62
1 Principles of Communications ECS 332 Asst. Prof. Dr. Prapun Suksompong [email protected] 4. Amplitude Modulation Office Hours: BKD, 4th floor of Sirindhralai building Monday 9:30-10:30 Monday 14:00-16:00 Thursday 16:00-17:00

Principles of Communications - 4...In the time domain… 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-2-1 0 1 2 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-4-2 0 2 4 I P 2 I P I P H2cos2 B Ö P L T P 2

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Principles of CommunicationsECS 332

    Asst. Prof. Dr. Prapun [email protected]

    4. Amplitude Modulation

    Office Hours: BKD, 4th floor of Sirindhralai building

    Monday 9:30-10:30Monday 14:00-16:00Thursday 16:00-17:00

  • DSB-SC

    2

    × ×Channel

    2 cos 2 cf t

    y

    2 cos 2 cf t

    vLPF

    Modulator Demodulator

    Message(modulating signal)

    22

    2 cos 2 2 cos 2c cx t

    v t

    m t f t f t

    LPF m tKey equation:

  • In the time domain…

    3

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-2

    -1

    0

    1

    2

    3

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-4

    -2

    0

    2

    4

    2

    2cos 2

    2

    2cos 2

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-5

    0

    5

    Seconds

    Note the oscillation at twice the carrier frequency

  • In the time domain…

    4

    2

    2cos 2

    2

    2cos 2

    When the sampling rate is not fast enough,…

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-5

    0

    5

    Seconds

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-4

    -2

    0

    2

    4

    Seconds

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-2

    -1

    0

    1

    2

    3

  • 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-3

    -2

    -1

    0

    1

    2

    3

    4

    5

    The problem with sampling rate

    5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-5

    0

    5

    Seconds

    This is the plot of when we don’t connect the dots

  • 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-3

    -2

    -1

    0

    1

    2

    3

    4

    5

    The problem with sampling rate

    6 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-5

    0

    5

    Seconds

  • DSB-SC

    7

    0 5 10 15 20 25-1

    -0.5

    0

    0.5

    1

    Seconds

    -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

    x 104

    0

    0.05

    0.1

    0.15

    0.2

    Frequency [Hz]

    Mag

    nitu

    de

    0 5 10 15 20 25-2

    -1

    0

    1

    2

    Seconds

    -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

    x 104

    0

    0.05

    0.1

    0.15

    0.2

    Frequency [Hz]

    Mag

    nitu

    de0 5 10 15 20 25

    -2

    -1

    0

    1

    2

    Seconds

    -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

    x 104

    0

    0.05

    0.1

    0.15

    0.2

    Frequency [Hz]

    Mag

    nitu

    de

    0 5 10 15 20 25-2

    -1

    0

    1

    2

    Seconds

    -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

    x 104

    0

    0.05

    0.1

    0.15

    0.2

    Frequency [Hz]

    Mag

    nitu

    de

    / 2

    /2

    [Demo_DSBSC_Sound_ReadWAV.m]

  • DSB-SC (Zoomed in time)

    8

    1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035 1.004 1.0045 1.005-1

    -0.5

    0

    0.5

    1

    Seconds

    -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

    x 104

    0

    0.05

    0.1

    0.15

    0.2

    Frequency [Hz]

    Mag

    nitu

    de

    1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035 1.004 1.0045 1.005-1

    -0.5

    0

    0.5

    1

    Seconds

    -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

    x 104

    0

    0.05

    0.1

    0.15

    0.2

    Frequency [Hz]

    Mag

    nitu

    de1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035 1.004 1.0045 1.005

    -1

    -0.5

    0

    0.5

    1

    Seconds

    -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

    x 104

    0

    0.05

    0.1

    0.15

    0.2

    Frequency [Hz]

    Mag

    nitu

    de

    Note how the baseband signal becomes the envelope of

    the modulated signal x .

    Note the delay caused by the LPF.

