4
Pricing and Hedging without Fast Fourier Transform A revisited, reliable and stable Fourier Transform Method for Affine Jump Diffusion Models Marcello Minenna - Paolo Verzella Structured Products Europe – Nov 3, 2005 - London 2 Syllabus of the presentation Review of Fourier Methods in Option Pricing Calibration and Performance Greek Behavior of New FT-Q 3 Review of Fourier Methods in Option Pricing – theory European Call Maturity Terminal Spot Price In AJD models Call Price can be expressed in a form close to the canonical Black – Scholes - Merton style where under different martingale measures 4 determined by using the Levy’s inversion formula, i.e.: can be under different martingale measures Review of Fourier Methods in Option Pricing – theory 5 requires a close formula for the Characteristic Function of the log – terminal price, i.e.: Review of Fourier Methods in Option Pricing – theory 6 has a closed formula for AJD models Review of Fourier Methods in Option Pricing – theory 7 How to compute: Quadrature Algorithm FT – Q for Fast Fourier Transform FFT Review of Fourier Methods in Option Pricing – practice I II a b Old FT - Q New FT - Q t C 8 Review of Fourier Methods in Option Pricing – practice Algorithms Valuation Criteria The algorithm is defined stable if and only if STABILITY it "closes" the quadrature scheme a "reasonable" result different from a NaN value spanning the pricing formula on a vast area of the parameters set. gives 9 Review of Fourier Methods in Option Pricing – practice Algorithms Valuation Criteria Call via standard Black – Scholes – Merton ACCURACY The algorithm is defined accurate if and only if pricing pricing 3 up to 10 precision - the Call under the Black - Scholes - Merton model via: Old FT - Q New FT - Q FFT 10 Review of Fourier Methods in Option Pricing – practice Algorithms Valuation Criteria The algorithm is defined fast with respect to SPEED the results of the FFT algorithm a set of 4100 prices along the strike 11 High Order Newton Cotes Algorithm Review of Fourier Methods in Option Pricing – practice Quadrature Algorithm Old FT - Q through Up to 8th 12 Pros (+) STABILITY SPEED Review of Fourier Methods in Option Pricing – practice Quadrature Algorithm Old FT - Q through Cons (-) ACCURACY 13 Review of Fourier Methods in Option Pricing – practice Quadrature Algorithm New FT - Q through In order to overcome the cited problems of Old FT – Q: 14 Review of Fourier Methods in Option Pricing – practice Quadrature Algorithm New FT - Q through In order to overcome the cited problems of Old FT – Q: Gauss - Lobatto Quadrature Algorithm Re-adjustment of 15 Pros (+) STABILITY SPEED Review of Fourier Methods in Option Pricing – practice through Cons (-) ACCURACY Quadrature Algorithm New FT - Q 16 Cooley - Tukey algorithm Review of Fourier Methods in Option Pricing – practice through Fast Fourier Trasform FFT Applied to the equivalent formula via a recombinant FFT parameters for ATM ln ln 0 () K i K t j e C e f d a f f f p - ¥ - = ò t C

Pricing and Hedging without Review of Fourier Methods in Option Pricing …marcello.minenna.it/wp-content/uploads/2015/08/speu_C.pdf · 2019. 8. 25. · Review of Fourier Methods

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Pricing and Hedging without Review of Fourier Methods in Option Pricing …marcello.minenna.it/wp-content/uploads/2015/08/speu_C.pdf · 2019. 8. 25. · Review of Fourier Methods

1

Pricing and Hedging withoutFast Fourier Transform

A revisited, reliable and stable Fourier Transform Method for Affine Jump Diffusion Models

Marcello Minenna - Paolo VerzellaStructured Products Europe – Nov 3, 2005 - London

2

Syllabus of the presentation

• Review of Fourier Methods in Option Pricing

• Calibration and Performance

• Greek Behavior of New FT-Q

3

Review of Fourier Methods in Option Pricing – theory

European Call Maturity Terminal Spot Price

In AJD models Call Price can be expressed in a form close to the canonical Black – Scholes - Merton style

where

under different martingale measures

4

determined by using the Levy’s inversion formula, i.e.:

can be

under different martingale measures

Review of Fourier Methods in Option Pricing – theory

5

requires

a close formula for the Characteristic Function of the log – terminal price, i.e.:

Review of Fourier Methods in Option Pricing – theory

6

has

a closed formula for AJD models

Review of Fourier Methods in Option Pricing – theory

7

How to compute:

Quadrature AlgorithmFT – Q for Fast Fourier Transform

FFT

Review of Fourier Methods in Option Pricing – practice

I II

a b

Old FT - Q New FT - Q

tC

8

Review of Fourier Methods in Option Pricing – practice

Algorithms Valuation Criteria

The algorithm is defined stable if and only if

STABILITY

it "closes" the quadrature scheme

a "reasonable" result different from

a NaN value

spanning

the pricing formula on a vast area of

the parameters set.gives

9

Review of Fourier Methods in Option Pricing – practice

Algorithms Valuation Criteria

Call via standard Black –Scholes – Merton

ACCURACYThe algorithm is defined accurate if and only if

pricing pricing

3up to 10 precision-

the Call under the Black -Scholes - Merton model via:

