330

Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

  • Upload
    vokhanh

  • View
    234

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND
Page 2: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

A N I N T E R N A T I O N A L C O D E

2007 ASME Boiler &Pressure Vessel Code2007 Edition July 1, 2007

IXQUALIFICATION STANDARDFOR WELDING AND BRAZINGPROCEDURES, WELDERS,BRAZERS, AND WELDING ANDBRAZING OPERATORSASME Boiler and Pressure Vessel CommitteeSubcommittee on Welding

Page 3: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

Date of Issuance: July 1, 2007(Includes all Addenda dated July 2006 and earlier)

This international code or standard was developed under procedures accredited as meeting the criteria for American NationalStandards and it is an American National Standard. The Standards Committee that approved the code or standard was balancedto assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed codeor standard was made available for public review and comment that provides an opportunity for additional public input fromindustry, academia, regulatory agencies, and the public-at-large.

ASME does not “approve,” “rate,” or “endorse” any item, construction, proprietary device, or activity.ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items

mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement ofany applicable letters patent, nor assume any such liability. Users of a code or standard are expressly advised that determinationof the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as governmentor industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASMEprocedures and policies, which precludes the issuance of interpretations by individuals.

The footnotes in this document are part of this American National Standard.

ASME collective membership mark

The above ASME symbols are registered in the U.S. Patent Office.

“ASME” is the trademark of the American Society of Mechanical Engineers.

No part of this document may be reproduced in any form, in an electronic retrieval system orotherwise, without the prior written permission of the publisher.

Library of Congress Catalog Card Number: 56-3934Printed in the United States of America

Adopted by the Council of the American Society of Mechanical Engineers, 1914.Revised 1940, 1941, 1943, 1946, 1949, 1952, 1953, 1956, 1959, 1962, 1965, 1968, 1971, 1974, 1977, 1980, 1983, 1986,

1989, 1992, 1995, 1998, 2001, 2004, 2007

The American Society of Mechanical EngineersThree Park Avenue, New York, NY 10016-5990

Copyright © 2007 byTHE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

All Rights Reserved

Page 4: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 ASMEBOILER AND PRESSURE VESSEL CODE

SECTIONS

I Rules for Construction of Power Boilers

II MaterialsPart A — Ferrous Material SpecificationsPart B — Nonferrous Material SpecificationsPart C — Specifications for Welding Rods, Electrodes, and Filler MetalsPart D — Properties (Customary)Part D — Properties (Metric)

III Rules for Construction of Nuclear Facility ComponentsSubsection NCA — General Requirements for Division 1 and Division 2Division 1Subsection NB — Class 1 ComponentsSubsection NC — Class 2 ComponentsSubsection ND — Class 3 ComponentsSubsection NE — Class MC ComponentsSubsection NF — SupportsSubsection NG — Core Support StructuresSubsection NH — Class 1 Components in Elevated Temperature ServiceAppendices

Division 2 — Code for Concrete Containments

Division 3 — Containments for Transportation and Storage of Spent Nuclear Fueland High Level Radioactive Material and Waste

IV Rules for Construction of Heating Boilers

V Nondestructive Examination

VI Recommended Rules for the Care and Operation of Heating Boilers

VII Recommended Guidelines for the Care of Power Boilers

VIII Rules for Construction of Pressure VesselsDivision 1Division 2 — Alternative RulesDivision 3 — Alternative Rules for Construction of High Pressure Vessels

IX Welding and Brazing Qualifications

X Fiber-Reinforced Plastic Pressure Vessels

XI Rules for Inservice Inspection of Nuclear Power Plant Components

XII Rules for Construction and Continued Service of Transport Tanks

iii

Page 5: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

ADDENDA

Colored-sheet Addenda, which include additions andrevisions to individual Sections of the Code, are publishedannually and will be sent automatically to purchasers ofthe applicable Sections up to the publication of the 2010Code. The 2007 Code is available only in the loose-leafformat; accordingly, the Addenda will be issued in theloose-leaf, replacement-page format.

INTERPRETATIONS

ASME issues written replies to inquiries concerninginterpretation of technical aspects of the Code. The Inter-pretations for each individual Section will be publishedseparately and will be included as part of the update serviceto that Section. Interpretations of Section III, Divisions 1and 2, will be included with the update service to Subsec-tion NCA.

iv

Interpretations of the Code are distributed annually inJuly with the issuance of the edition and subse-quent addenda. Interpretations posted in January atwww.cstools.asme.org/interpretations are included in theJuly distribution.

CODE CASES

The Boiler and Pressure Vessel Committee meets regu-larly to consider proposed additions and revisions to theCode and to formulate Cases to clarify the intent of existingrequirements or provide, when the need is urgent, rulesfor materials or constructions not covered by existing Coderules. Those Cases that have been adopted will appearin the appropriate 2007 Code Cases book: “Boilers andPressure Vessels” and “Nuclear Components.” Supple-ments will be sent automatically to the purchasers of theCode Cases books up to the publication of the 2010 Code.

Page 6: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

CONTENTS

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viiStatements of Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ixPersonnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiIntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiiiSummary of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvList of Changes in BC Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxviii

PART QW WELDING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Article I Welding General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

QW-100 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1QW-110 Weld Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2QW-120 Test Positions for Groove Welds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2QW-130 Test Positions for Fillet Welds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3QW-140 Types and Purposes of Tests and Examinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3QW-150 Tension Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4QW-160 Guided-Bend Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5QW-170 Notch-Toughness Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6QW-180 Fillet-Weld Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6QW-190 Other Tests and Examinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Appendix I Rounded Indication Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Article II Welding Procedure Qualifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

QW-200 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13QW-210 Preparation of Test Coupon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16QW-250 Welding Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18QW-290 Temper Bead Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Article III Welding Performance Qualifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

QW-300 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51QW-310 Qualification Test Coupons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54QW-320 Retests and Renewal of Qualification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55QW-350 Welding Variables for Welders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56QW-360 Welding Variables for Welding Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57QW-380 Special Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Article IV Welding Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

QW-400 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60QW-410 Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70QW-420 Material Groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73QW-430 F-Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128QW-440 Weld Metal Chemical Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138QW-450 Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139QW-460 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146QW-470 Etching — Processes and Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187QW-490 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

v

Page 7: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

Article V Standard Welding Procedure Specifications (SWPSs) . . . . . . . . . . . . . . . . . . . . . . . . . 196

QW-500 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196QW-510 Adoption of SWPSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196QW-520 Use of SWPSs Without Discrete Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196QW-530 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197QW-540 Production Use of SWPSs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

PART QB BRAZING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Article XI Brazing General Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

QB-100 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198QB-110 Braze Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199QB-120 Test Positions for Lap, Butt, Scarf, or Rabbet Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199QB-140 Types and Purposes of Tests and Examinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199QB-150 Tension Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200QB-160 Guided-Bend Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201QB-170 Peel Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201QB-180 Sectioning Tests and Workmanship Coupons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Article XII Brazing Procedure Qualifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

QB-200 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203QB-210 Preparation of Test Coupon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205QB-250 Brazing Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Article XIII Brazing Performance Qualifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

QB-300 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209QB-310 Qualification Test Coupons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211QB-320 Retests and Renewal of Qualification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211QB-350 Brazing Variables for Brazers and Brazing Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Article XIV Brazing Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

QB-400 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212QB-410 Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213QB-420 P-Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213QB-430 F-Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213QB-450 Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216QB-460 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

APPENDICES

A Mandatory — Submittal of Technical Inquiries to the Boiler and PressureVessel Committee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

B Nonmandatory — Welding and Brazing Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240D Nonmandatory — P-Number Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251E Mandatory — Permitted SWPSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265F Mandatory — Standard Units for Use in Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268G Nonmandatory — Guidance for the Use of U.S. Customary and SI Units in the

ASME Boiler and Pressure Vessel Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

vi

Page 8: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

FOREWORD

The American Society of Mechanical Engineers set up acommittee in 1911 for the purpose of formulating standardrules for the construction of steam boilers and other pres-sure vessels. This committee is now called the Boiler andPressure Vessel Committee.

The Committee’s function is to establish rules of safety,relating only to pressure integrity, governing the construc-tion1 of boilers, pressure vessels, transport tanks andnuclear components, and inservice inspection for pressureintegrity of nuclear components and transport tanks, andto interpret these rules when questions arise regarding theirintent. This code does not address other safety issues relat-ing to the construction of boilers, pressure vessels, transporttanks and nuclear components, and the inservice inspectionof nuclear components and transport tanks. The user ofthe Code should refer to other pertinent codes, standards,laws, regulations, or other relevant documents. With fewexceptions, the rules do not, of practical necessity, reflectthe likelihood and consequences of deterioration in servicerelated to specific service fluids or external operating envi-ronments. Recognizing this, the Committee has approveda wide variety of construction rules in this Section to allowthe user or his designee to select those which will providea pressure vessel having a margin for deterioration in ser-vice so as to give a reasonably long, safe period of use-fulness. Accordingly, it is not intended that this Sectionbe used as a design handbook; rather, engineering judgmentmust be employed in the selection of those sets of Coderules suitable to any specific service or need.

This Code contains mandatory requirements, specificprohibitions, and nonmandatory guidance for constructionactivities. The Code does not address all aspects of theseactivities and those aspects which are not specificallyaddressed should not be considered prohibited. The Codeis not a handbook and cannot replace education, experi-ence, and the use of engineering judgment. The phraseengineering judgment refers to technical judgments madeby knowledgeable designers experienced in the applicationof the Code. Engineering judgments must be consistentwith Code philosophy and such judgments must neverbe used to overrule mandatory requirements or specificprohibitions of the Code.

1 Construction, as used in this Foreword, is an all-inclusive term com-prising materials, design, fabrication, examination, inspection, testing,certification, and pressure relief.

vii

The Committee recognizes that tools and techniquesused for design and analysis change as technology prog-resses and expects engineers to use good judgment in theapplication of these tools. The designer is responsible forcomplying with Code rules and demonstrating compliancewith Code equations when such equations are mandatory.The Code neither requires nor prohibits the use of comput-ers for the design or analysis of components constructedto the requirements of the Code. However, designers andengineers using computer programs for design or analysisare cautioned that they are responsible for all technicalassumptions inherent in the programs they use and theyare responsible for the application of these programs totheir design.

The Code does not fully address tolerances. Whendimensions, sizes, or other parameters are not specifiedwith tolerances, the values of these parameters are consid-ered nominal and allowable tolerances or local variancesmay be considered acceptable when based on engineeringjudgment and standard practices as determined by thedesigner.

The Boiler and Pressure Vessel Committee deals withthe care and inspection of boilers and pressure vessels inservice only to the extent of providing suggested rules ofgood practice as an aid to owners and their inspectors.

The rules established by the Committee are not to beinterpreted as approving, recommending, or endorsing anyproprietary or specific design or as limiting in any way themanufacturer’s freedom to choose any method of designor any form of construction that conforms to the Code rules.

The Boiler and Pressure Vessel Committee meets regu-larly to consider revisions of the rules, new rules as dictatedby technological development, Code Cases, and requestsfor interpretations. Only the Boiler and Pressure VesselCommittee has the authority to provide official interpreta-tions of this Code. Requests for revisions, new rules, CodeCases, or interpretations shall be addressed to the Secretaryin writing and shall give full particulars in order to receiveconsideration and action (see Mandatory Appendix cov-ering preparation of technical inquiries). Proposed revi-sions to the Code resulting from inquiries will be presentedto the Main Committee for appropriate action. The actionof the Main Committee becomes effective only after con-firmation by letter ballot of the Committee and approvalby ASME.

Page 9: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

Proposed revisions to the Code approved by the Commit-tee are submitted to the American National Standards Insti-tute and published at http://cstools.asme.org/csconnect/public/index.cfm?PublicReviewpRevisions to invite com-ments from all interested persons. After the allotted timefor public review and final approval by ASME, revisionsare published annually in Addenda to the Code.

Code Cases may be used in the construction of compo-nents to be stamped with the ASME Code symbol begin-ning with the date of their approval by ASME.

After Code revisions are approved by ASME, they maybe used beginning with the date of issuance shown onthe Addenda. Revisions, except for revisions to materialspecifications in Section II, Parts A and B, become manda-tory six months after such date of issuance, except forboilers or pressure vessels contracted for prior to the endof the six-month period. Revisions to material specifica-tions are originated by the American Society for Testingand Materials (ASTM) and other recognized national orinternational organizations, and are usually adopted byASME. However, those revisions may or may not haveany effect on the suitability of material, produced to earliereditions of specifications, for use in ASME construction.ASME material specifications approved for use in eachconstruction Code are listed in the Guidelines for Accept-able ASTM Editions in Section II, Parts A and B. TheseGuidelines list, for each specification, the latest editionadopted by ASME, and earlier and later editions consideredby ASME to be identical for ASME construction.

The Boiler and Pressure Vessel Committee in the formu-lation of its rules and in the establishment of maximumdesign and operating pressures considers materials, con-struction, methods of fabrication, inspection, and safetydevices.

The Code Committee does not rule on whether a compo-nent shall or shall not be constructed to the provisions ofthe Code. The Scope of each Section has been establishedto identify the components and parameters considered bythe Committee in formulating the Code rules.

Questions or issues regarding compliance of a specificcomponent with the Code rules are to be directed to theASME Certificate Holder (Manufacturer). Inquiries con-cerning the interpretation of the Code are to be directedto the ASME Boiler and Pressure Vessel Committee.

viii

ASME is to be notified should questions arise concerningimproper use of an ASME Code symbol.

The specifications for materials given in Section II areidentical with or similar to those of specifications publishedby ASTM, AWS, and other recognized national or interna-tional organizations. When reference is made in an ASMEmaterial specification to a non-ASME specification forwhich a companion ASME specification exists, the refer-ence shall be interpreted as applying to the ASME materialspecification. Not all materials included in the materialspecifications in Section II have been adopted for Codeuse. Usage is limited to those materials and grades adoptedby at least one of the other Sections of the Code for applica-tion under rules of that Section. All materials allowed bythese various Sections and used for construction within thescope of their rules shall be furnished in accordance withmaterial specifications contained in Section II or referencedin the Guidelines for Acceptable ASTM Editions in SectionII, Parts A and B, except where otherwise provided in CodeCases or in the applicable Section of the Code. Materialscovered by these specifications are acceptable for use initems covered by the Code Sections only to the degreeindicated in the applicable Section. Materials for Code useshould preferably be ordered, produced, and documentedon this basis; Guideline for Acceptable ASTM Editions inSection II, Part A and Guideline for Acceptable ASTMEditions in Section II, Part B list editions of ASME andyear dates of specifications that meet ASME requirementsand which may be used in Code construction. Materialproduced to an acceptable specification with requirementsdifferent from the requirements of the corresponding speci-fications listed in the Guideline for Acceptable ASTMEditions in Part A or Part B may also be used in accordancewith the above, provided the material manufacturer or ves-sel manufacturer certifies with evidence acceptable to theAuthorized Inspector that the corresponding requirementsof specifications listed in the Guideline for AcceptableASTM Editions in Part A or Part B have been met. Materialproduced to an acceptable material specification is notlimited as to country of origin.

When required by context in this Section, the singularshall be interpreted as the plural, and vice-versa; and thefeminine, masculine, or neuter gender shall be treated assuch other gender as appropriate.

Page 10: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

STATEMENT OF POLICYON THE USE OF CODE SYMBOLS AND

CODE AUTHORIZATION IN ADVERTISING

ASME has established procedures to authorize qualifiedorganizations to perform various activities in accordancewith the requirements of the ASME Boiler and PressureVessel Code. It is the aim of the Society to provide recogni-tion of organizations so authorized. An organization hold-ing authorization to perform various activities inaccordance with the requirements of the Code may statethis capability in its advertising literature.

Organizations that are authorized to use Code Symbolsfor marking items or constructions that have been con-structed and inspected in compliance with the ASME Boilerand Pressure Vessel Code are issued Certificates of Autho-rization. It is the aim of the Society to maintain the standingof the Code Symbols for the benefit of the users, theenforcement jurisdictions, and the holders of the symbolswho comply with all requirements.

Based on these objectives, the following policy has beenestablished on the usage in advertising of facsimiles of thesymbols, Certificates of Authorization, and reference toCode construction. The American Society of MechanicalEngineers does not “approve,” “certify,” “rate,” or

STATEMENT OF POLICYON THE USE OF ASME MARKING

TO IDENTIFY MANUFACTURED ITEMS

The ASME Boiler and Pressure Vessel Code providesrules for the construction of boilers, pressure vessels, andnuclear components. This includes requirements for mate-rials, design, fabrication, examination, inspection, andstamping. Items constructed in accordance with all of theapplicable rules of the Code are identified with the officialCode Symbol Stamp described in the governing Sectionof the Code.

Markings such as “ASME,” “ASME Standard,” or anyother marking including “ASME” or the various Code

ix

“endorse” any item, construction, or activity and there shallbe no statements or implications that might so indicate. Anorganization holding a Code Symbol and/or a Certificate ofAuthorization may state in advertising literature that items,constructions, or activities “are built (produced or per-formed) or activities conducted in accordance with therequirements of the ASME Boiler and Pressure VesselCode,” or “meet the requirements of the ASME Boiler andPressure Vessel Code.”

The ASME Symbol shall be used only for stamping andnameplates as specifically provided in the Code. However,facsimiles may be used for the purpose of fostering theuse of such construction. Such usage may be by an associa-tion or a society, or by a holder of a Code Symbol whomay also use the facsimile in advertising to show thatclearly specified items will carry the symbol. General usageis permitted only when all of a manufacturer’s items areconstructed under the rules.

The ASME logo, which is the cloverleaf with the lettersASME within, shall not be used by any organization otherthan ASME.

Symbols shall not be used on any item that is not con-structed in accordance with all of the applicable require-ments of the Code.

Items shall not be described on ASME Data ReportForms nor on similar forms referring to ASME that tendto imply that all Code requirements have been met when,in fact, they have not been. Data Report Forms coveringitems not fully complying with ASME requirements shouldnot refer to ASME or they should clearly identify all excep-tions to the ASME requirements.

Page 11: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

x

Page 12: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

PERSONNELASME Boiler and Pressure Vessel Committee

Subcommittees, Subgroups, and Working GroupsAs of January 1, 2007

MAIN COMMITTEE

G. G. Karcher, Chair U. R. MillerJ. G. Feldstein, Vice Chair P. A. MolvieJ. S. Brzuszkiewicz, Secretary C. C. NeelyR. W. Barnes W. E. NorrisR. J. Basile G. C. ParkJ. E. Batey T. P. PastorD. L. Berger M. D. RanaM. N. Bressler B. W. RobertsD. A. Canonico F. J. Schaaf, Jr.R. P. Deubler A. SelzD. A. Douin R. W. SwayneR. E. Gimple D. E. TannerM. Gold S. V. VoorheesT. E. Hansen F. B. Kovacs, AlternateC. L. Hoffmann R. A. Moen, HonoraryD. F. Landers MemberW. M. Lundy T. Tahara, DelegateJ. R. MacKay

EXECUTIVE COMMITTEE (MAIN COMMITTEE)

J. G. Feldstein, Chair T. P. PastorG. G. Karcher, Vice Chair A. SelzJ. S. Brzuszkiewicz, Secretary D. E. TannerR. W. Barnes D. A. Canonico, Ex-OfficioD. L. Berger MemberM. Gold M. Kotb, Ex-Officio MemberG. C. Park

HONORARY MEMBERS (MAIN COMMITTEE)

F. P. Barton M. H. JawadR. D. Bonner A. J. JustinR. J. Bosnak E. L. KemmlerR. J. Cepluch W. G. KnechtL. J. Chockie J. LeCoffT. M. Cullen T. G. McCartyW. D. Doty G. C. MillmanJ. R. Farr R. F. ReedyG. E. Feigel W. E. SomersR. C. Griffin K. K. TamO. F. Hedden L. P. Zick, Jr.E. J. Hemzy

xi

HONORS AND AWARDS COMMITTEE

J. R. MacKay, Chair W. L. Haag, Jr.M. Gold, Vice Chair S. F. Harrison, Jr.G. Moino, Secretary R. M. JesseeR. J. Basile W. C. LarochelleJ. E. Batey T. P. PastorD. L. Berger A. SelzJ. G. Feldstein R. R. StevensonF. E. Gregor

MARINE CONFERENCE GROUP

H. N. Patel, Chair R. J. PetowL. W. Douthwaite

CONFERENCE COMMITTEE

D. A. Douin — Illinois (Chair) D. C. Cook — CaliforniaR. D. Reetz — North Dakota R. A. Coomes — Kentucky

(Vice Chair) D. Eastman — NewfoundlandD. E. Tanner — Ohio and Labrador, Canada

(Secretary) G. L. Ebeyer — LouisianaR. J. Aben, Jr. — Michigan E. Everett — GeorgiaJ. S. Aclaro — California J. M. Given, Jr. — NorthA. E. Adkins — West Virginia CarolinaJ. T. Amato — Minnesota P. Hackford — UtahE. A. Anderson — Illinois R. J. Handy — KentuckyF. R. Andrus — Oregon J. B. Harlan — DelawareB. P. Anthony — Rhode Island M. L. Holloway — OklahomaR. D. Austin — Colorado K. Hynes — Prince EdwardE. W. Bachellier — Nunavut, Island, Canada

Canada D. T. Jagger — OhioM. M. Barber — Michigan D. J. Jenkins — KansasR. W. Bartlett — Arizona S. Katz — British Columbia,F. P. Barton — Virginia CanadaM. Bishop — British M. Kotb — Quebec, Canada

Columbia, Canada K. T. Lau — Alberta, CanadaW. K. Brigham — New M. A. Malek — Florida

Hampshire G. F. Mankel — NevadaD. E. Burns — Nebraska R. D. Marvin II — WashingtonJ. H. Burpee — Maine I. W. Mault — Manitoba,C. J. Castle — Nova Scotia, Canada

Canada H. T. McEwen — MississippiP. A. Conklin — New York

Page 13: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

CONFERENCE COMMITTEE (CONT’D)

R. D. Mile — Ontario, Canada R. S. Pucek — WisconsinM. F. Mooney — D. E. Ross — New Brunswick,

Massachusetts CanadaG. R. Myrick — Arkansas N. Surtees — Saskatchewan,Y. Nagpaul — Hawaii CanadaW. R. Owens — Louisiana M. R. Toth — TennesseeT. M. Parks — Texas M. J. Verhagen — WisconsinR. P. Pate — Alabama M. Washington — New JerseyJ. D. Payton — Pennsylvania R. B. West — IowaM. R. Peterson — Alaska M. J. Wheel — VermontH. D. Pfaff — South Dakota D. J. Willis — IndianaJ. L. Pratt — Missouri E. Zarate — ArizonaD. C. Price — Yukon

Territory, Canada

BPV PROJECT TEAM ON HYDROGEN TANKS

M. D. Rana, Chair R. C. Biel, CorrespondingG. M. Eisenberg, Secretary MemberF. L. Brown J. Cameron, CorrespondingD. A. Canonico MemberD. C. Cook M. Duncan, CorrespondingJ. W. Felbaum MemberT. Joseph D. R. Frikken, CorrespondingJ. M. Lacy MemberN. L. Newhouse L. E. Hayden, Jr.,G. B. Rawls, Jr. Corresponding MemberJ. R. Sims, Jr. K. T. Lau, CorrespondingN. Sirosh MemberJ. H. Smith K. Oyamada, CorrespondingS. Staniszewski MemberT. Tahara C. H. Rivkin, CorrespondingD. W. Treadwell MemberE. Upitis C. San Marchi, CorrespondingC. T. L. Webster MemberH. Barthelemy, Corresponding B. Somerday, Corresponding

Member Member

INTERNATIONAL INTEREST REVIEW GROUP

V. Felix Y. ParkS. H. Leong P. WilliamsonW. Lin Y. Kim, DelegateC. Minu

SUBCOMMITTEE ON POWER BOILERS (SC I)

D. L. Berger, Chair W. L. LowryB. W. Roberts, Vice Chair J. R. MacKayU. D’Urso, Secretary T. C. McGoughD. A. Canonico R. E. McLaughlinK. K. Coleman P. A. MolvieP. D. Edwards Y. OishiJ. G. Feldstein J. T. PillowJ. Hainsworth R. D. Schueler, Jr.T. E. Hansen J. P. Swezy, Jr.J. S. Hunter J. M. TanzoshC. F. Jeerings R. V. WielgoszinskiJ. P. Libbrecht D. J. Willis

Honorary Members (SC I)

D. N. French R. L. WilliamsW. E. Somers

xii

Subgroup on Design (SC I)

P. A. Molvie, Chair J. P. LibbrechtG. L. Hiler, Secretary J. C. LightM. L. Coats B. W. MooreJ. D. Fishburn R. D. Schueler, Jr.J. P. Glaspie J. L. SeigleC. F. Jeerings J. P. Swezy, Jr.G. B. Komora S. V. Torkildson

Subgroup on Fabrication and Examination (SC I)

J. T. Pillow, Chair T. E. HansenJ. L. Arnold T. C. McGoughD. L. Berger R. E. McLaughlinS. W. Cameron Y. OishiG. W. Galanes R. V. WielgoszinskiJ. Hainsworth

Subgroup on General Requirements (SC I)

R. E. McLaughlin, Chair T. C. McGoughJ. Hainsworth, Secretary J. T. PillowG. Cook D. TompkinsP. D. Edwards S. V. TorkildsonT. E. Hansen R. V. WielgoszinskiW. L. Lowry D. J. WillisF. Massi

Subgroup on Materials (SC I)

B. W. Roberts, Chair J. F. HenryJ. S. Hunter, Secretary J. P. LibbrechtD. A. Canonico J. R. MacKayK. K. Coleman F. MasuyamaG. W. Galanes J. M. TanzoshK. L. Hayes

Subgroup on Piping (SC I)

T. E. Hansen, Chair F. MassiD. L. Berger T. C. McGoughP. D. Edwards D. TompkinsG. W. Galanes E. A. WhittleW. L. Lowry

Heat Recovery Steam Generators Task Group (SC I)

T. E. Hansen, Chair B. W. MooreE. M. Ortman, Secretary A. L. PlumleyR. W. Anderson R. D. Schueler, Jr.J. P. Bell J. C. Steverman, Jr.L. R. Douglas S. R. TimkoJ. D. Fishburn D. TompkinsG. B. Komora S. V. TorkildsonJ. P. Libbrecht B. C. TurczynskiD. L. Marriott E. A. Turhan

Page 14: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SUBCOMMITTEE ON MATERIALS (SC II)

J. F. Henry, Chair C. L. HoffmannM. Gold, Vice Chair P. A. LarkinN. Lobo, Secretary F. MasuyamaF. Abe R. K. NanstadD. C. Agarwal M. L. NayyarW. R. Apblett, Jr. E. G. NisbettA. Appleton D. W. RahoiM. N. Bressler B. W. RobertsH. D. Bushfield E. ShapiroJ. Cameron R. C. SutherlinD. A. Canonico R. W. SwindemanA. Chaudouet J. M. TanzoshP. Fallouey B. E. ThurgoodD. W. Gandy R. A. Moen, HonoraryM. H. Gilkey MemberJ. F. Grubb D. Kwon, Delegate

Honorary Members (SC II)

A. P. Ahrendt J. J. HegerT. M. Cullen G. C. HsuR. Dirscherl R. A. MoenW. D. Doty C. E. Spaeder, Jr.W. D. Edsall A. W. Zeuthen

Subgroup on External Pressure (SC II & SC-D)

R. W. Mikitka, Chair M. KatcherJ. A. A. Morrow, Secretary D. L. KurleL. F. Campbell E. MichalopoulosD. S. Griffin D. NadelJ. F. Grubb C. H. Sturgeon

Subgroup on Ferrous Specifications (SC II)

E. G. Nisbett, Chair D. C. KrouseA. Appleton, Vice Chair L. J. LavezziR. M. Davison W. C. MackB. M. Dingman J. K. MahaneyM. J. Dosdourian A. S. MelilliT. Graham K. E. OrieJ. F. Grubb E. UpitisK. M. Hottle R. ZawieruchaD. S. Janikowski A. W. Zeuthen

Subgroup on International Material Specifications (SC II)

W. M. Lundy, Chair D. O. HenryA. Chaudouet, Vice Chair M. HiguchiJ. P. Glaspie, Secretary H. LorenzD. C. Agarwal A. R. NyweningH. D. Bushfield R. D. Schueler, Jr.D. A. Canonico E. A. SteenP. Fallouey E. UpitisA. F. Garbolevsky D. Kwon, Delegate

Subgroup on Nonferrous Alloys (SC II)

D. W. Rahoi, Chair A. G. Kireta, Jr.M. Katcher, Secretary J. KissellD. C. Agarwal P. A. LarkinW. R. Apblett, Jr. H. MatsuoH. D. Bushfield J. A. McMasterL. G. Coffee D. T. PetersM. H. Gilkey E. ShapiroJ. F. Grubb R. C. SutherlinE. L. Hibner R. ZawieruchaG. C. Hsu

xiii

Subgroup on Strength, Ferrous Alloys (SC II)

C. L. Hoffmann, Chair F. MasuyamaJ. M. Tanzosh, Secretary H. MatsuoF. Abe H. MurakamiW. R. Apblett, Jr. D. W. RahoiD. A. Canonico B. W. RobertsK. K. Coleman M. S. SheltonP. Fallouey R. W. SwindemanM. Gold B. E. ThurgoodJ. F. Henry T. P. Vassallo, Jr.E. L. Hibner

Subgroup on Physical Properties (SC II)

J. F. Grubb, Chair P. FalloueyD. C. Agarwal E. ShapiroH. D. Bushfield

Subgroup on Strength of Weldments (SC II & SC IX)

J. M. Tanzosh, Chair J. F. HenryW. F. Newell, Jr., Secretary D. W. RahoiK. K. Coleman B. W. RobertsP. D. Flenner W. J. SperkoD. W. Gandy B. E. ThurgoodK. L. Hayes

Subgroup on Toughness (SC II & SC VIII)

W. S. Jacobs, Chair K. MokhtarianJ. L. Arnold C. C. NeelyR. J. Basile T. T. PhillipsJ. Cameron M. D. RanaH. E. Gordon D. A. SwansonD. C. Lamb E. Upitis

Special Working Group on Nonmetallic Materials (SC II)

C. W. Rowley, Chair M. R. KesslerF. L. Brown R. H. WalkerS. R. Frost J. W. WegnerP. S. Hill F. Worth

SUBCOMMITTEE ON NUCLEAR POWER (SC III)

R. W. Barnes, Chair V. KostarevR. M. Jessee, Vice Chair D. F. LandersC. A. Sanna, Secretary W. C. LaRochelleW. H. Borter K. A. ManolyM. N. Bressler E. A. MayhewJ. R. Cole W. N. McLeanR. E. Cornman, Jr. D. K. MortonR. P. Deubler O. O. OyamadaB. A. Erler R. F. ReedyG. M. Foster B. B. ScottR. S. Hill III J. D. StevensonC. L. Hoffmann K. R. WichmanC. C. Kim Y. H. Choi, Delegate

Honorary Members (SC III)

R. J. Bosnak F. R. DrahosE. B. Branch R. A. MoenW. D. Doty C. J. Pieper

Page 15: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

Subgroup on Containment Systems for Spent Fueland High-Level Waste Transport Packagings (SC III)

G. M. Foster, Chair A. B. MeichlerG. J. Solovey, Vice Chair R. E. NickellD. K. Morton, Secretary E. L. PleinsW. H. Borter T. SaegusaG. R. Cannell H. P. ShrivastavaE. L. Farrow N. M. SimpsonR. S. Hill III R. H. SmithD. W. Lewis J. D. StevensonC. G. May C. J. TemusP. E. McConnell P. TurulaI. D. McInnes A. D. Watkins

Subgroup on Design (SC III)

R. P. Deubler, Chair D. F. LandersR. S. Hill III, Vice Chair K. A. ManolyA. N. Nguyen, Secretary R. J. MastersonT. M. Adams W. N. McLeanM. N. Bressler J. C. MinichielloC. W. Bruny M. MorishitaD. L. Caldwell F. F. NaguibJ. R. Cole T. NakamuraR. E. Cornman, Jr. W. Z. NovakA. A. Dermenjian E. L. PleinsP. Hirschberg I. SaitoR. I. Jetter G. C. SlagisR. B. Keating J. D. StevensonJ. F. Kielb J. P. TuckerH. Kobayashi K. R. Wichman

Working Group on Supports (SG-D) (SC III)

R. J. Masterson, Chair I. SaitoF. J. Birch, Secretary J. R. StinsonU. S. Bandyopadhyay T. G. TerryahR. P. Deubler D. V. WalsheW. P. Golini C.-I. WuA. N. Nguyen

Working Group on Core Support Structures (SG-D) (SC III)

J. F. Kielb, Chair J. F. MulloolyJ. T. Land

Working Group on Design Methodology (SG-D)

R. B. Keating, Chair D. F. LandersP. L. Anderson, Secretary W. S. LapayT. M. Adams H. LockertM. K. Au-Yang J. F. McCabeR. D. Blevins P. R. OlsonD. L. Caldwell J. D. StevensonM. Hartzman J. YangH. Kobayashi

Working Group on Design of Division 3 Containments(SG-D) (SC III)

E. L. Pleins, Chair D. K. MortonT. M. Adams R. E. NickellG. Bjorkman H. P. ShrivastavaD. W. Lewis C. J. TemusI. D. McInnes P. TurulaJ. C. Minichiello

xiv

Working Group on Piping (SG-D) (SC III)

P. Hirschberg, Chair D. F. LandersR. C. Fung, Secretary J. F. McCabeT. M. Adams J. C. MinichielloC. Basavaraju A. N. NguyenJ. Catalano O. O. OyamadaJ. R. Cole R. D. PatelR. J. Gurdal E. C. RodabaughR. W. Haupt M. S. SillsJ. Kawahata G. C. SlagisR. B. Keating E. A. WaisV. Kostarev C.-I. Wu

Working Group on Probabilistic Methods in Design(SG-D) (SC III)

R. S. Hill III, Chair S. D. KulatT. M. Adams A. McNeill IIIT. Asayama P. J. O’ReganB. M. Ayyub N. A. PalmT. A. Bacon I. SaitoA. A. Dermenjian M. E. SchmidtM. R. Graybeal J. P. TuckerD. O. Henry R. M. WilsonE. V. Imbro

Working Group on Pumps (SG-D) (SC III)

R. E. Cornman, Jr., Chair J. W. LeavittM. D. Eftychiou J. E. LivingstonA. A. Fraser J. R. RajanM. Higuchi A. G. WashburnG. R. Jones

Working Group on Valves (SG-D) (SC III)

J. P. Tucker, Chair J. D. PageR. R. Brodin S. N. ShieldsG. A. Jolly H. R. SondereggerW. N. McLean J. C. TsacoyeanesT. A. McMahon R. G. Visalli

Working Group on Vessels (SG-D) (SC III)

F. F. Naguib, Chair A. KalninsG. K. Miller, Secretary R. B. KeatingC. W. Bruny K. MatsunagaG. D. Cooper D. E. MatthewsM. Hartzman M. NakahiraW. J. Heilker R. M. Wilson

Special Working Group on Environmental Effects (SG-D) (SC III)

W. Z. Novak, Chair S. YukawaR. S. Hill III Y. H. Choi, DelegateC. L. Hoffmann

Subgroup on General Requirements (SC III & SC 3C)

W. C. LaRochelle, Chair R. D. MileC. A. Lizotte, Secretary M. R. MinickA. Appleton B. B. ScottJ. R. Berry H. K. SharmaW. P. Golini W. K. SowderE. A. Mayhew D. M. VickeryR. P. McIntyre D. V. Walshe

Page 16: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

Subgroup on Materials, Fabrication, and Examination (SC III)

C. L. Hoffmann, Chair H. MurakamiG. P. Milley, Secretary M. NakahiraW. H. Borter C. J. PieperD. M. Doyle N. M. SimpsonG. M. Foster W. J. SperkoG. B. Georgiev J. R. StinsonR. M. Jessee K. B. StuckeyC. C. Kim A. D. WatkinsM. Lau S. Yukawa