    1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035 1.004 1.0045 1.005-2

    -1

    0

    1

    2

    Seconds

    -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

    x 104

    0

    0.05

    0.1

    0.15

    0.2

    Frequency [Hz]

    Mag

    nitu

    de

  • Fourier Series: Ex 1

    9

    -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    t

    ECS332_4_Amplitude_Modulation_Fourier_Ex1.fig

  • Fourier Series: Ex 1

    10

    -1-0.8

    -0.6-0.4

    -0.20

    0.20.4

    0.60.8

    1 -0.8-0.6

    -0.4-0.2

    00.2

    0.40.6

    0.81

    1.2

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    inde

    x

    t

  • Fourier Series: Ex 1 (interactive)

    11 ECS332_4_Amplitude_Modulation_Fourier_Ex1.jar [http://www.tomasboril.cz/hobbies_programs_en.html]

  • Fourier Series: Ex 1

    12

    -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    t

  • Fourier Series: Ex 2

    13

    0 2 4 6 8 10 12-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    t

    ECS332_4_Amplitude_Modulation_Fourier_Ex2.fig

  • Fourier Series: Ex 2

    14

    0

    2

    4

    6

    8

    10

    12-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    inde

    x

    t

  • Fourier Series: Ex 2

    15

  • Fourier Series: Ex 2

    16 [http://codepen.io/anon/pen/jPGJMK/]

  • Fourier Series visualization

    17 [http://bl.ocks.org/jinroh/7524988]

  • Fourier Series: Drawing

    18

    The same technique, but now tracing the whole trajectory and not just the vertical displacement, can be used to draw “anything”.

    [https://www.youtube.com/watch?v=QVuU2YCwHjw&t=1m]

  • Fourier Series: Drawing

    19[http://devpost.com/software/draw-anything]

    Draw Anything is an iOS app that harnesses the computational power of the Wolfram Programming Cloud to automatically create step-by-step drawing guides.

  • Fourier Series: Ex 1

    20

    0 2-

    1

    1/1/

    sincsin 1

    sin

    sin 2 sinc 2

    -3 113 2

    2 13

    -2 0 0

    -1 -11

    1 2

    2

    0 0 1

    1 11

    1 2

    2

    2 0 0

    3 -11

    3 2

    2 13

    2

    2 13

    2 15

  • Fourier Series: Ex 1

    21

    0

    1

    1/1/

    2

    2 13

    2 15

    2

    21

  • Fourier Series: Ex 1

    22

    0

    1/2

    1

    1 13

    1 15

    2

    Note that this is the scaled Fourier transform of the restricted (one period) version of your signal.

  • Fourier Series: Ex 1

    23

    0

    1/2

    1

    1 13

    1 15

    2

    These “lines” are collectively referred to as the (two-sided) line spectrum of the periodic signal.

    Usually, you will get complex numbers and hence the spectrum is represented by two plots: the amplitude (magnitude) and the phase.

    Here, we “happen” to have all of the Fourier coeff. being real-valued. So, one plot is OK.

  • Fourier Series: Ex 1

    24

    0

    1/2

    1

    1 13

    1 15

    2

    Simply changing them to “arrows”. Collectively, they are now the Fourier transform of your periodic signal.

  • Effect of Duty Cycle

    25

  • Effect of Duty Cycle

    26

    Note that it is not always the case that the 2nd

    harmonic (along with its muliples) is suppressed.

    Duty cycle = 0.070

  • Effect of Duty Cycle

    27

    Duty cycle = 0.125

    When duty cycle = 1/8, the 8th harmonic (along with its muliples) is suppressed.

  • Effect of Duty Cycle

    28

    When duty cycle = 1/5, the 5th harmonic (along with its muliples) is suppressed.

    Duty cycle = 0.203

  • Effect of Duty Cycle

    29

    When duty cycle = 1/3, the 3rd harmonic (along with its muliples) is suppressed.

    Duty cycle = 0.336

  • Effect of Duty Cycle

    30

    When duty cycle = 1/2, the 2nd harmonic (along with its muliples) is suppressed.

    Duty cycle = 0.500

  • Square Wave

    31

    1

    44

    0

    1/2

    1

    1 13

    1 15

    2

    Fourier series expansion:

    : the scaled Fourier

    transform of the restricted (one period) version of .

    12

    1 13

    15 ⋯

    1 13

    15 ⋯

    period

    Fundamental frequency = 1/T0

  • Square Wave

    32

    1

    44Fourier series expansion:

    These “lines” are collectively referred to as the (two-sided) line spectrum of the periodic signal.

    0

    1/2

    1

    1 13

    1 15

    2

    12

    1 13

    15 ⋯

    1 13

    15 ⋯

  • Square Wave

    33

    1

    44Fourier series expansion:12

    1 13

    15 ⋯

    1 13

    15 ⋯

    Simply changing them to “arrows” (representing the delta functions). Collectively, they are now the Fourier transform of your periodic signal.

