73
Jan Flusser, Filip Sroubek, Barbara Zitova Institute of Information Theory and Automation Academy of Sciences of the Czech Republic Prague Handling Blur Image Restoration Handling Blur - ICPR 2016 1

Prezentace aplikace PowerPoint - avcr.czzoi.utia.cas.cz/files/example_slides.pdf · PSF estimation Handling Blur - ICPR 2016 34. Misregistration of the channels... leads to artefacts

  • Upload
    haxuyen

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Jan Flusser, Filip Sroubek, Barbara Zitova

Institute of Information Theory and AutomationAcademy of Sciences of the Czech Republic

Prague

Handling BlurImage Restoration

Handling Blur - ICPR 2016 1

Contents• Non-blind deconvolution

– Wiener, Energy minimization, regularization

• Blind deconvolution

– MAP, VB

• Multichannel (multiframe)

– Super-resolution, Noisy/blur pair

• Space-variant blind deconvolution

– Patch-wise, Parametric, Object motion, Conversion to space-invariant

• Hybrid methods

– Fusion approach, High-speed cameras, Inertial sensors

Handling Blur - ICPR 2016 2

Inverse Filter

Handling Blur - ICPR 2016 3

Add noise

equivalent

Wiener Filter

Handling Blur - ICPR 2016 4

Ratio of power spectraReplace by a constant

equivalent

Deconvolution as energy minimization

• Regularization: ill-posed problem --> well posed

Enforce image smoothness

– Wiener:

– Tikhonov:

– Total Variation:

– Non-convex 𝐿𝑝 quasi-norm:Handling Blur - ICPR 2016 5

Data term Regularization

Regularization

Handling Blur - ICPR 2016 6

Different regularization 𝑄(𝑢)

Estimated image 𝑢(𝑥)

Regularization

Handling Blur - ICPR 2016 7

Statistics of sharp images

Handling Blur - ICPR 2016 8

Intensity

Gradient

Statistics of blurred images

Handling Blur - ICPR 2016 9

Intensity

Gradient

How to tackle the blind case?

• When the blur kernel ℎ(𝑥) is not known.

• One is tempted to:

1) Add blur regularization

2) Perform alternating minimization

Handling Blur - ICPR 2016 10

Alternating Minimization

• Alternating Minimization

1. 𝑢-step:

2. ℎ-step:

3. repeat 1 and 2.

Handling Blur - ICPR 2016 11

• In theory any pair (𝑢, ෨ℎ) is a solution remember inverse filter

• common regularization “NO-BLUR” solution

No-blur solution

Handling Blur - ICPR 2016 12

Regularization favors blur

Handling Blur - ICPR 2016 13

Regularization favors blur

Handling Blur - ICPR 2016 14

Artificially sparsifyimages

We need tricks!

• To avoid “no-blur” solution:

– Artificial sharpening

– Remove spikes

– Adjusting priors on the fly

– Hierarchical approach

Handling Blur - ICPR 2016 15

Chan TIP1998 Shan SigGraph08Cho SigGraph 09Xu ECCV09, 13Almeida TIP10Krishnan 11Zhong 13Sun 13Michael 14Perrone 15Pan 16

Artificial Sharpening

16

Shock filter

Blur predictionh-step

Deconvolutionu-step

Blurred image

Cho et al., SIGGRAPH 2009

Handling Blur - ICPR 2016

Remove Spiky Objects

17

Xu et al., ECCV 2010

Handling Blur - ICPR 2016

Remove Spiky Objects

18

Mask out small objects

Xu et al., ECCV 2010

Handling Blur - ICPR 2016

Remove Spiky Objects

19

Reconstructed image with small objects removed

Xu et al., ECCV 2010

Handling Blur - ICPR 2016

Adjusting priors

20

• Start with an overestimated noise level and slowly decrease it to the correct level.