Subgroup on Pressure Relief (SC III)

S. F. Harrison, Jr., Chair A. L. SzeglinE. M. Petrosky D. G. Thibault

Subgroup on Strategy and Management(SC III, Divisions 1 and 2)

R. W. Barnes, Chair M. F. HessheimerJ. R. Cole, Secretary R. S. Hill IIIB. K. Bobo E. V. ImbroN. Broom R. M. JesseeB. A. Erler R. F. ReedyC. M. Faidy Y. UrabeJ. M. Helmey

Special Working Group on Editing and Review (SC III)

R. F. Reedy, Chair R. P. DeublerW. H. Borter B. A. ErlerM. N. Bressler W. C. LaRochelleD. L. Caldwell J. D. Stevenson

Subgroup on Graphite Core Components (SC III)

T. D. Burchell, Chair O. GelineauC. A. Sanna, Secretary M. N. MitchellR. L. Bratton N. N. NemethM. W. Davies T. OkuS. W. Doms M. SrinivasanS. F. Duffy

JOINT ACI-ASME COMMITTEE ONCONCRETE COMPONENTS FOR NUCLEAR SERVICE (SC 3C)

T. C. Inman, Chair J. GutierrezA. C. Eberhardt, Vice Chair J. K. HarroldC. A. Sanna, Secretary M. F. HessheimerN. Alchaar T. E. JohnsonT. D. Al-Shawaf N.-H. LeeJ. F. Artuso B. B. ScottH. G. Ashar R. E. ShewmakerM. Elgohary J. D. StevensonB. A. Erler A. Y. C. WongF. Farzam T. Watson, Liaison Member

xv

SUBCOMMITTEE ON HEATING BOILERS (SC IV)

P. A. Molvie, Chair K. M. McTagueS. V. Voorhees, Vice Chair B. W. MooreG. Moino, Secretary E. A. NordstromT. L. Bedeaux T. M. ParksD. C. Bixby J. L. SeigleG. Bynog R. V. WielgoszinskiJ. Calland F. P. Barton, HonoraryJ. P. Chicoine MemberC. M. Dove R. B. Duggan, HonoraryW. L. Haag, Jr. MemberJ. A. Hall R. H. Weigel, HonoraryJ. D. Hoh MemberD. J. Jenkins J. I. Woodworth, HonoraryW. D. Lemos Member

Subgroup on Care and Operation of Heating Boilers (SC IV)

S. V. Voorhees, Chair K. M. McTagueT. L. Bedeaux P. A. MolvieK. J. Hoey

Subgroup on Cast Iron Boilers (SC IV)

K. M. McTague, Chair P. A. LarkinT. L. Bedeaux W. D. LemosJ. P. Chicoine C. P. McQuigganJ. A. Hall

Subgroup on Materials (SC IV)

P. A. Larkin, Chair W. D. LemosJ. A. Hall J. L. Seigle

Subgroup on Water Heaters (SC IV)

W. L. Haag, Jr., Chair K. M. McTagueJ. Calland F. J. SchreinerT. D. Gantt M. A. TaylorW. D. Lemos T. E. Trant

Subgroup on Welded Boilers (SC IV)

T. L. Bedeaux, Chair E. A. NordstromJ. Calland J. L. SeigleC. M. Dove R. V. WielgoszinskiW. D. Lemos

SUBCOMMITTEE ONNONDESTRUCTIVE EXAMINATION (SC V)

J. E. Batey, Chair D. R. Quattlebaum, Jr.F. B. Kovacs, Vice Chair F. J. SattlerS. Vasquez, Secretary B. H. Clark, Jr., HonoraryS. J. Akrin MemberJ. E. Aycock H. C. Graber, HonoraryA. S. Birks MemberP. L. Brown O. F. Hedden, HonoraryN. Y. Faransso MemberA. F. Garbolevsky J. R. MacKay, HonoraryG. W. Hembree MemberR. W. Kruzic T. G. McCarty, HonoraryJ. F. Manning MemberR. D. McGuire

Page 17: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

Subgroup on General Requirements/Personnel Qualifications and Inquiries (SC V)

R. D. McGuire, Chair G. W. HembreeJ. E. Batey J. W. HoufA. S. Birks J. R. MacKayN. Y. Faransso J. P. Swezy, Jr.

Subgroup on Surface Examination Methods (SC V)

A. S. Birks, Chair R. W. KruzicS. J. Akrin D. R. Quattlebaum, Jr.P. L. Brown F. J. SattlerN. Y. Faransso M. J. WheelG. W. Hembree

Subgroup on Volumetric Methods (SC V)

G. W. Hembree, Chair R. W. HardyS. J. Akrin R. A. KellerhallJ. E. Aycock F. B. KovacsJ. E. Batey R. W. KruzicP. L. Brown J. F. ManningN. Y. Faransso F. J. SattlerA. F. Garbolevsky

Working Group on Acoustic Emissions (SG-VM) (SC V)

N. Y. Faransso, Chair J. E. BateyJ. E. Aycock J. F. Manning

Working Group on Radiography (SG-VM) (SC V)

F. B. Kovacs, Chair A. F. GarbolevskyS. J. Akrin R. W. HardyJ. E. Aycock G. W. HembreeJ. E. Batey R. W. KruzicP. L. Brown T. L. PlasekN. Y. Faransso

Working Group on Ultrasonics (SG-VM) (SC V)

R. W. Kruzic, Chair R. A. KellerhallJ. E. Aycock J. F. ManningN. Y. Faransso M. D. MolesO. F. Hedden F. J. Sattler

SUBCOMMITTEE ON PRESSURE VESSELS (SC VIII)

T. P. Pastor, Chair C. C. NeelyK. Mokhtarian, Vice Chair D. T. PetersS. J. Rossi, Secretary M. J. PischkeR. J. Basile M. D. RanaJ. Cameron G. B. Rawls, Jr.D. B. Demichael S. C. RobertsJ. P. Glaspie C. D. RoderyM. Gold K. J. SchneiderW. S. Jacobs A. SelzG. G. Karcher J. R. Sims, Jr.K. T. Lau E. A. SteenJ. S. Lee K. K. TamR. Mahadeen E. UpitisS. Malone E. L. Thomas, Jr., HonoraryR. W. Mikitka MemberU. R. Miller

xvi

Subgroup on Design (SC VIII)

U. R. Miller, Chair T. P. PastorR. E. Knoblock, Secretary M. D. RanaO. A. Barsky G. B. Rawls, Jr.R. J. Basile S. C. RobertsM. R. Breach C. D. RoderyF. L. Brown A. SelzJ. R. Farr S. C. ShahJ. P. Glaspie J. C. SowinskiC. E. Hinnant C. H. SturgeonW. S. Jacobs D. A. SwansonM. D. Lower K. K. TamR. W. Mikitka E. L. Thomas, Jr.K. Mokhtarian R. A. Whipple

Subgroup on Fabrication and Inspection (SC VIII)

C. D. Rodery, Chair C. D. LambE. A. Steen, Vice Chair J. S. LeeJ. L. Arnold B. R. MorelockL. F. Campbell M. J. PischkeH. E. Gordon M. J. RiceW. S. Jacobs B. F. ShelleyD. J. Kreft J. P. Swezy, Jr.

Subgroup on General Requirements (SC VIII)

S. C. Roberts, Chair A. S. OlivaresD. B. Demichael, Secretary F. L. RichterR. J. Basile K. J. SchneiderJ. P. Glaspie D. B. StewartK. T. Lau D. A. SwansonM. D. Lower K. K. TamC. C. Neely

Subgroup on Heat Transfer Equipment (SC VIII)

R. Mahadeen, Chair B. J. LerchG. Aurioles, Secretary S. MayeuxS. R. Babka U. R. MillerJ. H. Barbee T. W. NortonO. A. Barsky F. OsweillerI. G. Campbell R. J. StastnyM. D. Clark S. YokellJ. I. Gordon R. P. ZoldakM. J. Holtz S. M. Caldwell, HonoraryF. E. Jehrio Member

Subgroup on High-Pressure Vessels (SC VIII)

J. R. Sims, Jr., Chair J. A. KappS. Vasquez, Secretary J. KeltjensL. P. Antalffy D. P. KendallR. C. Biel A. K. KhareD. J. Burns M. D. MannP. N. Chaku S. C. MordreR. D. Dixon G. J. MrazM. E. Dupre E. H. PerezD. M. Fryer D. T. PetersW. Hiller E. D. RollA. H. Honza F. W. TatarM. M. James S. TeradaP. Jansson

Page 18: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

Subgroup on Materials (SC VIII)

J. Cameron, Chair W. M. LundyE. E. Morgenegg, Secretary E. G. NisbettD. C. Agarwal D. W. RahoiJ. F. Grubb R. C. SutherlinE. L. Hibner E. UpitisM. Katcher

Special Working Group on Graphite Pressure Equipment(SC VIII)

S. Malone, Chair M. R. MinickU. D’Urso, Secretary E. SoltowF. L. Brown A. A. Stupica

Special Working Group on High-Pressure Vessels (SC VIII)

S. Vasquez, Secretary

Task Group on Impulsively Loaded Vessels (SC VIII)

R. E. Nickell, Chair J. E. Didlake, Jr.G. A. Antaki T. A. DuffeyD. D. Barker R. ForganR. C. Biel B. L. HaroldsenD. W. Bowman H. L. HeatonD. L. Caldwell E. A. RodriguezA. M. Clayton J. R. Sims, Jr.

SUBCOMMITTEE ON WELDING (SC IX)

J. G. Feldstein, Chair R. D. McGuireW. J. Sperko, Vice Chair B. R. NewmarkJ. D. Wendler, Secretary A. S. OlivaresD. A. Bowers M. J. PischkeR. K. Brown, Jr. S. D. Reynolds, Jr.M. L. Carpenter M. J. RiceL. P. Connor M. B. SimsP. D. Flenner G. W. Spohn IIIJ. M. Given, Jr. M. J. StankoJ. S. Lee P. L. Van FossonW. M. Lundy R. R. Young

Subgroup on Brazing (SC IX)

M. J. Pischke, Chair A. F. GarbolevskyE. W. Beckman C. F. JeeringsL. F. Campbell J. P. Swezy, Jr.M. L. Carpenter

Subgroup on General Requirements (SC IX)

B. R. Newmark, Chair H. B. PorterP. R. Evans P. L. SturgillR. M. Jessee K. R. WillensA. S. Olivares

Subgroup on Materials (SC IX)

M. L. Carpenter, Chair T. MelfiJ. L. Arnold S. D. Reynolds, Jr.M. Bernasek C. E. SainzL. P. Connor W. J. SperkoR. M. Jessee M. J. StankoC. C. Kim R. R. Young

xvii

Subgroup on Performance Qualification (SC IX)

D. A. Bowers, Chair K. L. HayesV. A. Bell J. S. LeeL. P. Connor W. M. LundyR. B. Corbit R. D. McGuireP. R. Evans M. B. SimsP. D. Flenner G. W. Spohn IIIJ. M. Given, Jr.

Subgroup on Procedure Qualification (SC IX)

D. A. Bowers, Chair M. B. SimsM. J. Rice, Secretary W. J. SperkoM. Bernasek S. A. SpragueR. K. Brown, Jr. J. P. Swezy, Jr.A. S. Olivares P. L. Van FossonS. D. Reynolds, Jr. T. C. Wiesner

Honorary Member (SC IX)

W. K. Scattergood

SUBCOMMITTEE ONFIBER-REINFORCED PLASTIC PRESSURE VESSELS (SC X)

D. Eisberg, Chair J. C. MurphyP. J. Conlisk, Vice Chair D. J. PainterS. Vasquez, Secretary D. J. PinellF. L. Brown G. RamirezJ. L. Bustillos J. R. RichterT. W. Cowley J. A. RolstonT. J. Fowler B. F. ShelleyD. H. Hodgkinson F. W. Van NameL. E. Hunt D. O. Yancey, Jr.D. L. Keeler P. H. ZiehlB. M. Linnemann

SUBCOMMITTEE ONNUCLEAR INSERVICE INSPECTION (SC XI)

G. C. Park, Chair W. E. NorrisR. W. Swayne, Vice Chair K. RhyneR. L. Crane, Secretary W. R. Rogers IIIW. H. Bamford, Jr. D. A. ScarthR. C. Cipolla F. J. Schaaf, Jr.D. D. Davis J. C. Spanner, Jr.R. L. Dyle J. E. StaffieraE. L. Farrow G. L. StevensR. E. Gimple E. W. Throckmorton IIIF. E. Gregor D. E. WaskeyK. Hasegawa R. A. WestD. O. Henry C. J. WirtzR. D. Kerr C. S. WithersS. D. Kulat R. A. YonekawaG. L. Lagleder K. K. YoonD. W. Lamond T. YuharaJ. T. Lindberg Y.-S. Chang, DelegateB. R. Newton

Page 19: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

Executive Committee (SC XI)

R. W. Swayne, Chair O. F. HeddenG. C. Park, Vice Chair C. G. McCargarR. L. Crane, Secretary W. E. NorrisW. H. Bamford, Jr. K. RhyneD. D. Davis F. J. Schaaf, Jr.R. L. Dyle J. C. Spanner, Jr.R. E. Gimple E. W. Throckmorton IIIF. E. Gregor R. A. Yonekawa

Honorary Members (SC XI)

L. J. Chockie J. P. HoustrupC. D. Cowfer L. R. KatzO. F. Hedden P. C. Riccardella

Subgroup on Evaluation Standards (SC XI)

W. H. Bamford, Jr., Chair K. KoyamaG. L. Stevens, Secretary D. R. LeeR. C. Cipolla H. S. MehtaS. Coffin J. G. MerkleG. H. De Boo S. RanganathB. R. Ganta D. A. ScarthT. J. Griesbach K. R. WichmanK. Hasegawa K. K. YoonD. N. Hopkins Y.-S. Chang, DelegateY. Imamura

Working Group on Flaw Evaluation (SG-ES) (SC XI)

R. C. Cipolla, Chair J. G. MerkleG. H. De Boo, Secretary M. A. MitchellW. H. Bamford, Jr. K. MiyazakiM. Basol R. K. QashuJ. M. Bloom S. RanganathB. R. Ganta P. J. RushT. J. Griesbach D. A. ScarthH. L. Gustin T. S. SchurmanF. D. Hayes W. L. ServerP. H. Hoang F. A. SimonenD. N. Hopkins K. R. WichmanY. Imamura G. M. WilkowskiK. Koyama K. K. YoonD. R. Lee S. YukawaH. S. Mehta V. A. Zilberstein

Working Group on Operating Plant Criteria (SG-ES) (SC XI)

T. J. Griesbach, Chair R. PaceK. R. Baker S. RanganathW. H. Bamford, Jr. W. L. ServerH. Behnke E. A. SiegelB. A. Bishop F. A. SimonenT. L. Dickson G. L. StevensS. R. Gosselin D. P. WeaklandS. N. Malik K. K. YoonH. S. Mehta

xviii

Working Group on Pipe Flaw Evaluation (SG-ES) (SC XI)

D. A. Scarth, Chair K. HasegawaG. M. Wilkowski, Secretary P. H. HoangT. A. Bacon D. N. HopkinsW. H. Bamford, Jr. K. KashimaR. C. Cipolla H. S. MehtaN. G. Cofie K. MiyazakiS. K. Daftuar J. S. PanesarG. H. De Boo P. J. RushE. Friedman K. K. YoonB. R. Ganta V. A. ZilbersteinL. F. Goyette

Subgroup on Liquid-Metal–Cooled Systems (SC XI)

C. G. McCargar, Chair W. L. Chase

Subgroup on Nondestructive Examination (SC XI)

J. C. Spanner, Jr., Chair D. O. HenryG. A. Lofthus, Secretary M. R. HumN. R. Bentley G. L. LaglederT. L. Chan J. T. LindbergC. B. Cheezem G. R. PerkinsD. R. Cordes A. S. ReedF. J. Dodd F. J. Schaaf, Jr.F. E. Dohmen C. J. WirtzM. E. Gothard

Working Group on Personnel Qualification and Surface,Visual, and Eddy Current Examination (SG-NDE) (SC XI)

D. R. Cordes, Secretary D. R. Quattlebaum, Jr.B. L. Curtis A. S. ReedN. Farenbaugh D. SpakeG. B. Georgiev J. C. Spanner, Jr.D. O. Henry C. J. WirtzJ. T. Lindberg

Working Group on Pressure Testing (SG-WCS) (SC XI)

D. W. Lamond, Chair R. E. HallJ. M. Boughman, Secretary J. K. McClanahanJ. J. Churchwell A. McNeill IIIG. L. Fechter B. L. MontgomeryK. W. Hall E. J. Sullivan, Jr.

Working Group on Procedure Qualificationand Volumetric Examination (SG-NDE) (SC XI)

M. E. Gothard, Chair R. KellerhallG. R. Perkins, Secretary D. KurekC. B. Cheezem G. L. LaglederA. D. Chockie G. A. LofthusS. R. Doctor C. E. MoyerF. J. Dodd S. A. SaboF. E. Dohmen R. V. SwainK. J. Hacker

Page 20: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

Subgroup on Repair/Replacement Activities (SG-RRA)(SC XI)

R. A. Yonekawa, Chair R. D. KerrE. V. Farrell, Jr., Secretary S. L. McCrackenS. B. Brown B. R. NewtonR. E. Cantrell J. E. O’SullivanP. D. Fisher W. R. Rogers IIIE. B. Gerlach R. R. StevensonR. E. Gimple R. W. SwayneD. R. Graham D. E. WaskeyR. A. Hermann J. G. WeicksE. V. Imbro C. S. Withers

Working Group on Design and Programs (SG-RRA) (SC XI)

E. B. Gerlach, Chair D. R. GrahamS. B. Brown, Secretary G. F. HarttraftA. V. Du Bouchet R. R. StevensonG. G. Elder R. W. SwayneE. V. Farrell, Jr. A. H. TaufiqueS. K. Fisher T. P. Vassallo, Jr.J. M. Gamber R. A. Yonekawa

Working Group on Welding and Special Repair Process(SG-RRA) (SC XI)

D. E. Waskey, Chair R. D. KerrR. E. Cantrell, Secretary C. C. KimS. J. Findlan M. LauP. D. Fisher S. L. McCrackenK. A. Gruss B. R. NewtonM. L. Hall J. E. O’SullivanR. A. Hermann J. G. WeicksR. P. Indap K. R. Willens

Subgroup on Water-Cooled Systems (SC XI)

E. W. Throckmorton III, Chair S. D. KulatJ. M. Agold, Secretary D. W. LamondG. L. Belew A. McNeill IIIJ. M. Boughman W. E. NorrisD. D. Davis D. SongH. Q. Do J. E. StaffieraJ. D. Ellis H. M. Stephens, Jr.E. L. Farrow K. B. ThomasM. J. Ferlisi R. A. WestO. F. Hedden G. E. WhitmanM. L. Herrera H. L. Graves III, Alternate

Working Group on Containment (SG-WCS) (SC XI)

J. E. Staffiera, Chair H. T. HillH. Ashar R. D. HoughS. G. Brown C. N. KrishnaswamyK. K. N. Chao D. NausR. C. Cox S. C. PetitgoutJ. W. Crider H. M. Stephens, Jr.M. J. Ferlisi W. E. Norris, AlternateH. L. Graves III

Working Group on ISI Optimization (SG-WCS) (SC XI)

E. A. Siegel, Chair A. H. MahindrakarD. R. Cordes, Secretary D. G. NaujockR. L. Turner, Secretary K. B. ThomasW. H. Bamford, Jr. G. E. WhitmanJ. M. Boughman Y. YuguchiR. E. Hall

xix

Working Group on Implementation of Risk-Based Examination(SG-WCS) (SC XI)

S. D. Kulat, Chair K. W. HallA. McNeill III, Secretary D. W. LamondJ. M. Agold J. T. LindbergS. A. Ali R. K. MattuB. A. Bishop P. J. O’ReganS. T. Chesworth N. A. PalmC. Cueto-Felgueroso M. A. PyneH. Q. Do F. A. SimonenR. Fougerousse R. A. WestM. R. Graybeal J. C. YoungerJ. Hakii A. T. Keim, Alternate

Working Group on Inspection of Systems and Components(SG-WCS) (SC XI)

K. B. Thomas, Chair S. D. KulatD. Song, Secretary D. G. NaujockV. L. Armentrout T. NomuraG. L. Belew C. M. RossC. Cueto-Felgueroso R. L. TurnerH. Q. Do R. A. WestR. Fougerousse G. E. WhitmanM. R. Hum

Working Group on General Requirements (SC XI)

K. Rhyne, Chair E. L. FarrowE. J. Maloney, Secretary R. K. MattuT. L. Chan S. R. ScottJ. D. Ellis C. S. Withers

Special Working Group on Editing and Review (SC XI)

R. W. Swayne, Chair J. E. StaffieraC. E. Moyer C. J. Wirtz

Special Working Group on Plant Life Extension (SC XI)

T. A. Meyer, Chair P.-T. KuoD. V. Burgess, Secretary R. L. TurnerD. D. Davis G. G. YoungF. E. Gregor

Special Working Group on High-Temperature, Gas-CooledReactors (SC XI)

J. Fletcher, Chair B. J. KruseM. A. Lockwood, Secretary M. N. MitchellN. Broom F. J. Schaaf, Jr.K. N. Fleming R. W. SwayneW. A. O. Kriel

SUBCOMMITTEE ON TRANSPORT TANKS (SC XII)

A. Selz, Chair G. McRaeL. Plano, Secretary M. R. MinickP. D. Stumpf, Secretary M. D. PhamA. N. Antoniou M. D. RanaC. Becht IV S. StaniszewskiM. L. Coats M. R. TothM. A. Garrett A. P. VargheseC. H. Hochman S. V. VoorheesG. G. Karcher

Page 21: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

Subgroup on Design and Materials (SC XII)

M. D. Rana, Chair T. A. RogersG. G. Karcher A. P. VargheseS. L. McWilliams M. R. WardN. J. Paulick E. A. WhittleM. D. Pham

Subgroup on Fabrication and Inspection (SC XII)

S. V. Voorhees, Chair D. J. KreftJ. A. Byers G. McRaeB. L. Gehl M. R. MinickL. D. Holsinger A. S. Olivares

Subgroup on General Requirements (SC XII)

C. H. Hochman, Chair M. A. GarrettT. W. Alexander K. L. GilmoreD. M. Allbritten J. L. RademacherC. A. Betts T. RummelJ. F. Cannon M. R. TothJ. L. Freiler L. WolpertW. L. Garfield

SUBCOMMITTEE ON BOILER ANDPRESSURE VESSEL ACCREDITATION (SC-BPVA)

W. C. LaRochelle, Chair M. A. DeVries, AlternateP. D. Edwards, Vice Chair C. E. Ford, AlternateK. I. Baron, Secretary T. E. Hansen, AlternateM. B. Doherty G. L. Hollinger, AlternateP. Hackford D. J. Jenkins, AlternateK. T. Lau B. B. MacDonald, AlternateL. E. McDonald R. D. Mile, AlternateK. M. McTague G. P. Milley, AlternateB. R. Morelock T. W. Norton, AlternateJ. D. O’Leary H. R. Staehr, AlternateD. E. Tanner J. A. West, AlternateB. C. Turczynski R. V. Wielgoszinski, AlternateD. E. Tuttle O. E. Trapp, Senior ConsultantE. A. Whittle A. J. Spencer, HonoraryG. Bynog, Alternate Member

SUBCOMMITTEE ON NUCLEAR ACCREDITATION (SC-NA)

R. R. Stevenson, Chair D. E. TannerW. C. LaRochelle, Vice Chair D. M. VickeryJ. Pang, Secretary G. Bynog, AlternateM. N. Bressler G. Deily, AlternateS. M. Goodwin P. D. Edwards, AlternateK. A. Huber J. W. Highlands, AlternateM. Kotb K. M. Hottle, AlternateJ. C. Krane B. G. Kovarik, AlternateC. A. Lizotte P. F. Prescott, AlternateR. P. McIntyre S. Toledo, AlternateM. R. Minick E. A. Whittle, AlternateH. B. Prasse R. V. Wielgoszinski, AlternateT. E. Quaka H. L. Wiger, AlternateA. T. Roberts III O. E. Trapp, Senior Consultant

xx

SUBCOMMITTEE ON DESIGN (SC-D)

R. J. Basile, Chair D. P. JonesR. W. Barnes R. W. MikitkaM. R. Breach U. R. MillerR. P. Deubler W. J. O’DonnellG. G. Graven R. D. Schueler, Jr.G. L. Hollinger A. SelzR. I. Jetter

Subgroup on Design Analysis (SC-D)

G. L. Hollinger, Chair K. MatsunagaS. A. Adams G. A. MillerM. R. Breach W. D. ReinhardtR. G. Brown D. H. RoartyR. J. Gurdal G. SannazzaroC. F. Heberling II T. G. SeippC. E. Hinnant D. A. SwansonP. Hirschberg G. TaxacherD. P. Jones E. L. Thomas, Jr.A. Kalnins R. A. WhippleW. J. Koves

Subgroup on Elevated Temperature Design (SC-D)

R. I. Jetter, Chair T. E. McGreevyT. Asayama K. A. MooreC. Becht IV W. J. O’DonnellJ. F. Cervenka D. A. OsageD. S. Griffin J. S. PorowskiB. F. Hantz B. RiouM. H. Jawad T.-L. ShamW. J. Koves M. S. SheltonS. Majumdar R. W. SwindemanD. L. Marriott

Subgroup on Fatigue Strength (SC-D)

W. J. O’Donnell, Chair D. P. JonesS. A. Adams G. KharshafdjianP. R. Donavin S. MajumdarR. J. Gurdal T. NakamuraC. F. Heberling II D. H. RoartyP. Hirschberg G. TaxacherP. Hsu H. H. Ziada

Subgroup on Openings (SC-D)

M. R. Breach, Chair J. P. MaddenR. W. Mikitka, Secretary D. R. PalmerG. G. Graven J. A. PfeiferV. T. Hwang M. D. RanaJ. C. Light E. C. RodabaughR. B. Luney

Special Working Group on Bolted Flanged Joints (SC-D)

R. W. Mikitka, Chair J. R. PayneG. D. Bibel P. G. ScheckermannH. A. Bouzid R. W. SchneiderA. Chaudouet R. D. Schueler, Jr.E. Michalopoulos A. SelzS. N. Pagay M. S. Shelton

Page 22: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SUBCOMMITTEE ONSAFETY VALVE REQUIREMENTS (SC-SVR)

S. F. Harrison, Jr., Chair J. P. GlaspieJ. A. West, Vice Chair H. I. GreggS. J. Rossi, Secretary W. F. HartJ. F. Ball C. A. NeumannS. Cammeresi T. M. ParksA. Cox D. K. ParrishR. D. Danzy D. J. ScallanD. B. Demichael J. C. StandfastR. J. Doelling Z. Wang

Subgroup on Design (SC-SVR)

J. A. West, Chair H. I. GreggC. E. Beair D. MillerR. D. Danzy T. PatelR. J. Doelling T. R. Tarbay

xxi

Subgroup on General Requirements (SC-SVR)

D. B. Demichael, Chair T. M. ParksJ. F. Ball D. K. ParrishG. Brazier J. W. RamseyJ. P. Glaspie J. W. RichardsonC. A. Neumann J. C. Standfast

Subgroup on Testing (SC-SVR)

A. Cox, Chair W. F. HartJ. E. Britt K. G. RothS. Cammeresi D. J. ScallanG. D. Goodson Z. Wang

U.S. Technical Advisory Group ISO/TC 185Safety Relief Valves

T. J. Bevilacqua, Chair Y.-S. LaiS. J. Rossi, Secretary D. MillerS. F. Harrison, Jr. J. A. West

Page 23: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

xxii

Page 24: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

INTRODUCTION

The following is a brief introduction to the 2007 Editionof Section IX and cannot be considered as a substitute forthe actual review of appropriate sections of the document.However, this introduction is intended to give the readera better understanding of the purpose and organization ofSection IX.

Section IX of the ASME Boiler and Pressure VesselCode relates to the qualification of welders, welding opera-tors, brazers, and brazing operators, and the proceduresemployed in welding or brazing in accordance with theASME Boiler and Pressure Vessel Code and the ASMEB31 Code for Pressure Piping. As such, this is an activedocument subject to constant review, interpretation, andimprovement to recognize new developments and researchdata. Section IX is a document referenced for qualificationby various construction codes such as Section I, III, IV,VIII, etc. These particular construction codes apply to spe-cific types of fabrication and may impose additional weld-ing requirements or exemptions to Section IXqualifications. Qualification in accordance with Section IXis not a guarantee that procedures and performance qualifi-cations will be acceptable to a particular construction code.

Section IX establishes the basic criteria for welding andbrazing which are observed in the preparation of weldingand brazing requirements that affect procedure and per-formance. It is important that the user of the 2007 Editionof Section IX understand the basic criteria in reviewingthe requirements which have been established.

Section IX does not contain rules to cover all weldingand brazing conditions affecting production weld or brazeproperties under all circumstances. Where such weldingor brazing conditions are determined by the Manufacturerto affect weld or braze properties, the Manufacturer shalladdress those welding or brazing conditions to ensure thatthe required properties are achieved in the production weld-ment or brazement.

The purpose of the Welding Procedure Specification(WPS) and Procedure Qualification Record (PQR) is todetermine that the weldment proposed for construction iscapable of having the required properties for its intendedapplication. It is presupposed that the welder or weldingoperator performing the welding procedure qualificationtest is a skilled workman. This also applies to the BrazingProcedure Specifications (BPS) and the brazer and brazingoperator qualifications. The procedure qualification test isto establish the properties of the weldment or brazement

xxiii

and not the skill of the personnel performing the weldingor brazing. In addition, special consideration is given whennotch toughness is required by other Sections of the Code.The notch-toughness variables do not apply unless refer-enced by the construction codes.

In Welder or Brazer /Brazing Operator PerformanceQualification, the basic criterion is to determine the abilityto deposit sound weld metal, or to make a sound braze.In Welding Operator Performance Qualification, the basiccriterion is to determine the mechanical ability of the weld-ing operator to operate the equipment.

In developing the present Section IX, each welding pro-cess and brazing process that was included was reviewedwith regard to those items (called variables) which havean effect upon the welding or brazing operations as appliedto procedure or performance criteria.

The user of Section IX should be aware of how SectionIX is organized. It is divided into two parts: welding andbrazing. Each part is then divided into articles. These arti-cles deal with the following:

(a) general requirements (Article I Welding and ArticleXI Brazing)

(b) procedure qualifications (Article II Welding andArticle XII Brazing)

(c) performance qualifications (Article III Welding andArticle XIII Brazing)

(d) data (Article IV Welding and Article XIV Brazing)(e) standard welding procedures (Article V Welding)

These articles contain general references and guides thatapply to procedure and performance qualifications such aspositions, type and purpose of various mechanical tests,acceptance criteria, and the applicability of Section IX,which was in the Preamble of the 1980 Section IX (thePreamble has been deleted). The general requirement arti-cles reference the data articles for specifics of the testingequipment and removal of the mechanical test specimens.

PROCEDURE QUALIFICATIONS

Each process that has been evaluated by Section IX islisted separately with the essential and nonessential vari-ables as they apply to that particular process. In general, theWelding Procedure Specifications (WPS) and the BrazingProcedure Specifications (BPS) are to list all essential and

Page 25: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

nonessential variables for each process that is includedunder that particular procedure specification. If a changeis made in any essential variable, requalification of theprocedure is required. If a change is made in a nonessentialvariable, the procedure need only be revised or amendedto address the nonessential variable change. When notchtoughness is required by the construction code, the supple-mentary essential variables become additional essentialvariables and a change requires requalification of the pro-cedure.

In addition to covering various processes, there are alsorules for procedure qualification of corrosion-resistant weldmetal overlay and hard-facing weld metal overlay.

Beginning with the 2000 Addenda, the use of StandardWelding Procedure Specifications (SWPSs) was permitted.Article V provides the requirements and limitations thatgovern the use of these documents. The SWPSs approvedfor use are listed in Appendix E.

In the 2007 Edition, rules for temper bead welding wereadded.

PERFORMANCE QUALIFICATIONS

These articles list separately the various welding andbrazing processes with the essential variables that applyto the performance qualifications of each process. Thewelder, brazer, and brazing operator qualifications are lim-ited by essential variables.

The performance qualification articles have numerousparagraphs describing general applicable variables for allprocesses. QW-350 and QB-350 list additional essentialvariables which are applicable for specific processes. TheQW-350 variables do not apply to welding operators.QW-360 lists the additional essential variables for weldingoperators.

Generally, a welder or welding operator may be qualifiedby mechanical bending tests, radiography of a test plate,or radiography of the initial production weld. Brazers orbrazing operators may not be qualified by radiography.

WELDING AND BRAZING DATA

The welding and brazing data articles include the vari-ables grouped into categories such as joints, base materialsand filler materials, positions, preheat/postweld heat treat-ment, gas, electrical characteristics, and technique. Theyare referenced from other articles as they apply to eachprocess.

xxiv

These articles are frequently misused by selecting vari-ables that do not apply to a particular process. Variables(QW-402 to QW-410 and QB-402 to QB-410) only applyas referenced for the applicable process in Article II orArticle III for welding and Article XII or Article XIII forbrazing. The user of Section IX should not try to applyany variable which is not referenced for that process inQW-250, QW-350, QW-360, QB-250, or QB-350.

These articles also include assignments of P-Numbersand F-Numbers to particular base materials and filler mate-rials. Article IV also includes A-Number tables for refer-ence by the manufacturer.

Beginning with the 1994 Addenda, the weldingP-Numbers, brazing P-Numbers, and nonmandatoryS-Numbers were consolidated into one table identified asQW/QB-422. Both the QB-422 table (brazing P-Numbers)and Appendix C table (S-Numbers) were deleted. The newQW/QB-422 table was divided into ferrous and nonferroussections. Metals were listed in numerical order by materialspecification number to aid users in locating the appropriategrouping number. An abbreviated listing of metals groupedby P-Numbers, Nonmandatory Appendix D, has beenincluded for users still wishing to locate groupings of met-als by welding P-Number.

The QW-451 and QB-451 tables for procedure qualifi-cation thickness requirements and the QW-452 and QB-452tables for performance thickness qualifications are givenand may only be used as referenced by other paragraphs.Generally, the appropriate essential variables referencethese tables.

Revisions to the 1980 Edition of Section IX introducednew definitions for position and added a fillet weld orienta-tion sketch to complement the groove-weld orientationsketch. The new revision to position indicates that a welderqualifies in the 1G, 2G, 3G, etc., position and is thenqualified to weld, in production, in the F, V, H, or Opositions as appropriate. QW-461.9 is a revised table thatsummarizes these new qualifications.

The data articles also give sketches of coupon orienta-tions, removal of test specimens, and test jig dimensions.These are referenced by Articles I and XI.

QW-470 describes etching processes and reagents.At the end of Articles IV and XIV is a list of general

definitions applicable to Section IX, welding and brazing,respectively. These may differ slightly from other weldingdocuments.

Nonmandatory Forms for welding and brazing procedureand performance qualifications appear in Appendix B.These forms are provided for the aid of those who do notwish to design their own forms. Any form(s) that addressall applicable requirements of Section IX may be used.

Page 26: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SUMMARY OF CHANGES

The 2007 Edition of this Code contains revisions in addition to the 2004 Edition with 2005 and 2006 Addenda.The revisions are identified with the designation 07 in the margin and, as described in the Foreword, becomemandatory six months after the publication date of the 2007 Edition. To invoke these revisions before theirmandatory date, use the designation “2007 Edition” in documentation required by this Code. If you choose notto invoke these revisions before their mandatory date, use the designation “2004 Edition through the 2006Addenda” in documentation required by this Code.

The BC numbers listed below are explained in more detail in “List of Changes in BC Order” following thisSummary of Changes.

Changes given below are identified on the pages by a margin note, 07, placed next to the affected area.