    0

    1/2

    1

    1 13

    1 15

    2

  • Square Wave

    34

    1

    44Fourier series expansion:12

    1 13

    15 ⋯

    1 13

    15 ⋯

    12

    1 13 3

    15 5 ⋯

    1 1

    3 315 5 ⋯

  • Square Wave

    35

    1

    44Fourier series expansion:12

    1 13

    15 ⋯

    1 13

    15 ⋯

    12

    2cos 2

    23 cos 2 3

    25 cos 2 5 ⋯

    Trigonometric Fourier series expansion: 2cos

  • Square Wave

    36

    1

    44

    Compact expression based on the cosine function:

    Trigonometric Fourier series expansion:

    1 cos 2 0 1, cos 2 0,0, otherwise.

    12

    2cos 2

    23 cos 2 3

    25 cos 2 5 ⋯

  • Switching Operation

    37

    44

    OFF ON OFF ON OFF ON OFF ON OFF ON OFF

  • Switching Operation

    38

    1

    44

    OFF ON OFF ON OFF ON OFF ON OFF ON OFF

    Multiplying a signal by the square-wave is equivalent to switching on (for half a period) and off periodically.

  • Switching Modulator

    39

    12

    2cos 2

    23 cos 2 3

    25 cos 2 5 ⋯

    12

    2cos 2

    23 cos 2 3

    25 cos 2 5 ⋯

    0

    2

    53

    355 3

    Set =

  • Switching Modulator

    40

    0

    2

    53

    355 3

    BPF2

    cos 2

    12

    2cos 2

    23 cos 2 3

    25 cos 2 5 ⋯

    12

    2cos 2

    23 cos 2 3

    25 cos 2 5 ⋯

  • Switching Demodulator

    41

    12

    2cos 2

    23 cos 2 3

    25 cos 2 5 ⋯

    LPFcos 2

    12

    2cos 2

    23 cos 2 3

    25 cos 2 5 ⋯

  • Switching Demodulator

    42

    1 2 2 2cos 2 cos 2 3 cos 2 52 3 512

    2 cos 2

    2 cos 2 332

    cos 2

    cos 2

    cos 2

    co cos 55

    s 2 2

    c c c

    c

    c

    c c

    c c

    c c

    c cc

    y t y t y t y t y t

    A m t f t

    A

    f t f t f t

    f t

    f t

    m t f t

    A m t f t

    A m t

    r

    f

    t

    f tt

    1 cos 2 2

    cos 2 2 cos 2 4

    c

    cos 212

    1

    131

    5os 2 4 cos 2 6

    c c

    c

    c c c

    cc

    c

    c

    f t

    f t

    A m t f t

    A m t

    A m t

    A m t

    f t

    f t f t

    12

    1 1 cos 2 2

    cos 2 2 cos 2 4

    co

    c

    s 2 4 cos 2 6

    1 13 31 1

    5

    2

    5

    osc c

    c c

    c c

    c cc

    c

    c c

    c

    f t

    f t

    A m t f t

    A m t A m t

    A m t A m t

    A m

    f t

    f t f tt A m t

    cos cos12 cos

    12 cos

  • Switching Demodulator

    43

    cos 2

    1 2 2 2cos 2 cos 2 3 cos 2 52 3 512

    2 cos 2

    2 cos 2 332

    cos 2

    cos 2

    cos 2

    co cos 55

    s 2 2

    c c c

    c

    c

    c c

    c c

    c c

    c cc

    y t y t y t y t y t

    A m t f t

    A

    f t f t f t

    f t

    f t

    m t f t

    A m t f t

    A m t

    r

    f

    t

    f tt

    Now, recall that cos cos cos cos

  • Switching Demodulator

    44

    1 cos 2 2

    1 co

    12

    s 2 cos 2 5

    1 cos 2 3 cos 2

    cos

    57

    2

    1

    3

    c

    c c

    c c

    c c

    c

    c

    c

    r t

    f t

    f

    y t A m t f t

    A m t

    A m t

    A m t

    t f t

    f t f t

    cos 2

  • Switching Demodulator

    45

    cos 2 2

    1 1cos 2 2 cos 2 4

    1 1co

    12

    1 1

    3 3

    5s 2 4 cos 2 6

    5

    cos 2c c

    c c

    c c

    c c

    c

    c c

    c c

    r t

    f t

    f

    y t A m t f t

    A m t A m t

    A m t A mt f t

    f t

    t

    A m t A m tt f

    cos 2

  • Switching Demodulator

    46

    LPFcos 2

    cos 2 2

    cos 2 2 cos 2 4

    cos

    12

    1 1

    1 13

    2 4

    31 1 cos 2 6

    5 5

    cos 2c c

    c c

    c c

    c c

    c

    c c

    c c

    r t

    f t

    f

    y t A m t f t

    A m t A m t

    A m t A mt f t

    f t

    t

    A m t A m tt f

  • Part A

    47

    outL

    +vin-+vin-

    240 V

    [Slides from basic EE lab]

  • Part A: Half-Wave Rectifier (HWR)

    48

    A rectifier is an electrical device that converts alternating current (AC) to direct current (DC).