Old FT - Q

New FT - Q

FFT

10

Review of Fourier Methods in Option Pricing – practice

Algorithms Valuation Criteria

The algorithm is defined fast with respect to

SPEED

the results of the FFT algorithm

a set of 4100 prices along the strike

11

High Order Newton Cotes Algorithm

Review of Fourier Methods in Option Pricing – practice

Quadrature AlgorithmOld FT - Q

through

Up to 8th

12

Pros (+)

STABILITYSPEED

Review of Fourier Methods in Option Pricing – practice

Quadrature AlgorithmOld FT - Q

through

Cons (-)

ACCURACY

13

Review of Fourier Methods in Option Pricing – practice

Quadrature AlgorithmNew FT - Q

through

In order to overcome the cited problems of Old FT – Q:

14

Review of Fourier Methods in Option Pricing – practice

Quadrature AlgorithmNew FT - Q

through

In order to overcome the cited problems of Old FT – Q:

Gauss - Lobatto Quadrature Algorithm

Re-adjustment of

15

Pros (+)

STABILITY SPEED

Review of Fourier Methods in Option Pricing – practice

through

Cons (-)

ACCURACY

Quadrature AlgorithmNew FT - Q

16

Cooley - Tukey algorithm

Review of Fourier Methods in Option Pricing – practice

throughFast Fourier Trasform

FFT

Applied to the equivalent formula via a recombinant FFT parameters

for ATMln

ln

0( )

Ki K

t jeC e f d

af f f

p

- ¥-= ò

tC

Page 2: Pricing and Hedging without Review of Fourier Methods in Option Pricing …marcello.minenna.it/wp-content/uploads/2015/08/speu_C.pdf · 2019. 8. 25. · Review of Fourier Methods

17

Pros (+)

STABILITYSPEED

Review of Fourier Methods in Option Pricing – practice

through

Cons (-)

Fast Fourier TrasformFFT

ACCURACY

FASTER(up to 20 times the quadrature algorithms)

* The formula must be changed arbitrarilyaccording to Option moneyness

** the recombinant FFT parameters must be changed according to the choice of the

pricing models

18

Syllabus of the presentation

• Review of Fourier Methods in Option Pricing

• Calibration and Performance

• Greek Behaviour of New FT-Q

19

The Calibration Procedure and Performance

Quadrature AlgorithmFT - Q

Fast Fourier TrasformFFT

I II

a b

Old FT - Q New FT - Q

20

through Quadrature AlgorithmOld FT - Q

Pros (+)

STABILITY

SPEED

Cons (-)

ACCURACY

The Calibration Procedure and Performance

21

through

Pros (+)

SPEED STABILITY *

Cons (-)

ACCURACY **

Fast Fourier TrasformFFT

The Calibration Procedure and Performance

22

through Quadrature AlgorithmNew FT - Q

Pros (+)

STABILITY

SPEED

Cons (-)

ACCURACY

The Calibration Procedure and Performance

23

By keeping in mind that only New FT-Q is stable and accurate, some figures on speed

Original Option Pricing Formulas are used

FFTHeston Model Merton Model BCC Model

7.26 sec. 10.54 sec. 18.33 sec.

NEW FT - QHeston Model Merton Model BCC Model

55.12 sec. 66.48 sec. 110.39 sec.

OLD FT – QHeston Model Merton Model BCC Model

390.41 sec. 454.76 sec. 722.1 sec.

By now, the speed of Fourier Trasform method is closer than ever to the FFT calibration time

The Calibration Procedure and Performance

24

FFTHeston Model Merton Model BCC Model

7.24 sec. 10.54 sec. 18.32 sec.

NEW FT - QHeston Model Merton Model BCC Model

23.13 sec. 66.48 sec. 48.7 sec.

OLD FT – QHeston Model Merton Model BCC Model

331.6 sec. 454.76 sec. 688.5 sec.