Page Location Change (BC Number)

5 QW-161.4 Note reference corrected by errata to read “b”(BC06-1524, BC06-1143)

9 QW-193.1 Paragraph reference corrected by errata to read“QW-288” (BC06-1524)

10 QW-197.1.1 Traverse corrected by errata to read “transverse”(BC06-326)

11 QW-199.2 Paragraph reference corrected by errata to read“QW-199.1.3” (BC07-391)

15, 16 QW-202.1 Last paragraph corrected by errata (BC06-1143)

21 QW-253 QW-403.7 deleted (BC06-847)

23 QW-254 QW-403.7 deleted (BC06-847)

26 QW-255 QW-403.7 deleted (BC06-847)

29 QW-256 QW-403.7 deleted (BC06-847)

46 QW-284 Revised (BC06-921)

51 QW-300.2(d) Fifth line corrected by errata (BC06-326)

55 QW-322.1(a) Revised in its entirety (BC05-697, BC06-911)

59 QW-384 Revised (BC06-921)

61 QW-403 QW-403.7 deleted (BC06-847)

62 QW-403.16 Reference corrected by errata to read “QW-381.1(c)”(BC06-893)

65 QW-404.30 Last reference corrected by errata to read “QW-452.1(b)”(BC06-326)

74, 75 QW/QB-422 (1) For A 108, G86200 added (BC06-493)(2) For A 167, S30100, S30200, S30400, S30403,

S30908, S31008, S31603, S31700, S31703, S32100,S34700, and S34800 deleted (BC06-493)

(3) For SA-182, Type/Grade F3VCb added (BC00-380)

76 QW/QB-422 For SA-182, S31277 deleted (BC06-1299)

77 QW/QB-422 For SA-182, S39274 added (BC03-753)

79 QW/QB-422 (1) For SA-213, Type/Grade TP347HFG, UNS No. revisedto read S34710 (BC06-916)

xxv

Page 27: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

Page Location Change (BC Number)

(2) For SA-240, S20100 added (BC05-1394)(3) For SA-240, S20100 revised (BC05-1394)

81 QW/QB-422 For SA-240, S32906 added (BC04-309)

84 QW/QB-422 A-271 deleted (BC06-493)

86 QW/QB-422 (1) A-331 deleted (BC06-493)(2) For SA-336, Type/Grade F3Cb added (BC00-380)

88 QW/QB-422 For A-356, J80490, Type/Grade corrected by errata toread “12A” (BC06-893)

92 QW/QB-422 (1) A-441 deleted (BC06-493)(2) A-446 deleted (BC06-493)

94 QW/QB-422 SA-480 deleted (BC06-1299)

95 QW/QB-422 (1) For SA-508, Type/Grade 3VCb added (BC00-380)(2) For A-514, K11625 and K11662 deleted (BC06-493)

97 QW/QB-422 For SA-541, Type/Grade 3VCb added (BC00-380)

98 QW/QB-422 (1) For SA-542, Type/Grade E, Cl. 4a added (BC00-380)(2) A-570 deleted (BC06-493)

100 QW/QB-422 (1) A-611 deleted (BC06-493)(2) For SA-666, S20100 added (BC05-1394)(3) For SA-666, S20100 revised (BC05-1394)

104 QW/QB-422 (1) For SA-738, Type/Grade B, UNS No. revised to readK12007 (BC06-565)

(2) For SA-738, Type/Grade C, UNS No. revised to readK02008 (BC02-125)

105 QW/QB-422 (1) For SA-789 and SA-790, S32906 added (BC04-309)(2) For SA-789 and SA-790, S39274 added (BC03-753)

107, 108 QW/QB-422 (1) For SA-832, Type/Grade 23V added (BC00-380)(2) SA-336 revised to read SA-965 (BC00-433)

109 QW/QB-422 (1) For SA/EN 10028-2, Type/Grade corrected by errata toread ”P295GH” (BC07-391)

(2) For SA/EN 10028-3, Type/Grade corrected by errata toread ”P275GH” (BC07-391)

113 QW/QB-422 For SA-182, S31277 deleted (BC06-1299)

118 QW/QB-422 (1) For SB-366, N08367, Product Form revised(BC06-492)

(2) For SB-366, N08367 added (BC06-492)(3) For SB-366, N10242 added (BC03-1424)(4) For SB-366, R30556 added (BC06-1021)

119 QW/QB-422 For SB-434, N10242 added (BC03-1424)

121 QW/QB-422 SA-480 deleted (BC06-1299)

122–125 QW/QB-422 For SB-564, SB-573, SB-619, SB-622, and SB-626,N10242 added (BC03-1424)

126 QW/QB-422 (1) For SB-675 and SB-676, N08367 added (BC06-492)(2) For SB-675 and SB-676, N08367, Product Form

revised (BC06-492)(3) For SB-688 and SB-690, N08367, revised in its

entirety (BC06-492)

127 QW/QB-422 SB-928 added (BC04-1010)

xxvi

Page 28: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

Page Location Change (BC Number)

129 QW-432 (1) For F-No. 1, SFA-5.4, EXXX(X)-25 deleted (BC06-676)(2) F-No. 4, SFA-5.5 added (BC06-943)

139 QW-451.1 Revised (BC06-847)

191 QW/QB-492 Definition of macro-examination added (BC05-1139)

248–250 Nonmandatory Forms QB-482, QB-483, and QB-484 revised in theirAppendix B entirety (BC05-1138)

251 Nonmandatory (1) SA-995, Type/Grade corrected by errata to read “2A”Appendix D (BC06-1524)

(2) Updated to reflect revisions made to QW/QB-422(BC00-380, BC00-433, BC03-753, BC03-1424,BC04-1010, BC06-1021, BC06-1299, BC07-391)

265 Mandatory Appendix Flux Cored Arc Welding and Gas Metal Arc Welding —E Spray Transfer added (BC06-707)

NOTE: Volume 57 of the Interpretations to Section IX of the ASME Boiler and Pressure Vessel Code followsthe last page of this Edition.

xxvii

Page 29: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

LIST OF CHANGES IN BC ORDER

BC Number Change

BC00-380 QW/QB-422, SA-182 Gr F3VCb-SA-336 Gr F3VCb-SA-508 Gr 3VCb-SA-541 Gr 3VCb-SA-542 Gr E Cl 4a-SA-832 Gr 23V added.

BC00-433 QW/QB-422, References to SA-336 for stainless steel forgings changed to SA-965.BC02-125 Corrected UNS Numbers of SA-738 Grades B and C.BC03-753 QW/QB-422, Added SA-182, SA-789, and SA-790 for UNS S39274.BC03-1424 QW/QB-422, Added UNS N10242.BC04-309 QW/QB-422, Added UNS S32906.BC04-1010 QW/QB-422, Added SB-928 UNS A95083, A 95086, and A95456.BC05-697 QW-322.1(a)(1) and (2), Revised.BC05-1138 QB-482, QB-483, and QB-494, Revised.BC05-1139 QW/QB-492, Added definition of “macro-examination.”BC05-1394 QW/QB-422, Revised tensile strength for SA-240 Grade 201-1 and SA-666 Grade 201-1.BC06-326 Errata to QW-197.1, QW-300.2, and QW-404.30.BC06-492 QW/QB-422, Revised minimum specified tensile strength values for N08367.BC06-493 QW/QB-422, Revised to remove obsoleted ASTM Specifications.BC06-565 QW/QB-422, Revised UNS Number for SA-738 Grade B.BC06-676 QW-432, Deletion of AWS Classification EXXX(X)-15.BC06-707 Appendix E, Added AWS SWPSs B2.1-1-234 and B2.1-1-235 for Pipe Applications.BC06-847 QW-403.7, Deleted. QW-253, QW-254, QW-255, and QW-256 revised to delete reference to QW-403.7.

QW-451.1 revised.BC06-893 Errata to QW-403.16 and QW/QB-422 A336 Grade 12A.BC06-911 QW 322.1, Revised for clarity.BC06-916 QW/QB-422, Added UNS Number S34710 for SA-213 TP347HFG.BC06-921 QW-284 and QW-384, Revised.BC06-943 QW-432, Addition of E(X)XX45.BC06-1021 QW/QB-432, Added SB-366 UNS R30556.BC06-1143 Errata to QW-202.1.BC06-1299 QW/QB-422, Deleted SA-182 and SA-480 S31277.BC06-1524 Errata to QW-193.1.BC07-391 Errata to QW-199.2 and QW/QB-422 SA/EN 10028-2.

xxviii

Page 30: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

PART QW WELDING

ARTICLE IWELDING GENERAL REQUIREMENTS

QW-100 GENERAL

Section IX of the ASME Boiler and Pressure VesselCode relates to the qualification of welders, welding opera-tors, brazers, and brazing operators, and the proceduresthat they employ in welding and brazing according to theASME Boiler and Pressure Vessel Code and the ASMEB31 Code for Pressure Piping. It is divided into two parts:Part QW gives requirements for welding and Part QBcontains requirements for brazing. Other Sections of theCode may specify different requirements than those speci-fied by this Section. Such requirements take precedenceover those of this Section, and the manufacturer or contrac-tor shall comply with them.

QW-100.1 A Welding Procedure Specification (WPS)is a written document that provides direction to the welderor welding operator for making production welds in accor-dance with Code requirements. Any WPSs used by a manu-facturer or contractor that will have responsible operationalcontrol of production welding shall be a WPS that hasbeen qualified by that manufacturer or contractor in accor-dance with Article II, or it shall be an AWS StandardWelding Procedure Specification (SWPS) listed in Appen-dix E and adopted by that manufacturer or contractor inaccordance with Article V.

Both WPSs and SWPSs specify the conditions (includ-ing ranges, if any) under which welding must be performed.These conditions include the base metals that are permitted,the filler metals that must be used (if any), preheat andpostweld heat treatment requirements, etc. Such conditionsare referred to in this Section as welding “variables.”

When a WPS is to be prepared by the manufacturer orcontractor, it must address, as a minimum, the specificvariables, both essential and nonessential, as provided inArticle II for each process to be used in production welding.In addition, when other Sections of the Code require notch

1

toughness qualification of the WPS, the applicable supple-mentary essential variables must be addressed in the WPS.

The purpose for qualification of a WPS is to determinethat the weldment proposed for construction is capable ofproviding the required properties for its intended applica-tion. Welding procedure qualification establishes the prop-erties of the weldment, not the skill of the welder or weldingoperator.

The Procedure Qualification Record (PQR) documentswhat occurred during welding the test coupon and theresults of testing of the coupon. As a minimum, the PQRshall document the essential variables and other specificinformation identified in Article II for each process usedduring welding the test coupon and the results of therequired testing. In addition, when notch toughness testingis required for procedure qualification, the applicable sup-plementary essential variables for each process shall berecorded.

QW-100.2 In performance qualification, the basic crite-rion established for welder qualification is to determinethe welder’s ability to deposit sound weld metal. The pur-pose of the performance qualification test for the weldingoperator is to determine the welding operator’s mechanicalability to operate the welding equipment.

QW-100.3 Welding Procedure Specifications (WPS)written and qualified in accordance with the rules of thisSection, and welders and welding operators of automaticand machine welding equipment also qualified in accor-dance with these rules may be used in any constructionbuilt to the requirements of the ASME Boiler and PressureVessel Code or the ASME B31 Code for Pressure Piping.

However, other Sections of the Code state the conditionsunder which Section IX requirements are mandatory, inwhole or in part, and give additional requirements. Thereader is advised to take these provisions into considerationwhen using this Section.

Page 31: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

Welding Procedure Specifications, Procedure Qualifica-tion Records, and Welder/Welding Operator PerformanceQualification made in accordance with the requirementsof the 1962 Edition or any later Edition of Section IX maybe used in any construction built to the ASME Boiler andPressure Vessel Code or the ASME B31 Code for PressurePiping.

Welding Procedure Specifications, Procedure Qualifica-tion Records, and Welder/Welding Operator PerformanceQualification made in accordance with the requirementsof the Editions of Section IX prior to 1962, in which allof the requirements of the 1962 Edition or later Editionsare met, may also be used.

Welding Procedure Specifications and Welder/WeldingOperator Performance Qualification records meeting theabove requirements do not need to be amended to includeany variables required by later Editions and Addenda.

Qualification of new Welding Procedure Specificationsor Welders/Welding Operators and requalification ofexisting Welding Procedure Specifications or Welders/Welding Operators shall be in accordance with the currentEdition (see Foreword) and Addenda of Section IX.

QW-101 Scope

The rules in this Section apply to the preparation ofWelding Procedure Specifications and the qualification ofwelding procedures, welders, and welding operators for alltypes of manual and machine welding processes permittedin this Section. These rules may also be applied, insofaras they are applicable, to other manual or machine weldingprocesses permitted in other Sections.

QW-102 Terms and Definitions

Some of the more common terms relating to weldingand brazing are defined in QW/QB-492.

Wherever the word pipe is designated, tube shall alsobe applicable.

QW-103 ResponsibilityQW-103.1 Welding. Each manufacturer1 or contractor1

is responsible for the welding done by his organizationand shall conduct the tests required in this Section to qualifythe welding procedures he uses in the construction of theweldments built under this Code, and the performance ofwelders and welding operators who apply these procedures.

QW-103.2 Records. Each manufacturer or contractorshall maintain a record of the results obtained in weldingprocedure and welder and welding operator performance

1 Wherever these words are used in Section IX, they shall includeinstaller or assembler.

2

qualifications. These records shall be certified by a signa-ture or other means as described in the manufacturer’s orcontractor’s Quality Control System and shall be accessibleto the Authorized Inspector. Refer to recommended Formsin Nonmandatory Appendix B.

QW-110 WELD ORIENTATION

The orientations of welds are illustrated in figureQW-461.1 or figure QW-461.2.

QW-120 TEST POSITIONS FOR GROOVEWELDS

Groove welds may be made in test coupons oriented inany of the positions in figure QW-461.3 or figureQW-461.4 and as described in the following paragraphs,except that an angular deviation of ±15 deg from the speci-fied horizontal and vertical planes, and an angular deviationof ±5 deg from the specified inclined plane are permittedduring welding.

QW-121 Plate PositionsQW-121.1 Flat Position 1G. Plate in a horizontal plane

with the weld metal deposited from above. Refer to figureQW-461.3, illustration (a).

QW-121.2 Horizontal Position 2G. Plate in a verticalplane with the axis of the weld horizontal. Refer to figureQW-461.3, illustration (b).

QW-121.3 Vertical Position 3G. Plate in a verticalplane with the axis of the weld vertical. Refer to figureQW-461.3, illustration (c).

QW-121.4 Overhead Position 4G. Plate in a horizontalplane with the weld metal deposited from underneath. Referto figure QW-461.3, illustration (d).

QW-122 Pipe PositionsQW-122.1 Flat Position 1G. Pipe with its axis hori-

zontal and rolled during welding so that the weld metal isdeposited from above. Refer to figure QW-461.4,illustration (a).

QW-122.2 Horizontal Position 2G. Pipe with its axisvertical and the axis of the weld in a horizontal plane.Pipe shall not be rotated during welding. Refer to figureQW-461.4, illustration (b).

QW-122.3 Multiple Position 5G. Pipe with its axishorizontal and with the welding groove in a vertical plane.Welding shall be done without rotating the pipe. Refer tofigure QW-461.4, illustration (c).

Page 32: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-122.4 Multiple Position 6G. Pipe with its axisinclined at 45 deg to horizontal. Welding shall be donewithout rotating the pipe. Refer to figure QW-461.4, illus-tration (d).

QW-123 Test Positions for Stud WeldsQW-123.1 Stud Welding. Stud welds may be made in

test coupons oriented in any of the positions as describedin QW-121 for plate and QW-122 for pipe (excludingQW-122.1). In all cases, the stud shall be perpendicularto the surface of the plate or pipe. See figures QW-461.7and QW-461.8.

QW-130 TEST POSITIONS FOR FILLETWELDS

Fillet welds may be made in test coupons oriented inany of the positions of figure QW-461.5 or figureQW-461.6, and as described in the following paragraphs,except that an angular deviation of ±15 deg from the speci-fied horizontal and vertical planes is permitted duringwelding.

QW-131 Plate PositionsQW-131.1 Flat Position 1F. Plates so placed that the

weld is deposited with its axis horizontal and its throatvertical. Refer to figure QW-461.5, illustration (a).

QW-131.2 Horizontal Position 2F. Plates so placedthat the weld is deposited with its axis horizontal on theupper side of the horizontal surface and against the verticalsurface. Refer to figure QW-461.5, illustration (b).

QW-131.3 Vertical Position 3F. Plates so placed thatthe weld is deposited with its axis vertical. Refer to figureQW-461.5, illustration (c).

QW-131.4 Overhead Position 4F. Plates so placed thatthe weld is deposited with its axis horizontal on the under-side of the horizontal surface and against the vertical sur-face. Refer to figure QW-461.5, illustration (d).

QW-132 Pipe PositionsQW-132.1 Flat Position 1F. Pipe with its axis inclined

at 45 deg to horizontal and rotated during welding so thatthe weld metal is deposited from above and at the pointof deposition the axis of the weld is horizontal and thethroat vertical. Refer to figure QW-461.6, illustration (a).

QW-132.2 Horizontal Positions 2F and 2FR(a) Position 2F. Pipe with its axis vertical so that the

weld is deposited on the upper side of the horizontal surfaceand against the vertical surface. The axis of the weld willbe horizontal and the pipe is not to be rotated during

3

welding. Refer to figure QW-461.6, illustration (b).(b) Position 2FR. Pipe with its axis horizontal and the

axis of the deposited weld in the vertical plane. The pipeis rotated during welding. Refer to figure QW-461.6, illus-tration (c).

QW-132.3 Overhead Position 4F. Pipe with its axisvertical so that the weld is deposited on the underside ofthe horizontal surface and against the vertical surface. Theaxis of the weld will be horizontal and the pipe is notto be rotated during welding. Refer to figure QW-461.6,illustration (d).

QW-132.4 Multiple Position 5F. Pipe with its axishorizontal and the axis of the deposited weld in the verticalplane. The pipe is not to be rotated during welding. Referto figure QW-461.6, illustration (e).

QW-140 TYPES AND PURPOSES OF TESTSAND EXAMINATIONS

QW-141 Mechanical Tests

Mechanical tests used in procedure or performance qual-ification are specified in QW-141.1 through QW-141.5.

QW-141.1 Tension Tests. Tension tests as describedin QW-150 are used to determine the ultimate strength ofgroove-weld joints.

QW-141.2 Guided-Bend Tests. Guided-bend tests asdescribed in QW-160 are used to determine the degree ofsoundness and ductility of groove-weld joints.

QW-141.3 Fillet-Weld Tests. Tests as described inQW-180 are used to determine the size, contour, and degreeof soundness of fillet welds.

QW-141.4 Notch-Toughness Tests. Tests as describedin QW-171 and QW-172 are used to determine the notchtoughness of the weldment.

QW-141.5 Stud-Weld Test. Deflection bend, ham-mering, torque, or tension tests as shown in figuresQW-466.4, QW-466.5, and QW-466.6, and a macro-exam-ination performed in accordance with QW-202.5, respec-tively, are used to determine acceptability of stud welds.

QW-142 Special Examinations for Welders

Radiographic examination may be substituted formechanical testing of QW-141 for groove-weld perform-ance qualification as permitted in QW-304 to prove theability of welders to make sound welds.

QW-143 Examination for Welding Operators

An examination of a weld by radiography may be substi-tuted for mechanical testing of QW-141 for groove weld

Page 33: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

performance qualification as permitted in QW-305 to provethe ability of welding operators to make sound welds.

QW-144 Visual Examination

Visual examination as described in QW-194 is used todetermine that the final weld surfaces meet specified qualityconditions.

QW-150 TENSION TESTS

QW-151 Specimens

Tension test specimens shall conform to one of the typesillustrated in figures QW-462.1(a) through QW-462.1(e)and shall meet the requirements of QW-153.

QW-151.1 Reduced Section — Plate. Reduced-sec-tion specimens conforming to the requirements given infigure QW-462.1(a) may be used for tension tests on allthicknesses of plate.

(a) For thicknesses up to and including 1 in. (25 mm),a full thickness specimen shall be used for each requiredtension test.

(b) For plate thickness greater than 1 in. (25 mm), fullthickness specimens or multiple specimens may be used,provided QW-151.1(c) and QW-151.1(d) are compliedwith.

(c) When multiple specimens are used, in lieu of fullthickness specimens, each set shall represent a single ten-sion test of the full plate thickness. Collectively, all of thespecimens required to represent the full thickness of theweld at one location shall comprise a set.

(d) When multiple specimens are necessary, the entirethickness shall be mechanically cut into a minimum num-ber of approximately equal strips of a size that can betested in the available equipment. Each specimen of theset shall be tested and meet the requirements of QW-153.

QW-151.2 Reduced Section — Pipe. Reduced-sectionspecimens conforming to the requirements given in figureQW-462.1(b) may be used for tension tests on all thick-nesses of pipe having an outside diameter greater than 3 in.(75 mm).

(a) For thicknesses up to and including 1 in. (25 mm),a full thickness specimen shall be used for each requiredtension test.

(b) For pipe thicknesses greater than 1 in. (25 mm), fullthickness specimens or multiple specimens may be used,provided QW-151.2(c) and QW-151.2(d) are compliedwith.

(c) When multiple specimens are used, in lieu of fullthickness specimens, each set shall represent a single ten-sion test of the full pipe thickness. Collectively, all of thespecimens required to represent the full thickness of theweld at one location shall comprise a set.

4

(d) When multiple specimens are necessary, the entirethickness shall be mechanically cut into a minimum num-ber of approximately equal strips of a size that can betested in the available equipment. Each specimen of theset shall be tested and meet the requirements of QW-153.

For pipe having an outside diameter of 3 in. (75 mm)or less, reduced-section specimens conforming to therequirements given in figure QW-462.1(c) may be usedfor tension tests.

QW-151.3 Turned Specimens. Turned specimens con-forming to the requirements given in figure QW-462.1(d)may be used for tension tests.

(a) For thicknesses up to and including 1 in. (25 mm),a single turned specimen may be used for each requiredtension test, which shall be a specimen of the largest diame-ter D of figure QW-462.1(d) possible for test coupon thick-ness [per Note (a) of figure QW-462.1(d)].

(b) For thicknesses over 1 in. (25 mm), multiple speci-mens shall be cut through the full thickness of the weldwith their centers parallel to the metal surface and not over1 in. (25 mm) apart. The centers of the specimens adjacentto the metal surfaces shall not exceed 5⁄8 in. (16 mm) fromthe surface.

(c) When multiple specimens are used, each set shallrepresent a single required tension test. Collectively, allthe specimens required to represent the full thickness ofthe weld at one location shall comprise a set.

(d) Each specimen of the set shall be tested and meetthe requirements of QW-153.

QW-151.4 Full-Section Specimens for Pipe. Tensionspecimens conforming to the dimensions given in figureQW-462.1(e) may be used for testing pipe with an outsidediameter of 3 in. (75 mm) or less.

QW-152 Tension Test Procedure

The tension test specimen shall be ruptured under tensileload. The tensile strength shall be computed by dividingthe ultimate total load by the least cross-sectional area ofthe specimen as calculated from actual measurements madebefore the load is applied.

QW-153 Acceptance Criteria — Tension TestsQW-153.1 Tensile Strength. Minimum values for pro-

cedure qualification are provided under the column heading“Minimum Specified Tensile, ksi” of table QW/QB-422.In order to pass the tension test, the specimen shall havea tensile strength that is not less than

(a) the minimum specified tensile strength of the basemetal; or

(b) the minimum specified tensile strength of the weakerof the two, if base metals of different minimum tensilestrengths are used; or

Page 34: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(c) the minimum specified tensile strength of the weldmetal when the applicable Section provides for the use ofweld metal having lower room temperature strength thanthe base metal;

(d) if the specimen breaks in the base metal outside ofthe weld or weld interface, the test shall be accepted asmeeting the requirements, provided the strength is not morethan 5% below the minimum specified tensile strength ofthe base metal.

(e) the specified minimum tensile strength is for fullthickness specimens including cladding for AluminumAlclad materials (P-No. 21 through P-No. 23) less than1⁄2 in. (13 mm). For Aluminum Alclad materials 1⁄2 in.(13 mm) and greater, the specified minimum tensilestrength is for both full thickness specimens that includecladding and specimens taken from the core.

QW-160 GUIDED-BEND TESTS

QW-161 Specimens

Guided-bend test specimens shall be prepared by cuttingthe test plate or pipe to form specimens of approximatelyrectangular cross section. The cut surfaces shall be desig-nated the sides of the specimen. The other two surfacesshall be called the face and root surfaces, the face surfacehaving the greater width of weld. The specimen thicknessand bend radius are shown in figures QW-466.1,QW-466.2, and QW-466.3. Guided-bend specimens are offive types, depending on whether the axis of the weld istransverse or parallel to the longitudinal axis of the speci-men, and which surface (side, face, or root) is on theconvex (outer) side of bent specimen. The five types aredefined as follows.

QW-161.1 Transverse Side Bend. The weld is trans-verse to the longitudinal axis of the specimen, which isbent so that one of the side surfaces becomes the convexsurface of the bent specimen. Transverse side-bend testspecimens shall conform to the dimensions shown in figureQW-462.2.

Specimens of base metal thickness equal to or greaterthan 11⁄2 in. (38 mm) may be cut into approximately equalstrips between 3⁄4 in. (19 mm) and 11⁄2 in. (38 mm) widefor testing, or the specimens may be bent at full width(see requirements on jig width in QW-466). If multiplespecimens are used, one complete set shall be made foreach required test. Each specimen shall be tested and meetthe requirements in QW-163.

QW-161.2 Transverse Face Bend. The weld is trans-verse to the longitudinal axis of the specimen, which isbent so that the face surface becomes the convex surfaceof the bent specimen. Transverse face-bend test specimensshall conform to the dimensions shown in figure

5

QW-462.3(a). For subsize transverse face bends, seeQW-161.4.

QW-161.3 Transverse Root Bend. The weld is trans-verse to the longitudinal axis of the specimen, which isbent so that the root surface becomes the convex surfaceof the bent specimen. Transverse root-bend test specimensshall conform to the dimensions shown in figureQW-462.3(a). For subsize transverse root bends, seeQW-161.4.

QW-161.4 Subsize Transverse Face and Root Bends.See Note (b) of figure QW-462.3(a).

QW-161.5 Longitudinal-Bend Tests. Longitudinal-bend tests may be used in lieu of the transverse side-bend,face-bend, and root-bend tests for testing weld metal orbase metal combinations, which differ markedly in bendingproperties between

(a) the two base metals, or(b) the weld metal and the base metal

QW-161.6 Longitudinal Face Bend. The weld is paral-lel to the longitudinal axis of the specimen, which is bentso that the face surface becomes the convex surface of thebent specimen. Longitudinal face-bend test specimens shallconform to the dimensions shown in figure QW-462.3(b).

QW-161.7 Longitudinal Root Bend. The weld is par-allel to the longitudinal axis of the specimen, which is bentso that the root surface becomes the convex side of thebent specimen. Longitudinal root-bend test specimens shallconform to the dimensions shown in figure QW-462.3(b).

QW-162 Guided-Bend Test ProcedureQW-162.1 Jigs. Guided-bend specimens shall be bent

in test jigs that are in substantial accordance with QW-466.When using the jigs illustrated in figure QW-466.1 or figureQW-466.2, the side of the specimen turned toward the gapof the jig shall be the face for face-bend specimens, theroot for root-bend specimens, and the side with the greaterdiscontinuities, if any, for side-bend specimens. The speci-men shall be forced into the die by applying load on theplunger until the curvature of the specimen is such that a1⁄8 in. (3 mm) diameter wire cannot be inserted betweenthe specimen and the die of figure QW-466.1, or the speci-men is bottom ejected if the roller type of jig (figureQW-466.2) is used.

When using the wrap around jig (figure QW-466.3), theside of the specimen turned toward the roller shall bethe face for face-bend specimens, the root for root-bendspecimens, and the side with the greater discontinuities, ifany, for side-bend specimens.

When specimens wider than 11⁄2 in. (38 mm) are to bebent as permitted in figure QW-462.2, the test jig mandrelmust be at least 1⁄4 in. (6 mm) wider than the specimenwidth.

07

Page 35: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-163 Acceptance Criteria — Bend Tests

The weld and heat-affected zone of a transverse weld-bend specimen shall be completely within the bent portionof the specimen after testing.

The guided-bend specimens shall have no open disconti-nuity in the weld or heat-affected zone exceeding 1⁄8 in.(3 mm), measured in any direction on the convex surfaceof the specimen after bending. Open discontinuitiesoccurring on the corners of the specimen during testingshall not be considered unless there is definite evidencethat they result from lack of fusion, slag inclusions, orother internal discontinuities. For corrosion-resistant weldoverlay cladding, no open discontinuity exceeding 1⁄16 in.(1.5 mm), measured in any direction, shall be permittedin the cladding, and no open discontinuity exceeding 1⁄8 in.(3 mm) shall be permitted along the approximate weldinterface.

QW-170 NOTCH-TOUGHNESS TESTSQW-171 Notch-Toughness Tests — Charpy

V-NotchQW-171.1 General. Charpy V-notch impact tests shall

be made when required by other Sections.Test procedures and apparatus shall conform to the

requirements of SA-370.

QW-171.2 Acceptance. The acceptance criteria shallbe in accordance with that Section specifying impactrequirements.

QW-171.3 Location and Orientation of Test Speci-men. The impact test specimen and notch location andorientation shall be as given in the Section requiringsuch tests.

When qualifying pipe in the 5G or 6G position, thenotch-toughness specimens shall be removed from theshaded portion of figure QW-463.1(f).

QW-172 Notch-Toughness Tests — Drop WeightQW-172.1 General. Drop weight tests shall be made

when required by other Sections.Test procedures and apparatus shall conform to the

requirements of ASTM Specification E 208.

QW-172.2 Acceptance. The acceptance criteria shallbe in accordance with that Section requiring drop weighttests.

QW-172.3 Location and Orientation of Test Speci-men. The drop weight test specimen, the crack starterlocation, and the orientation shall be as given in the Sectionrequiring such tests.

When qualifying pipe in the 5G or 6G position, thenotch-toughness specimens shall be removed from theshaded portion of figure QW-463.1(f).

6

QW-180 FILLET-WELD TESTS

QW-181 Procedure and PerformanceQualification Specimens

QW-181.1 Procedure. The dimensions and preparationof the fillet-weld test coupon for procedure qualificationas required in QW-202 shall conform to the requirementsin figure QW-462.4(a) or figure QW-462.4(d). The testcoupon for plate-to-plate shall be cut transversely to pro-vide five test specimen sections, each approximately 2 in.(50 mm) long. For pipe-to-plate or pipe-to-pipe, the testcoupon shall be cut transversely to provide four approxi-mately equal test specimen sections. The test specimensshall be macro-examined to the requirements of QW-183.

QW-181.1.1 Production Assembly Mockups. Pro-duction assembly mockups may be used in lieu ofQW-181.1. The mockups for plate-to-shape shall be cuttransversely to provide five approximately equal test speci-mens not to exceed approximately 2 in. (50 mm) in length.For pipe-to-shape mockups, the mockup shall be cut trans-versely to provide four approximately equal test specimens.For small mockups, multiple mockups may be required toobtain the required number of test specimens. The testspecimens shall be macro-examined to the requirementsof QW-183.

QW-181.2 Performance. The dimensions and the prep-aration of the fillet-weld test coupon for performance quali-fication shall conform to the requirements in figureQW-462.4(b) or figure QW-462.4(c). The test coupon forplate-to-plate shall be cut transversely to provide a centersection approximately 4 in. (100 mm) long and two endsections, each approximately 1 in. (25 mm) long. For pipe-to-plate or pipe-to-pipe, the test coupon shall be cut toprovide two quarter sections test specimens opposite toeach other. One of the test specimens shall be fracturetested in accordance with QW-182 and the other macro-examined to the requirements of QW-184. When qualifyingpipe-to-plate or pipe-to-pipe in the 5F position, the testspecimens shall be removed as indicated in figureQW-463.2(h).

QW-181.2.1 Production Assembly Mockups. Pro-duction assembly mockups may be used in lieu of the fillet-weld test coupon requirements of QW-181.2.

(a) Plate-to-Shape(1) The mockup for plate-to-shape shall be cut trans-

versely to provide three approximately equal test specimensnot to exceed approximately 2 in. (50 mm) in length. Thetest specimen that contains the start and stop of the weldshall be fracture tested in accordance with QW-182. A cutend of one of the remaining test specimens shall be macro-examined in accordance with QW-184.

(b) Pipe-to-Shape(1) The mockup for pipe-to-shape shall be cut trans-

versely to provide two quarter sections approximately

Page 36: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

opposite to each other. The test specimen that containsthe start and stop of the weld shall be fracture tested inaccordance with QW-182. A cut end of the other quartersection shall be macro-examined in accordance withQW-184. When qualifying pipe-to-shape in the5F position, the fracture specimen shall be removed fromthe lower 90 deg section of the mockup.

QW-182 Fracture Tests

The stem of the 4 in. (100 mm) performance specimencenter section in figure QW-462.4(b) or the stem of thequarter section in figure QW-462.4(c), as applicable, shallbe loaded laterally in such a way that the root of the weldis in tension. The load shall be steadily increased until thespecimen fractures or bends flat upon itself.

If the specimen fractures, the fractured surface shallshow no evidence of cracks or incomplete root fusion, andthe sum of the lengths of inclusions and porosity visibleon the fractured surface shall not exceed 3⁄8 in. (10 mm)in figure QW-462.4(b) or 10% of the quarter section infigure QW-462.4(c).

QW-183 Macro-Examination — ProcedureSpecimens

One face of each cross section of the five test specimensin figure QW-462.4(a) or four test specimens in figureQW-462.4(d), as applicable shall be smoothed and etchedwith a suitable etchant (see QW-470) to give a clear defini-tion to the weld metal and heat affected zone. The examina-tion of the cross sections shall include only one side ofthe test specimen at the area where the plate or pipe isdivided into sections i.e., adjacent faces at the cut shallnot be used. In order to pass the test

(a) visual examination of the cross sections of the weldmetal and heat-affected zone shall show complete fusionand freedom from cracks

(b) there shall be not more than 1⁄8 in. (3 mm) differencein the length of the legs of the fillet

QW-184 Macro-Examination — PerformanceSpecimens

The cut end of one of the end plate sections, approxi-mately 1 in. (25 mm) long, in figure QW-462.4(b) or thecut end of one of the pipe quarter sections in figureQW-462.4(c), as applicable, shall be smoothed and etchedwith a suitable etchant (see QW-470) to give a clear defini-tion of the weld metal and heat affected zone. In order topass the test

(a) visual examination of the cross section of the weldmetal and heat-affected zone shall show complete fusionand freedom from cracks, except that linear indications atthe root not exceeding 1⁄32 in. (0.8 mm) shall be acceptable

7

(b) the weld shall not have a concavity or convexitygreater than 1⁄16 in. (1.5 mm)

(c) there shall be not more than 1⁄8 in. (3 mm) differencein the lengths of the legs of the fillet

QW-190 OTHER TESTS AND EXAMINATIONS

QW-191 Radiographic ExaminationQW-191.1 Method. The radiographic examination in

QW-142 for welders and in QW-143 for welding operatorsshall meet the requirements of Article 2, Section V, exceptas follows:

(a) A written radiographic examination procedure is notrequired. Demonstration of density and image qualityrequirements on production or technique radiographs shallbe considered satisfactory evidence of compliance withArticle 2 of Section V.

(b) Final acceptance of radiographs shall be based onthe ability to see the prescribed image and the specifiedhole of a hole-type image quality indicator (IQI) or thedesignated wire of a wire-type IQI. The acceptance stan-dards of QW-191.2 shall be met.

QW-191.2 Radiographic Acceptance CriteriaQW-191.2.1 Terminology

(a) Linear Indications. Cracks, incomplete fusion,inadequate penetration, and slag are represented on theradiograph as linear indications in which the length is morethan three times the width.

(b) Rounded Indications. Porosity and inclusions suchas slag or tungsten are represented on the radiograph asrounded indications with a length three times the width orless. These indications may be circular, elliptical, or irregu-lar in shape; may have tails; and may vary in density.

