinching (1950)

HOCl⇌OCl−+H+ pka=1.18×10−4 (T)2−7.86×10−2(T)+20.5

Chloramine Decay

NOHH2O

NH3

NHCl2

NH2Cl

NCl3

H2O

HOCl

H2O

H2O

2H2O

1/2 NO3-

2HCl + 1/2 H+

N2H2O + HCl

HOCl + HCl

HClNH3

2HOCl + 3HCl

David A. ReckhowCEE697K Lecture #17

14

Page 8: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

8

Valentine Model #1

Chloramine Formation and Decay pathway

NH3

NH2Cl

N2

NHCl2

H2O

HOCl

k1

H2O

HOCl

k3

H2O

HOCl

k2

kd

NH2Cl

NH3

NH2Cl

3Cl-, 3H+

Fast

@ Equilibrium

Rate Limiting Step

David A. ReckhowCEE697K Lecture #17

15

Valentine Model #2

Looking at the Rate Limiting Step

NH2Cl

N2

NHCl2

H2O

HOCl

k3kd

NH2Cl

NH3

NH2Cl

3Cl-, 3H+

NH2Cl

N2

NHCl2

H2O

HOCl

k3kd

NH2Cl

NH3

NH2Cl

3Cl-, 3H+

HOClClNHkClNHClNHkdt

ClNHdd 2322

2 23

David A. ReckhowCEE697K Lecture #17

16

Page 9: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

9

Valentine Model #3

Re-arranging:

HOClClNHkClNHkdt

ClNHdd 23

22

2 23

22

23

2 23 ClNHClNH

HOClkk

dt

ClNHdd

HOClClNHkClNHClNHkdt

ClNHdd 2322

2 23

David A. ReckhowCEE697K Lecture #17

17

Valentine Model #4

Looking at the first step Forward reaction rate equals

reverse rate equilibrium

Which leads to

NH3

NH2Cl

H2O

HOCl

k1

H2O

HOCl

k2

ClNHkNHHOClk 2231

3

1

2

2 NH

kk

ClNH

HOCl

David A. ReckhowCEE697K Lecture #17

18

Page 10: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

10

Valentine Model #5

Combining

We get:

22

23

2 23 ClNHClNH

HOClkk

dt

ClNHdd

3

1

2

2 NH

kk

ClNH

HOCl

22

3

1

23

2

23 ClNH

NH

kkk

kdt

ClNHdd

David A. ReckhowCEE697K Lecture #17

19

pH effects

Ammonia and chloramine species are prone to protonation

Dichloramine is more prevalent at low pH Why?

The protonated form of monochloramine reacts more quickly than the neutral form or the reverse reaction is slower

4223 NHNHClClNHClNH

David A. ReckhowCEE697K Lecture #17

20

Page 11: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

11

Nitrogen Trichloride

Acute Human toxicity ?? Drinking Water, showers and swimming pools

Blatchley’s group:

“Trichloramine (NCl3), which is often associated with the ‘chlorine odor’ of swimming pools, has been identified as a common by-product of chlorination of many organic-N compounds that are common to swimming pools, including urea, creatinine, and amino acids.

NCl3 is a respiratory irritant to mice, and more recent studies have indicated NCl3 to contribute to acute ocular and respiratory irritation symptoms in lifeguards and swimming pool workers.

Retrospective studies have shown positive correlation between irritation symptoms among swimmers and patrons and high gas-phase NCl3 concentration at indoor pool facilities.”

Weng, S.C., W.A. Weaver, M.Z. Afifi, T.N. Blatchley, J.S. Cramer, J. Chen, and E.R. Blatchley. 2011. Dynamics of gas-phase trichloramine (NCl(3)) in chlorinated, indoor swimming pool facilities. Indoor Air 21:391-399.

David A. ReckhowCEE697K Lecture #17

21

Measuring chloramines

DPD titrimetric method

N

H H

N

H

NN

C2H5C2H5C2H5C2H5

I3- I-, 2HI

HOCl H2O, HCl

Fe(+II), H+Fe(+III)Red

Colorless

David A. ReckhowCEE697K Lecture #17

22

Page 12: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

12

David A. ReckhowCEE697K Lecture #17

23

Oxidation of DPD

Reaction with free chlorine or iodine

Red

From Gordon et al., 1987

David A. ReckhowCEE697K Lecture #17

24

Speciation with DPD

FRC Direct reaction of HOCl/OCl- with DPD

Monochloramine Oxidation of I- to I3

- by NH2Cl, and subsequent oxidation of DPD Require only a small amount of iodide

Dichloramine Oxidation of I- to I3

- by NHCl2, and subsequent oxidation of DPD Require a large amount of iodide and longer reaction time

Page 13: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

13

David A. ReckhowCEE697K Lecture #17

25

DPD titrimetric method

N

H H

N

H

NN

C2H5C2H5C2H5C2H5

I3- I-, 2HI

HOCl H2O, HCl

Fe(+II), H+Fe(+III)Red

Colorless

David A. ReckhowCEE697K Lecture #17

26

DPD titrimetric method

pH control Low pH leads to protonated forms

High pH catalyzes DPD oxidation by atmospheric oxygen

Potential interference Any substance that can directly oxidize DPD MCA can do this a bit, so we sometimes add HgCl2

Any substance that can oxidize iodide Hydrogen peroxide, persulfate

Page 14: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

14

Figure 1 Schematic representation of the MIMS system (a) and configuration of the membrane cell (b).