    240 V

    [Slides from basic EE lab]

  • Part A: Half-Wave Rectifier (HWR)

    49

    =

    [Slides from basic EE lab]

  • Part A: Full-Wave Rectifier (FWR)

    50

    T1

    220 V50 Hz

    A

    B

    C

    D

    +

    _Vout

    D11N4001

    D21N4001

    RL10 k

    S1+vin-+vin-

    S2

    240 V

    [Slides from basic EE lab]

  • Part A: Full-Wave Rectifier (FWR)

    51

    =

    [Slides from basic EE lab]

  • T1

    240 V50 Hz +

    _

    Vout

    D11N4001

    D21N4001

    A

    B

    C R110k

    C1100 F50 V

    +

    _

    D

    Part B: Filter Capacitor

    52

    240 V

    ripple waveform

    [Slides from basic EE lab]

  • 53

    [Slides from basic EE lab]

  • Problem with the angle

    54

    Not as easy as it looks

  • Problem with the angle

    55

  • atan: Inverse tangent (arctangent)

    56

    atan

    [rad

    ians

    ]

    Return values in the interval [-/2,/2]. not (-,]

    >> atan(1/1)*180/pians =

    45>> atan((-1)/(-1))*180/pians =

    45>> atan(-1/1)*180/pians =

    -45>> atan(1/-1)*180/pians =

    -45

    Want this to be -135.

    Want this to be 135.

    x

    y

  • atan2: Four-quadrant inverse tangent

    57

    >> atan(1/1)*180/pians =

    45>> atan((-1)/(-1))*180/pians =

    45>> atan(-1/1)*180/pians =

    -45>> atan(1/-1)*180/pians =

    -45

    Want this to be -135.

    Want this to be 135.

    x

    y

    >> atan2(1,1)*180/pians =

    45>> atan2(-1,-1)*180/pians =

    -135>> atan2(-1,1)*180/pians =

    -45>> atan2(1,-1)*180/pians =

    135

    atan2(y,x) returns values in the interval (-,].

  • atan2: Four-quadrant inverse tangent

    58

    atan2 ,

    arctan , 0,

    arctan , 0 ,   0,

    arctan , 0 ,   0,

    2 , 0 ,   0,

    2 , 0 ,   0,

    undefined, 0 ,   0,

  • Supplementary Reference

    59

    Modem Theory: An Introduction to Telecommunications

    By Richard E. Blahut Date Published: December 2009 ISBN: 9780521780148 http://www.cambridge.org/us/ac

    ademic/subjects/engineering/communications-and-signal-processing/modem-theory-introduction-telecommunications

    https://books.google.co.th/books?id=ApmsJAvnMc0C

  • Richard Blahut

    60

    Former chair of the Electrical and Computer Engineering Department at the University of Illinois at Urbana-Champaign

    Best known for Blahut–Arimotoalgorithm

  • Claude E. Shannon Award

    61

    Claude E. Shannon (1972)

    David S. Slepian (1974)

    Robert M. Fano (1976)

    Peter Elias (1977)

    Mark S. Pinsker (1978)

    Jacob Wolfowitz (1979)

    W. Wesley Peterson (1981)

    Irving S. Reed (1982)

    Robert G. Gallager (1983)

    Solomon W. Golomb (1985)

    William L. Root (1986)

    James L. Massey (1988)

    Thomas M. Cover (1990)

    Andrew J. Viterbi (1991)

    Elwyn R. Berlekamp (1993)

    Aaron D. Wyner (1994)

    G. David Forney, Jr. (1995)

    Imre Csiszár (1996)

    Jacob Ziv (1997)

    Neil J. A. Sloane (1998)

    Tadao Kasami (1999)

    Thomas Kailath (2000)

    Jack KeilWolf (2001)

    Toby Berger (2002)

    Lloyd R. Welch (2003)

    Robert J. McEliece (2004)

    Richard Blahut (2005)

    Rudolf Ahlswede (2006)

    Sergio Verdu (2007)

    Robert M. Gray (2008)

    Jorma Rissanen (2009)

    Te Sun Han (2010)

    Shlomo Shamai (Shitz) (2011)

    Abbas El Gamal (2012)

    Katalin Marton (2013)

    János Körner (2014)

    Arthur Robert Calderbank (2015)

  • Berger plaque

    62