QW-191.2.2 Acceptance Standards. Welder andwelding operator performance tests by radiography ofwelds in test assemblies shall be judged unacceptable whenthe radiograph exhibits any imperfections in excess of thelimits specified below

(a) Linear Indications(1) any type of crack or zone of incomplete fusion

or penetration(2) any elongated slag inclusion which has a length

greater than(a) 1⁄8 in. (3 mm) for t up to 3⁄8 in. (10 mm), inclusive(b) 1⁄3t for t over 3⁄8 in. (10 mm) to 21⁄4 in. (57 mm),

inclusive(c) 3⁄4 in. (19 mm) for t over 21⁄4 in. (57 mm)

(3) any group of slag inclusions in line that have anaggregate length greater than t in a length of 12t, exceptwhen the distance between the successive imperfectionsexceeds 6L where L is the length of the longest imperfectionin the group

Page 37: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(b) Rounded Indications(1) The maximum permissible dimension for rounded

indications shall be 20% of t or 1⁄8 in. (3 mm), whicheveris smaller.

(2) For welds in material less than 1⁄8 in. (3 mm) inthickness, the maximum number of acceptable roundedindications shall not exceed 12 in a 6 in. (150 mm) lengthof weld. A proportionately fewer number of rounded indi-cations shall be permitted in welds less than 6 in. (150 mm)in length.

(3) For welds in material 1⁄8 in. (3 mm) or greater inthickness, the charts in Appendix I represent the maximumacceptable types of rounded indications illustrated in typi-cally clustered, assorted, and randomly dispersed configu-rations. Rounded indications less than 1⁄32 in. (0.8 mm) inmaximum diameter shall not be considered in the radio-graphic acceptance tests of welders and welding operatorsin these ranges of material thicknesses.

QW-191.2.3 Production Welds. The acceptancestandard for welding operators who qualify on productionwelds shall be that specified in the referencing Code Sec-tion. The acceptance standard for welders who qualify onproduction welds as permitted by QW-304.1 shall be perQW-191.2.2.

QW-191.3 Record of Tests. The results of welder andwelding operator performance tests by radiography shallbe recorded in accordance with QW-301.4.

QW-192 Stud-Weld TestsQW-192.1 Procedure Qualification Specimens

QW-192.1.1 Required Tests. Ten stud-weld testsare required to qualify each procedure. The equipment usedfor stud welding shall be completely automatic except formanual starting.

Every other welding stud (five joints) shall be testedeither by hammering over until one-fourth of its length isflat on the test piece, or by bending the stud to an angleof at least 15 deg and returning it to its original positionusing a test jig and an adapter location dimension that arein accordance with figure QW-466.4.

The remaining five welded stud joints shall be tested intorque using a torque testing arrangement that is substan-tially in accordance with figure QW-466.5. Alternatively,where torquing is not feasible, tensile testing may be used,and the fixture for tensile testing shall be similar to thatshown in figure QW-466.6, except that studs without headsmay be gripped on the unwelded end in the jaws of thetensile testing machine.

QW-192.1.2 Acceptance Criteria — Bend andHammer Tests. In order to pass the test(s), each of thefive stud welds and heat-affected zones shall be free ofvisible separation or fracture after bending and return bend-ing or after hammering.

8

QW-192.1.3 Acceptance Criteria — Torque Tests.In order to pass the test(s), each of the five stud weldsshall be subjected to the required torque shown in thefollowing table before failure occurs.

Required Torque for TestingThreaded Carbon Steel Studs

Nominal Diameter Threads /in. Testing Torque,of Studs, in. (mm) and Series Designated ft-lb (J)

1⁄4 (6.4) 28 UNF 5.0 (6.8)1⁄4 (6.4) 20 UNC 4.2 (5.7)5⁄16 (7.9) 24 UNF 9.5 (12.9)5⁄16 (7.9) 18 UNC 8.6 (11.7)3⁄8 (9.5) 24 UNF 17 (23.0)3⁄8 (9.5) 16 UNC 15 (20.3)

7⁄16 (11.1) 20 UNF 27 (36.6)7⁄16 (11.1) 14 UNC 24 (32.5)1⁄2 (12.7) 20 UNF 42 (57.0)1⁄2 (12.7) 13 UNC 37 (50.2)9⁄16 (14.3) 18 UNF 60 (81.4)9⁄16 (14.3) 12 UNC 54 (73.2)5⁄8 (15.9) 18 UNF 84 (114.0)5⁄8 (15.9) 11 UNC 74 (100.0)3⁄4 (19.0) 16 UNF 147 (200.0)3⁄4 (19.0) 10 UNC 132 (180.0)7⁄8 (22.2) 14 UNF 234 (320.0)7⁄8 (22.2) 9 UNC 212 (285.0)

1 (25.4) 12 UNF 348 (470.0)1 (25.4) 8 UNC 318 (430.0)

Required Torque for TestingThreaded Austenitic Stainless Steel Studs

Nominal Diameter Threads /in. Testing Torque,of Studs, in. (mm) and Series Designated ft-lb (J)

1⁄4 (6.4) 28 UNF 4.5 (6.1)1⁄4 (6.4) 20 UNC 4.0 (5.4)5⁄16 (7.9) 24 UNF 9.0 (12.2)5⁄16 (7.9) 18 UNC 8.0 (10.8)3⁄8 (9.5) 24 UNF 16.5 (22.4)3⁄8 (9.5) 16 UNC 14.5 (19.7)

7⁄16 (11.1) 20 UNF 26.0 (35.3)7⁄16 (11.1) 14 UNC 23.0 (31.2)1⁄2 (12.7) 20 UNF 40.0 (54.2)1⁄2 (12.7) 13 UNC 35.5 (48.1)5⁄8 (15.9) 18 UNF 80.00 (108.5)5⁄8 (15.9) 11 UNC 71.00 (96.3)3⁄4 (19.0) 16 UNF 140.00 (189.8)3⁄4 (19.0) 10 UNC 125.00 (169.5)7⁄8 (22.2) 14 UNF 223.00 (302.3)7⁄8 (22.2) 9 UNC 202.00 (273.9)

1 (25.4) 14 UNF 339.00 (459.6)1 (25.4) 8 UNC 303.00 (410.8)

Alternatively, where torquing to destruction is not feasi-ble, tensile testing may be used. For carbon and austenitic

Page 38: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

07

2007 SECTION IX

stainless steel studs, the failure strength shall be not lessthan 35,000 psi (240 MPa) and 30,000 psi (210 MPa),respectively. For other metals, the failure strength shallnot be less than half of the minimum specified tensilestrength of the stud material. The failure strength shall bebased on the minor diameter of the threaded section ofexternally threaded studs, except where the shank diameteris less than the minor diameter, or on the original cross-sectional area where failure occurs in a nonthreaded, inter-nally threaded, or reduced-diameter stud.

QW-192.1.4 Acceptance Criteria — Macro-Examination. In order to pass the macro-examination,each of five sectioned stud welds and the heat-affectedzone shall be free of cracks when examined at 10X magni-fication, which is required by QW-202.5 when studs arewelded to metals other than P-No. 1.

QW-192.2 Performance Qualification SpecimensQW-192.2.1 Required Tests. Five stud-weld tests

are required to qualify each stud-welding operator. Theequipment used for stud welding shall be completely auto-matic except for manual starting. The performance testshall be welded in accordance with a qualified WPS perQW-301.2.

Each stud (five joints) shall be tested either by ham-mering over until one-fourth of its length is flat on the testpiece or by bending the stud to an angle of at least 15 degand returning it to its original position using a test jig andan adapter location dimension that are in accordance withfigure QW-466.4.

QW-192.2.2 Acceptance Criteria — Bend andHammer Tests. In order to pass the test(s), each of thefive stud welds and heat affected zones shall be free ofvisible separation or fracture after bending and return bend-ing or after hammering.

QW-193 Tube-to-Tubesheet Tests

When the applicable Code Section requires the use ofthis paragraph for tube-to-tubesheet demonstration mockupqualification, QW-193.1 through QW-193.1.3 shall apply.

QW-193.1 Procedure Qualification Specimens. Tenmockup welds are required to qualify each procedure. Themockup assembly shall essentially duplicate the tube holeconfiguration and the tube-to-tubesheet joint design withinthe limits of the essential variables of QW-288. The thick-ness of the mockup tubesheet is not required to be thickerthan 2 in. (50 mm) and the cladding may be representedby base material of essentially equivalent chemical compo-sition to the cladding composition. The mockup welds shallbe submitted to the following tests sequentially and mustmeet the applicable acceptance criteria.

QW-193.1.1 Acceptance Criteria — Visual Exam-ination. The accessible surfaces of the welds shall be exam-ined visually with no magnification required. The welds

9

shall show complete fusion and no evidence of burningthrough the tube wall, and shall be free from cracking orporosity.

QW-193.1.2 Acceptance Criteria — Liquid Pene-trant. The liquid penetrant examination shall meet therequirements of Section V, Article 6. The weld surfacesshall meet the requirements of QW-195.2.

QW-193.1.3 Acceptance Criteria — Macro-Examination. The mockup welds shall be sectionedthrough the center of the tube for macro-examination. Thefour exposed surfaces shall be smoothed and etched witha suitable etchant (see QW-470) to give a clear definitionof the weld and heat-affected zone. Using a minimum of10X magnification, the exposed cross sections of the weldshall confirm

(a) minimum leak path dimension required by thedesign

(b) no cracking(c) complete fusion of the weld deposit into the tube-

sheet and tube wall face(d) complete penetration of the weld deposit to within

1⁄64 in. (0.4 mm) of the root of the joint(e) porosity shall not reduce the weld throat below the

required minimum leak path thickness

QW-193.2 Performance Qualification Specimens.Five mockup welds are required to qualify each welder orwelding operator. The same rules as that for procedurequalification (QW-193.1) shall be followed. Only onemockup weld is required to renew a welder’s or weldingoperator’s qualification when that qualification has expiredor been revoked per the requirements of QW-322.1.

QW-194 Visual Examination — Performance

Performance test coupons shall show complete joint pen-etration with complete fusion of weld metal and base metal.

QW-195 Liquid Penetrant ExaminationQW-195.1 The liquid penetrant examination in

QW-214 for corrosion-resistant weld metal overlay shallmeet the requirements of Section V, Article 6. The accept-ance standards of QW-195.2 shall be met.

QW-195.2 Liquid Penetrant Acceptance CriteriaQW-195.2.1 Terminology

relevant indications: indications with major dimensionsgreater than 1⁄16 in. (1.5 mm).

linear indications: an indication having a length greaterthan three times the width.

rounded indications: an indication of circular or ellipticalshape with the length equal to or less than three times thewidth.

Page 39: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-195.2.2 Acceptance Standards. Procedure andperformance tests examined by liquid penetrant techniquesshall be judged unacceptable when the examination exhib-its any indication in excess of the limits specified in thefollowing:

(a) relevant linear indications(b) relevant rounded indications greater than 3⁄16 in.

(5 mm)(c) four or more relevant rounded indications in a line

separated by 1⁄16 in. (1.5 mm) or less (edge-to-edge)

QW-196 Resistance Weld Testing

QW-196.1 Macro-Examination

QW-196.1.1 Welds shall be cross-sectioned, pol-ished, and etched to reveal the weld metal. The sectionshall be examined at 10X magnification. Seam weldingspecimens shall be prepared as shown in figureQW-462.7.3. The sectioned weldment shall be free ofcracks, incomplete penetration, expulsions, and inclusions.Porosity shall not exceed one void in the transverse crosssection or three voids in the longitudinal cross section ofa specimen. The maximum dimension of any void shallnot exceed 10% of the thickness of the weld bead.

QW-196.1.2 For spot and seam welds, the minimumwidth of the weld nugget shall be as follows in relation tothickness, t, of the thinner member.

Material Thickness, in. (mm) Weld Nugget Width

< 0.010 (0.25) 6 t≥ 0.010 (0.25) and < 0.020 (0.50) 5 t≥ 0.020 (0.50) and < 0.040 (1.00) 4 t≥ 0.040 (1.00) and < 0.069 (1.75) 3 t≥ 0.069 (1.75) and < 0.100 (2.54) 2.50 t≥ 0.100 (2.54) and < 0.118 (3.00) 2.25 t≥ 0.118 (3.00) and < 0.157 (4.00) 2 t≥ 0.157 (4.00) 1.80 t

The weld depth (extent of fusion) shall be a minimumof 20% of the thickness of the thinner ply (in each member)and a maximum of 80% of the total thickness of all plies.

QW-196.1.3 For projection welds, the width of thenugget shall be not less than 80% of the width of theprojection.

QW-196.2 Mechanical Testing

QW-196.2.1 Shear test specimens shall be preparedas shown on figure QW-462.9. For spot and projectionwelds, each test specimen shall equal or exceed the mini-mum strength, and the average strength specified in tablesQW-462.10 and QW-462.11 for the appropriate material.Further, for each set, 90% shall have shear strength valuesbetween 0.9 and 1.1 times the set average value. Theremaining 10% shall lie between 0.8 and 1.2 times the setaverage value.

10

QW-196.2.2 Peel test specimens shall be preparedas shown in figure QW-462.8.1 for spot and projectionwelding and per figure QW-462.8.2 for seam welding. Thespecimens shall be peeled or separated mechanically, andfracture shall occur in the base metal by tearing out of theweld in order for the specimen to be acceptable.

QW-197 Laser Beam Welding (LBW) Lap JointTests

QW-197.1 Procedure Qualification Specimens

QW-197.1.1 Required Tests. Six tension shear spec-imens and eight macro specimens are required to qualifyeach procedure. The qualification test coupon shall be pre-pared in accordance with figure QW-464.1. The tensionshear specimens shall conform to the dimensions indicatedin the table of figure QW-464.1. The longitudinal andtransverse sections indicated in figure QW-464.1 shall becross-sectioned as closely as possible through the centerlineof the weld. A minimum of 1 in. (25 mm) shall be providedfor examination of each longitudinal specimen. The trans-verse specimens shall be of sufficient length to includeweld, the heat-affected zone, and portions of the unaffectedbase material. Cross-sections shall be smoothed and etchedwith a suitable etchant (see QW-470), and examined at aminimum magnification of 25X. The dimensions of thefusion zone and penetration of each weld of the transversespecimens shall be measured to the nearest hundredth ofan inch and recorded.

QW-197.1.2 Acceptance Criteria — TensionShear Tests. In order to pass the tension shear test(s), therequirements of QW-153 shall apply.

QW-197.1.3 Acceptance Criteria — Macro-Examination. In order to pass the macro-examination,each of the eight specimens shall meet the following cri-teria:

(a) The outline of the fusion zone shall be generallyconsistent in size and regular in shape and uniformity ofpenetration.

(b) The examination of the weld area shall reveal soundweld metal, complete fusion along the bond line, and com-plete freedom from cracks in the weld metal and heat-affected zone.

QW-197.2 Performance Qualification SpecimensQW-197.2.1 Required Tests. A peel test specimen

at least 6 in. (150 mm) long shall be prepared as shownin figure QW-464.2 illustration (a) and macro specimensas shown in figure QW-464.2 illustration (b). The peel testspecimens shall be peeled apart to destruction and thefusion zone and penetration measured to the nearest hun-dredth of an inch. The end of each strip of the macrocoupon shall be polished and etched to clearly reveal theweld metal. The width and depth of penetration of each

07

Page 40: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

weld shall be measured to the nearest hundredth of aninch. Each specimen shall be examined in accordance withQW-197.1.

QW-197.2.2 Acceptance Criteria — Peel Test andMacro-Examination. In order to pass the peel test andmacro-examination, the dimensions of the fusion zone(averaged) and the penetration (averaged) shall be withinthe range of dimensions of those specified on the WPSthat was used to make the test coupon.

QW-199 Flash Welding

QW-199.1 Procedure Qualification Test Couponsand Testing

QW-199.1.1 Test Coupon Preparation. For cou-pons NPS 1 (DN 25) and smaller, four test welds shall bemade, and for pipes over NPS 1 (DN 25), three test couponsshall be made using one set of welding parameters (i.e.,the same equipment, base metals, joint preparation, andother essential variables to be utilized for production weld-ing.) These variables shall be recorded on the qualificationrecord.

QW-199.1.2 Tensile Tests. For pipes NPS 1 (DN 25)and smaller, and nontubular cross sections, two full-sectiontensile specimens shall be prepared in accordance withfigure QW-462.1(e). For pipes greater than NPS 1 (DN 25),two reduced section tension specimens shall be preparedin accordance with figure QW-462.1(b) or figureQW-462.1(c) from one coupon. For nontubular cross sec-tions, two reduced section tension specimens shall be pre-pared in accordance with figure QW-462.1(a) or figureQW-462.1(d) from two of the coupons. The specimensshall be tested in accordance with QW-150.

QW-199.1.3 Section and Bend Testing. The entirecircumference of each remaining pipe coupon shall be cutalong the axis of the pipe into an even number of stripsof a length sufficient to perform bend tests. The maximum

11

width of each strip shall be 11⁄2 in. (38 mm) and the mini-mum width

w p t + D/4 for pipes NPS 2 (DN 50) and smallerw p t + D/8 for pipes greater than NPS 2 (DN 50)

where

D p OD of the tubet p nominal wall thickness

w p width of the specimen

One edge of one strip from each coupon shall be polishedto a 600 grit finish with the final grinding parallel to the longaxis of the strip. The polished surface shall be examined at5X magnification. No incomplete fusion or other openflaws on the polished surface are acceptable. Defectsoccurring in the base metal not associated with the weldmay be disregarded. For nontubular cross sections, fourside-bend specimens shall be prepared from the tworemaining coupons as specified in figure QW-462.2 andpolished for examination.

All flash shall be removed from the strips and the weldsshall be visually examined per QW-194. Half of the stripsfrom each pipe specimen shall then be prepared as rootbend specimens and the remaining strips shall be preparedas face bend specimens in accordance with QW-160. Thespecimens shall be tested in accordance with QW-160,except for the following:

(a) For P-No. 1, Groups 2 through 4 materials, the mini-mum bend radius (dimension B in figure QW-466.1) shallbe three times the thickness of the specimen.

(b) In lieu of QW-163, the sum of lengths of individualopen flaws on the convex surface of all the bend testspecimens taken from each pipe individually shall notexceed 5% of the outside circumference of that test pipe.

QW-199.2 Flash Welding — Performance Qualifi-cation Test Coupons and Testing. One test coupon shallbe welded, cut into strips, visually examined, and bendtested in accordance with QW-199.1.3. Polishing andexamination of a cross-section is not required.

07

Page 41: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

APPENDIX IROUNDED INDICATION CHARTS

(See QW-191.2)

Typical Quantity and Size Permittedin 6 in. (150 mm) Length of Weld

1/8 in. (3 mm) to 1/4 in. (6 mm)Thickness

Typical Quantity and Size Permittedin 6 in. (150 mm) Length of Weld

Over 1/4 in. (6 mm) to 1/2 in. (13 mm)Thickness

Typical Quantity and Size Permittedin 6 in. (150 mm) Length of Weld

Over 1/2 in. (13 mm) to 1 in. (25 mm)Thickness

Typical Quantity and Size Permittedin 6 in. (150 mm) Length of Weld

Over 1 in. (25 mm) Thickness

12

Page 42: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

ARTICLE IIWELDING PROCEDURE QUALIFICATIONS

QW-200 GENERALQW-200.1 Each manufacturer and contractor shall pre-

pare written Welding Procedure Specifications that aredefined as follows:

(a) Welding Procedure Specification (WPS). A WPS isa written qualified welding procedure prepared to providedirection for making production welds to Code require-ments. The WPS or other documents may be used to pro-vide direction to the welder or welding operator to assurecompliance with the Code requirements.

(b) Contents of the WPS. The completed WPS shalldescribe all of the essential, nonessential, and, whenrequired, supplementary essential variables for each weld-ing process used in the WPS. These variables are listed inQW-250 through QW-280 and are defined in Article IV,Welding Data.

The WPS shall reference the supporting Procedure Qual-ification Record(s) (PQR) described in QW-200.2. Themanufacturer or contractor may include any other informa-tion in the WPS that may be helpful in making a Codeweldment.

(c) Changes to the WPS. Changes may be made in thenonessential variables of a WPS to suit production require-ments without requalification provided such changes aredocumented with respect to the essential, nonessential, and,when required, supplementary essential variables for eachprocess. This may be by amendment to the WPS or by useof a new WPS.

Changes in essential or supplementary essential (whenrequired) variables require requalification of the WPS (newor additional PQRs to support the change in essential orsupplementary essential variables).

(d) Format of the WPS. The information required to bein the WPS may be in any format, written or tabular, tofit the needs of each manufacturer or contractor, as longas every essential, nonessential, and, when required, sup-plementary essential variables outlined in QW-250 throughQW-280 is included or referenced.

Form QW-482 (see Nonmandatory Appendix B) hasbeen provided as a guide for the WPS. This Form includesthe required data for the SMAW, SAW, GMAW, andGTAW processes. It is only a guide and does not list allrequired data for other processes. It also lists some variables

13

that do not apply to all processes (e.g., listing shieldinggas which is not required for SAW). The guide does noteasily lend itself to multiple process procedure specifica-tion (e.g., GTAW root with SMAW fill).

(e) Availability of the WPS. A WPS used for Code pro-duction welding shall be available for reference and reviewby the Authorized Inspector (AI) at the fabrication site.

QW-200.2 Each manufacturer or contractor shall berequired to prepare a procedure qualification record whichis defined as follows:

(a) Procedure Qualification Record (PQR). A PQR isa record of the welding data used to weld a test coupon.The PQR is a record of variables recorded during thewelding of the test coupons. It also contains the test resultsof the tested specimens. Recorded variables normally fallwithin a small range of the actual variables that will beused in production welding.

(b) Contents of the PQR. The completed PQR shalldocument all essential and, when required, supplementaryessential variables of QW-250 through QW-280 for eachwelding process used during the welding of the test coupon.Nonessential or other variables used during the weldingof the test coupon may be recorded at the manufacturer’sor contractor’s option. All variables, if recorded, shall bethe actual variables (including ranges) used during thewelding of the test coupon. If variables are not monitoredduring welding, they shall not be recorded. It is not intendedthat the full range or the extreme of a given range ofvariables to be used in production be used during qualifica-tion unless required due to a specific essential or, whenrequired, supplementary essential variable.

The PQR shall be certified accurate by the manufactureror contractor. The manufacturer or contractor may notsubcontract the certification function. This certification isintended to be the manufacturer’s or contractor’s verifica-tion that the information in the PQR is a true record of thevariables that were used during the welding of the testcoupon and that the resulting tensile, bend, or macro (asrequired) test results are in compliance with Section IX.

One or more combinations of welding processes, fillermetal, and other variables may be used when weldinga test coupon. The approximate thickness of weld metaldeposited shall be recorded for each set of essential and,

Page 43: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

when required, supplementary essential variables. Weldmetal deposited using each set of variables shall beincluded in the tension, bend, notch toughness, and othermechanical test specimens that are required.

(c) Changes to the PQR. Changes to the PQR are notpermitted except as described below. It is a record ofwhat happened during a particular welding test. Editorialcorrections or addenda to the PQR are permitted. An exam-ple of an editorial correction is an incorrect P-Number,F-Number, or A-Number that was assigned to a particularbase metal or filler metal. An example of an addendumwould be a change resulting from a Code change. Forexample, Section IX may assign a new F-Number to afiller metal or adopt a new filler metal under an establishedF-Number. This may permit, depending on the particularconstruction Code requirements, a manufacturer or con-tractor to use other filler metals that fall within that particu-lar F-Number where, prior to the Code revision, themanufacturer or contractor was limited to the particularelectrode classification that was used during qualification.Additional information can be incorporated into a PQR ata later date provided the information is substantiated ashaving been part of the original qualification condition bylab record or similar data.

All changes to a PQR require recertification (includingdate) by the manufacturer or contractor.

(d) Format of the PQR. Form QW-483 (see Nonmanda-tory Appendix B) has been provided as a guide for thePQR. The information required to be in the PQR may bein any format to fit the needs of each manufacturer orcontractor, as long as every essential and, when required,supplementary essential variable, required by QW-250through QW-280, is included. Also the type of tests, num-ber of tests, and test results shall be listed in the PQR.

Form QW-483 does not easily lend itself to cover combi-nations of welding processes or more than one F-Numberfiller metal in one test coupon. Additional sketches orinformation may be attached or referenced to record therequired variables.

(e) Availability of the PQR. PQRs used to support WPSsshall be available, upon request, for review by the Author-ized Inspector (AI). The PQR need not be available to thewelder or welding operator.

(f) Multiple WPSs With One PQR/Multiple PQRs WithOne WPS. Several WPSs may be prepared from the dataon a single PQR (e.g., a 1G plate PQR may support WPSsfor the F, V, H, and O positions on plate or pipe withinall other essential variables). A single WPS may coverseveral essential variable changes as long as a supportingPQR exists for each essential and, when required, supple-mentary essential variable [e.g., a single WPS may covera thickness range from 1⁄16 in. (1.5 mm) through 11⁄4 in.(32 mm) if PQRs exist for both the 1⁄16 in. (1.5 mm) through

14

3⁄16 in. (5 mm) and 3⁄16 in. (5 mm) through 11⁄4 in. (32 mm)thickness ranges].

QW-200.3 To reduce the number of welding procedurequalifications required, P-Numbers are assigned to basemetals dependent on characteristics such as composition,weldability, and mechanical properties, where this can logi-cally be done; and for steel and steel alloys (tableQW/QB-422) Group Numbers are assigned additionallyto P-Numbers. These Group Numbers classify the metalswithin P-Numbers for the purpose of procedure qualifica-tion where notch-toughness requirements are specified. Theassignments do not imply that base metals may be indis-criminately substituted for a base metal which was usedin the qualification test without consideration of the compa-tibility from the standpoint of metallurgical properties,postweld heat treatment, design, mechanical properties,and service requirements. Where notch toughness is a con-sideration, it is presupposed that the base metals meet thespecific requirements.

In general, notch-toughness requirements are mandatoryfor all P-No. 11 quenched and tempered metals, for lowtemperature applications of other metals as applied to Sec-tion VIII, and for various classes of construction requiredby Section III. Acceptance criteria for the notch-toughnesstests are as established in the other Sections of the Code.

For certain materials permitted by the ASME/ANSI B31Code for Pressure Piping or by selected Code Cases of theASME Boiler and Pressure Vessel Code but which are notincluded within the ASME Boiler and Pressure VesselCode Material Specifications (Section II), S-Numbergroupings are assigned in table QW/QB-422. These group-ings are similar to the P-Number groupings of tableQW/QB-422. Qualification limits are given in QW-420.2.

QW-200.4 Combination of Welding Procedures(a) More than one WPS having different essential, sup-

plementary essential, or nonessential variables may be usedin a single production joint. Each WPS may include one ora combination of processes, filler metals, or other variables.

Where more than one WPS specifying different pro-cesses, filler metals, or other essential or supplementaryessential variables is used in a joint, QW-451 shall beused to determine the range of base metal thickness andmaximum weld metal thickness qualified for each process,filler metal, or set of variables, and those limits shall beobserved. Alternatively, qualification of WPSs for rootdeposits only may be made in accordance withQW-200.4(b).

When following a WPS that has more than one weldingprocess, filler metal, or set of variables, each process, fillermetal, or set of variables may be used individually or indifferent combinations, provided

(1) the essential, nonessential, and required supple-mentary essential variables associated with the process,filler metal, or set of variables are applied

Page 44: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(2) the base metal and deposited weld metal thicknesslimits of QW-451 for each process, filler metal, or set ofvariables are applied

(b) For GTAW, SMAW, GMAW, PAW, and SAW,or combinations of these processes, a PQR for a processrecording a test coupon that was at least 1⁄2 in. (13 mm)thick may be combined with one or more other PQRsrecording another welding process and any greater basemetal thickness. In this case, the process recorded on thefirst PQR may be used to deposit the root layers usingthe process(es) recorded on that PQR up to 2t (for short-circuiting type of GMAW, see QW-404.32) in thicknesson base metal of the maximum thickness qualified by theother PQR(s) used to support the WPS. The requirementsof Note (1) of tables QW-451.1 and QW-451.2 shall apply.

QW-201 Manufacturer’s or Contractor’sResponsibility

Each manufacturer or contractor shall list the parametersapplicable to welding that he performs in construction ofweldments built in accordance with this Code. Theseparameters shall be listed in a document known as a Weld-ing Procedure Specification (WPS).

Each manufacturer or contractor shall qualify the WPSby the welding of test coupons and the testing of specimens(as required in this Code), and the recording of the weldingdata and test results in a document known as a ProcedureQualification Record (PQR). The welders or welding oper-ators used to produce weldments to be tested for qualifica-tion of procedures shall be under the full supervision andcontrol of the manufacturer or contractor during the produc-tion of these test weldments. The weldments to be testedfor qualification of procedures shall be welded either bydirect employees or by individuals engaged by contractfor their services as welders or welding operators underthe full supervision and control of the manufacturer orcontractor. It is not permissible for the manufacturer orcontractor to have the supervision and control of weldingof the test weldments performed by another organization.It is permissible, however, to subcontract any or all of thework of preparation of test metal for welding and subse-quent work on preparation of test specimens from the com-pleted weldment, performance of nondestructiveexamination, and mechanical tests, provided the manufac-turer or contractor accepts the responsibility for anysuch work.

The Code recognizes a manufacturer or contractor asthe organization which has responsible operational controlof the production of the weldments to be made in accor-dance with this Code. If in an organization effective opera-tional control of welding procedure qualification for twoor more companies of different names exists, the companiesinvolved shall describe in their Quality Control

15

system/Quality Assurance Program, the operational controlof procedure qualifications. In this case separate weldingprocedure qualifications are not required, provided all otherrequirements of Section IX are met.

A WPS may require the support of more than one PQR,while alternatively, one PQR may support a number ofWPSs.

The manufacturer or contractor shall certify that he hasqualified each Welding Procedure Specification, performedthe procedure qualification test, and documented it withthe necessary Procedure Qualification Record (PQR).

QW-201.1 The Code recognizes that manufacturers orcontractors may maintain effective operational control ofPQRs and WPSs under different ownership than existedduring the original procedure qualification. When a manu-facturer or contractor or part of a manufacturer or contractoris acquired by a new owner(s), the PQRs and WPSs maybe used by the new owner(s) without requalification, pro-vided all of the following are met:

(a) the new owner(s) takes responsibility for the WPSsand PQRs

(b) the WPSs reflect the name of the new owner(s)(c) the Quality Control System/Quality Assurance Pro-

gram reflects the source of the PQRs as being from theformer manufacturer or contractor

QW-202 Type of Tests RequiredQW-202.1 Mechanical Tests. The type and number of

test specimens that shall be tested to qualify a groove weldprocedure are given in QW-451, and shall be removed ina manner similar to that shown in QW-463. If any testspecimen required by QW-451 fails to meet the applicableacceptance criteria, the test coupon shall be considered asfailed.

When it can be determined that the cause of failure isnot related to welding parameters, another test coupon maybe welded using identical welding parameters.

Alternatively, if adequate material of the original testcoupon exists, additional test specimens may be removedas close as practicable to the original specimen location toreplace the failed test specimens.

When it has been determined that the test failure wascaused by an essential or supplementary essential variable,a new test coupon may be welded with appropriate changesto the variable(s) that was determined to cause the testfailure. If the new test passes, the essential and supplemen-tary variables shall be documented on the PQR.

When it is determined that the test failure was causedby one or more welding conditions other than essential orsupplementary essential variables, a new test coupon maybe welded with the appropriate changes to the weldingconditions that were determined to cause the test failure.If the new test passes, the welding conditions that were

07

Page 45: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

determined to cause the previous test failure shall beaddressed by the manufacturer to ensure that the requiredproperties are achieved in the production weldment.

Where qualification is for fillet welds only, the require-ments are given in QW-202.2(c); and where qualificationis for stud welds only, the requirements are given inQW-202.5.

QW-202.2 Groove and Fillet Welds(a) Qualification for Groove Full Penetration Welds.

Groove-weld test coupons shall qualify the thicknessranges of both base metal and deposited weld metal tobe used in production. Limits of qualification shall be inaccordance with QW-451. WPS qualification for groovewelds shall be made on groove welds using tension andguided-bend specimens. Notch-toughness tests shall bemade when required by other Section(s) of the Code. TheWPS shall be qualified for use with groove welds withinthe range of essential variables listed.

(b) Qualification for Partial Penetration Groove Welds.Partial penetration groove welds shall be qualified in accor-dance with the requirements of QW-451 for both basemetal and deposited weld metal thickness, except thereneed be no upper limit on the base metal thickness providedqualification was made on base metal having a thicknessof 11⁄2 in. (38 mm) or more.

(c) Qualification for Fillet Welds. WPS qualification forfillet welds may be made on groove-weld test couponsusing test specimens specified in QW-202.2(a) or (b). Fil-let-weld procedures so qualified may be used for weldingall thicknesses of base metal for all sizes of fillet welds,and all diameters of pipe or tube in accordance with tableQW-451.4. Nonpressure-retaining fillet welds, as definedin other Sections of the Code, may as an alternate bequalified with fillet welds only. Tests shall be made inaccordance with QW-180. Limits of qualification shall bein accordance with table QW-451.3.

QW-202.3 Weld Repair and Buildup. WPS qualifiedon groove welds shall be applicable for weld repairs togroove and fillet welds and for weld buildup under thefollowing provisions:

(a) There is no limitation on the thickness of base metalor deposited weld metal for fillet welds.

(b) For other than fillet welds, the thickness range forbase metal and deposited weld metal for each weldingprocess shall be in accordance with QW-451, except thereneed be no upper limit on the base metal thickness providedqualification was made on base metal having a thicknessof 11⁄2 in. (38 mm) or more.

QW-202.4 Dissimilar Base Metal Thicknesses. WPSqualified on groove welds shall be applicable for productionwelds between dissimilar base metal thicknesses provided:

(a) the thickness of the thinner member shall be withinthe range permitted by QW-451

16

(b) the thickness of the thicker member shall be asfollows:

(1) For P-No. 8, P-No. 41, P-No. 42, P-No. 43, P-No. 44, P-No. 45, P-No. 46, P-No. 49, P-No. 51, P-No.52, P-No. 53, P-No. 61, and P-No. 62 metal, there shallbe no limitation on the maximum thickness of the thickerproduction member in joints of similar P-Number materialsprovided qualification was made on base metal having athickness of 1⁄4 in. (6 mm) or greater.

(2) For all other metal, the thickness of the thickermember shall be within the range permitted by QW-451,except there need be no limitation on the maximum thick-ness of the thicker production member provided qualifica-tion was made on base metal having a thickness of 11⁄2 in.(38 mm) or more.

More than one procedure qualification may be requiredto qualify for some dissimilar thickness combinations.

QW-202.5 Stud Welding. Procedure qualification testsfor stud welds shall be made in accordance with QW-192.The procedure qualification tests shall qualify the weldingprocedures for use within the range of the essential vari-ables of QW-261. For studs welded to other than P-No. 1metals, five additional welds shall be made and subjectedto a macro-test, except that this is not required for studsused for extended heating surfaces.

QW-202.6 Tube-to-Tubesheet Qualification. Whenthe applicable Code Section requires the use of QW-193for tube-to-tubesheet demonstration mockup qualificationtests, QW-193.1 shall apply. If specific qualification testrequirements are not specified by the applicable Code Sec-tion, tube-to-tubesheet welds shall be qualified with oneof the following methods:

(a) groove welds per the requirements of QW-202.2and QW-202.4

(b) a demonstration mockup per the requirements ofQW-193.1

(c) fillet welds per the requirements of QW-202.2(c)(for nonpressure retaining tube-to-tubesheet welds only)

QW-203 Limits of Qualified Positions forProcedures

Unless specifically required otherwise by the weldingvariables (QW-250), a qualification in any position quali-fies the procedure for all positions. The welding processand electrodes must be suitable for use in the positionspermitted by the WPS. A welder or welding operator mak-ing and passing the WPS qualification test is qualified forthe position tested. See QW-301.2.