Published in: Chii Shang; Ernest R. Blatchley; Environ. Sci. Technol. 1999, 33, 2218-2223.DOI: 10.1021/es9812103Copyright © 1999 American Chemical Society

David A. ReckhowCEE697K Lecture #1727

Figure 2 Representative EI mass spectra (35 ≤ m/z ≤ 125) of:

(a) free chlorine (2000 mg/L as Cl2), (b) monochloramine (40 mg/L as Cl2), (c) dichloramine (20 mg/L as Cl2), and (d) trichloramine (20 mg/L as Cl2).

Published in: Chii Shang; Ernest R. Blatchley; Environ. Sci. Technol. 1999, 33, 2218-2223.DOI: 10.1021/es9812103Copyright © 1999 American Chemical Society

David A. ReckhowCEE697K Lecture #1728

Page 15: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

15

Figure 3 Effects of membrane temperature and liquid flow rate on the MIMS system performance (dichloramine at 9.2 and 8.5 mg/L as Cl2, respectively):  ○, signal abundance; □, signal response time; ▵, signal noise.

Published in: Chii Shang; Ernest R. Blatchley; Environ. Sci. Technol. 1999, 33, 2218-2223.DOI: 10.1021/es9812103Copyright © 1999 American Chemical Society

David A. ReckhowCEE697K Lecture #1729

Figure 4 (a) Quantification of monochloramine by the MIMS method at m/z = 53:  concentrations refer to titrimetrically determined values (as Cl2) up to the limit of detection (see insert). (b) Linear response curves of the MIMS method for chloramines:  □, monochloramine (m/z = 53); ○, dichloramine (m/z = 87); ▵, trichloramine (m/z = 119).

Published in: Chii Shang; Ernest R. Blatchley; Environ. Sci. Technol. 1999, 33, 2218-2223.DOI: 10.1021/es9812103Copyright © 1999 American Chemical Society

David A. ReckhowCEE697K Lecture #1730

Page 16: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

16

Figure 5 Residual chlorine concentrations as a function of Cl:N mass ratio after 30 min chlorination of an aqueous solution containing (a) ammonia and (b) glycine (0.5 mg/L as N) at pH 7. For each Cl:N ratio, residual chlorine was measured by DPD/FAS titration (left bar) and MIMS/EI (right bar).

Published in: Chii Shang; Ernest R. Blatchley; Environ. Sci. Technol. 1999, 33, 2218-2223.DOI: 10.1021/es9812103Copyright © 1999 American Chemical Society

David A. ReckhowCEE697K Lecture #1731

DPD MIMS Lafayette wastewater (NH4

+-N, 12.2 mg/L; org-N, 13.1 mg/L)

Purdue potable water (NH4

+-N, 0.05 mg/L; org-N, 0.35 mg/L)

Chlorine dose

species mean RSDb (%) mean RSDb (%) DPD MIMS DPD

1.0 free 0 0 0 0 0.38

mono 0.12 4 (n = 6) 0 0.08 0.07 0.09

di 0.05 12 (n = 6) 0.03 2 (n = 6) 0.04 0.02 0.02

tri 0 0 0 0 0

5.0 free 0.16 14 (n = 6) 0.17 5 (n = 6) 0.16 0 4.28

mono 0.15 17 (n = 6) 0 1.94 2.05 0.14

di 0.40 2 (n = 6) 0.22 1 (n = 6) 0.08 0.03 0

tri 0 0 0 0 0.04

10.0 free 2.92 2 (n = 3) 2.58 1 (n = 3) 0.16 0 9.00

mono 0.15 15 (n = 3) 0.13 5 (n = 3) 4.64 5.17 0.20

di 0.77 8 (n = 3) 0.37 0 (n = 3) 0.40 0.24 0

tri 0 0.08 3 (n = 3) 0 0 0.04

David A. ReckhowCEE697K Lecture #17

32

Page 17: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

17

DPD MIMS Lafayette waste-water (NH4

+-N, 12.2 mg/L; org-N, 13.1 mg/L)

Purdue potable water (NH4

+-N, 0.05 mg/L; org-N, 0.35 mg/L)

chlorine dose

species mean RSDb (%) mean RSDb (%) DPD MIMS DPD MIMS

1.0 free 0 0 0 0 0.38 0.13

mono 0.12 4 (n = 6) 0 0.08 0.07 0.09 0

di 0.05 12 (n = 6) 0.03 2 (n = 6) 0.04 0.02 0.02 0

tri 0 0 0 0 0 0

5.0 free 0.16 14 (n = 6) 0.17 5 (n = 6) 0.16 0 4.28 3.22

mono 0.15 17 (n = 6) 0 1.94 2.05 0.14 0.26

di 0.40 2 (n = 6) 0.22 1 (n = 6) 0.08 0.03 0 0.02

tri 0 0 0 0 0.04 0

10.0 free 2.92 2 (n = 3) 2.58 1 (n = 3) 0.16 0 9.00 7.33

mono 0.15 15 (n = 3) 0.13 5 (n = 3) 4.64 5.17 0.20 0.56

di 0.77 8 (n = 3) 0.37 0 (n = 3) 0.40 0.24 0 0.05David A. ReckhowCEE697K Lecture #17