Calibration Performances using Option Readjusted Pricing Formulas

where available

The Calibration Procedure and Performance

25

Syllabus of the presentation

• Review of Fourier Methods in Option Pricing

• Calibration Procedure and Performance

• Greek Behaviour of New FT-Q

26

An impressive methodology to test Stability of theNew FT – Quadrature algorithm is to compute Greeks

Infact, in an AJD setting the Greeks are available in closed form

So, an extended spanning of the AJD Greeks on the parameters set is useful to assess models and test

Stability

Greek behaviour of new FT-Q

27

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

v S

Black – Scholes Delta

0

0.9

200

28

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Lambda = -2

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Rho = 0

0.9

v 0 S 200

Heston Delta

29

2000

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0.9

v 0

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Rho = 0

Heston Delta Lambda = 2

S 200

30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0.9

v

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Lambda = 0

200

Heston Delta Rho = -1

0 S

31

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0.9

0v

Heston Delta

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Lambda = 0

Rho = 1

200S

32

0

0,2

0,4

0,6

0,8

1

1,2

EtaJ = 0

MuJ= 0

0.9

v0

LambdaJ = 0Merton Delta

S 200

Page 3: Pricing and Hedging without Review of Fourier Methods in Option Pricing …marcello.minenna.it/wp-content/uploads/2015/08/speu_C.pdf · 2019. 8. 25. · Review of Fourier Methods

33

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

EtaJ = 0.1

MuJ= 0.5

0.9

v0

Merton Delta LambdaJ = 1.8

200S

34

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Merton Delta EtaJ = 0.1

LambdaJ = 0.5

MuJ= 0.5

0.9

v0 S 200

35

v0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

LambdaJ = 0.5

MuJ= 0.5

Merton Delta EtaJ = 0.75

0.9

0 S 200

36

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

LambdaJ = 0.5

Eta= 0.1

Merton Delta MuJ = 2.5

0.9

v0 S 200

37

vS0

0.9

2000

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Black – Scholes Gamma

38

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Heston GammaLambda = -2

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Rho = 0

200S0v

0.9

39

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

Heston GammaLambda = -2

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Rho = 0

200S0v

0.9

40

0

0,005

0,01

0,015

0,02

0,025

Lambda = 2

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Rho = 0

Heston Gamma

0 S 200v

0.9

41

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

0,02

Heston Gamma Rho = -1

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Lambda = 0

0.9

v 0 S 200

42

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

Heston Gamma Rho = 1

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Lambda = 0

0.9

v0 S 200

43

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Merton Gamma LambdaJ = 0

EtaJ = 0

MuJ= 0

0.9

v 0 S 200

44

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

v

0.9

200S

EtaJ = 0.1

MuJ = 0.5

Merton Gamma LambdaJ = 0.9

0

45

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Merton Gamma LambdaJ = 1.8

EtaJ = 0.1

MuJ = 0.5

0.9

v S 2000

46

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

Merton Gamma LambdaJ = 1.8

EtaJ = 0.1

MuJ= 0.5

0.9

v 0 S 200

47

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

LambdaJ = 0.5

MuJ= 0.5

0.9

v 0 S 200

Merton Gamma EtaJ = 0.1

48

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Merton Gamma EtaJ = 0.75

LambdaJ = 0.5

MuJ= 0.5

0.9

v 0 S 200

Page 4: Pricing and Hedging without Review of Fourier Methods in Option Pricing …marcello.minenna.it/wp-content/uploads/2015/08/speu_C.pdf · 2019. 8. 25. · Review of Fourier Methods

49

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

Merton Gamma MuJ = 2.5

LambdaJ = 0.5

EtaJ= 0.1

0.9

v0 S 200

50

0

5

10

15

20

25

30

v

0.9

2000 S

Black – Scholes Vega

51

0

50

100

150

200

250

Heston VegaLambda = -2

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Rho = 0

0.9

v 0 200S

52

0

5

10

15

20

25

30

35

40

Heston VegaLambda = -2

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Rho = 0

S 200

0.9

v 0

53

0

5

10

15

20

25

30

35

40

Heston Vega Lambda = 2

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Rho = 0

0.9

v 0 S 200

54

0

5

10

15

20

25

30

35

40

Heston Vega Rho = -1

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Lambda = 0

0.9

v 0 S 200

55

0

5

10

15

20

25

30

35

40

Heston Vega Rho = 1

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Lambda = 00.9

v

0 S 200

56

0

50

100

150

200

250

300

350

400

450

500

Merton Vega LambdaJ = 0

EtaJ = 0

MuJ= 0

0.9

v 0 S 200

57

0

50

100

150

200

250

300

350

400

450

500

EtaJ = 0.1

MuJ = 0.5

LambdaJ = 0.9Merton Vega

200S0v

0.9

58

0

50

100

150

200

250

300

350

400

450

500

Merton Vega LambdaJ = 1.8

EtaJ = 0.1

MuJ= 0.5

0.9

v 0 S 200

59

0

50

100

150

200

250

300

350

400

450

500

Merton Vega EtaJ = 0.1

LambdaJ = 0.5

MuJ= 0.5

0.9

v 0 S 200

60

0

50

100

150

200

250

300

350

400

450

500

Merton Vega EtaJ = 0.75

LambdaJ = 0.5

MuJ= 0.5

0.9

v 0 S 200

61

0

50

100

150

200

250

300

350

400

450

500

Merton Vega MuJ = 2.5

LambdaJ = 0.5

EtaJ= 0.5

0.9

v 0 S 200