QW-210 PREPARATION OF TEST COUPONQW-211 Base Metal

The base metals may consist of either plate, pipe, orother product forms. Qualification in plate also qualifies

Page 46: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

for pipe welding and vice versa. The dimensions of thetest coupon shall be sufficient to provide the required testspecimens.

QW-212 Type and Dimensions of Groove Welds

Except as otherwise provided in QW-250, the type anddimensions of the welding groove are not essential vari-ables.

QW-214 Corrosion-Resistant Weld Metal OverlayQW-214.1 The size of test coupons, limits of qualifica-

tion, required examinations and tests, and test specimensshall be as specified in table QW-453.

QW-214.2 Essential variables shall be as specified inQW-250 for the applicable welding process.

QW-215 Electron Beam Welding and Laser BeamWelding

QW-215.1 The WPS qualification test coupon shall beprepared with the joint geometry duplicating that to beused in production. If the production weld is to include alap-over (completing the weld by rewelding over the start-ing area of the weld, as for a girth weld), such lap-overshall be included in the WPS qualification test coupon.

QW-215.2 The mechanical testing requirements ofQW-451 shall apply.

QW-215.3 Essential variables shall be as specified intables QW-260 and QW-264 for the applicable weldingprocess.

QW-216 Hard-Facing Weld Metal Overlay

Hard-Facing Weld Metal Overlay refers to weld depositsmade, using a variety of processes, to deter the effects ofwear and/or abrasion. The requirements specified in QW-216.1 through QW-216.4 apply regardless of which hard-facing process is used.

QW-216.1 The size of test coupons, limits of qualifica-tion, required examinations and tests, and test specimensshall be as specified in table QW-453.

QW-216.2 Welding variables shall be as specified inQW-250 for the applicable process.

QW-216.3 Where Spray Fuse methods of hard-facing(e.g., Oxyfuel and Plasma Arc) are to be used, the couponsfor these methods shall be prepared and welding variablesapplied in accordance with QW-216.1 and QW-216.2,respectively.

QW-216.4 If a weld deposit is to be used under a hard-facing weld metal overlay, a base metal with an assigned

17

P-Number and a chemical analysis nominally matchingthe weld deposit chemical analysis may be substituted toqualify the PQR.

QW-217 Joining of Composite (Clad Metals)

The WPS for groove welds in clad metal shall be quali-fied as provided in QW-217(a) when any part of the clad-ding thickness, as permitted by the referencing CodeSection, is included in the design calculations. EitherQW-217(a) or (b) may be used when the cladding thicknessis not included in the design calculations.

(a) The essential and nonessential variables of QW-250shall apply for each welding process used in production.The procedure qualification test coupon shall be madeusing the same P-Number base metal, cladding, and weld-ing process, and filler metal combination to be used inproduction welding. For metal not included in table QW/QB-422, the metal used in the composite test plate shallbe within the range of chemical composition of that to beused in production. The qualified thickness range for thebase metal and filler metal(s) shall be based on the actualtest coupon thickness for each as applied to QW-451,except that the minimum thickness of filler metal joiningthe cladding portion of the weldment shall be based ona chemical analysis performed in accordance with tableQW-453. Tensile and bend tests required in QW-451 forgroove welds shall be made, and they shall contain the fullthickness of cladding through the reduced section of thespecimen. The bond line between the original cladding andthe base metal may be disregarded when evaluating side-bend tests if the cladding was applied by a process otherthan fusion welding.

(b) The essential and nonessential variables of QW-250shall apply for each welding process used in productionfor joining the base metal portion of the weldment. ThePQRs that support this portion of the WPS need not bebased on test coupons made with clad metal. For the corro-sion-resistant overlay portion of the weld, the essentialvariables of QW-251.4 shall apply and the test coupon andtesting shall be in accordance with table QW-453. TheWPS shall limit the depth of the groove, which will receivethe corrosion-resistant overlay in order to ensure develop-ment of the full strength of the underlying weld in the basemetal.

QW-218 Applied LiningsQW-218.1 WPSs for attaching applied linings shall be

qualified in accordance with QW-202.2(a), (b), or (c).

QW-218.2 As an alternative to the above, each processto be used in attaching applied linings to base metal shallbe qualified on a test coupon welded into the form andarrangement to be used in construction using materials that

Page 47: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

are within the range of chemical composition of the metalto be used for the base plate, the lining, and the weld metal.The welding variables of QW-250 shall apply except forthose regarding base metal or weld metal thickness. Quali-fication tests shall be made for each position to be used inproduction welding in accordance with table QW-461.9,except that qualification in the vertical position, uphillprogression shall qualify for all positions. One cross-sec-tion for each position tested shall be sectioned, polished,and etched to clearly show the demarcation between thebase metal and the weld metal. In order to be acceptable,each specimen shall exhibit complete fusion of the weldmetal with the base metal and freedom from cracks.

QW-218.3 When chemical analysis of the weld depositfor any elements is required, a chemical analysis shall beperformed per table QW-453, Note 9 for those elements.

QW-219 Flash Welding

Flash welding shall be limited to automatic electricalresistance flash welding. Procedure qualification tests shallbe conducted in accordance with QW-199.1.

QW-219.1 Tolerances on Variables. Flash weldingvariables that may require adjustment during productionwelding are synergistically related. Accordingly, eventhough the variables shown in table QW-265 provide toler-ances on many welding conditions, the WPS shall specifythe same conditions shown on the PQR with toleranceshown for no more than one variable (e.g., if it is desired toprovide a tolerance on the upset current, all other variablesshown on the WPS must be the same as they are shownon the PQR). If it is desired to provide tolerances in theWPS for two variables, the first variable with a toleranceshall be set at the midpoint of its tolerance and two testcoupons shall be welded with each of the upper and lowerextremes of the tolerance for the second variable (i.e.,four coupons must be welded). These coupons shall beexamined and tested in accordance with QW-199.1.3.

If it is desired to provide tolerance for a third variable,the first two variables shall be set at the midpoint of theirtolerance, and two test coupons shall be welded with eachof the upper and lower extremes of the new tolerances forthe third variable (i.e., four coupons must be welded).

18

These coupons shall be examined and tested in accordancewith QW-199.1.3.

No more than three essential variables on a WPS mayshow tolerances.

Production tests conducted in accordance with therequirements of other Sections may be used to satisfy thisrequirement.

QW-250 WELDING VARIABLESQW-251 General

QW-251.1 Types of Variables for Welding Proce-dure Specifications (WPS). These variables (listed foreach welding process in tables QW-252 through QW-265)are subdivided into essential variables, supplementaryessential variables, and nonessential variables (QW-401).The “Brief of Variables” listed in the tables are for refer-ence only. See the complete variable in Welding Data ofArticle IV.

QW-251.2 Essential Variables. Essential variables arethose in which a change, as described in the specific vari-ables, is considered to affect the mechanical properties ofthe weldment, and shall require requalification of the WPS.

Supplementary essential variables are required for met-als for which other Sections specify notch-toughness testsand are in addition to the essential variables for each weld-ing process.

QW-251.3 Nonessential Variables. Nonessential vari-ables are those in which a change, as described in thespecific variables, may be made in the WPS without requal-ification.

QW-251.4 Special Processes(a) The special process essential variables for corrosion-

resistant and hard-surfacing weld metal overlays are asindicated in the following tables for the specified process.Only the variables specified for special processes shallapply. A change in the corrosion-resistant or hard-surfacingwelding process shall require requalification.

(b) WPS qualified for corrosion-resistant and hard-sur-facing overlay welding, in accordance with other Sectionswhen such qualification rules were included in those Sec-tions, may be used with the same provisions as providedin QW-100.3.

Page 48: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-252WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Oxyfuel Gas Welding (OFW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

.1 � Groove design X

.2 ± Backing XQW-402Joints .3 � Backing comp. X

.10 � Roof spacing X

.1 � P-Number XQW-403Base .2 Max. T Qualified XMetals

.13 � P-No. 5/9/10 X

.3 � Size X

QW-404 .4 � F-Number XFiller

.5 � A-Number XMetals

.12 � Classification X

QW-405 .1 + Position XPositions

QW-406 .1 Decrease > 100°F (55°C) XPreheat

QW-407 .1 � PWHT XPWHT

QW-408 .7 � Type fuel gas XGas

.1 � String/weave X

.2 � Flame characteristics X

.4 � ←→ Technique XQW-410

Technique .5 � Method cleaning X

.26 ± Peening X

.64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

19

Page 49: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-252.1WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Oxyfuel Gas Welding (OFW)

Special Process Essential Variables

Hard-Facing Corrosion-Resistant Hard-FacingOverlay Overlay Spray Fuse

Paragraph (QW-216) (QW-214) (QW-216)

.16 < Finished tQW-402Joint .17 > Finished t

QW-403 � P-Number � P-Number.20Base

.23 � T Qualified � T Qualified � T QualifiedMetals

.12 � Classification � ClassificationQW-404Filler .42 > 5% Particle size rangeMetals

.46 � Powder feed rate

QW-405.4 + Position + Position

Positions

Dec. > 100°F (55°C) preheat Dec. > 100°F (55°C) preheatQW-406 .4 > Interpass > InterpassPreheat

.5 � Preheat maint.

.6 � PWHT � PWHTQW-407PWHT .7 � PWHT after fusing

.7 � Type of fuel gas

.14 � Oxyfuel gas pressureQW-408Gas .16 � > 5% Gas feed rate

.19 � Plasma/feed gas comp.

.38 � Multiple to single layer � Multiple to single layer

.39 � Torch type, tip sizer

.44 � > 15% Torch to workpieceQW-410

.45 � Surface prep.Technique

.46 � Spray torch

� > 10% Fusing temp..47

or method

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

20

Page 50: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-253WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Shielded Metal-Arc Welding (SMAW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

.1 � Groove design X

.4 − Backing XQW-402Joints .10 � Root spacing X

.11 ± Retainers X

.5 � Group Number X

.6 T Limits impact X

QW-403 .8 � T Qualified XBase

.9 t Pass > 1⁄2 in. (13 mm) XMetals

.11 � P-No. qualified X

.13 � P-No. 5/9/10 X

.4 � F-Number X

.5 � A-Number X

.6 � Diameter XQW-404Filler .7 � Diameter > 1⁄4 in. (6 mm) XMetals

.12 � Classification X

.30 � t X

.33 � Classification X

.1 + Position XQW-405

.2 � Position XPositions

.3 � ↑↓ Vertical welding X

.1 Decrease > 100°F (55°C) XQW-406 .2 � Preheat maint. XPreheat

.3 Increase > 100°F (55°C) (IP) X

.1 � PWHT XQW-407 .2 � PWHT (T & T range) XPWHT

.4 T Limits X

.1 > Heat input XQW-409Electrical .4 � Current or polarity X XCharacteristics

.8 � I & E range X

.1 � String/weave X

.5 � Method cleaning X

.6 � Method back gouge XQW-410 .9 � Multiple to single pass/side X XTechnique

.25 � Manual or automatic X

.26 ± Peening X

.64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

21

07

Page 51: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-253.1WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Shielded Metal-Arc Welding (SMAW)

Special Process Variables

Essential Variables

Hard-Facing Corrosion-Resistant NonessentialOverlay (HFO) Overlay (CRO) Variables for HFO

Paragraph (QW-216) (QW-214) and CRO

QW-402.16 < Finished t < Finished t

Joints

QW-403 .20 � P-Number � P-NumberBase

.23 � T Qualified � T QualifiedMetals

.12 � ClassificationQW-404Filler

.37 � A-NumberMetals

.38 � Diameter (1st layer)

QW-405.4 + Position + Position

Positions

QW-406 Dec. > 100°F (55°C) preheat Dec. > 100°F (55°C) preheat.4

Preheat > Interpass > Interpass

.6 � PWHTQW-407PWHT .9 � PWHT

QW-409 .4 � Current or polarity � Current or polarityElectrical

.22 Inc. > 10% 1st layer Inc. > 10% 1st layerCharacteristics

.1 � String/weave

.5 � Method of cleaningQW-410Technique .26 ± Peening

.38 � Multiple to single layer � Multiple to single layer

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

22

Page 52: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-254WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Submerged-Arc Welding (SAW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

QW-402 .1 � Groove design XJoints

.4 − Backing X

.10 � Root spacing X

.11 ± Retainers X

QW-403 .5 � Group Number XBaseMetals

.6 T Limits X

.8 � T Qualified X

.9 t Pass 1⁄2 in. (13 mm) X

.11 � P-No. qualified X

.13 � P-No. 5/9/10 X

QW-404 .4 � F-Number XFillerMetals

.5 � A-Number X

.6 � Diameter X

.9 � Flux/wire class. X

.10 � Alloy flux X

.24 ± Supplemental X�

.27 � Alloy elements X

.29 � Flux designation X

.30 � t X

.33 � Classification X

.34 � Flux type X

.35 � Flux/wire class. X X

.36 Recrushed slag X

QW-405 .1 + Position XPositions

QW-406 .1 Decrease > 100°F (55°C) XPreheat

.2 � Preheat maint. X

.3 Increase > 100°F (55°C) (IP) X

QW-407 .1 � PWHT XPWHT

.2 � PWHT (T & T range) X

.4 T Limits X

QW-409 .1 > Heat input XElectricalCharacteristics

.4 � Current or polarity X X

.8 � I & E range X

23

07

Page 53: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-254WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) (CONT’D)

Submerged-Arc Welding (SAW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

QW-410 .1 � String/weave XTechnique

.5 � Method cleaning X

.6 � Method back gouge X

.7 � Oscillation X

.8 � Tube-work distance X

.9 � Multi to single pass/side X X

.10 � Single to multi electrodes X X

.15 � Electrode spacing X

.25 � Manual or automatic X

.26 ± Peening X

.64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

24

Page 54: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-254.1WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Submerged-Arc Welding (SAW)

Special Process Variables

Essential Variables

Hard-Facing Corrosion-ResistantOverlay (HFO) Overlay (CRO) Nonessential Variables

Paragraph (QW-216) (QW-214) for HFO and CRO

QW-402.16 < Finished t < Finished t

Joints

QW-403 .20 � P-Number � P-NumberBase

.23 � T Qualified � T QualifiedMetals

.6 � Nominal size of electrode

.12 � Classification

.24 ± or � > 10% in supplemental ± or � > 10% in supplementalQW-404filler metal filler metalFiller

Metals .27 � Alloy elements

.37 � A-Number

.39 � Nominal flux comp. � Nominal flux comp.

QW-405.4 + Position + Position

Positions

QW-406 Dec. > 100°F (55°C) preheat Dec. > 100°F (55°C) preheat.4

Preheat > Interpass > Interpass

.6 � PWHTQW-407PWHT .9 � PWHT

.4 � Current or polarity � Current or polarityQW-409Electrical .26 1st layer — Heat input 1st layer — Heat inputCharacteristics > 10% > 10%

.1 � String/weave

.5 � Method of cleaning

.7 � Oscillation

.8 � Tube to work distance

.15 � Electrode spacingQW-410Technique .25 � Manual or automatic

.26 ± Peening

.38 � Multiple to single layer � Multiple to single layer

.40 − Supplemental device

.50 � No. of electrodes � No. of electrodes

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

25

Page 55: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

07 QW-255WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Gas Metal-Arc Welding (GMAW and FCAW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

.1 � Groove design X

.4 − Backing XQW-402Joints .10 � Root spacing X

.11 ± Retainers X

.5 � Group Number X

.6 T Limits X

.8 � T Qualified XQW-403Base .9 t Pass > 1⁄2 in. (13 mm) XMetals

.10 T limits (S. cir. arc) X

.11 � P-No. qualified X

.13 � P-No. 5/9/10 X

.4 � F-Number X

.5 � A-Number X

.6 � Diameter X

.12 � Classification X

.23 � Filler metal product form XQW-404Filler .24 ± Supplemental XMetals �

.27 � Alloy elements X

.30 � t X

.32 t Limits (S. cir. arc) X

.33 � Classification X

.1 + Position XQW-405

.2 � Position XPositions

.3 � ↑↓ Vertical welding X

.1 Decrease > 100°F (55°C) XQW-406

.2 � Preheat maint. XPreheat

.3 Increase > 100°F (55°C) (IP) X

.1 � PWHT XQW-407

.2 � PWHT (T & T range) XPWHT

.4 T Limits X

26

Page 56: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-255WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) (CONT’D)

Gas Metal-Arc Welding (GMAW and FCAW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

.1 ± Trail or � comp. X

.2 � Single, mixture, or % X

.3 � Flow rate XQW-408Gas .5 ± or � Backing flow X

.9 − Backing or � comp. X

.10 � Shielding or trailing X

.1 > Heat input X

QW-409 .2 � Transfer mode XElectrical

.4 � Current or polarity X XCharacteristics

.8 � I & E range X

.1 � String/weave X

.3 � Orifice, cup, or nozzle size X

.5 � Method cleaning X

.6 � Method back gouge X

.7 � Oscillation X

.8 � Tube-work distance XQW-410Technique .9 � Multiple to single pass/side X X

.10 � Single to multiple electrodes X X

.15 � Electrode spacing X

.25 � Manual or automatic X

.26 ± Peening X

.64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

27

Page 57: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-255.1WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Gas Metal-Arc Welding (GMAW and FCAW)

Special Process Variables

Essential Variables

Hard-Facing Corrosion-ResistantOverlay (HFO) Overlay (CRO) Nonessential Variables

Paragraph (QW-216) (QW-214) for HFO and CRO

QW-402.16 < Finished t < Finished t

Joints

QW-403 .20 � P-Number � P-NumberBase

.23 � T Qualified � T QualifiedMetals

.6 � Nominal size of electrode

.12 � Classification

.23 � Filler metal product form � Filler metal product formQW-404Filler .24 ± or � > 10% in supplemental ± or � > 10% in supplementalMetals filler metal filler metal

.27 � Alloy elements

.37 � A-Number

QW-405.4 + Position + Position

Positions

QW-406 Dec. > 100°F (55°C) preheat Dec. > 100°F (55°C) preheat.4

Preheat > Interpass > Interpass

.6 � PWHTQW-407PWHT .9 � PWHT

.2 � Single, mixture, or % � Single, mixture, or %QW-408Gas .3 � Flow rate

.4 � Current or polarity � Current or polarityQW-409Electrical .26 1st layer — Heat input 1st layer — Heat inputCharacteristics > 10% > 10%

.1 � String/weave

.3 � Orifice/cup or nozzle size

.5 � Method of cleaning

.7 � Oscillation

QW-410.8 � Tube to work distance

Technique

.25 � Manual or automatic

.26 ± Peening

.38 � Multiple to single layer � Multiple to single layer

.50 � No. of electrodes � No. of electrodes

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

28

Page 58: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-256WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Gas Tungsten-Arc Welding (GTAW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

QW-402 .1 � Groove design XJoints

.5 + Backing X

.10 � Root spacing X

.11 ± Retainers X

QW-403 .5 � Group Number XBase

.6 T Limits XMetals

.8 T Qualified X

.11 � P-No. qualified X

.13 � P-No. 5/9/10 X

QW-404 .3 � Size XFiller

.4 � F-Number XMetals

.5 � A-Number X

.12 � Classification X

.14 ± Filler X

.22 ± Consum. insert X

.23 � Filler metal product form X

.30 � t X

.33 � Classification X

.50 ± Flux X

QW-405 .1 + Position XPositions

.2 � Position X

.3 � ↑↓ Vertical welding X

QW-406 .1 Decrease > 100°F (55°C) XPreheat

.3 Increase > 100°F (55°C) X(IP)

QW-407 .1 � PWHT XPWHT

.2 � PWHT (T &T range) X

.4 T Limits X

QW-408 .1 ± Trail or � comp. XGas

.2 � Single, mixture, or % X

.3 � Flow rate X

.5 ± or � Backing flow X

.9 − Backing or � comp. X

.10 � Shielding or trailing X

29

07

Page 59: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-256WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) (CONT’D)

Gas Tungsten-Arc Welding (GTAW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

.1 > Heat input X

.3 ± Pulsing I XQW-409Electrical .4 � Current or polarity X XCharacteristics

.8 � I & E range X

.12 � Tungsten electrode X

.1 � String/weave X

.3 � Orifice, cup, or nozzle size X

.5 � Method cleaning X

.6 � Method back gouge X

.7 � Oscillation X

.9 � Multi to single pass/side X XQW-410Technique .10 � Single to multi electrodes X X

.11 � Closed to out chamber X

.15 � Electrode spacing X

.25 � Manual or automatic X

.26 ± Peening X

.64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

30

Page 60: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-256.1WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Gas Tungsten-Arc Welding (GTAW)

Special Process Variables

Essential Variables

Hard-Facing Corrosion-ResistantOverlay (HFO) Overlay (CRO) Nonessential Variables

Paragraph (QW-216) (QW-214) for HFO and CRO

QW-402.16 < Finished t < Finished t

Joints

QW-403 .20 � P-Number � P-NumberBase

.23 � T Qualified � T QualifiedMetals

.3 � Wire size

.12 � ClassificationQW-404Filler .14 ± Filler metal ± Filler metalMetals

.23 � Filler metal product form � Filler metal product form

.37 � A-Number

QW-405.4 + Position + Position

Positions

QW-406 Dec. > 100°F (55°C) preheat Dec. > 100°F (55°C) preheat.4

Preheat > Interpass > Interpass

.6 � PWHTQW-407PWHT .9 � PWHT

.2 � Single, mixture, or % � Single, mixture, or %QW-408Gas .3 � Flow rate

.4 � Current or polarity � Current or polarityQW-409Electrical .12 � Tungsten electrodeCharacteristics

.26 1st layer — Heat input > 10% 1st layer — Heat input > 10%

.1 � String/weave

.3 � Orifice/cup or nozzle size

.5 � Method of cleaning

.7 � Oscillation

.15 � Electrode spacingQW-410Technique .25 � Manual or automatic

.26 ± Peening

.38 � Multiple to single layer � Multiple to single layer

.50 � No. of electrodes � No. of electrodes

.52 � Filler metal delivery

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

31

Page 61: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-257WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Plasma-Arc Welding (PAW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

QW-402

.1 � Groove design X

Joints

.5 + Backing X

.10 � Root spacing X

.11 ± Retainers X

QW-403

.5 � Group Number X

Base Metals

.6 T Limits X

.8 � T Qualified X

.12 � P-Number/melt-in X

.13 � P-No. 5/9/10 X

QW-404

.3 � Size X

Filler Metals

.4 � F-Number X

.5 � A-Number X

.12 � Classification X

.14 ± Filler metal X

.22 ± Consum. insert X

.23 � Filler metal product form X

.27 � Alloy elements X

.30 � t X

.33 � Classification X

QW-405

.1 + Position X

Positions.2 � Position X

.3 � ↑ ↓ Vertical welding X

QW-406 .1 Decrease > 100°F (55°C) XPreheat

.3 Increase > 100°F (55°C) (IP) X

QW-407.1 � PWHT X

PWHT .2 � PWHT (T & T range) X

.4 T Limits X

QW-408

.1 ± Trail or � comp. X

Gas

.4 � Composition X

.5 ± Or � backing flow X

.9 − Backing or � comp. X

.10 � Shielding or trailing X

.21 � Flow rate X

32

Page 62: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-257WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) (CONT’D)

Plasma-Arc Welding (PAW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

QW-409

.1 > Heat input X

ElectricalCharacteristics

.4 � Current or polarity X X

.8 � I & E range X

.12 � Tungsten electrode X

QW-410

.1 � String/weave X

Technique

.3 � Orifice, cup, or nozzle size X

.5 � Method cleaning X

.6 � Method back gouge X

.7 � Oscillation X

.9 � Multiple to single pass/side X X

.10 � Single to multiple electrodes X X

.11 � Closed to out chamber X

.12 � Melt-in to keyhole X

.15 � Electrode spacing X

.26 ± Peening X

.64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

33

Page 63: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-257.1WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Plasma-Arc Welding (PAW)

Special Process Variables

Essential Variables

Hard-Facing Corrosion-Resistant Hard-Facing Nonessential VariablesOverlay (HFO) Overlay (CRO) Spray Fuse (HFSF) for HFO, CRO, and

Paragraph (QW-216) (QW-214) (QW-216) HFSF

QW-402 .16 < Finished t < Finished tJoints

.17 > Finished t

QW-403 .20 � P-Number � P-Number � P-NumberBase Metals

.23 � T Qualified � T Qualified

.12 � Classification � Classification

.14 ± Filler metal ± Filler metal

.37 � A-Number

QW-404 .41 � > 10% Powder feed rate � > 10% Powder feed rateFiller Metals

.42 � > 5% Particle size

.43 � Particle size � Particle size

.44 � Powder type � Powder type

.45 � Filler metal form � Filler metal form

.46 � Powder feed rate

QW-405Positions .4 + Position + Position + Position

QW-406 .4 Dec. > 100°F (55°C) preheat Dec. > 100°F (55°C) preheat Dec. > 100°F (55°C) preheatPreheat > Interpass > Interpass > Interpass

.5 � Preheat maintenance

QW-407 .6 � PWHT � PWHTPWHT

.7 � PWHT after fusing

.9 � PWHT

QW-408 .1 ± Trail or � comp.Gas

.16 � > 5% Arc or metal feed gas � > 5% Arc or metal feed gas � > 5% Arc or metal feed gas

.17 � Type or mixture � Type or mixture

.18 � > 10% Mix. comp. � > 10% Mix. comp.

.19 � Plasma/feed gas comp.

.20 � Plasma gas flow-rate range

QW-409 .4 � Current or polarity � Current or polarityElectrical

.12 � Type or size of electrodeCharacteristics

.23 � > 10% I & E

.24 � > 10% Filler wire watt. � > 10% Filler wire watt.

.25 � > 10% I & E � > 10% I & E

34

Page 64: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-257.1WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) (CONT’D)

Plasma-Arc Welding (PAW)

Special Process Variables

Essential Variables

Hard-Facing Corrosion-Resistant Hard-Facing Nonessential VariablesOverlay (HFO) Overlay (CRO) Spray Fuse (HFSF) for HFO, CRO, and

Paragraph (QW-216) (QW-214) (QW-216) HFSF

� String/weave.1 (HFO and CRO only)

� Orifice/cup or.3 nozzle size

.5 � Method of cleaning

.7 � Oscillation

.25 � Manual or automatic

.26 ± Peening

.38 � Multiple to single layer � Multiple to single layer � Multiple to single layerQW-410Technique .41 � > 15% Travel speed � > 15% Travel speed

.43 � > 10% Travel speed range

.44 � > 15% Torch to workplace

.45 � Surface preparation

.46 � Spray torch

.47 � > 10% Fusing temp. ormethod

.48 � Transfer mode � Transfer mode � Transfer mode

.49 � Torch orifice diameter � Torch orifice diameter

.52 � Filler metal del. � Filler metal del.

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

35

Page 65: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-258WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Electroslag Welding (ESW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

.1 � Groove design XQW-402

.10 � Root spacing XJoints

.11 ± Retainers X

.1 � P-Number X

QW-403 .4 � Group Number XBase

.9 t Pass > 1⁄2 in. (13 mm) XMetals

.13 � P-No. 5/9/10 X

.4 � F-Number X

.5 � A-Number X

.6 � Diameter X

QW-404 .12 � Classification XFiller

.17 � Flux type or comp. XMetals

.18 � Wire to plate X

.19 � Consum. guide X

.33 � Classification X

.1 � PWHT XQW-407

.2 � PWHT (T & T range) XPWHT

.4 T Limits X

QW-409 .5 � ±15% I & E range XElectricalCharacteristics

.5 � Method cleaning X

.7 � Oscillation X

.10 � Single to multiple electrodes XQW-410Technique .15 � Electrode spacing X

.26 ± Peening X

.64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

36

Page 66: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-258.1WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Electroslag Welding (ESW)

Special Process Variables

Essential Variables

Hard-Facing Corrosion-ResistantOverlay (HFO) Overlay (CRO) Nonessential Variables

Paragraph (QW-216) (QW-214) for HFO and CRO

QW-402.16 < Finished t < Finished t

Joints

QW-403 .20 � P-Number � P-NumberBase

.23 � T Qualified � T QualifiedMetals

.6 � Nominal size of electrode

.12 � Classification

QW-404.24 ± or � > 10% in supplemental ± or � > 10% in supplemental

Fillerfiller metal filler metal

Metals

.37 � A-Number

.39 � Nominal flux comp. � Nominal flux comp.

QW-406 Dec. > 100°F (55°C) preheat Dec. > 100°F (55°C) preheat.4

Preheat > Interpass > Interpass

.6 � PWHTQW-407PWHT .9 � PWHT

.4 � Current or polarity � Current or polarityQW-409Electrical .26 1st layer — Heat input 1st layer — Heat inputCharacteristics > 10% > 10%

.5 � Method of cleaning

.7 � Oscillation (CRO only)

QW-410.38 � Multiple to single layer � Multiple to single layer

Technique

.40 − Supplemental device − Supplemental device

.50 � No. of electrodes � No. of electrodes

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

37

Page 67: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-259WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Electrogas Welding (EGW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

.1 � Groove design XQW-402

.10 � Root spacing XJoints

.11 ± Retainers X

.1 � P-Number X

.5 � Group Number X

QW-403 .6 T Limits XBase

.8 � T Qualified XMetals

.9 t Pass > 1⁄2 in. (13 mm) X

.13 � P-No. 5/9/10 X

.4 � F-Number X

.5 � A-Number X

QW-404 .6 � Diameter XFiller

.12 � Classification XMetals

.23 � Filler metal product form X

.33 � Classification X

QW-406 .1 Decrease > 100°F (55°C) XPreheat

.1 � PWHT XQW-407

.2 � PWHT (T & T range) XPWHT

.4 T Limits X

.2 � Single, mixture, or % XQW-408Gas .3 � Flow rate X

.1 > Heat input XQW-409Electrical .4 � Current or polarity X XCharacteristics

.8 � I & E range X

.5 � Method cleaning X

.7 � Oscillation X

.8 � Tube-work distance X

.9 � Multiple to single pass/side X XQW-410Technique .10 � Single to multiple electrodes X

.15 � Electrode spacing X

.26 ± Peening X

.64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

GENERAL NOTE: Automated vertical gas metal-arc welding for vertical position only.

38

Page 68: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-260WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Electron Beam Welding (EBW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

.1 � Groove design XQW-402

.2 − Backing XJoints

.6 > Fit-up gap X

.1 � P-Number X

QW-403 .3 � Penetration XBase

.13 � P-No. 5/9/10 XMetals

.15 � P-Number X

.1 � Cross section or speed X

.2 < t or � comp. X

.8 ± or � Chem. comp. XQW-404Filler .14 ± Filler XMetals

.20 � Method of addition X

.21 � Analysis X

.33 � Classification X

QW-406 .1 Decrease > 100°F (55°C) XPreheat

QW-407 .1 � PWHT XPWHT

QW-408 .6 � Environment XGas

QW-409 .6 � I, E, speed, distance, osc. XElectrical

.7 � Pulsing frequency XCharacteristics

.5 � Method cleansing X

.7 � Oscillation X

.14 � Angle of beam axis X

.17 � Type equip. X

QW-410 .18 > Pressure of vacuum XTechnique

.19 � Filament type, size, etc. X

.20 + Wash pass X

.21 1 vs. 2 side welding X

.64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

39

Page 69: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-261WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Stud Welding

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

.8 � Stud shape size XQW-402Joints .9 − Flux or ferrule X

QW-403 .17 � Base metal or stud metal P-No. XBase Metal

QW-405 .1 + Position XPositions

QW-406 .1 Decrease > 100°F (55°C) XPreheat

QW-407 .1 � PWHT XPWHT

QW-408 .2 � Single, mixture, or % XGas

.4 � Current or polarity X X

.8 � I & E range XQW-409Electrical .9 � Arc timing XCharacteristics

.10 � Amperage X

.11 � Power source X

.22 � Gun model or lift XQW-410Technique .64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

40

Page 70: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-262WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Inertia and Continuous Drive Friction Welding

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

.12 � ± 10 deg X

� Cross section > 10% XQW-402Joints � O.D. > ± 10% X

� Solid-to-tube X

QW-403 .19 � Base metal XBaseMetals

QW-406 .1 � Decrease > 100°F (55°C) XPreheat

QW-407 .1 � PWHT XPWHT

QW-408 .6 � Environment XGas

.27 � Spp. > ± 10% X

.28 � Load > ± 10% XQW-410

.29 � Energy > ± 10% XTechnique

.30 � Upset > ± 10% X

.64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

41

Page 71: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-263WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Resistance Welding

Paragraph Brief of Variables Essential Nonessential

.13 � Spot, projection, seam XQW-402

.14 � Overlap, spacing XJoints

.15 � Projection, shape, size X

.1 � P-No. XQW-403Base .21 ± Coating, plating XMetals

.22 ± T X

QW-407 .1 � PWHT XPWHT

QW-408 .23 − Gases XGas

.13 � RWMA class X

.14 ± � Slope XQW-409

.15 � Pressure, current, time XElectrical

.17 � Power supply X

.18 Tip cleaning X

.31 � Cleaning method X

.32 � Pressure, time X

.33 � Equipment XQW-410Technique .34 � Cooling medium X

.35 � Throat X

.64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

42

Page 72: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-264WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Laser Beam Welding (LBW)

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

QW-402

.1 � Groove design X

Joints

.2 ± Backing X

.6 > Fit-up gap X

.18 � Lap joint config. X

QW-403

.1 � P-Number X

Base Metals

.3 � Penetration X

.13 � P-No. 5/9/10 X

.15 � P-Number X

QW-404

.1 � Cross section or speed X

Filler Metals

.2 < t or � comp. X

.8 ± or � chem. comp. X

.14 ± Filler metal X

.20 � Method of addition X

.21 � Analysis X

.33 � Classification X

QW-406 .1 Decrease > 100°F (55°C) XPreheat

QW-407 .1 � PWHT XPWHT

QW-408

.2 � Single, mixture, or % X

Gas

.6 � Environment X

.11 ± Gases X

.12 � > 5% Gases X

.13 � Plasma jet position X

QW-409 .19 � Pulse XElectrical

.20 � Mode, energy XCharacteristics

.21 � Power, speed, d/fl, distance X

QW-410 .5 � Method cleaning X

Technique .7 � Oscillation X

.14 � Angle of beam axis X

.17 � Type/model of equipment X

.20 + Wash pass X

.21 1 vs. 2 side welding X

.37 � Single to multiple pass X

.64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

43

Page 73: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-264.1WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Laser Beam Welding (LBW)

Special Process Variables

Essential Variables

Hard-Facing Corrosion-Resistant NonessentialOverlay (HFO) Overlay (CRO) Variables for HFO

Paragraph (QW-216) (QW-214) and CRO

QW-402 .16 < Finished t < Finished tJoints

QW-403 .13 � P-Number 5/9/10 � P-Number 5/9/10Base Metals

.20 � P-Number � P-Number

QW-404 .12 � Classification � ClassificationFiller Metals

.27 � Alloy elements � Alloy elements

.44 � Particle type � Particle type

.47 � Filler/powder metal size � Filler/powder metal size

.48 � Powder metal density � Powder metal density

.49 � Filler metal powder � Filler metal powderfeed rate feed rate

QW-405 .1 + Position + PositionPositions

QW-406 .4 Dec. > 100°F (55°C) preheat Dec. > 100°F (55°C) preheatPreheat > Interpass > Interpass

QW-407 .6 � PWHTPWHT

� PWHT.9

QW-408 .2 � Single, mixture, or % � Single, mixture, or %Gas

.6 � Environment � Environment

.11 ± Gases ± Gases

.12 � % Flow rate � % Flow rate

.13 � Plasma jet position � Plasma jet position

QW-409 .19 � Pulse � PulseElectricalCharacteristics .20 � Mode, energy � Mode, energy

.21 � Power, speed, d/fl, distance � Power, speed, d/fl, distance

QW-410 .5 � Method of cleaningTechnique

.7 � Oscillation � Oscillation

.14 � Angle of beam axis � Angle of beam axis

.17 � Type/model of equipment � Type/model of equipment

.38 � Multiple to single layer � Multiple to single layer

.45 � Method of surface prep. � Method of surface prep.

