50
Powder Flow 2009 Tim Freeman Freeman Technology Principles and Measurement of Dynamic Powder Behaviour Powder Flow 2009

Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Tim FreemanFreeman Technology

Principles and Measurementof Dynamic Powder

Behaviour

Powder Flow 2009

Page 2: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Behaviour is a function of the properties of each component and the way  the components interact

= Solids Gases++ LiquidsPowders

Powders are complex materials

They consist of….

Page 3: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

SEM Images of Particles

Ref: 

Microparticles

SciELO

Trinity College Dublin

U.S. Geological Survey

Page 4: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Surface Texture

Ref: 

Microparticles

Page 5: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Solid components ‐

variable and complex

Each particle defined by a set of physical and chemical properties

Elasticity

Plasticity

Porosity

Potential for Charge

Cohesivity

Adhesivity

Amorphous content

Particle Size & Distribution

Shape

Surface Texture

Surface Area

Density

Hardness / Friability

Hygroscopicity

Page 6: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Examples of Powder Behaviour (observational behaviour)

Loose packing state

Page 7: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Consolidated packing state

Page 8: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Aerated / fluidised packing state

Page 9: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Fluidised   Consolidated  

Low HighModerateStress:  

Variation in behaviour with level of aeration and consolidation

Page 10: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

External Variables

Consolidation

Vibration / tapping

Direct pressure  ‐

container, keg, hopper

Aeration

Gravity discharge, filling, blending, aerosolisation, pneumatic transfer

Flow Rate

Powder/powder, powder/container wall

Moisture

Increases particle adhesion, reduces particle stiffness

Electrostatic Charge

Discharge, high shear mixing, high flow rates

Storage Time

Consolidation, caking

Page 11: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Mechanisms of Powder Flow

Friction between particles

Smooth / low friction particles

Page 12: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Rough / high friction particles

Page 13: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Friction between particles and wall

Smooth / low friction particles

Page 14: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Friction between particles and wall

Rough / high friction particles

Page 15: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Mechanical Interlocking of particles

Strong interlockingHigh force required for separation of particles

Page 16: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Same particles, but different orientation….

Weak interlockingRelatively low force required for separation of particles

Page 17: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Liquid bridges between particles

Increased particle –

particle adhesion

Page 18: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Increased particle – wall adhesion

Liquid bridges between particle and wall

Page 19: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Cohesive, inter‐particulate forces

Increased particle –

particle attraction

Van der Waals

Electrostatics

Covalent

Page 20: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Gravitational forces

F

F = mg

g = acceleration due to gravity

m

Page 21: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Friction

Particle – Particle, Particle ‐

Wall

Mechanical Interlocking

Adhesion  / Liquid Bridges

Particle – Particle, Particle ‐

Wall

Cohesion

Van der Waals, Electrostatics, Covalent

Gravity

Mechanisms of particle interaction

Page 22: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

m1

g m2

g

m3

gfa

fb

fc

Interparticulate forces (fn

) are a function of: ‐

Frictional forces

Mechanical interlocking

Adhesion

Cohesion

The relationship between fn

and mg depends on 

particle physical properties

and process 

environment.

When powder is in low stress state

(die filling / mixing), cohesive forces

most influential.

When powder is consolidated

(hopper / extrusion / compression), mechanical 

friction

and particle interlocking

are most important.

Cohesion still contributes to flow, but it’s effect is less significant.

Page 23: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Examples of processes and applications

Flow in the hopper

High stress, low flow rates, gravitationally  induced flow

Filling

Low stress, dynamic, gravitationally induced flow

Transport / storage

Moderate / high stress, de‐aeration,  consolidation, caking

Aerosolisation

Very low stress, powder needs to fluidise

Page 24: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Athletic ability!

Consider an athlete competing at the Olympic Games

Properties: ‐

Tall, long stride length, slim, fast runner, stamina

Suitable event: ‐

Long jump, runner, pole vault

Properties: ‐

Short, strong, explosive power 

Suitable event: ‐

Shot put, javelin

Page 25: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Are they “good”

athletes?

Page 26: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

So what can be measured?

Several traditional techniquesCarr’s Index, Hausner Ratio, Angle of Repose, Flow through a funnel

Pragmatic solution for their day

Basic & insensitive, developed before modern technologies 

existed

Don’t represent conditions that powders experience  in 

processing and application

Each method typically produces one parameter

Page 27: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

More recently, shear cells ‐

Measure powders under consolidation

Measure the onset of flow, transition from static to dynamic

Good for understanding behaviour in hoppers

Most recently, dynamic characterisation methods

Measure response of powder to various environments

Simulating range of process conditions

Measure directly response to aeration, consolidation, moisture, flow  rate

Measure bulk properties of density, compressibility and permeability

Page 28: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Principles of Operation

Page 29: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

H2H1

Force

H1 H2

Torque

H1

H2

Page 30: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

H2

Energy Gradien

t, m

J/mm

H1

Total Flow Energy = Area under Curve

Work Done = Energy = “Force”

x Distance =   (Force + Torque) x Distance

Energy Gradient = Work Done per mm

Page 31: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Flow Energy vs. Moisture Content