• Start with p<<1 and slowly increase it to p=1. Handling Blur - ICPR 2016

Hierarchical Deconvolution

21

Scale N-1

Scale N-2

Scale N

image blur

Handling Blur - ICPR 2016

• Maximum a posteriori (MAP): max𝑝 𝑢, ℎ 𝑧

Bayesian Paradigm

a posteriori distributionunknown

likelihoodgiven by our problem

a priori distributionour prior knowledge

22Handling Blur - ICPR 2016

• max a posteriori probability 𝑝(𝑢, ℎ|𝑧)

==> min− log 𝑝(𝑢, ℎ|𝑧)

• Exponential family

Blind deconvolution with MAP

23Handling Blur - ICPR 2016

Bayesian Paradigm revisited

• Marginalize the posterior

• Maximize the marginalized prob.

• and then maximize the posterior

Handling Blur - ICPR 2016 24

Handling Blur - ICPR 2016 25

𝑢(1)

𝑢(2)

ℎ(1)

blurred image𝑢 = 𝑧(𝑥)

sharp image 𝑢 = 𝑢(𝑥)

no-blur solution

correct solution

Delta function෨ℎ = 𝛿(𝑥)

෨ℎ = ℎ(𝑥)

MAP𝑝(𝑢, ℎ|𝑧)

Marginalize𝑝(ℎ|𝑧)

How to marginalize?

• If Gaussian distributions analytic solution exists in the form of Gaussian distribution

• If not (our case) approximation • Laplace approximation

• Factorization with Variational Bayes

Handling Blur - ICPR 2016 26

Variational Bayes

• Factorization of the posterior

and then marginalization is trivial.

• Every factor q depends on moments of other variables => must be solved iteratively.

Handling Blur - ICPR 2016 27

Miskin 01Fergus 06Whyte 10Levin 11Babacan 12Wipf 14

Example of blind deconvolution

Handling Blur - ICPR 2016 28

Blurred image𝑧(𝑥)

Reconstructed image𝑢(𝑥)

original image

𝑢

acquired images

= 𝑧𝑝

channel P

channel 2

channel 1

[𝑢 ∗ ℎ𝑝]

Multichannel Model

+ 𝑛𝑝

noise

Handling Blur - ICPR 2016 29

Image

regularization

term

Blur

Regularization

term

Data

term

Gaussian noise

L2 norm

Image Restoration

• Acquisition model:

• Optimization problem

Handling Blur - ICPR 2016 30

0

Multichannel Blur Regularization

u

h2*u uh1 *= =z1 z2

Handling Blur - ICPR 2016 31

z1 * *u h1= * z2*h2 u* =*

in focus

reconstructed

Out-of-focus Camera

Handling Blur - ICPR 2016 32

Camera motion

Handling Blur - ICPR 2016 33

Degraded images

Reconstructed image

Astronomical images

PSF estimation

Handling Blur - ICPR 2016 34

Misregistration of the channels

... leads to artefacts if not handledproperly

Handling Blur - ICPR 2016 35

Handling Blur - ICPR 2016 36

Robustness to misalignment

Handling Blur - ICPR 2016 37

original image PSF degraded image

Handling Blur - ICPR 2016 38

Slight misalignment Misalignmentcompensated

No compensation

With compensation

Handling Blur - ICPR 2016 39

Image acquisition with aliasing

Handling Blur - ICPR 2016 40

Aliasing

• The loss of the high frequencies (details)

due to an insufficient resolution of the camera

Handling Blur - ICPR 2016 41

To suppress aliasing, apply multiple

acquisitions with sub-pixel shifts

Handling Blur - ICPR 2016 42

The image resolution has increased

This process is called super-resolution

Handling Blur - ICPR 2016 43

Realistic superresolution

SR must

include also

de-blurring

Handling Blur - ICPR 2016 44

original image

u

acquired images

= zk

channel K

channel 2

channel 1

[u * hk]

MC Model with Decimation

+ nk

noise

D

Handling Blur - ICPR 2016 45

Superresolution

Handling Blur - ICPR 2016 46

Superresolved image (2x)