.52 � Filler metal delivery � Filler metal delivery

.53 � Overlap, spacing � Overlap, spacing

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

44

Page 74: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-265WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)

Flash Welding

SupplementaryParagraph Brief of Variables Essential Essential Nonessential

.19 � Diameter or thickness X

.20 � Joint configuration XQW-402

.21 � Method or equip. used to XJointsminimize ID flash

.22 � End preparation method X

QW-403 .24 � Spec., type, or grade XBaseMetals

.7 � > 10% Amperage or number XQW-406

of preheat cycles, or method,Preheat

or > 25°F temperature

.8 � PWHT, PWHT cycles, or XQW-407

separate PWHT time or tem-PWHT

perature

QW-408 .22 � Shielding gas composition, XGas pressure, or purge time

QW-409 .27 � > 10% Flashing time XElectrical

.28 � > 10% Upset current time XCharacteristics

.17 � Type/model of equipment X

.54 � > 10% Upset length or force X

.55 � > 10% Distance between Xclamping dies or preparation

QW-410 of clamping areaTechnique

.56 � Clamping force X

.57 � 10% Forward or reverse Xspeed

.64 Use of thermal processes X

Legend:+ Addition > Increase/greater than ↑ Uphill ← Forehand � Change− Deletion < Decrease/less than ↓ Downhill → Backhand

45

Page 75: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-283 Welds With Buttering

QW-283.1 Scope. This paragraph only applies whenthe essential variables for the buttering process are differentthan the essential variables for the process used for subse-quent completion of the joint. Common examples are

(a) the buttered member is heat treated and the com-pleted weld is not heat treated after welding

(b) the filler metal used for buttering has a differentF-Number from that used for the subsequent completionof the weld

QW-283.2 Tests Required. The procedure shall bequalified by buttering the test coupon (including heat treat-ing of the buttered member when this will be done inproduction welding) and then making the subsequent weldjoining the members. The variables for the buttering and forthe subsequent weld shall be in accordance with QW-250,except that QW-409.1 shall be an essential variable for thewelding process(es) used to complete the weld when theminimum buttering thickness is less than 3⁄16 in. (5 mm).Mechanical testing of the completed weldment shall be inaccordance with QW-202.2(a).

If the buttering is done with filler metal of the samecomposition as the filler metal used to complete the weld,one weld test coupon may be used to qualify the dissimilarmetal joint by welding the first member directly to thesecond member in accordance with Section IX.

QW-283.3 Buttering Thickness. The thickness of but-tering which shall remain on the production buttered mem-ber after all machining and grinding is completed andbefore subsequent completion of the joint shall be requiredby the WPS. When this thickness is less than 3⁄16 in. (5 mm),the thickness of buttering on the test coupon shall be mea-sured before the buttered member is welded to the secondmember. This thickness shall become the minimum quali-fied thickness of buttering.

QW-283.4 Qualification Alternative. When an essen-tial variable is changed in the portion of the weld to bemade after buttering or when a different organization isperforming the portion of the weld to be made after but-tering, a new qualification shall be performed in accordancewith one of the following methods:

(a) Qualify in accordance with QW-283.2 andQW-283.3. When the original qualification buttering thick-ness is less than 3⁄16 in. (5 mm), the buttering thicknessshall not be greater, nor the heat input higher than wasused on the original qualification.

(b) When the original qualification buttering thicknessis 3⁄16 in. (5 mm) or greater, qualify the portion of the weldto be made after buttering using any P-Number materialthat nominally matches the chemical analysis of the but-tering weld metal for the buttered base metal of the testcoupon.

46

QW-284 Resistance Welding MachineQualification

Each resistance welding machine shall be tested to deter-mine its ability to make welds consistently and reproduci-bly. A machine shall be requalified whenever it is rebuilt,moved to a new location requiring a change in powersupply, when the power supply is changed, or any othersignificant change is made to the equipment. Spot andprojection welding machine qualification testing shall con-sist of making a set of 100 consecutive welds. Every fifthof these welds shall be subjected to mechanical shear tests.Five welds, which shall include one of the first five andone of the last five of the set shall be metallographicallyexamined. Seam welding machine qualification testingshall be the same as procedure qualification testing requiredper QW-286. Maintenance or adjustment of the weldingmachine shall not be permitted during welding of a set oftest welds. Qualification testing on any P-No. 21 throughP-No. 25 aluminum alloy shall qualify the machine for allmaterials. Qualification on P-No. 1 through P-No. 11 iron-base alloys and any P-No. 41 through P-No. 49 nickel-base alloys shall qualify the machine for all P-No. 1 throughP-No. 11 and P-No. 41 through P-No. 49 metals. Qualifica-tion testing of the machine using base metals assigned toP-No. 51 through P-No. 53, P-No. 61, or P-No. 62 qualifiesthe welding machine to weld all base metals assigned toP-No. 51 through P-No. 53, P-No. 61, and P-No. 62. Test-ing and acceptance criteria shall be in accordance withQW-196.

QW-285 Resistance Spot and Projection WeldProcedure Qualification

Procedure qualification testing for spot or projectionwelds shall be done following a Welding Procedure Speci-fication, and it shall consist of making a set of ten consecu-tive welds. Five of these welds shall be subjected tomechanical shear tests and five to metallographic examina-tion. Examination, testing, and acceptance criteria shall bein accordance with QW-196.

QW-286 Resistance Seam Weld ProcedureQualification

QW-286.1 Test coupons described below shall consistof the same number of members, orientation, materialgrades/types, and thicknesses to be used in productionwelding.

QW-286.2 A test coupon as shown in figureQW-462.7.1 shall be prepared by drilling a hole in thecenter of one of the outer coupon members. In the case ofa test coupon containing more than two members, a holeshall be drilled in each member except for one of the outermembers. A pipe nipple shall be welded or brazed to the

07

Page 76: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

outer member at the hole. The test coupon shall then bewelded around the edges, sealing the space between themembers as shown in figure QW-462.7.1. The couponshall be pressurized hydrostatically until failure occurs.The procedure qualification is acceptable if failure occursin the base metal.

QW-286.3 A test coupon at least 10 in. (250 mm) longshall be made per figure QW-462.7.2. This test couponshall be cut transverse to the length of the weld into tenpieces, each approximately 1 in. (25 mm) long. Four trans-verse weld specimens and four longitudinal weld crosssection specimens shall be cut and prepared as detailed infigure QW-462.7.2. The specimens shall be metallographi-cally examined for compliance with the requirements ofQW-196.

QW-287 Variation of Settings for ElectricResistance Welding

Settings for preheating cycles, electrode pressure, weld-ing current, welding time cycle, or postheating cycles maybe varied by ±5% from the values recorded on the PQR,or by ±10% when only one of the above settings is changed.

QW-288 Tube-to-Tubesheet QualificationEssential Variables

The following shall be considered essential variablesfor tube-to-tubesheet welding qualifications in accordancewith QW-193.

QW-288.1 All Processes(a) A change in the welding process used.(b) A change in the weld joint configuration (beyond the

manufacturing tolerance) such as the addition or deletion ofpreplaced filler metal, an increase in the depth of thegroove, a decrease in the groove angle, or a change in thegroove type.

(c) For tubes of specified wall thickness of 0.100 in.(2.5 mm) or less, an increase or decrease of 10% of thespecified wall thickness. For tubes of specified wall thick-ness greater than 0.100 in. (2.5 mm), only one qualificationtest is required.

(d) For tubes of specified diameter of 2 in. (50 mm) orless and a specified wall thickness of 0.100 in. (2.5 mm)or less, a decrease greater than 10% of the specified tubediameter. For tubes of specified diameter greater than 2 in.(50 mm), the minimum diameter qualified is 2 in. (50 mm).For tubes of specified wall thickness greater than 0.100 in.(2.5 mm), diameter is not an essential variable.

(e) A decrease of 10% or more in the specified widthof the ligament between tube holes when the specifiedwidth of the ligament is less than the greater of 3⁄8 in.(10 mm) or 3 times the specified tube wall thickness.

47

(f) A change from multiple passes to a single pass orvice versa.

(g) A change in the welding position of the tube-to-tubesheet joint from that qualified (see QW-461.1).

(h) A change in the progression of a vertical positionweld from that qualified.

(i) A change in the P-No. of the tube or tubesheet mate-rial (if the tubesheet material is part of the weld), a changein the P-No. or A-No. of the tubesheet cladding material(if the cladding material is part of the weld), or a changein a material not assigned a P-No. or A-No.

(j) If filler metal is added, a change in the A-No. of theweld deposit or a change in the nominal composition ofthe weld deposit if there is no A-No.

(k) A decrease of more than 100°F (55°C) in the preheattemperature or an increase of more than 100°F (55°C) inthe interpass temperature from that qualified.

(l) The addition or deletion of PWHT.(m) A change of more than 10% in the current level

from that qualified.(n) A change in the polarity or current type (AC or DC)

from that qualified.(o) A change between manual, semiautomatic, machine,

or automatic methods of application.(p) The addition of tube expansion prior to welding.(q) A change in the method of cleaning prior to welding.

QW-288.2 Shielded Metal Arc Welding(a) An increase in the electrode diameter.(b) A change in the F-No. of the electrode.

QW-288.3 Gas Tungsten Arc, Plasma Arc, and GasMetal Arc Welding

(a) A change in the size or shape of preplaced metalinserts.

(b) A change from one shielding gas to anothershielding gas or to a mixture of shielding gases.

(c) When using a mixed shielding gas, a change of±25% or 5 ft3/hr (2.5 L/min), whichever is the larger, inthe rate of flow of the minor gas constituent.

(d) For GTAW or PAW, the addition or deletion offiller metal.

(e) For GTAW or PAW, a change in the nominal diame-ter of the filler metal or electrode.

(f) The elimination of an auxiliary gas shield system ifused during qualification.

(g) A change in the F-No. of the electrode or filler metal.

QW-288.4 Explosion Welding(a) A 10% change in the specified tube wall thickness

or diameter for all diameters and wall thicknesses.(b) A change in the method of pressure application.(c) A change in the type of explosive or a change in

the energy content of ±10%.

Page 77: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(d) A change of ±10% in the distance between thecharge and the tubesheet face.

(e) A change of ±10% in the specified clearance betweenthe tube and the tubesheet.

NOTE: The QW-288.1 variables (f), (h), (j), (k), (m), (n), and (o) do notapply for this process.

QW-290 TEMPER BEAD WELDING

When the applicable Code Section specifies the use ofthis paragraph for temper bead welding, QW-290.1 throughQW-290.6 shall apply.

QW-290.1 Basic Qualification and UpgradingExisting WPSs. All WPSs for temper bead welding ofgroove and fillet weld shall be qualified for groove weldingin accordance with the rules in QW-202 for qualificationby groove welding or the rules in QW-283 for welds withbuttering. WPSs for overlay shall be qualified in accor-dance with QW-214 or QW-216. Once these requirementsand any additional qualification requirements of the appli-cable construction code have been satisfied, then it is neces-sary only to prepare an additional test coupon using thesame procedure with the same essential and, if applicable,the supplementary essential variables with the coupon longenough to obtain the required temper bead test specimens.Qualification for groove welding, welding with butteringor cladding, and temper bead welding may also be donein a single test coupon.

When a procedure has been previously qualified to sat-isfy all requirements including temper bead welding, but

48

one or more temper bead welding variables is changed,then it is necessary only to prepare an additional test couponusing the same procedure with the same essential and, ifapplicable, the supplementary essential variables and thenew temper bead welding essential variable(s) with thecoupon long enough to obtain the required test specimens.

QW-290.2 Welding Process Restrictions. Temperbead welding is limited to SMAW, GTAW, SAW, GMAW(including FCAW), and PAW. Manual and semiautomaticGTAW and PAW are prohibited, except for the root passof groove welds made from one side and as described formaking repairs to temper bead welds in QW-290.5. Theessential variables listed in table QW-290.4 apply in addi-tion to the variables applicable for the process(es) qualifiedas given in QW-250. When impact testing is the basisfor acceptance, the supplementary essential variables ofQW-250 applicable to the process being qualified shallapply. When these variables conflict with or provide morestringent limitations than those of QW-250, these variablesshall govern.

QW-290.3 Variables for Temper Bead WeldingQualifications. Table QW-290.4 lists the essential andnonessential variables that apply when temper bead quali-fication is required. The column “Hardness Test EssentialVariables” shall apply, except that when the applicableConstruction Code or Design Specification specifiesacceptance based on impact testing, the column “ImpactTest Essential Variables” shall apply. The column “Nones-sential Variables” applies in all cases.

Page 78: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-290.4WELDING VARIABLES FOR TEMPER BEAD PROCEDURE QUALIFICATION

Hardness Test Impact Test NonessentialParagraph Brief of Variables Essential Variables Essential Variables Variables

.23 + Fluid backing XQW-402

.24 + Fluid backing X

.25 � P-No. or Gr. No. X

QW-403 .26 > Carbon equivalent X

.27 > T X

.51 Storage XQW-404

.52 Diffusible hydrogen X

.8 > Interpass temperature X

.9 < Preheat temperature XQW-406

.10 Preheat soak time X

.11 Postweld bakeout X

QW-408 .24 Gas moisture X

QW-409 .29 � Heat input ratio X X

.10 � Single to multiple electrode X X

.58 − Surface temper beads X X

.59 � Type of welding X X

.60 + Thermal preparation X XQW-410

.61 Surface bead placement X X

.62 Surface bead removal method X

.63 Bead overlap X X

.65 ± Grinding X X

Legend:+ Addition > Increase/greater than � Change− Deletion < Decrease/less than

QW-290.5 Test Coupon Preparation and Testing(a) The test coupon may be any geometry that is suitable

for removal of the required specimens. It shall consist ofa groove weld, a cavity in a plate, overlay, or other suitablegeometry. The distance from each edge of the weld prepara-tion to the edge of the test coupon shall be at least 3 in.measured transverse to the direction of welding. The depthof preparation shall be such that at least two layers of weldmetal are deposited, one of which may be the surfacetemper bead layer and deep enough to remove the requiredtest specimens.

(b) The test coupon shall be bend-tested in accordancewith QW-451.

(c) When hardness testing is specified by a ConstructionCode or Design Specification or no specific testing isrequired, measurements shall be taken across the weldmetal, heat-affected zone, and base metal using the Vickersmethod with a 10 kg load. Increments shall be not greaterthan 0.010 in. (0.25 mm) apart and shall include

49

(1) a minimum of two measurements in the weldmetal fill layers

(2) measurements across all weld metal temperbead layers

(3) measurements across the heat-affected zone(4) a minimum of two measurements in the unaf-

fected base metalThe measurements shall be taken along a line at approxi-

mately mid-plane of the thickness of the test coupon weldmetal, along a line 0.040 in. (1 mm) below the originalbase metal surface and, when the coupon was welded usinga full-penetration groove weld made from one side, 1⁄16 in.(1.5 mm) above the root side surface. The path of HAZhardness measurements may angle across the HAZ as nec-essary to obtain the required spacing without interferenceof one impression with others.

Full-penetration groove weld test coupons qualify fulland partial penetration groove welds, fillet welds, and weldbuild-up. Partial penetration groove weld test coupons only

Page 79: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

qualify partial penetration groove welds, fillet welds, andbuild-up. Overlay test coupons only qualify overlay welds.

Hardness readings shall not exceed the hardness limitsspecified by the Construction Code or Design Specification.Where hardness is not specified, the data shall be reported.

(d) When specified by the applicable Construction Codeor Design Specification, the test coupon shall be CharpyV-notch impact tested. The extent of testing (i.e., weldmetal, HAZ, unaffected base metal), the testing tempera-ture, and the acceptance criteria shall be as provided inthe applicable Construction Code or Design Specification.Impact test specimens shall be removed from the couponin the weld metal and HAZ as near as practical to a depthof one-half the thickness of the weld metal for each process.For HAZ specimens, the specimen shall be oriented so asto include as much of the HAZ as possible at the notch.The impact specimens and testing shall be in accordancewith SA-370 using the largest size specimen that can beremoved from the test coupon with the notch cut approxi-mately normal to the test coupon surface. More than oneset of impact test specimens shall be removed and testedwhen weld metal and heat-affected zone material fromeach process or set of variables cannot be included in asingle set of test specimens.

QW-290.6 In-Process Repair Welding(a) In-process repairs to welds made using temper bead

welding are permitted. In-process repairs are defined asrepairs in which a flaw is mechanically removed and arepair weld is made before welding of a joint is presentedfor final visual inspection. Examples of such repairs areareas of removal of porosity, incomplete fusion, etc., wheresufficient metal has been mechanically removed that local-ized addition of weld metal is necessary in order to makethe surface geometry suitable for continuation of normalwelding.

(b) Surfaces to be repaired shall be prepared by mechan-ical removal of flaws and preparation of the surface to asuitable geometry.

50

(c) For processes other than manual and semiautomaticGTAW and PAW, repairs shall be made using the parame-ters given in the WPS for production temper bead welding.The approximate location of beads to be deposited relativeto the original base metal surface shall be identified, andthe applicable parameters shall be used for the layers tobe deposited as specified by the WPS.

(d) When it is necessary to make repairs using manualor semiautomatic GTAW or PAW, a WPS shall be preparedbased on PQRs developed for temper bead welding usingmachine or automatic GTAW or PAW, respectively. ThisWPS shall describe the size of the beads to be depositedand the volts, amps, and travel speed to be used for thebeads against the base metal, for each temper bead layer andfor the fill and surface temper bead layers corresponding tothe locations where repair welding is to be done. Theseshall be within the equivalent power ratio for machineor automatic welding for the respective layers given inQW-409.29.

(e) Welders who will use manual and semiautomaticGTAW or PAW shall be qualified to use these weldingprocesses as required by QW-300. In addition, each weldershall complete a proficiency demonstration. For this dem-onstration, each welder shall deposit two or more weldbeads using WPS parameters for each deposit layer. Thetest coupon size shall be sufficiently large to make therequired weld bead passes. The minimum pass length shallbe 4 in. (100 mm). The heat input used by the welder shallbe measured for each pass, and the size of each weld beadshall be measured for each pass, and they shall be asrequired by the WPS. The following essential variablesshall apply for this demonstration:

(1) a change from one welding procedure to another(2) a change from manual to semiautomatic welding

and vice versa(3) a change in position based on a groove weld in

either plate or pipe as shown in table QW-461.9(4) continuity of qualification in accordance with

QW-322 shall be based on following the WPS that wasdemonstrated in addition to using the process as requiredby QW-322

Page 80: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

ARTICLE IIIWELDING PERFORMANCE QUALIFICATIONS

QW-300 GENERALQW-300.1 This Article lists the welding processes sep-

arately, with the essential variables that apply to welderand welding operator performance qualifications.

The welder qualification is limited by the essential vari-ables given for each welding process. These variables arelisted in QW-350, and are defined in Article IV WeldingData. The welding operator qualification is limited by theessential variables given in QW-360 for each type of weld.

A welder or welding operator may be qualified by radi-ography of a test coupon, radiography of his initial produc-tion welding, or by bend tests taken from a test couponexcept as stated in QW-304 and QW-305.

QW-300.2(a) The basic premises of responsibility in regard to

welding are contained within QW-103 and QW-301.2.These paragraphs require that each manufacturer or con-tractor (an assembler or an installer is to be included withinthis premise) shall be responsible for conducting tests toqualify the performance of welders and welding operatorsin accordance with qualified Welding Procedure Specifica-tions, which his organization employs in the constructionof weldments built in accordance with the Code. The pur-pose of this requirement is to ensure that the manufactureror contractor has determined that his welders and weldingoperators using his procedures are capable of developingthe minimum requirements specified for an acceptableweldment. This responsibility cannot be delegated toanother organization.

(b) The welders or welding operators used to producesuch weldments shall be tested under the full supervisionand control of the manufacturer, contractor, assembler, orinstaller during the production of these test weldments. Itis not permissible for the manufacturer, contractor, assem-bler, or installer to have the welding performed by anotherorganization. It is permissible, however, to subcontract anyor all of the work of preparation of test materials for weld-ing and subsequent work on the preparation of test speci-mens from the completed weldments, performance ofnondestructive examination and mechanical tests, providedthe manufacturer, contractor, assembler, or installer acceptsfull responsibility for any such work.

51

(c) The Code recognizes a manufacturer, contractor,assembler, or installer as the organization which hasresponsible operational control of the production of theweldments to be made in accordance with this Code. If inan organization effective operational control of the welderperformance qualification for two or more companies ofdifferent names exists, the companies involved shalldescribe in the Quality Control system, the operationalcontrol of performance qualifications. In this case requali-fication of welders and welding operators within the com-panies of such an organization will not be required,provided all other requirements of Section IX are met.

(d) The Code recognizes that manufacturers or contrac-tors may maintain effective operational control of Welder/Welding Operator Performance Qualification (WPQ) rec-ords under different ownership than existed during theoriginal welder or welding operator qualification. When amanufacturer or contractor or part of a manufacturer orcontractor is acquired by a new owner(s), the WPQs maybe used by the new owner(s) without requalification, pro-vided all of the following are met:

(1) the new owner(s) takes responsibility for theWPQs

(2) the WPQs reflect the name of the new owner(s)(3) the Quality Control System/Quality Assurance

Program reflects the source of the WPQs as being fromthe former manufacturer or contractor

QW-300.3 More than one manufacturer, contractor,assembler, or installer may simultaneously qualify one ormore welders or welding operators. When simultaneousqualifications are conducted, each participating organiza-tion shall be represented during welding of test couponsby an employee who is responsible for welder performancequalification.

The welding procedure specifications (WPS) that arefollowed during simultaneous qualifications shall be com-pared by the participating organizations. The WPSs shallbe identical for all the essential variables, except for thepreheat temperature and PWHT requirements. The quali-fied thickness ranges for base metal and deposited weldmetal need not be identical, but these thicknesses shall beadequate to permit welding of the test coupons. Alterna-tively, the participating organizations shall agree upon the

07

Page 81: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

use of a single WPS provided each participating organiza-tion has a PQR(s) to support the WPS covering the rangeof variables to be followed in the performance qualification.When a single WPS is to be followed, each participatingorganization shall review and accept that WPS.

Each participating organization’s representative shallpositively identify each welder or welding operator whois being tested. Each organizational representative shallalso verify marking of the test coupon with the welder’sor welding operator’s identification, and marking of thetop of the test coupon when the orientation must be knownin order to remove test specimens.

Each organization’s representative shall perform a visualexamination of each completed test coupon and shall exam-ine each test specimen to determine its acceptability. Alter-natively, after visual examination, when the test coupon(s)are prepared and tested by an independent laboratory, thatlaboratory’s report may be used as the basis for acceptingthe test results. When the test coupon(s) is radiographicallyexamined (QW-302.2), the radiographic testing facility’sreport may be used as the basis for acceptance of theradiographic test.

Each organizational representative shall complete andcertify a Welder /Welding Operator Performance Qualifi-cation (WPQ) Record for each welder or welding operator.Forms QW-484A/QW-484B (see Nonmandatory Appen-dix B) have been provided as a guide for the WPQ.

When a welder or welding operator changes employersbetween participating organizations, the employing organi-zation shall verify that the welder’s continuity of qualifica-tions has been maintained as required by QW-322 byprevious employers since his qualification date. If thewelder or welding operator has had his qualification with-drawn for specific reasons, the employing organizationshall notify all other participating organizations that thewelder’s or welding operator’s qualification(s) has beenrevoked in accordance with QW-322.1(b). The remainingparticipating organizations shall determine that the welderor welding operator can perform satisfactory work in accor-dance with this Section.

When a welder’s or welding operator’s qualificationsare renewed in accordance with the provisions ofQW-322.2, each renewing organization shall be repre-sented by an employee who is responsible for welder per-formance qualification. The testing procedures shall followthe rules of this paragraph.

QW-301 Tests

QW-301.1 Intent of Tests. The performance qualifica-tion tests are intended to determine the ability of weldersand welding operators to make sound welds.

QW-301.2 Qualification Tests. Each manufacturer orcontractor shall qualify each welder or welding operator

52

for each welding process to be used in production welding.The performance qualification test shall be welded in accor-dance with qualified Welding Procedure Specifications(WPS), or Standard Welding Procedure Specifications(SWPS) listed in Appendix E, except that when perform-ance qualification is done in accordance with a WPS orSWPS that requires a preheat or postweld heat treatment,these may be omitted. Changes beyond which requalifica-tion is required are given in QW-350 for welders and inQW-360 for welding operators. Allowable visual, mechani-cal, and radiographic examination requirements aredescribed in QW-304 and QW-305. Retests and renewalof qualification are given in QW-320.

The welder or welding operator who prepares the WPSqualification test coupons meeting the requirements ofQW-200 is also qualified within the limits of the perform-ance qualifications, listed in QW-304 for welders and inQW-305 for welding operators. He is qualified only withinthe limits for positions specified in QW-303.

The performance test may be terminated at any stage ofthe testing procedure, whenever it becomes apparent to thesupervisor conducting the tests that the welder or weldingoperator does not have the required skill to produce satis-factory results.

QW-301.3 Identification of Welders and WeldingOperators. Each qualified welder and welding operatorshall be assigned an identifying number, letter, or symbolby the manufacturer or contractor, which shall be used toidentify the work of that welder or welding operator.

QW-301.4 Record of Tests. The record ofWelder /Welding Operator Performance Qualification(WPQ) tests shall include the essential variables (QW-350or QW-360), the type of test and test results, and the rangesqualified in accordance with QW-452 for each welder andwelding operator. Suggested forms for these records aregiven in Forms QW-484A/QW-484B (see NonmandatoryAppendix B).

QW-302 Type of Test RequiredQW-302.1 Mechanical Tests. Except as may be speci-

fied for special processes (QW-380), the type and numberof test specimens required for mechanical testing shall bein accordance with QW-452. Groove weld test specimensshall be removed in a manner similar to that shown infigures QW-463.2(a) through QW-463.2(h). Fillet weld testspecimens shall be removed in a manner similar to thatshown in figures QW-462.4(a) through QW-462.4(d) andfigure QW-463.2(h).

All mechanical tests shall meet the requirements pre-scribed in QW-160 or QW-180, as applicable.

QW-302.2 Radiographic Examination. When thewelder or welding operator is qualified by radiographicexamination, as permitted in QW-304 for welders and

Page 82: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-305 for welding operators, the minimum length ofcoupon(s) to be examined shall be 6 in. (150 mm) andshall include the entire weld circumference for pipe(s),except that for small diameter pipe, multiple coupons maybe required, but the number need not exceed four consecu-tively made test coupons. The radiographic technique andacceptance criteria shall be in accordance with QW-191.

QW-302.3 Test Coupons in Pipe. For test couponsmade on pipe in position 1G or 2G of figure QW-461.4,two specimens shall be removed as shown for bend speci-mens in figure QW-463.2(d) or figure QW-463.2(e), omit-ting the specimens in the upper-right and lower-leftquadrants, and replacing the root-bend specimen in theupper-left quadrant of figure QW-463.2(d) with a face-bend specimen. For test coupons made on pipe in position5G or 6G of figure QW-461.4, specimens shall be removedin accordance with figure QW-463.2(d) or figureQW-463.2(e) and all four specimens shall pass the test.For test coupons made in both positions 2G and 5G on asingle pipe test coupon, specimens shall be removed inaccordance with figure QW-463.2(f) or figureQW-463.2(g).

QW-302.4 Visual Examination. For plate coupons allsurfaces (except areas designated “discard”) shall be exam-ined visually per QW-194 before cutting of bend speci-mens. Pipe coupons shall be visually examined perQW-194 over the entire circumference, inside and outside.

QW-303 Limits of Qualified Positions andDiameters (See QW-461)

QW-303.1 Groove Welds — General. Welders andwelding operators who pass the required tests for groovewelds in the test positions of table QW-461.9 shall bequalified for the positions of groove welds and fillet weldsshown in table QW-461.9. In addition, welders and weldingoperators who pass the required tests for groove weldsshall also be qualified to make fillet welds in all thicknessesand pipe diameters of any size within the limits of thewelding variables of QW-350 or QW-360, as applicable.

QW-303.2 Fillet Welds — General. Welders andwelding operators who pass the required tests for filletwelds in the test positions of table QW-461.9 shall bequalified for the positions of fillet welds shown in tableQW-461.9. Welders and welding operators who pass thetests for fillet welds shall be qualified to make fillet weldsonly in the thicknesses of material, sizes of fillet welds,and diameters of pipe and tube 27⁄8 in. (73 mm) O.D. andover, as shown in table QW-452.5, within the applicableessential variables. Welders and welding operators whomake fillet welds on pipe or tube less than 27⁄8 in. (73 mm)O.D. must pass the pipe fillet weld test per table QW-452.4or the required mechanical tests in QW-304 and QW-305as applicable.

53

QW-303.3 Special Positions. A fabricator who doesproduction welding in a special orientation may make thetests for performance qualification in this specific orienta-tion. Such qualifications are valid only for the flat positionand for the special positions actually tested, except that anangular deviation of ±15 deg is permitted in the inclinationof the weld axis and the rotation of the weld face, as definedin figures QW-461.1 and QW-461.2.

QW-303.4 Stud-Weld Positions. Qualification in the4S position also qualifies for the 1S position. Qualificationin the 4S and 2S positions qualifies for all positions.

QW-303.5 Tube-to-Tubesheet Welder and WeldingOperator Qualification. When the applicable Code Sec-tion requires the use of QW-193 for tube-to-tubesheet dem-onstration mockup qualification tests, QW-193.2 shallapply. If specific qualification test requirements are notspecified by the applicable Code Section, welders andwelding operators shall be qualified with one of the follow-ing methods:

(a) groove welds per the requirements of QW-303.1(b) a demonstration mockup per the requirements of

QW-193.2

QW-304 Welders

Except for the special requirements of QW-380, eachwelder who welds under the rules of the Code shall havepassed the mechanical and visual examinations prescribedin QW-302.1 and QW-302.4 respectively. Alternatively,welders making a groove weld using SMAW, SAW,GTAW, PAW, and GMAW (except short-circuiting mode)or a combination of these processes, may be qualified byradiographic examination, except for P-No. 21 throughP-No. 25, P-No. 51 through P-No. 53, and P-No. 61 throughP-No. 62 metals. Welders making groove welds in P-No. 21through P-No. 25 and P-No. 51 through P-No. 53 metalswith the GTAW process may also be qualified by radio-graphic examination. The radiographic examination shallbe in accordance with QW-302.2.

A welder qualified to weld in accordance with one quali-fied WPS is also qualified to weld in accordance with otherqualified WPSs, using the same welding process, withinthe limits of the essential variables of QW-350.

QW-304.1 Examination. Welds made in test couponsfor performance qualification may be examined by visualand mechanical examinations (QW-302.1, QW-302.4) orby radiography (QW-302.2) for the process(es) and modeof arc transfer specified in QW-304. Alternatively, a mini-mum 6 in. (150 mm) length of the first production weld(s)made by a welder using the process(es) and/or mode ofarc transfer specified in QW-304 may be examined byradiography.

Page 83: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(a) For pipe(s) welded in the 5G, 6G, or special posi-tions, the entire production weld circumference made bythe welder shall be radiographed.

(b) For small diameter pipe where the required mini-mum length of weld cannot be obtained from a singleproduction pipe circumference, additional consecutive cir-cumferences made by the welder shall be radiographed,except that the total number of circumferences need notexceed four.

(c) The radiographic technique and acceptance criteriafor production welds shall be in accordance with QW-191.1and QW-191.2.2.

QW-304.2 Failure to Meet Radiographic Standards.If a production weld is selected for welder performancequalification and it does not meet the radiographic stan-dards, the welder has failed the test. In this event, the entireproduction weld made by this welder shall be radiographedand repaired by a qualified welder or welding operator.Alternatively, retests may be made as permitted inQW-320.

QW-305 Welding Operators

Except for the special requirements of QW-380, eachwelding operator who welds under the rules of this Codeshall have passed the mechanical and visual examinationsprescribed in QW-302.1 and QW-302.4 respectively. Alter-natively, welding operators making a groove weld usingSMAW, SAW, GTAW, PAW, EGW, and GMAW (exceptshort-circuiting mode) or a combination of these processes,may be qualified by radiographic examination, except forP-No. 21 through P-No. 25, P-No. 51 through P-No. 53,and P-No. 61 through P-No. 62 metals. Welding operatorsmaking groove welds in P-No. 21 through P-No. 25 andP-No. 51 through P-No. 53 metals with the GTAW processmay also be qualified by radiographic examination. Theradiographic examination shall be in accordance withQW-302.2.

A welding operator qualified to weld in accordance withone qualified WPS is also qualified to weld in accordancewith other qualified WPSs within the limits of the essentialvariables of QW-360.

QW-305.1 Examination. Welds made in test couponsmay be examined by radiography (QW-302.2) or by visualand mechanical examinations (QW-302.1, QW-302.4).Alternatively, a minimum 3 ft (1 m) length of the firstproduction weld(s) made entirely by the welding operatorin accordance with a qualified WPS may be examined byradiography.

(a) For pipe(s) welded in the 5G, 6G, or special posi-tions, the entire production weld circumference made bythe welding operator shall be radiographed.

(b) For small diameter pipe where the required mini-mum length of weld cannot be obtained from a single

54

production pipe circumference, additional consecutive cir-cumferences made by the welding operator shall be radio-graphed except that the total number of circumferencesneed not exceed four.

(c) The radiographic technique and acceptance criteriafor production welds shall be in accordance with QW-191.1and QW-191.2.3.

QW-305.2 Failure to Meet Radiographic Standards.If a portion of a production weld is selected for weldingoperator performance qualification, and it does not meetthe radiographic standards, the welding operator has failedthe test. In this event, the entire production weld made bythis welding operator shall be radiographed completelyand repaired by a qualified welder or welding operator.Alternatively, retests may be made as permitted inQW-320.

QW-306 Combination of Welding Processes

Each welder or welding operator shall be qualified withinthe limits given in QW-301 for the specific welding pro-cess(es) he will be required to use in production welding.A welder or welding operator may be qualified by makingtests with each individual welding process in separate testcoupons, or with a combination of welding processes in asingle test coupon. Two or more welders or welding opera-tors, each using the same or a different welding process,may be qualified in combination in a single test coupon.For combination qualifications in a single test coupon, thelimits for thicknesses of deposited weld metal, and bendand fillet testing are given in QW-452 and shall be consid-ered individually for each welder or welding operator foreach welding process or whenever there is a change in anessential variable. A welder or welding operator qualifiedin combination on a single test coupon is qualified to weldin production using any of his processes individually or indifferent combinations, provided he welds within his limitsof qualification with each specific process.

Failure of any portion of a combination test in a singletest coupon constitutes failure of the entire combination.

QW-310 QUALIFICATION TEST COUPONS

QW-310.1 Test Coupons. The test coupons may beplate, pipe, or other product forms. When all position quali-fications for pipe are accomplished by welding one pipeassembly in both the 2G and 5G positions (figureQW-461.4), NPS 6 (DN 150), NPS 8 (DN 200), NPS 10(DN 250), or larger diameter pipe shall be employed tomake up the test coupon as shown in figure QW-463.2(f)for NPS 10 (DN 250) or larger pipe and in figureQW-463.2(g) for NPS 6 (DN 150) or NPS 8 (DN 200)diameter pipe.

Page 84: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-310.2 Welding Groove With Backing. Thedimensions of the welding groove on the test coupon usedin making qualification tests for double-welded groovewelds or single-welded groove welds with backing shall bethe same as those for any Welding Procedure Specification(WPS) qualified by the manufacturer, or shall be as shownin figure QW-469.1.

A single-welded groove-weld test coupon with backingor a double-welded groove-weld test coupon shall be con-sidered welding with backing. Partial penetration groovewelds and fillet welds are considered welding with backing.

QW-310.3 Welding Groove Without Backing. Thedimensions of the welding groove of the test coupon used inmaking qualification tests for single-welded groove weldswithout backing shall be the same as those for any WPSqualified by the manufacturer, or as shown in figureQW-469.2.