Increasing Water Content

Flow

 Ene

rgy

A

B

CA

B

C

Page 32: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Flow Energy vs. Additive & Morphology

A

B

C

D

E F G

Flow Additive, %

BFE, m

J

A

B

C

D

E F

G

Page 33: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Aeration

Air supply

Non – CohesivePowder

Cohesive Powder

Air supply

or

Page 34: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Generally, if: ‐

mg > fcoh

powder is non‐cohesive

mg < fcoh

– powder is cohesive

m1

g m2

g

m3

gfcoh‐a

fcoh‐b

fcoh‐c

Page 35: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Increasing Air Velocity

Flow

Ene

rgy

Cohesive

Non-cohesive

Used for measuring: ‐

Cohesion

Low stress, gravitationally  induced flow

Dosing / Mass Uniformity

Aerosolisation / DPI

Fluidisation behaviour

Blending / mixing

Segregation potential

Page 36: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Consolidation

Direct Pressure

Tapping / vibration

Before  Tapping

After  Tapping

Understanding theeffects of: ‐

Transport

Storage

Processing

Caking

Page 37: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Increased Tapping

Flow

Ene

rgy Flowability

change > 1000%

Den

sity

Density change ~ 40% (max)

Page 38: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Filling and Compression case study

Initial Compression

Page 39: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

GoodUniform filling, low porosity

PoorNon‐uniform filling, high porosity

Page 40: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

High cohesion Cohesive forces >> mg

High mechanical friction & Interlocking

Low permeability

Page 41: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

CohesionAeration Test – low value of Aerated Energy equals low cohesion 

Increasing Air Velocity

Flow

Ene

rgy

Aerated Energy

Page 42: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Mechanical interlocking & frictionSpecific Energy – low value equals low interlocking and friction

Blade movement

Page 43: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

PermeabilityHigh Permeability – entrained air can easily escape

Page 44: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Material Material/Powder description D50 (m) Shape

(a) GL Glass beads 174 Spherical

(b) GS Glass beads 68 Spherical

(c) Granular Aluminium powder 134 Irregular

(d) Tungsten powder 4 Angular

Page 45: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Filling RatioRatio of actual mass in die compared to mass calculated 

from bulk density and volume of die

Page 46: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Filling Ratio & Specific Energy Aeration

Page 47: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Measurements: Glass GL Glass GS Aluminium Tungsten

Fill Ratio 0.82 0.40 0.29 0.14

Aeration Energy, AE (mJ) < 10 < 10 < 10 ~300

Specific Energy, SE (mJ/g) 3.4 2.4 4.4 6.7

Pressure Drop across the powder bed at 2mm/s air velocity, PD15 (mbar) 0.8 5.2 1.4 15.3

Consolidation Index, CI20Taps - factor by which flow energy increases after tapping, relative to BFE

1.31 1.11 1.43 2.32

Measurements: Glass GL Glass GS Aluminium Tungsten

Fill Ratio 0.82 0.40 0.29 0.14

Measurements: Glass GL Glass GS Aluminium Tungsten

Fill Ratio 0.82 0.40 0.29 0.14

Aeration Energy, AE (mJ) < 10 < 10 < 10 ~300

Measurements: Glass GL Glass GS Aluminium Tungsten

Fill Ratio 0.82 0.40 0.29 0.14

Aeration Energy, AE (mJ) < 10 < 10 < 10 ~300

Specific Energy, SE (mJ/g) 3.4 2.4 4.4 6.7

Measurements: Glass GL Glass GS Aluminium Tungsten

Fill Ratio 0.82 0.40 0.29 0.14

Aeration Energy, AE (mJ) < 10 < 10 < 10 ~300

Specific Energy, SE (mJ/g) 3.4 2.4 4.4 6.7

Pressure Drop across the powder bed at 2mm/s air velocity, PD15 (mbar) 0.8 5.2 1.4 15.3

Page 48: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Other applications

Mixing / Blending – Cohesion, Aeration, Specific Energy

Compression – Basic Flowability Energy, Permeability, 

Compressibility

Dry Powder Inhalers – Aeration, Permeability

Storage –

Consolidation, Caking

Size Reduction –

Particle attrition, Basic Flowability Energy

Hopper Flow – Shear Cell, Wall Friction, Permeability

Page 49: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Conclusions

1.

Powder behaviour is complex 

2.

Flow properties will change depending on the conditions imposed

3.

Each process / application will subject the powder to a specific

set of  conditions

4.

Essential that powder characteristics match the demands of the  process or application

5.

Now possible to simulate range of conditions and measure powder  response

6.

Important to measure powder in representative state – e.g. aeration  tests for aerosolisation & cohesion, shear cell tests for behaviour in 

hoppers, etc

7.

Database of flow properties can be established, leading to enhanced  process understanding, efficient formulation and development of 

new materials and higher quality of final product

Page 50: Principles and Measurement of Dynamic Powder Behaviourpowders under consolidation Measure the onset of flow, transition from static to dynamic Good for understanding behaviour in hoppers

Powder Flow 2009

Thank you for your attention

www.freemantech.co.uk