Optical zoom (ground truth)

rough registration

8 images

SR 3x

SR 2x

original

Handling Blur - ICPR 2016 47

Input video Super-resolution

Video Restoration

Handling Blur - ICPR 2016 48

Space-variant Blurs

Handling Blur - ICPR 2016 49

Camera Motion

50Handling Blur - ICPR 2016

Object Motion

51Handling Blur - ICPR 2016

Optical aberrations

Handling Blur - ICPR 2016 52

Space-variant Out-of-focus Blur

p1

p2

p3

p4𝒉 𝒙; 𝒑𝟒

𝒉(𝒙; 𝒑𝟏)

.

.

.

53Handling Blur - ICPR 2016

Approximation of SV Blur

• Patch-wise convolution– General SV PSF– Locally convolution may not hold

• Parametric model (Blur Basis)– More accurate– Model may not hold

• Local object motion– Segmentation– Line blur

• Conversion to space-invariant– HW design

Handling Blur - ICPR 2016 54

Joshi CVPR08, Sorel ICIP09,Ji CVPR12,Sun CVPR15

Levin NIPS06, Shan ICCV07, Dai CVPR08, Chakrabarti CVPR10, Kim CVPR14

Whyte CVPR10, Gupta ECCV10, Hirsch ICCV11, Zhang NIPS13

Levin SIGGRAPH08

Patch-wise restoration

Handling Blur - ICPR 2016 55

Handling Blur - ICPR 2016 56

Parametric Model (Blur Basis)

Handling Blur - ICPR 2016 57

Hirsch ICCV2011

Object motion

• Estimate locally linear motion blur

line (2 parameters)

• Ignore occlusion

• Consider occlusion

Handling Blur - ICPR 2016 58

Shan ICCV07Dai CVPR08

Levin NIPS06Chakrabarti CVPR10Oliveira TIP14Sun CVPR15

Ignore occlusion

• Local image statistics:

Image autocorrelation increases in the blur direction

Handling Blur - ICPR 2016 59

Blur direction

Perpendicular direction

Derivatives histogram

Levin NIPS06Chakrabarti CVPR10Oliveira TIP14

Sun CVPR15

- Correlation- Histograms- CNN

Ignore occlusion

• Blind deconvolution with linear motion constraint

Handling Blur - ICPR 2016 60

Kim CVPR14

Occlusion

Handling Blur - ICPR 2016 61

Alpha matting

Blind deconvolution

Easier to solveresult is binary

Conversion to space-invariant

• Wavefront coding – out-of-focus blur

Handling Blur - ICPR 2016 62

Conversion to space-invariant

• Wavefront coding

Handling Blur - ICPR 2016 63

Space-invariantnon-blind deconvolution

Conversion to space-invariant

• Motion-invariant photography

– Space-variant linear motion blur

Handling Blur - ICPR 2016 64

Levin SIGGRAPH08

x

t

High-speed cameras

• Low FPS HR camera with high FPS LR camera

Handling Blur - ICPR 2016 65

Ben-Ezra PAMI04Tai PAMI10

High-speed camera

Handling Blur - ICPR 2016 66

Sampled trajectory (secondary detector)

Estimated PSFInterpolated trajectory

Space-time Processing

Handling Blur - ICPR 2016 67

Takeda TIP11

3D steering kernel regression

Simple deconvolution in time

Gyroscopes

Handling Blur - ICPR 2016 68

Joshi ACM Trans.Graph.10Sindelar JEI11Levoy

Acquired blurred image

Handling Blur - ICPR 2016 69

Blur estimation

Handling Blur - ICPR 2016 70

Patch-wise Deconvolution

Handling Blur - ICPR 2016 71

Final Remarks

• MC is far more stable than SC BD.

• How to make SC more robust?

• Can Deep Learning make classical BD methods obsolete?

Handling Blur - ICPR 2016 72

Thank You…

Handling Blur - ICPR 2016 73