QW-320 RETESTS AND RENEWAL OFQUALIFICATION

QW-321 Retests

A welder or welding operator who fails one or more ofthe tests prescribed in QW-304 or QW-305, as applicable,may be retested under the following conditions.

QW-321.1 Immediate Retest Using Visual Examina-tion. When the qualification coupon has failed the visualexamination of QW-302.4, retesting shall be by visualexamination before conducting the mechanical testing.

When an immediate retest is made, the welder or weldingoperator shall make two consecutive test coupons for eachposition which he has failed, all of which shall pass thevisual examination requirements.

The examiner may select one of the successful test cou-pons from each set of retest coupons which pass the visualexamination for conducting the mechanical testing.

QW-321.2 Immediate Retest Using Mechanical Test-ing. When the qualification coupon has failed the mechani-cal testing of QW-302.1, retesting shall be by mechanicaltesting.

When an immediate retest is made, the welder or weldingoperator shall make two consecutive test coupons for eachposition which he has failed, all of which shall pass thetest requirements.

QW-321.3 Immediate Retest Using Radiography.When the qualification coupon has failed the radiographicexamination of QW-302.2, the immediate retest shall beby the radiographic examination method.

(a) For welders and welding operators the retest shallbe to radiographically examine two 6 in. (150 mm) platecoupons; for pipe, to examine two pipes for a total of 12 in.(300 mm) of weld, which shall include the entire weld

55

circumference for pipe or pipes (for small diameter pipethe total number of consecutively made test coupons neednot exceed eight).

(b) At the option of the manufacturer, the welder whohas failed the production weld alternative test may beretested by radiographing an additional twice the requiredlength or number of pipe circumferences of the same orconsecutively made production weld(s) specified inQW-304.1. If this length of weld passes the test, the welderis qualified and the area of weld on which he had previouslyfailed the test shall be repaired by him or another qualifiedwelder. If this length does not meet the radiographic stan-dards, the welder has failed the retest and all of the produc-tion welds made by this welder shall be radiographedcompletely and repaired by a qualified welder or weldingoperator.

(c) At the option of the manufacturer, the welding opera-tor who has failed the production weld alternative testmay be retested by radiographing an additional twice therequired length or number of pipe circumferences of thesame or consecutively made production weld(s) specifiedin QW-305.1. If this length of weld passes the test, thewelding operator is qualified and the area of weld on whichhe had previously failed the test shall be repaired by himor another qualified welder or welding operator. If thislength does not meet the radiographic standards, the weld-ing operator has failed the retest and all of the productionwelds made by this welding operator shall be radiographedcompletely and repaired by a qualified welder or weldingoperator.

QW-321.4 Further Training. When the welder or thewelding operator has had further training or practice, anew test shall be made for each position on which he failedto meet the requirements.

QW-322 Expiration and Renewal of QualificationQW-322.1 Expiration of Qualification. The perform-

ance qualification of a welder or welding operator shall beaffected when one of the following conditions occurs:

(a) When he has not welded with a process during aperiod of 6 months or more, his qualification for that pro-cess shall expire; unless, within the 6 month period, priorto his expiration of qualification

(1) the welder has welded with that process usingmanual or semiautomatic welding, under the supervisionand control of the qualifying manufacturer or contractoror participating organization(s) as identified in QW-300.3;that will extend his qualification for an additional 6 months

(2) the welding operator has welded with that processusing machine or automatic welding, under the supervisionand control of the qualifying manufacturer or contractoror participating organization(s) as identified in QW-300.3;that will extend his qualification for an additional 6 months

07

Page 85: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(b) When there is a specific reason to question his abilityto make welds that meet the specification, the qualificationsthat support the welding he is doing shall be revoked. Allother qualifications not questioned remain in effect.

QW-322.2 Renewal of Qualification(a) Renewal of qualification expired under

QW-322.1(a) may be made for any process by welding asingle test coupon of either plate or pipe, of any material,thickness or diameter, in any position, and by testing ofthat coupon as required by QW-301 and QW-302. A suc-cessful test renews the welder or welding operator’s previ-ous qualifications for that process for those materials,thicknesses, diameters, positions, and other variables forwhich he was previously qualified.

Providing the conditions of QW-304 and QW-305 aresatisfied, renewal of qualification under QW-322.1(a) maybe done on production work.

(b) Welders and welding operators whose qualificationshave been revoked under QW-322.1(b) above shall requal-ify. Qualification shall utilize a test coupon appropriate tothe planned production work. The coupon shall be weldedand tested as required by QW-301 and QW-302. Successfultest restores the qualification.

QW-350 WELDING VARIABLES FORWELDERS

QW-351 General

A welder shall be requalified whenever a change is madein one or more of the essential variables listed for eachwelding process.

Where a combination of welding processes is requiredto make a weldment, each welder shall be qualified for theparticular welding process or processes he will be requiredto use in production welding. A welder may be qualifiedby making tests with each individual welding process, orwith a combination of welding processes in a single testcoupon.

The limits of weld metal thickness for which he will bequalified are dependent upon the approximate thickness ofthe weld metal he deposits with each welding process,exclusive of any weld reinforcement, this thickness shall beconsidered the test coupon thickness as given in QW-452.

In any given production weldment, welders may notdeposit a thickness greater than that permitted by QW-452for each welding process in which they are qualified.

56

QW-352OXYFUEL GAS WELDING (OFW)

Essential Variables

Paragraph Brief of Variables

QW-402.7 + Backing

Joints

.2 Maximum qualifiedQW-403Base Metals .18 � P-Number

.14 ± FillerQW-404

.15 � F-NumberFiller Metals

.31 � t Weld deposit

QW-405.1 + Position

Positions

QW-408.7 � Type fuel gas

Gas

QW-353SHIELDED METAL-ARC WELDING (SMAW)

Essential Variables

Paragraph Brief of Variables

QW-402.4 − Backing

Joints

.16 � Pipe diameterQW-403Base Metals .18 � P-Number

.15 � F-NumberQW-404Filler Metals .30 � t Weld deposit

.1 + PositionQW-405Positions .3 � ↑↓ Vertical welding

QW-354SEMIAUTOMATIC SUBMERGED-ARC WELDING (SAW)

Essential Variables

Paragraph Brief of Variables

.16 � Pipe diameterQW-403Base Metals .18 � P-Number

.15 � F-NumberQW-404Filler Metals .30 t Weld deposit

QW-405.1 + Position

Positions

Page 86: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-355SEMIAUTOMATIC GAS METAL-ARC

WELDING (GMAW)[This Includes Flux-Cored Arc Welding (FCAW)]

Essential Variables

Paragraph Brief of Variables

QW-402 − Backing.4

Joints

.16 � Pipe diameterQW-403Base Metals .18 � P-Number

.15 � F-NumberQW-404

.30 � t Weld depositFiller Metals

.32 t Limit (S. Cir. Arc.)

.1 + PositionQW-405Positions .3 � ↑↓ Vertical welding

QW-408 − Inert backing.8

Gas

QW-409 � Transfer mode.2

Electrical

QW-356MANUAL AND SEMIAUTOMATIC GASTUNGSTEN-ARC WELDING (GTAW)

Essential Variables

Paragraph Brief of Variables

QW-402.4 − Backing

Joints

.16 � Pipe diameterQW-403Base Metals .18 � P-Number

.14 ± Filler

.15 � F-Number

QW-404 .22 ± InsertsFiller Metals .23 � Solid or metal-cored

to flux-cored

.30 � t Weld deposit

.1 + PositionQW-405Positions .3 � ↑↓ Vertical welding

QW-408.8 − Inert backing

Gas

QW-409.4 � Current or polarity

Electrical

57

QW-357MANUAL AND SEMIAUTOMATICPLASMA-ARC WELDING (PAW)

Essential Variables

Paragraph Brief of Variables

QW-402.4 − Backing

Joints

.16 � Pipe diameterQW-403Base Metals .18 � P-Number

.14 ± Filler

.15 � F-Number

QW-404 .22 ± InsertsFiller Metals .23 � Solid or metal-cored

to flux-cored

.30 � t Weld deposit

.1 + PositionQW-405Positions .3 � ↑↓ Vertical welding

QW-408.8 − Inert backing

Gas

Legend for QW-352 through QW-357:� Change ↑ Uphill+ Addition ↓ Downhill− Deletion

QW-360 WELDING VARIABLES FORWELDING OPERATORS

QW-361 General

A welding operator shall be requalified whenever achange is made in one of the following essential variables(QW-361.1 and QW-361.2). There may be exceptions oradditional requirements for the processes of QW-362,QW-363, and the special processes of QW-380.

QW-361.1 Essential Variables — AutomaticWelding

(a) A change from automatic to machine welding.(b) A change in the welding process.(c) For electron beam and laser welding, the addition

or deletion of filler metal.(d) For laser welding, a change in laser type (e.g., a

change from CO2 to YAG).(e) For friction welding, a change from continous drive

to inertia welding or vice versa.(f) For electron beam welding, a change from vacuum

to out-of-vacuum equipment, and vice versa.

QW-361.2 Essential Variables — Machine Welding(a) A change in the welding process.(b) A change from direct visual control to remote visual

control and vice-versa.

Page 87: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(c) The deletion of an automatic arc voltage controlsystem for GTAW.

(d) The deletion of automatic joint tracking.(e) The addition of welding positions other than those

already qualified (see QW-120, QW-130, and QW-303).(f) The deletion of consumable inserts, except that quali-

fication with consumable inserts shall also qualify for filletwelds and welds with backing.

(g) The deletion of backing. Double-welded groovewelds are considered welding with backing.

(h) A change from single pass per side to multiple passesper side but not the reverse.

QW-362 Electron Beam Welding (EBW), LaserBeam Welding (LBW), and FrictionWelding (FRW)

The performance qualification test coupon shall be pro-duction parts or test coupons that have joint designs permit-ted by any qualified WPS. The coupon shall bemechanically tested in accordance with QW-452. Alterna-tively, when the part or coupon does not readily lend itselfto the preparation of bend test specimens, the part may becut so that at least two full-thickness weld cross sectionsare exposed. Those cross sections shall be smoothed andetched with a suitable etchant (see QW-470) to give a cleardefinition of the weld metal and heat affected zone. Theweld metal and heat affected zone shall exhibit completefusion and freedom from cracks. The essential variablesfor welding operator qualification shall be in accordancewith QW-361.

QW-363 Stud Welding

Stud welding operators shall be performance qualifiedin accordance with the test requirements of QW-193 andthe position requirements of QW-303.4.

QW-380 SPECIAL PROCESSESQW-381 Corrosion-Resistant Weld Metal Overlay

QW-381.1 Qualification Test(a) The size of test coupons, limits of base metal thick-

ness qualification, required examinations and tests, and testspecimens shall be as specified in table QW-453.

(b) Welders or welding operators who pass the tests forcorrosion-resistant weld metal overlay cladding shall onlybe qualified to apply corrosion-resistant weld metal overlayportion of a groove weld joining composite clad or linedmaterials.

(c) The essential variables of QW-350 and QW-360shall apply for welders and welding operators, respectively,except there is no limit on the maximum thickness ofcorrosion-resistant overlay that may be applied in produc-tion. When specified as essential variables, the limitations

58

of position and diameter qualified for groove welds shallapply to overlay welds, except the limitations on diameterqualified shall apply only to welds deposited in the circum-ferential direction.

QW-381.2 Qualification on Composite Welds. Awelder or welding operator who has qualified on compositewelds in clad or lined material, as provided in QW-383.1(b)is also qualified to deposit corrosion-resistant weld metaloverlay.

QW-381.3 Alternative Qualification With GrooveWeld Tests. When a chemical composition is not specifiedin the WPS, welders or welding operators who successfullycomplete a groove weld performance qualification testmeeting the corrosion-resistant overlay bend test require-ments of QW-163 may be considered qualified for corro-sion-resistant overlay welding within the ranges defined inQW-350 or QW-360.

QW-382 Hard-Facing Weld Metal Overlay (WearResistant)

(a) The size of the test coupons, limits of base metalthickness qualification, required examinations and tests,and test specimens shall be as specified in table QW-453.Base material test coupons may be as permitted in QW-423.

(b) Welders and welding operators who pass the testsfor hard-facing weld metal overlay are qualified for hard-facing overlay only.

(c) The essential variable, of QW-350 and QW-360,shall apply for welders and welding operators, respectively,except there is no limit on the maximum thickness of hard-facing overlay that may be applied in production. Whenspecified as essential variables, the limitations of positionand diameter qualified for groove welds shall apply tooverlay welds except the limitations on diameter qualifiedshall apply only to welds deposited in the circumferentialdirection.

(d) Qualification with one AWS classification within anSFA specification qualifies for all other AWS classifica-tions in that SFA specification.

(e) A change in welding process shall require welderand welding operator requalification.

QW-383 Joining of Clad Materials and AppliedLinings

QW-383.1 Clad Materials(a) Welders and welding operators who will join the

base material portion of clad materials shall be qualifiedfor groove welding in accordance with QW-301. Weldersand welding operators who will apply the cladding portionof a weld between clad materials shall be qualified inaccordance with QW-381. Welders and welding operators

Page 88: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

07

2007 SECTION IX

need only be qualified for the portions of composite weldsthat they will make in production.

(b) As an alternative to QW-383.1(a), welders and weld-ing operators may be qualified using composite test cou-pons. The test coupon shall be at least 3⁄8 in. (10 mm) thickand of dimensions such that a groove weld can be madeto join the base materials and the corrosion-resistant weldmetal overlay can be applied to the completed groove weld.Four side bend test specimens shall be removed from thecompleted test coupon and tested. The groove weld portionand the corrosion-resistant weld metal overlay portion ofthe test coupon shall be evaluated using the respectivecriteria in QW-163. Welders and welding operators quali-fied using composite test coupons are qualified to join basematerials as provided by QW-301, and they are qualifiedto apply corrosion-resistant weld metal overlay as providedby QW-381.

QW-383.2 Applied Linings(a) Welders and welding operators shall be qualified

following the rules for making groove or fillet welds inaccordance with QW-301. Plug welds for attaching appliedlinings shall be considered equivalent to fillet welds forthe purpose of performance qualification.

(b) An alternate test coupon shall consist of the geome-try to be welded, except the base material need not exceed1 in. (25 mm) in thickness. The welded test coupon shallbe sectioned and etched to reveal the weld and heat-affectedzone. The weld shall show penetration into the base metal.

QW-384 Resistance Welding OperatorQualification

Each welding operator shall be tested on each machinetype which he will use. Qualification testing on any

59

P-No. 21 through P-No. 25 metal shall qualify the operatorfor all metals. Qualification on any P-No. 1 throughP-No. 11 or any P-No. 41 through P-No. 49 metals shallqualify the operator for all P-No. 1 through P-No. 11 andP-No. 41 through P-No. 49 metals. Qualification testingon any P-No. 51 through P-No. 53, P-No. 61, or P-No. 62metal shall qualify the operator for all P-No. 51 throughP-No. 53, P-No. 61, and P-No. 62 metals.

(a) Qualification for spot and projection welding shallconsist of making a set of ten consecutive welds, five ofwhich shall be subjected to mechanical shear tests or peeltests, and five to macro-examination. Examination, testing,and acceptance criteria shall be in accordance withQW-196.

(b) Qualification for seam welding shall consist of thattesting specified in QW-286.3, except that only one trans-verse cross section and one longitudinal cross section arerequired.

QW-385 Flash Welding Operator Qualification

Each welding operator shall be tested by welding a testcoupon following any WPS. The test coupon shall bewelded and tested in accordance with QW-199. Qualifica-tion following any flash welding WPS qualifies the operatorto follow all flash welding WPSs.

Production weld sampling tests required by other Sec-tions may be used to qualify welding operators. The testmethod, extent of tests, and acceptance criteria of the otherSections and QW-199.2 shall be met when this is done.

Page 89: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

ARTICLE IVWELDING DATA

QW-400 VARIABLES

QW-401 General

Each welding variable described in this Article is appli-cable as an essential, supplementary essential, or nonessen-tial variable for procedure qualification when referencedin QW-250 for each specific welding process. Essentialvariables for performance qualification are referenced inQW-350 for each specific welding process. A change fromone welding process to another welding process is an essen-tial variable and requires requalification.

QW-401.1 Essential Variable (Procedure). A changein a welding condition which will affect the mechanicalproperties (other than notch toughness) of the weldment(e.g., change in P-Number, welding process, filler metal,electrode, preheat or postweld heat treatment).

QW-401.2 Essential Variable (Performance). Achange in a welding condition which will affect the abilityof a welder to deposit sound weld metal (such as a change inwelding process, deletion of backing, electrode, F-Number,technique, etc.).

QW-401.3 Supplementary Essential Variable (Pro-cedure). A change in a welding condition which will affectthe notch-toughness properties of a weldment (for example,change in welding process, uphill or down vertical welding,heat input, preheat or PWHT, etc.). Supplementary essen-tial variables are in addition to the essential variables foreach welding process.

When a procedure has been previously qualified to sat-isfy all requirements other than notch toughness, it is thennecessary only to prepare an additional test coupon usingthe same procedure with the same essential variables, butadditionally with all of the required supplementary essen-tial variables, with the coupon long enough to provide thenecessary notch-toughness specimens.

When a procedure has been previously qualified to sat-isfy all requirements including notch toughness, but oneor more supplementary essential variable is changed, thenit is only necessary to prepare an additional test couponusing the same welding procedure and the new supplemen-tary essential variable(s), with the coupon long enoughto provide the necessary notch-toughness specimens. If a

60

previously qualified weld procedure has satisfactory notch-toughness values in the weld metal, then it is necessaryonly to test notch-toughness specimens from the heataffected zone when such are required.

When essential variables are qualified by one or morePQRs and supplementary essential variables are qualifiedby other PQRs, the ranges of essential variables establishedby the former PQRs are only affected by the latter to theextent specified in the applicable supplementary essentialvariable (e.g., essential variable QW-403.8 governs theminimum and maximum thickness of base metal qualified.When supplementary essential variable QW-403.6 applies,it modifies only the minimum thickness qualified, not themaximum).

QW-401.4 Nonessential Variable (Procedure). Achange in a welding condition which will not affect themechanical properties of a weldment (such as joint design,method of back gouging or cleaning, etc.)

QW-401.5 The welding data includes the welding vari-ables grouped as joints, base metals, filler metals, position,preheat, postweld heat treatment, gas, electrical characteris-tics, and technique. For convenience, variables for eachwelding process are summarized in table QW-416 for per-formance qualification.

QW-402 JointsQW-402.1 A change in the type of groove (Vee-

groove, U-groove, single-bevel, double-bevel, etc.).

QW-402.2 The addition or deletion of a backing.

QW-402.3 A change in the nominal composition ofthe backing.

QW-402.4 The deletion of the backing in single-welded groove welds. Double-welded groove welds areconsidered welding with backing.

QW-402.5 The addition of a backing or a change inits nominal composition.

QW-402.6 An increase in the fit-up gap, beyond thatinitially qualified.

QW-402.7 The addition of backing.

Page 90: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-402.8 A change in nominal size or shape of thestud at the section to be welded.

QW-402.9 In stud welding, a change in shielding asa result of ferrule or flux type.

QW-402.10 A change in the specified root spacing.

QW-402.11 The addition or deletion of nonmetallicretainers or nonfusing metal retainers.

QW-402.12 The welding procedure qualification testshall duplicate the joint configuration to be used in produc-tion within the limits listed, except that pipe or tube topipe or tube may be used for qualification of a pipe ortube to other shapes, and solid round to solid round maybe used for qualification of a solid round to other shapes

(a) any change exceeding ±10 deg in the angle measuredfor the plane of either face to be joined, to the axis ofrotation

(b) a change in cross-sectional area of the weld jointgreater than 10%

(c) a change in the outside diameter of the cylindricalweld interface of the assembly greater than ±10%

(d) a change from solid to tubular cross section at thejoint or vice versa regardless of QW-402.12(b)

QW-402.13 A change in the method of joining fromspot to projection to seam or vice versa.

QW-402.14 An increase or decrease of more than 10%in the spacing of the welds when they are within twodiameters of each other.

QW-402.15 A change in the size or shape of the projec-tion in projection welding.

QW-402.16 A decrease in the distance between theapproximate weld interface and the final surface of theproduction corrosion-resistant or hard-facing weld metaloverlay below the minimum thickness qualified as shownin figures QW-462.5(a) through QW-462.5(e). There is nolimit on the maximum thickness for corrosion-resistantor hard-facing weld metal overlay that may be used inproduction.

QW-402.17 An increase in the thickness of the produc-tion spray fuse hard-facing deposit above the thicknessdeposited on the procedure qualification test coupon.

QW-402.18 When the joint is a lap joint, the followingadditional variables shall apply:

(a) a change of more than 10% in the distance to theedge of the material

(b) a change of more than 10% in the joint overlap(c) a change in the number of layers of material(d) a change in the method of surface conditioning at

the metal-to-metal interfaces

61

QW-402.19 A change in the nominal diameter or nomi-nal thickness for tubular cross sections, or an increase inthe total cross section area beyond that qualified for allnontubular cross sections.

QW-402.20 A change in the joint configuration.

QW-402.21 A change in the method or equipment usedto minimize internal flash.

QW-402.22 A change in the end preparation method.

QW-402.23 For test coupons less than 11⁄2 in. (38 mm)thick, the addition of a cooling medium (water, flowinggas, etc.) to the back side of the weld. Qualification ontest coupons less than 11⁄2 in. (38 mm) thick with a coolingmedium on the back side of the weld qualifies base metalthickness equal to or greater than the test coupon thicknesswith and without coolant.

QW-402.24 Qualification with a cooling medium(water, flowing gas, etc.) on the root side of a test couponweld that is welded from one side qualifies all thicknessesof base metal with cooling medium down to the thicknessof the test coupon at the root or 1⁄2 in. (13 mm), whicheveris less.

QW-403 Base MetalsQW-403.1 A change from a base metal listed under

one P-Number in table QW/QB-422 to a metal listed underanother P-Number or to any other base metal. When jointsare made between two base metals that have differentP-Numbers, a procedure qualification shall be made forthe applicable combination of P-Numbers, even thoughqualification tests have been made for each of the two basemetals welded to itself.

QW-403.2 The maximum thickness qualified is thethickness of the test coupon.

QW-403.3 Where the measurement of penetration canbe made by visual or mechanical means, requalification isrequired where the base metal thickness differs by 20%from that of the test coupon thickness when the test couponthickness is 1 in. (25 mm) and under, and 10% when thetest coupon thickness is over 1 in. (25 mm) Where themeasurement of penetration cannot be made, requalifica-tion is required where the base metal thickness differs by10% from that of the test coupon when the test couponthickness is 1 in. (25 mm) and under, and 5% when thetest coupon thickness is over 1 in. (25 mm).

QW-403.4 Welding procedure qualifications shall bemade using a base metal of the same type or grade oranother base metal listed in the same group (see tableQW/QB-422) as the base metal to be used in productionwelding. When joints are to be made between base metalsfrom two different groups, a procedure qualification must

07

Page 91: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

be made for the applicable combination of base metals,even though procedure qualification tests have been madefor each of the two base metals welded to itself.

QW-403.5 Welding procedure specifications shall bequalified using one of the following:

(a) the same base metal (including type or grade) to beused in production welding

(b) for ferrous materials, a base metal listed in the sameP-Number Group Number in table QW/QB-422 as the basemetal to be used in production welding

(c) for nonferrous materials, a base metal listed withthe same P-Number UNS Number in table QW/QB-422as the base metal to be used in production welding

For ferrous materials in table QW/QB-422, a procedurequalification shall be made for each P-Number Group Num-ber combination of base metals, even though procedurequalification tests have been made for each of the twobase metals welded to itself. If, however, two or morequalification records have the same essential and supple-mentary essential variables, except that the base metalsare assigned to different Group Numbers within the sameP-Number, then the combination of base metals is alsoqualified. In addition, when base metals of two differentP-Number Group Number combinations are qualified usinga single test coupon, that coupon qualifies the welding ofthose two P-Number Group Numbers to themselves as wellas to each other using the variables qualified.

This variable does not apply when impact testing of theheat-affected zone is not required by other Sections.

QW-403.6 The minimum base metal thickness quali-fied is the thickness of the test coupon T or 5⁄8 in. (16 mm),whichever is less. However, where T is less than 1⁄4 in.(6 mm), the minimum thickness qualified is 1⁄2T. This limita-tion does not apply when a WPS is qualified with a PWHTabove the upper transformation temperature or when anaustenitic material is solution annealed after welding.

QW-403.8 A change in base metal thickness beyondthe range qualified in QW-451, except as otherwise permit-ted by QW-202.4(b).

QW-403.9 For single-pass or multipass welding inwhich any pass is greater than 1⁄2 in. (13 mm) thick, anincrease in base metal thickness beyond 1.1 times that ofthe qualification test coupon.

QW-403.10 For the short-circuiting transfer mode ofthe gas metal-arc process, when the qualification test cou-pon thickness is less than 1⁄2 in. (13 mm), an increase inthickness beyond 1.1 times that of the qualification testcoupon. For thicknesses of 1⁄2 in. (13 mm) and greater, usetable QW-451.1 or table QW-451.2, as applicable.

QW-403.11 Base metals specified in the WPS shall bequalified by a procedure qualification test that was madeusing base metals in accordance with QW-424.

62

QW-403.12 A change from a base metal listed underone P-Number of table QW/QB-422 to a base metal listedunder another P-Number. When joints are made betweentwo base metals that have different P-Numbers, requalifi-cation is required even though the two base metals havebeen independently qualified using the same procedure.When the melt-in technique is used for joining P-No. 1,P-No. 3, P-No. 4, and P-No. 5A, a procedure qualificationtest with one P-Number metal shall also qualify for thatP-Number metal welded to each of the lower P-Numbermetals, but not vice versa.

QW-403.13 A change from one P-No. 5 to any otherP-No. 5 (viz P-No. 5A to P-No. 5B or P-No. 5C or viceversa). A change from P-No. 9A to P-No. 9B but not viceversa. A change from one P-No. 10 to any other P-No. 10(viz P-No. 10A to P-No. 10B or P-No. 10C, etc., or viceversa).

QW-403.15 Welding procedure qualifications for laserbeam welding and electron beam welding shall be madeusing a base metal of the same type or grade or anotherbase metal listed in the same P-Number (and the samegroup where given — see table QW/QB-422) as the basemetal to be used in production welding. When joints areto be made between base metals from two differentP-Numbers (or two different groups), a procedure qualifi-cation must be made for the applicable combination ofbase metals even though procedure qualification tests havebeen made for each of the two base metals welded to itself.

QW-403.16 A change in the pipe diameter beyond therange qualified in QW-452, except as otherwise permittedin QW-303.1, QW-303.2, QW-381.1(c), or QW-382(c).

QW-403.17 In stud welding, a change in combinationof base metal listed under one P-Number in tableQW/QB-422 and stud metal P-Number (as defined in thefollowing Note), or to any other base metal/stud metalcombination.

NOTE: Stud metal shall be classified by nominal chemical compositionand can be assigned a P-Number when it meets the nominal compositionof any one of the P-Number metals.

QW-403.18 A change from one P-Number to any otherP-Number or to a base metal not listed in table QW/QB-422, except as permitted in QW-423, and in QW-420.2.

QW-403.19 A change to another base material type orgrade (type or grade are materials of the same nominalchemical analysis and mechanical property range, eventhough of different product form), or to any other basematerial type or grade. When joints are made between twodifferent types or grades of base material, a procedurequalification must be made for the applicable combinationsof materials, even though procedure qualification tests havebeen made for each of the two base materials weldedto itself.

07

Page 92: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-403.20 A change from a base metal, listed underone P-Number in table QW/QB-422, to a metal listed underanother P-Number or to any other base metal; from a basemetal of one subgroup to any other grouping in P-No. 10or 11.

QW-403.21 The addition or deletion of a coating, plat-ing or cladding, or a change in the nominal chemical analy-sis or thickness range of the plating or cladding, or a changein type of coating as specified in the WPS.

QW-403.22 A change in the base metal thicknessexceeding 10% of the thickness of the total joint from thatqualified.

QW-403.23 A change in base metal thickness beyondthe range qualified in table QW-453.

QW-403.24 A change in the specification, type, orgrade of the base metal. When joints are to be madebetween two different base metals, a procedure qualifica-tion must be made for the applicable combination eventhough procedure qualifications have been made for eachof the two base metals welded to themselves.

QW-403.25 Welding procedure qualifications shall bemade using a base metal of the same P-Number and GroupNumber as the base metal to be temper bead welded. Whenjoints are to be made between base metals from two differ-ent P-Number/Group Number combinations, a temper beadprocedure qualification must be made for each base metalP-Number/Group Number to be used in production; thismay be done in separate test coupons or in combinationon a single test coupon. When base metals of differentP-Number/Group Numbers are tested in the same coupon,the welding conditions and test results on each side of thecoupon shall be documented independently but may bereported on the same qualification record. Where temperbead welding is to be applied to only one side of a joint(e.g., on the P-No. 1 side of a joint between P-No. 1 andP-No. 8 metals) or where cladding is being applied orrepaired using temper bead techniques, qualification inaccordance with QW-290 is required only for the portionof the WPS that applies to welding on the material to betemper bead welded.

QW-403.26 An increase in the base metal carbonequivalent using the following formula:

CE p C +Mn6

+Cr+Mo+V

5+

Ni+Cu15

QW-403.27 The maximum thickness qualified is thethickness of the test coupon, T, or it is unlimited if the testcoupon is 11⁄2 in. (38 mm) thick or thicker. However, whereT is 1⁄4 in. (6 mm) or less, the maximum thickness qualifiedis 2T. This limitation applies to fillet welds as well as togroove welds.

63

QW-404 Filler Metals

QW-404.1 A change in the cross-sectional area of thefiller metal added (excluding buttering) or in the wire-feedspeed greater than ±10% beyond that qualified.

QW-404.2 A decrease in the thickness or change innominal specified chemical analysis of weld metal but-tering beyond that qualified. (Buttering or surfacing is thedeposition of weld metal on one or both faces of the jointprior to preparation of the joint for final electron beamwelding.)

QW-404.3 A change in the size of the filler metal.

QW-404.4 A change from one F-Number in tableQW-432 to any other F-Number or to any other filler metalnot listed in table QW-432.

QW-404.5 (Applicable only to ferrous metals.) Achange in the chemical composition of the weld depositfrom one A-Number to any other A-Number in tableQW-442. Qualification with A-No. 1 shall qualify forA-No. 2 and vice versa.

The weld metal chemical composition may be deter-mined by any of the following:

(a) For all welding processes — from the chemical anal-ysis of the weld deposit taken from the procedure qualifica-tion test coupon.

(b) For SMAW, GTAW, and PAW — from the chemi-cal analysis of the weld deposit prepared according to thefiller metal specification, or from the chemical compositionas reported either in the filler metal specification or themanufacturer’s or supplier’s certificate of compliance.

(c) For GMAW and EGW — from the chemical analysisof the weld deposit prepared according to the filler metalspecification or the manufacturer’s or supplier’s certificateof compliance when the shielding gas used was the sameas that used to weld the procedure qualification test coupon.

(d) For SAW — from the chemical analysis of the welddeposit prepared according to the filler metal specificationor the manufacturer’s or supplier’s certificate of compli-ance when the flux used was the same as that used to weldthe procedure qualification test coupon.

In lieu of an A-Number designation, the nominal chemi-cal composition of the weld deposit shall be indicated onthe WPS and on the PQR. Designation of nominal chemicalcomposition may also be by reference to the AWS classifi-cation (where such exists), the manufacturer’s trade desig-nation, or other established procurement documents.

QW-404.6 A change in the nominal size of the elec-trode or electrodes specified in the WPS.

QW-404.7 A change in the nominal diameter of theelectrode to over 1⁄4 in. (6 mm). This limitation does notapply when a WPS is qualified with a PWHT above the

Page 93: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

upper transformation temperature or when an austeniticmaterial is solution annealed after welding.

QW-404.8 Addition or deletion, or a change in nominalamount or composition of supplementary deoxidationmaterial (in addition to filler metal) beyond that qualified.(Such supplementary metal may be required for weld metaldeoxidation for some metals being welded.)

QW-404.9(a) A change in the indicator for minimum tensile

strength (e.g., the 7 in F7A2-EM12K) when the flux wirecombination is classified in Section II, Part C.

(b) A change in either the flux trade name or wire tradename when neither the flux nor the wire is classified inSection II, Part C.

(c) A change in the flux trade name when the wire isclassified in Section II, Part C but the flux is not classified.A change in the wire classification within the requirementsof QW-404.5 does not require requalification.

(d) A change in the flux trade name for A-No. 8deposits.

QW-404.10 Where the alloy content of the weld metalis largely dependent upon the composition of the flux used,any change in any part of the welding procedure whichwould result in the important alloying elements in the weldmetal being outside of the specification range of chemistrygiven in the Welding Procedure Specification. If there isevidence that the production welds are not being made inaccordance with the procedure specification, the authorizedinspector may require that a check be made on the chemicalcomposition of the weld metal. Such a check shall prefera-bly be made on a production weld.

QW-404.12 A change in the filler metal classificationwithin an SFA specification or to a filler metal not coveredby an SFA specification, or from one filler metal not cov-ered by an SFA specification to another filler metal that isnot covered by an SFA specification.

When a filler metal conforms to a filler metal classifica-tion within an SFA specification, requalification is notrequired if a change is made in any of the following:

(a) from a filler metal that is designated as moisture-resistant to one that is not designated as moisture-resistantand vice versa (i.e., from E7018R to E7018)

(b) from one diffusible hydrogen level to another (i.e.,from E7018-H8 to E7018-H16)

(c) for carbon, low alloy, and stainless steel filler metalshaving the same minimum tensile strength and the samenominal chemical composition, a change from one lowhydrogen coating type to another low hydrogen coatingtype (i.e., a change among EXX15, 16, or 18 or EXXX15,16, or 17 classifications)

(d) from one position-usability designation to anotherfor flux-cored electrodes (i.e., a change from E70T-1 toE71T-1 or vice versa)

64

(e) from a classification that requires impact testing tothe same classification which has a suffix which indicatesthat impact testing was performed at a lower temperatureor exhibited greater toughness at the required temperatureor both, as compared to the classification which was usedduring procedure qualification (i.e., a change from E7018to E7018-1)

(f) from the classification qualified to another fillermetal within the same SFA specification when the weldmetal is exempt from Impact Testing by other Sections

This exemption does not apply to hard-facing and corro-sion-resistant overlays

QW-404.14 The deletion or addition of filler metal.

QW-404.15 A change from one F-Number in tableQW-432 to any other F-Number or to any other filler metal,except as permitted in QW-433.

QW-404.17 A change in the type of flux or compositionof the flux.

QW-404.18 A change from wire to plate electrodes,and vice versa.

QW-404.19 A change from consumable guide to non-consumable guide, and vice versa.

QW-404.20 Any change in the method by which fillermetal is added, such as preplaced shim, top strip, wire,wire feed, or prior weld metal buttering of one or bothjoint faces.

QW-404.21 For filler metal additions, any change fromthe nominal specified analysis of the filler metal qualified.

QW-404.22 The omission or addition of consumableinserts. Qualification in a single-welded butt joint, with orwithout consumable inserts, qualifies for fillet welds andsingle-welded butt joints with backing or double-weldedbutt joints. Consumable inserts that conform to SFA-5.30,except that the chemical analysis of the insert conforms toan analysis for any bare wire given in any SFA specificationor AWS Classification, shall be considered as having thesame F-Number as that bare wire as given in table QW-432.

QW-404.23 A change from one of the following fillermetal product forms to another:

(a) flux cored(b) bare (solid) or metal cored(c) powder

QW-404.24 The addition, deletion, or change of morethan 10% in the volume of supplemental filler metal.

QW-404.27 Where the alloy content of the weld metalis largely dependent upon the composition of the supple-mental filler metal (including powder filler metal for PAW),any change in any part of the welding procedure that wouldresult in the important alloying elements in the weld metal

Page 94: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

07

2007 SECTION IX

being outside of the specification range of chemistry givenin the Welding Procedure Specification.