33

DPD based method for NCl3

Schematic of impinger method for gas-phase NCl3measurement. The arrows indicate the air flow pattern

Validation experiment setup. A gas-washing bottle containing an aqueous solution of the target compound was prepared and connected to the air entrance of measuring impinger system

Weng, S.C., W.A. Weaver, M.Z. Afifi, T.N. Blatchley, J.S. Cramer, J. Chen, and E.R. Blatchley. 2011. Dynamics of gas-phase trichloramine (NCl(3)) in chlorinated, indoor swimming pool facilities. Indoor Air 21:391-399.

David A. ReckhowCEE697K Lecture #17

34

Page 18: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

18

Compound

Typical liquid-phase concentration (mg/l)a

Henry’s law constant (atm, 20°C)b

Equilibrium gas-phase Concentration (mg/m3)

Reported gas-phase concentration at pool area (mg/m3)

HOClc 1.2 0.060 0.053 N.A

Cl2c 0.000012 767 0.0067 N.A

NH2Cl 0.30 0.45 0.10 N.A

NHCl2 0.10 1.52 0.11 N.A

NCl3 0.070 435 23 0.1–0.7d

CHCl3 0.080 185 11 0.009–0.058e

CHBr2Cl 0.0040 57.3 0.17 0.002–0.003e

CHBr3 0.0010 21.5 0.016 0.0008e

CNCl 0.0030 108 0.24 N.A

CNCHCl2 0.00080 0.21 0.00013 N.A

CH3NCl2 0.020 154 2.3 0.016–0.07f

David A. ReckhowCEE697K Lecture #17

35

Dynamics of gas‐phase trichloramine (NCl3) in chlorinated, indoor swimming pool facilities

Indoor AirVolume 21, Issue 5, pages 391-399, 14 MAR 2011 DOI: 10.1111/j.1600-0668.2011.00710.xhttp://onlinelibrary.wiley.com/doi/10.1111/j.1600-0668.2011.00710.x/full#f1

David A. ReckhowCEE697K Lecture #17

36

Page 19: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

19

Dynamics of gas‐phase trichloramine (NCl3) in chlorinated, indoor swimming pool facilities

Indoor AirVolume 21, Issue 5, pages 391-399, 14 MAR 2011 DOI: 10.1111/j.1600-0668.2011.00710.xhttp://onlinelibrary.wiley.com/doi/10.1111/j.1600-0668.2011.00710.x/full#f2

David A. ReckhowCEE697K Lecture #17

37

Indoor AirVolume 21, Issue 5, pages 391-399, 14 MAR 2011 DOI: 10.1111/j.1600-0668.2011.00710.xhttp://onlinelibrary.wiley.com/doi/10.1111/j.1600-0668.2011.00710.x/full#f4

Dynamics of gas‐phase trichloramine (NCl3) in chlorinated, indoor swimming pool facilities

David A. ReckhowCEE697K Lecture #17

38

Page 20: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

20

Liquid vs gas concentration

Relationship between DPD-based liquid-phase NCl3 concentration and gas-phase NCl3 concentration in Pool A facility. The results showed no significant correlation between these two parameters for this facility. The correlation coefficients between liquid-phase and gas-phase NCl3 concentrations were -0.140 and 0.154 for the diving well and competition pool, respectively.

Liquid-phase NCl3 Concentration (mg/L as Cl2)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Ga

s-p

hase

NC

l 3 C

once

ntr

atio

n (m

g/m

3 as

Cl 2)

0.0

0.2

0.4

0.6

0.8

Diving WellCompetition Pool

David A. ReckhowCEE697K Lecture #17

39

Loss in Tedlar bag

Comparison of gas-phase NCl3 measurement at pool deck and in the laboratory with a Tedlar gas-sampling bag. The results showed apparent loss of NCl3 from the gas-sampling bag during transport

Time

6/8 6/22 7/6 7/20 8/3

Ga

s-ph

ase

NC

l 3 C

on

cen

tra

tion

(mg

/m3 a

s C

l 2)

0.0

0.2

0.4

0.6

0.8

Glassware on Pool DeckGas Sampling Bag

David A. ReckhowCEE697K Lecture #17

40

Page 21: Print version - UMass Amherst · 2013. 11. 13. · 2 3 2 NH Cl NH Cl HOCl k k dt d NH Cl d k NH Cl NH Cl k NH Cl HOCl dt d NH Cl d 2 2 3 2 2 3 2 CEE697K Lecture #17 David A. Reckhow

11/13/2013

21

David A. ReckhowCEE697K Lecture #17

41

To next lecture