QW-404.29 A change in the flux trade name and desig-nation.

QW-404.30 A change in deposited weld metal thick-ness beyond the range qualified in QW-451 for procedurequalification or QW-452 for performance qualification,except as otherwise permitted in QW-303.1 and QW-303.2.When a welder is qualified using radiography, the thicknessranges of table QW-452.1(b) apply.

QW-404.31 The maximum thickness qualified is thethickness of the test coupon.

QW-404.32 For the low voltage short-circuiting typeof gas metal-arc process when the deposited weld metalthickness is less than 1⁄2 in. (13 mm), an increase in depos-ited weld metal thickness beyond 1.1 times that of thequalification test deposited weld metal thickness. For weldmetal thicknesses of 1⁄2 in. (13 mm) and greater, use tableQW-451.1, table QW-451.2, or table QW-452.1, as appli-cable.

QW-404.33 A change in the filler metal classificationwithin an SFA specification, or, if not conforming to afiller metal classification within an SFA specification, achange in the manufacturer’s trade name for the filler metal.When optional supplemental designators, such as thosewhich indicate moisture resistance (i.e., XXXXR), diffus-ible hydrogen (i.e., XXXX H16, H8, etc.), and supplemen-tal impact testing (i.e., XXXX-1 or EXXXXM), arespecified on the WPS, only filler metals which conform tothe classification with the optional supplemental designa-tor(s) specified on the WPS shall be used.

QW-404.34 A change in flux type (i.e., neutral to activeor vice versa) for multilayer deposits in P-No. 1 materials.

QW-404.35 A change in the flux/wire classification ora change in either the electrode or flux trade name whennot classified in an SFA specification. Requalification isnot required when a wire/flux combination conforms to anSFA specification and a change is made from one diffusiblehydrogen level to another (i.e., a change from F7A2-EA1-A1H4 to F7A2-EA1-A1H16). This variable does not applywhen the weld metal is exempt from impact testing byother Sections. This exemption does not apply to hardfacing and corrosion-resistant overlays.

QW-404.36 When flux from recrushed slag is used,each batch or blend, as defined in SFA-5.01, shall be testedin accordance with Section II, Part C by either the manufac-turer or user, or qualified as an unclassified flux in accor-dance with QW-404.9.

QW-404.37 A change in the composition of the depos-ited weld metal from one A-Number in table QW-442 to

65

any other A-Number, or to an analysis not listed in the table.Each AWS classification of A-No. 8 or A-No. 9 analysis oftable QW-442, or each nonferrous alloy in table QW-432,shall require separate WPS qualification. A-Numbers maybe determined in accordance with QW-404.5.

QW-404.38 A change in the nominal electrode diame-ter used for the first layer of deposit.

QW-404.39 For submerged-arc welding and electro-slag welding, a change in the nominal composition or typeof flux used. Requalification is not required for a changein flux particle size.

QW-404.41 A change of more than 10% in the pow-dered metal feed rate recorded on the PQR.

QW-404.42 A change of more than 5% in the particlesize range of the powder.

QW-404.43 A change in the powdered metal particlesize range recorded on the PQR.

QW-404.44 A change from a homogeneous powderedmetal to a mechanical mixed powdered metal or vice versa.

QW-404.45 A change in the form of filler metal fromsolid to fabricated wire, flux-cored wire, powdered metal,or vice versa.

QW-404.46 A change in the powder feed rate rangequalified.

QW-404.47 A change of more than 10% in the fillermetal size and/or powder metal particle size.

QW-404.48 A change of more than 10% in the powdermetal density.

QW-404.49 A change of more than 10% in the fillermetal or powder metal feed rate.

QW-404.50 The addition or deletion of flux to the faceof a weld joint for the purpose of affecting weld penetration.

QW-404.51 The method of control of moisture pickupduring storage and distribution for SMAW and GMAW-FC electrodes and flux for SAW (e.g., purchasing in her-metically sealed containers and storage in heated ovens,controlled distribution time, high-temperature baking priorto use).

QW-404.52 A change in the diffusible hydrogen level(e.g., from E7018-H8 to E7018-H16 or to no controlleddiffusible hydrogen).

QW-405 PositionsQW-405.1 The addition of other welding positions

than those already qualified. See QW-120, QW-130, andQW-303.

QW-405.2 A change from any position to the verticalposition uphill progression. Vertical-uphill progression

Page 95: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(e.g., 3G, 5G, or 6G position) qualifies for all positions.In uphill progression, a change from stringer bead to weavebead. This limitation does not apply when a WPS is quali-fied with a PWHT above the upper transformation tempera-ture or when an austenitic material is solution annealedafter welding.

QW-405.3 A change from upward to downward, orfrom downward to upward, in the progression specifiedfor any pass of a vertical weld, except that the cover orwash pass may be up or down. The root pass may also berun either up or down when the root pass is removedto sound weld metal in the preparation for welding thesecond side.

QW-405.4 Except as specified below, the addition ofother welding positions than already qualified.

(a) Qualification in the horizontal, vertical, or overheadposition shall also qualify for the flat position. Qualificationin the horizontal fixed position, 5G, shall qualify for theflat, vertical, and overhead positions. Qualification in thehorizontal, vertical, and overhead positions shall qualifyfor all positions. Qualification in the inclined fixed position,6G, shall qualify for all positions.

(b) A fabricator who does production welding in a par-ticular orientation may make the tests for procedure quali-fication in this particular orientation. Such qualificationsare valid only for the positions actually tested, except thatan angular deviation of ±15 deg is permitted in the inclina-tion of the weld axis and the rotation of the weld face asdefined in figure QW-461.1. A test specimen shall be takenfrom the test coupon in each special orientation.

(c) For hard-facing and corrosion-resistant weld metaloverlay, qualification in the 3G, 5G, or 6G positions, where5G or 6G pipe coupons include at least one vertical segmentcompleted utilizing the up-hill progression or a 3G platecoupon is completed utilizing the up-hill progression, shallqualify for all positions. Chemical analysis, hardness,macro-etch, and at least two of the bend tests, as requiredin table QW-453, shall be removed from the vertical up-hill overlaid segment as shown in figure QW-462.5(b).

(d) A change from the vertical down to vertical up-hillprogression shall require requalification.

QW-406 PreheatQW-406.1 A decrease of more than 100°F (55°C) in

the preheat temperature qualified. The minimum tempera-ture for welding shall be specified in the WPS.

QW-406.2 A change in the maintenance or reductionof preheat upon completion of welding prior to any requiredpostweld heat treatment.

QW-406.3 An increase of more than 100°F (55°C) inthe maximum interpass temperature recorded on the PQR.This limitation does not apply when a WPS is qualified

66

with a PWHT above the upper transformation temperatureor when an austenitic material is solution annealed afterwelding.

QW-406.4 A decrease of more than 100°F (55°C) inthe preheat temperature qualified or an increase in themaximum interpass temperature recorded on the PQR. Theminimum temperature for welding shall be specifed inthe WPS.

QW-406.5 A change in the maintenance or reductionof preheat upon completion of spraying and prior to fusing.

QW-406.7 A change of more than 10% in the amplitudeor number of preheating cycles from that qualified, or ifother preheating methods are employed, a change in thepreheating temperature of more than 25°F (15°C).

QW-406.8 An increase in the maximum interpass tem-perature of more than 100°F (56°C) from that achieved onthe test coupon and recorded on the PQR. The interpasstemperature shall be measured and recorded separately foreach tempering weld bead layer and, if any, for the surfaceweld bead layer(s). The WPS shall specify the maximuminterpass temperature limits for each tempering bead layerseparately and for the surfacing weld bead layer(s), if any.

QW-406.9 A decrease in the preheat temperature fromthat achieved on the test coupon and recorded on the PQR.The preheat temperature shall be measured and recordedseparately for each tempering weld bead layer and, if any,for the surface weld bead layer(s). The WPS shall specifythe minimum preheat temperature limits for each temperingbead layer separately and for the surfacing weld bead lay-er(s), if any.

QW-406.10 The minimum preheating soaking timeprior to the start of welding.

QW-406.11 The addition or deletion of a postweldhydrogen bakeout. When specified, the minimum soakingtemperature and time shall be specified.

QW-407 Postweld Heat TreatmentQW-407.1 A separate procedure qualification is

required for each of the following conditions:(a) For P-No. 1, P-No. 3, P-No. 4, P-No. 5, P-No. 6,

P-No. 9, P-No. 10, and P-No. 11 materials, the followingpostweld heat treatment conditions apply:

(1) no PWHT(2) PWHT below the lower transformation temper-

ature(3) PWHT above the upper transformation tempera-

ture (e.g., normalizing)(4) PWHT above the upper transformation tempera-

ture followed by heat treatment below the lower transfor-mation temperature (e.g., normalizing or quenchingfollowed by tempering)

Page 96: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(5) PWHT between the upper and lower transforma-tion temperatures

(b) For all other materials, the following postweld heattreatment conditions apply:

(1) no PWHT(2) PWHT within a specified temperature range

QW-407.2 A change in the postweld heat treatment(see QW-407.1) temperature and time range

The procedure qualification test shall be subjected toPWHT essentially equivalent to that encountered in thefabrication of production welds, including at least 80% ofthe aggregate times at temperature(s). The PWHT totaltime(s) at temperature(s) may be applied in one heatingcycle.

QW-407.4 For ferrous base metals other than P-No. 7,P-No. 8, and P-No. 45, when a procedure qualification testcoupon receives a postweld heat treatment exceeding theupper transformation temperature, the maximum qualifiedbase metal thickness, T, shall not exceed 1.1 times thethickness of the test coupon.

QW-407.6 A change in postweld heat treatment condi-tion in QW-407.1 or an increase of 25% or more in totaltime at postweld heat treating temperature.

QW-407.7 A change in the heat treatment temperaturerange qualified if heat treatment is applied after fusing.

QW-407.8 A separate PQR is required for each of thefollowing:

(a) no PWHT(b) a change of more than 10% in the number of PWHT

heating current cycles following the welding cycle(c) PWHT within a specified temperature and time

range if heat treatment is performed separately from thewelding operation

QW-407.9 A separate procedure qualification isrequired for each of the following conditions:

(a) For weld corrosion-resistant overlay of A-No. 8 onall base materials, a change in postweld heat treatmentcondition in QW-407.1, or when the total time at postweldheat treatment encountered in fabrication exceeds 20 hr,an increase of 25% or more in total time at postweld heattreating temperature.

(b) For weld corrosion-resistant overlay of A-No. 9 onall base materials, a change in postweld heat treatmentcondition in QW-407.1, or an increase of 25% or more intotal time at postweld heat treating temperature.

(c) For all other weld corrosion-resistant overlays onall base materials, a change in postweld heat treatmentcondition in QW-407.1.

QW-408 GasQW-408.1 The addition or deletion of trailing shielding

gas and/or a change in its composition.

67

QW-408.2 A separate procedure qualification isrequired for each of the following conditions:

(a) a change from a single shielding gas to any othersingle shielding gas

(b) a change from a single shielding gas to a mixtureof shielding gasses, and vice versa

(c) a change in the specified percentage composition ofa shielding gas mixture

(d) the addition or omission of shielding gasThe AWS classification of SFA-5.32 may be used to

specify the shielding gas composition.

QW-408.3 A change in the specified flow rate rangeof the shielding gas or mixture of gases.

QW-408.4 A change in the composition of the orificeor shielding gas.

QW-408.5 The addition or deletion of gas backing, achange in backing gas composition, or a change in thespecified flow rate range of the backing gas.

QW-408.6 Any change of environment shielding suchas from vacuum to an inert gas, or vice versa.

QW-408.7 A change in the type of fuel gas.

QW-408.8 The omission of inert gas backing exceptthat requalification is not required when welding a single-welded butt joint with a backing strip or a double-weldedbutt joint or a fillet weld. This exception does not applyto P-No. 51 through P-No. 53, P-No. 61 through P-No. 62,and P-No. 10I metals.

QW-408.9 For groove welds in P-No. 41 throughP-No. 49 and all welds of P-No. 10I, P-No. 10J,P-No. 10K, P-No. 51 through P-No. 53, and P-No. 61through P-No. 62 metals, the deletion of backing gas or achange in the nominal composition of the backing gas froman inert gas to a mixture including non-inert gas(es).

QW-408.10 For P-No. 10I, P-No. 10J, P-No. 10K,P-No. 51 through P-No. 53, and P-No. 61 through P-No. 62metals, the deletion of trailing shielding gas, or a changein the nominal composition of the trailing gas from aninert gas to a mixture including non-inert gas(es), or adecrease of 10% or more in the trailing gas flow rate.

QW-408.11 The addition or deletion of one or moreof the following:

(a) shielding gas(b) trailing shielding gas(c) backing gas(d) plasma-removing gas

QW-408.12 A change of more than 5% in the flowrate of one or more of the following: shielding gas, trailershielding gas, backing gas, and plasma-removing gas.

Page 97: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-408.13 A change in the position or orientation ofplasma-removing gas jet relative to the workpiece (e.g.,coaxial transverse to beam).

QW-408.14 A change in the oxygen or fuel gas pres-sure beyond the range qualified.

QW-408.16 A change of more than 5% in the flowrate of the plasma-arc gas or powdered metal feed gasrecorded on the PQR.

QW-408.17 A change in the plasma-arc gas, shieldinggas, or powdered metal feed gas from a single gas to anyother single gas, or to a mixture of gases, or vice versa.

QW-408.18 A change of more than 10% in the gasmixture composition of the plasma-arc gas, shielding gas,or powdered metal feed gas recorded on the PQR.

QW-408.19 A change in the nominal composition ofthe powder feed gas or (plasma-arc spray) plasma gasqualified.

QW-408.20 A change of more than 5% in the plasmagas flow rate range qualified.

QW-408.21 A change in the flow rate of the orifice orshielding gas.

QW-408.22 A change in the shielding gas type, gaspressure, or purging time.

QW-408.23 For titanium, zirconium, and their alloys,the deletion of one or more of the following:

(a) shielding gas(b) trailing shielding gas(c) backing gas

QW-408.24 For gas-shielded processes, the maximummoisture content (dew point) of the shielding gas. Moisturecontrol may be by specification of shielding gas classifica-tions in SFA-5.32.

QW-409 Electrical CharacteristicsQW-409.1 An increase in heat input, or an increase in

volume of weld metal deposited per unit length of weld,over that qualified. The increase may be determined byeither of the following:

(a) Heat input [J/in. (J/mm)]

pVoltage � Amperage � 60

Travel Speed [in./min (mm/min)]

(b) Volume of weld metal measured by(1) an increase in bead size (width � thickness), or(2) a decrease in length of weld bead per unit length

of electrodeThe requirement for measuring the heat input or volume

of deposited weld metal does not apply when the WPS isqualified with a PWHT above the upper transformation

68

temperature or when an austenitic material is solutionannealed after welding.

QW-409.2 A change from spray arc, globular arc, orpulsating arc to short circuiting arc, or vice versa.

QW-409.3 The addition or deletion of pulsing currentto dc power source.

QW-409.4 A change from AC to DC, or vice versa; andin DC welding, a change from electrode negative (straightpolarity) to electrode positive (reverse polarity), or viceversa.

QW-409.5 A change of ±15% from the amperage orvoltage ranges in the qualified WPS.

QW-409.6 A change in the beam current of more than±5%, voltage of more than ±2%, welding speed of morethan ±2%, beam focus current of more than ±5%, gun-to-work distance of more than ±5%, or a change in oscillationlength or width of more than ±20% from those previouslyqualified.

QW-409.7 Any change in the beam pulsing frequencyduration from that qualified.

QW-409.8 A change in the range of amperage, orexcept for SMAW and GTAW welding, a change in therange of voltage. A change in the range of electrode wirefeed speed may be used as an alternative to amperage.

QW-409.9 A change in the arc timing of more than±1⁄10 sec.

QW-409.10 A change in amperage of more than ±10%.

QW-409.11 A change in the power source from onemodel to another.

QW-409.12 A change in type or size of tungsten elec-trode.

QW-409.13 A change from one Resistance WeldingManufacturer’s Association (RWMA) electrode class toanother. In addition, a change in the following:

(a) for spot and projection welding, a change in thenominal shape or more than 10% of the contact area ofthe welding electrode

(b) for seam welding, a change of thickness, profile,orientation, or diameter of electrodes exceeding 10%

QW-409.14 Addition or deletion of upslope or down-slope current control, or a change of more than 10% inthe slope current time or amplitude.

QW-409.15(a) A change of more than 5% in any of the following

from that qualified:(1) preheating current(2) preheating current amplitude(3) preheating current time duration

Page 98: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(4) electrode pressure(5) welding current(6) welding current time duration

(b) A change from AC to DC or vice versa.(c) The addition or deletion of pulsing current to a DC

power source.(d) When using pulsing DC current, a change of more

than 5% in the pulse amplitude, frequency, or number ofpulses per cycle from that qualified.

(e) A change of more than 5% in the post-heating cur-rent time duration from that qualified.

QW-409.17 A change in the power supply primaryvoltage or frequency, or in the transformer turns ratio, tapsetting, choke position, secondary open circuit voltage orphase control setting.

QW-409.18 A change in the procedure or frequencyof tip cleaning.

QW-409.19 Any change in the beam pulsing frequencyand pulse duration from that qualified.

QW-409.20 Any change in the following variables:mode of operation (from pulsed to continuous and viceversa), energy distribution across the beam (i.e., multimodeor gaussian).

QW-409.21 Any change in the following variables: achange of more than 5% in the power delivered to the worksurface as measured by calorimeter or other equivalentmethods; a change of more than 2% in the travel speed; achange of more than 2% of the ratio of the beam diameterto focal length; a change of more than 2% of the lens towork distance.

QW-409.22 An increase of more than 10% in theamperage used in application for the first layer.

QW-409.23 A change of more than 10% in the rangesof amperage or voltage qualified.

QW-409.24 A change of more than 10% in the fillerwire wattage recorded on the PQR. Wattage is a functionof current voltage, and stickout dimension.

QW-409.25 A change of more than 10% in the plasma-arc current or voltage recorded on the PQR.

QW-409.26 For the first layer only, an increase in heatinput of more than 10% or an increase in volume of weldmetal deposited per unit length of weld of more than 10%over that qualified. The increase may be measured by eitherof the following:

(a) Heat input [J/in. (J/mm)]

pVoltage � Amperage � 60

Travel Speed [in./min (mm/min)]

69

(b) Volume of Weld Metal p an increase in bead sizeor a decrease in length of weld bead per unit length ofelectrode.

QW-409.27 A change in the flashing time of morethan 10%.

QW-409.28 A change in the upset current time bymore than 10%.

QW-409.29(a) A change in the ratios of heat input or in the volume

of weld metal deposited per unit length beyond the follow-ing (see figure QW-462.12):

(1) An increase or decrease in the ratio of heat inputbetween the first tempering bead layer and the weld beadsdeposited against the base metal of more than 20% for P-or S-No. 1 and P- or S-No. 3 metals and 10% for all otherP- or S-Number metals.

(2) An increase or decrease in the ratio of heat inputbetween the second tempering bead layer and the firsttempering bead layer of more than 20% for P-No. 1 andP-No. 3 metals and 10% for all other P-Number metals.

(3) The ratio of heat input between subsequent layersshall be maintained until a minimum of 3⁄16 in. (5 mm) ofweld metal has been deposited over the base metal.

(4) For qualifications where the basis for acceptanceis impact testing and the filler metal is exempt from temperbead qualification, the heat input may not exceed 50%above the heat input qualified for the remaining fill passes.

(5) For qualifications where the basis for acceptanceis hardness testing, a decrease of more than 20% in heatinput for the remainder of the fill passes.

(b) Heat input and volume of weld metal per unit lengthof weld shall be measured using the following methods:

(1) For machine or automatic GTAW or PAW, anincrease or decrease of 10% in the power ratio measured as:

Power Ratio pAmperage � Voltage

[(WFS/TS) � Af]

where

Af p the cross-section area of the filler metal wireTS p the welding travel speed

WFS p the filler metal wire feed speed

(2) For processes other than machine or automaticGTAW or PAW, heat input shall be measured by any ofthe following methods:

(a) see formula

(U.S. Customary Units)

Heat Input (J/in.) pVoltage � Amperage � 60

Travel Speed (in./min)

(SI Units)

Heat Input (J/mm) pVoltage � Amperage � 60

Travel Speed (mm/min)

Page 99: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(b) Volume of Weld Metal p an increase in beadsize or a decrease in length of weld bead per unit lengthof electrode.

(3) If manual GTAW or PAW is used for making in-process repairs in accordance with QW-290.5, a record ofbead size shall be made.

QW-410 TECHNIQUEQW-410.1 For manual or semiautomatic welding, a

change from the stringer bead technique to the weave beadtechnique, or vice versa.

QW-410.2 A change in the nature of the flame, oxidiz-ing to reducing, or vice versa.

QW-410.3 A change in the orifice, cup, or nozzle size.

QW-410.4 A change in the welding technique, fore-hand to backhand, or vice versa.

QW-410.5 A change in the method of initial andinterpass cleaning (brushing, grinding, etc.).

QW-410.6 A change in the method of back gouging.

QW-410.7 For the machine or automatic welding pro-cess, a change in width, frequency, or dwell time of oscilla-tion technique.

QW-410.8 A change in the contact tube to work dis-tance.

QW-410.9 A change from multipass per side to singlepass per side. This limitation does not apply when a WPSis qualified with a PWHT above the upper transformationtemperature or when an austenitic material is solutionannealed after welding.

QW-410.10 A change from single electrode to multipleelectrode, or vice versa, for machine or automatic weldingonly. This limitation does not apply when a WPS is quali-fied with a PWHT above the upper transformation tempera-ture or when an austenitic material is solution annealedafter welding.

QW-410.11 A change from closed chamber to out-of-chamber conventional torch welding in P-No. 51 throughP-No. 53 metals, but not vice versa.

QW-410.12 A change from the melt-in technique tothe keyhole technique of welding, or vice versa, or theinclusion of both techniques though each has been individ-ually qualified.

QW-410.14 A change in the angle of the axis of thebeam relative to the workpiece.

QW-410.15 A change in the spacing of multiple elec-trodes for machine or automatic welding.

QW-410.17 A change in the type or model of thewelding equipment.

70

QW-410.18 An increase in the absolute pressure ofthe vacuum welding environment beyond that qualified.

QW-410.19 Any change in filament type, size, orshape.

QW-410.20 The addition of a wash pass.

QW-410.21 A change of welding from one side towelding from both sides, or vice versa.

QW-410.22 A change in either of the following studwelding parameters: a change of stud gun model; a changein the lift more than ±1⁄32 in. (0.8 mm).

QW-410.25 A change from manual or semiautomaticto machine or automatic welding and vice versa.

QW-410.26 The addition or deletion of peening.

QW-410.27 A change in the rotational speed producinga change in the outside surface velocity [ft/min (m/min)]greater than ±10% of the outside surface velocity qualified.

QW-410.28 A change in the thrust load greater than±10% of the thrust load qualified.

QW-410.29 A change in the rotational energy greaterthan ±10% of the rotational energy qualified.

QW-410.30 Any change in upset dimension (overallloss in length of parts being joined) greater than ±10% ofthe upset qualified.

QW-410.31 A change in the method of preparing thebase metal prior to welding (e.g., changing from mechani-cal cleaning to chemical cleaning or to abrasive cleaning,or vice versa).

QW-410.32 A change of more than 10% in the holding(forging) pressure prior to or after welding. A change ofmore than 10% in the electrode holding time (electrodeduration sequence).

QW-410.33 A change from one welding type toanother, or modification of equipment, including Manufac-turer, control panel, model number, electrical rating orcapacity, type of electrical energy source, or method ofapplying pressure.

QW-410.34 Addition or deletion of an electrode cool-ing medium and where it is used.

QW-410.35 A change in the distance between arms ora change in the throat depth.

QW-410.37 A change from single to multiple pass orvice versa.

QW-410.38 A change from multiple-layer to singlelayer cladding/hardsurfacing, or vice versa.

QW-410.39 A change in the torch type or tip size.

Page 100: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-410.40 For submerged-arc welding and electro-slag welding, the deletion of a supplementary device forcontrolling the magnetic field acting on the weld puddle.

QW-410.41 A change of more than 15% in the travelspeed range recorded on the PQR.

QW-410.43 For the torch or workpiece, a change ofmore than 10% in the travel speed range qualified.

QW-410.44 A change of more than 15% in the spray-torch to workpiece distance qualified.

QW-410.45 A change in the method of surface prepara-tion of the base metal to be hard-faced (example: sand-blasting versus chemical cleaning).

QW-410.46 A change in the spray-torch model or tiporifice size.

QW-410.47 A change of more than 10% in the fusingtemperature range qualified. A change in the rate of coolingfrom the fusing temperature of more than 50°F/hr(28°C/hr), a change in the fusing method (e.g., torch, fur-nace, induction).

QW-410.48 A change in the constricted arc from trans-ferable to nontransferable or vice versa.

QW-410.49 A change in the diameter of the plasmatorch-arc constricting orifice.

QW-410.50 A change in the number of electrodes act-ing on the same welding puddle.

QW-410.52 A change in the method of delivering thefiller metal to the molten pool, such as from the leadingor trailing edge of the torch, the sides of the torch, orthrough the torch.

QW-410.53 A change of more than 20% in the center-to-center weld bead distance.

QW-410.54 A change in the upset length or force ofmore than 10%.

QW-410.55 A change in the distance between theclamping dies of more than 10% or a change in the surfacepreparation of the clamping area.

QW-410.56 A change in the clamping force by morethan 10%.

QW-410.57 A change in more than 10% of the forwardor reverse speed.

QW-410.58 The deletion of surface temper beads (seefigure QW-462.12) or a change from surface temper beads

71

that cover the weld surface to beads that are only depositedalong the toes of the weld.

QW-410.59 A change from machine or automaticwelding to manual or semiautomatic welding.

QW-410.60 The addition of thermal methods to pre-pare the surface to be welded unless the WPS requires thatthe metal be ground to bright metal before welding.

QW-410.61 The distance, S, from the toe of the weldto the edge of any tempering bead shall be limited to thedistance measured on the test coupon ±1⁄16 in. (±1.5 mm)(see figure QW-462.12). Alternatively, a range for S maybe established by locating temper beads at various distancesfrom the toe of the weld followed by hardness traversesor impact testing, as applicable. Temper reinforcing beadsshall not be permitted to touch the toe of the weld. Inaddition, the ratios of heat input described in QW-409.29shall apply to temper beads.

QW-410.62 The method of removal of surface temperbead reinforcing layer when it will be removed, includingprovisions to prevent overheating of the weld surface.

QW-410.63 For weld beads against the base metal andfor each tempering bead layer, the range of bead width, b,relative to overlap of the previous bead width, a, as shownin figure QW-462.13, shall be specified on the WPS. Over-lap between 25% and 75% does not require qualification.

(a) Overlap greater than 75% shall be qualified by weld-ing a test coupon using the desired overlap. The overlapqualified shall be the maximum overlap permitted and theminimum overlap shall be 50%.

(b) Overlap less than 25% shall be qualified by weldinga test coupon using the desired overlap. The overlap quali-fied shall be the minimum overlap permitted and the maxi-mum overlap shall be 50%.

QW-410.64 For vessels or parts of vessels constructedwith P-No. 11A and P-No. 11B base metals, weld groovesfor thickness less than 5⁄8 in. (16 mm) shall be prepared bythermal processes when such processes are to be employedduring fabrication. This groove preparation shall alsoinclude back gouging, back grooving, or removal ofunsound weld metal by thermal processes when these pro-cesses are to be employed during fabrication.

QW-410.65 The addition or deletion of grindingbeyond that required to clean the surface or remove minorsurface flaws (i.e., use or nonuse of half-bead techniqueor similar technique).

Page 101: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-416WELDING VARIABLES

Welder Performance

Essential

OFW SMAW SAW GMAW2 GTAW PAWParagraph1 Brief of Variables QW-352 QW-353 QW-354 QW-355 QW-356 QW-357

.4 − Backing X X X XQW-402Joints .7 + Backing X

.2 Maximum qualified X

QW-403 .16 � Pipe diameter X X X X XBaseMetal .18 � P-Number X X X X X X

.14 ± Filler X X X

.15 � F-Number X X X X X X

.22 ± Inserts X X

QW-404.23 t Solid or metal-cored to X XFiller

flux-coredMetals

.30 � t Weld deposit X X X X X

.31 � t Weld deposit X

.32 t Limit (s. cir. arc) X

.1 + Position X X X X X XQW-405Positions .3 � ↑ ↓ Vert. welding X X X X

.7 � Type fuel gas XQW-408Gas .8 − Inert backing X X X

.2 � Transfer mode XQW-409Electrical .4 � Current or polarity X

Welding Processes:OFW Oxyfuel gas weldingSMAW Shielded metal-arc weldingSAW Submerged-arc weldingGMAW Gas metal-arc weldingGTAW Gas tungsten-arc weldingPAW Plasma-arc welding

Legend:� Change t Thickness+ Addition ↑ Uphill− Deletion ↓ Downhill

NOTES:(1) For description, see Section IV.(2) Flux-cored arc welding as shown in QW-355, with or without additional shielding from an externally supplied gas or gas mixture, is included.

72

Page 102: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-420 MATERIAL GROUPINGSQW-420.1 P-Numbers and S-Numbers. Base metals

have been assigned P-Numbers or S-Numbers for the pur-pose of reducing the number of welding and brazing proce-dure qualifications required. In addition, ferrous basemetals have been assigned Group Numbers creating subsetsof P-Numbers and S-Numbers that are used when WPSsare required to be qualified by impact testing by otherSections or Codes. These assignments are based essentiallyon comparable base metal characteristics, such as composi-tion, weldability, brazeability, and mechanical properties,where this can logically be done. These assignments donot imply that base metals may be indiscriminately substi-tuted for a base metal that was used in the qualificationtest without consideration of compatibility from the stand-point of metallurgical properties, postweld heat treatment,design, mechanical properties, and service requirements.The following table shows the assignment groups for vari-ous alloy systems:

Base Metal Welding Brazing

Steel and steel P- or S-No. 1 P- or S-No. 101alloys through P- or S- through P- or S-

No. 11 incl. P- or No. 103S-No. 5A, 5B,and 5C

Aluminum and alu- P- or S-No. 21 P- or S-No. 104 andminum-base through P- or S- P- or S-No. 105alloys No. 25

Copper and copper- P- or S-No. 31 P- or S-No. 107 andbase alloys through P- or S- P- or S-No. 108

No. 35Nickel and nickel- P- or S-No. 41 P- or S-No. 110

base alloys through P- or S- through P- or S-No. 49 No. 112

Titanium and tita- P- or S-No. 51 P- or S-No. 115nium-base alloys through P- or S-

No. 53Zirconium and zir- P- or S-No. 61 P- or S-No. 117

conium-base through P- or S-alloys No. 62

When a base metal with a UNS number designation isassigned a P- or S-Number or P- or S-Number plus GroupNumber, then a base metal listed in a different ASMEmaterial specification with the same UNS number shall beconsidered that P- or S-Number or P- or S-Number plusGroup Number. For example, SB-163, UNS N08800 isP-No. 45; therefore, all ASME specifications listing a basemetal with the UNS N08800 designation shall be consid-ered P-No. 45 (i.e., SB-407, SB-408, SB-514, etc.) whether

73

or not these specifications are listed in table QW/QB-422.When utilizing this provision, only base metals listed intable QW/QB-422 may be used for test coupons since aminimum tensile value is required for procedure qualifi-cation.

There are instances where materials assigned to one P-or S-Number or Group Number have been reassigned toa different P- or S-Number or Group Number in latereditions. Procedure and performance qualifications thatwere qualified under the previous P- or S-Numbers orGroup Number assignment may continue to be used underthe new P- or S-Number or Group Number assignment.See QW-200.2(c).

The values given in the column heading “MinimumSpecified Tensile” of table QW/QB-422, are the acceptancevalues for the tensile tests of the welding or brazing proce-dure qualification, except as otherwise allowed in QW-153or QB-153.

QW-420.2 S-Numbers. S-Numbers are assigned tomaterials that are acceptable for use by the ASME B31Code for Pressure Piping, or by selected Boiler and Pres-sure Vessel Code Cases, but which are not included withinASME Boiler and Pressure Vessel Code Material Specifi-cations (Section II).

Material produced under an ASTM specification shallbe considered to have the same S-Number or S-Numberplus Group Number as that of the P-Number or P-Numberplus Group Number assigned to the same grade or typematerial in the corresponding ASME specification (i.e.,SA-240 Type 304 is assigned P-No. 8, Group No. 1; there-fore, A 240 Type 304 is considered S-No. 8, Group No. 1).

Some variables and figures may not specifically addressS-Numbers. When this occurs, the requirements regardingP-Numbers and P-Number Group Numbers shall applyequally to materials that are assigned to correspondingS-Numbers and S-Number Group Numbers. However, ifprocedure qualification testing was done using materialassigned an S-Number or S-Number Group Number, therange qualified is limited to materials that are assignedS-Numbers or S-Numbers Group Numbers (i.e., qualifica-tion using a P-Number material qualifies correspondingS-Number materials; qualification using an S-Numbermaterial qualifies corresponding S-Number materials butnot corresponding P-Number materials; qualification ofwelders using a P-Number material qualifies them to weldon corresponding S-Number materials and vice versa).

Page 103: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

74

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualifi

cati

on

Fer

rous

Min

imum

Wel

ding

Bra

zing

Spe

cifie

dU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-36

...

K02

600

58(4

00)

11

...

...

101

...

C–M

n–S

iP

late

,ba

r&

shap

es

SA

-53

Typ

eF

...

48(3

30)

11

...

...

101

...

CF

urna

cew

elde

dpi

peS

A-5

3T

ype

S,

Gr.

AK

0250

448

(330

)1

1..

...

.10

1..

.C

Sm

ls.

pipe

SA

-53

Typ

eE

,G

r.A

K02

504

48(3

30)

11

...

...

101

...

CR

esis

tanc

ew

elde

dpi

peS

A-5

3T

ype

E,

Gr.

BK

0300

560

(415

)1

1..

...

.10

1..

.C

–Mn

Res

ista

nce

wel

ded

pipe

SA

-53

Typ

eS

,G

r.B

K03

005

60(4

15)

11

...

...

101

...

C–M

nS

mls

.pi

pe

SA

-105

...

K03

504

70(4

85)

12

...

...

101

...

CF

lang

es&

fitti

ngs

SA

-106

AK

0250

148

(330

)1

1..

...

.10

1..

.C

–Si

Sm

ls.

pipe

SA

-106

BK

0300

660

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

Sm

ls.

pipe

SA

-106

CK

0350

170

(485

)1

2..

...

.10

1..

.C

–Mn–

Si

Sm

ls.

pipe

A10

810

15C

WG

1015

060

(415

)..

...

.1

1..

.10

1C

Bar

A10

810

18C

WG

1018

060

(415

)..

...

.1

1..

.10

1C

Bar

A10

810

20C

WG

1020

060

(415

)..

...

.1

1..

.10

1C

Bar

A10

886

20C

WG

8620

090

(620

)..

...

.3

3..

.10

20.

5Ni–

0.5C

r–M

oB

ar

SA

-134

SA

283

Gr.

A..

.45

(310

)1

1..

...

.10

1..

.C

Wel

ded

pipe

SA

-134

SA

283

Gr.

B..

.50

(345

)1

1..

...

.10

1..

.C

Wel

ded

pipe

SA

-134

SA

283

Gr.

CK

0240

155

(380

)1

1..

...

.10

1..

.C

Wel

ded

pipe

SA

-134

SA

283

Gr.

DK

0270

260

(415

)1

1..

...

.10

1..

.C

Wel

ded

pipe

SA

-134

SA

285

Gr.

AK

0170

045

(310

)1

1..

...

.10

1..

.C

Wel

ded

pipe

SA

-134

SA

285

Gr.

BK

0220

050

(345

)1

1..

...

.10

1..

.C

Wel

ded

pipe

SA

-134

SA

285

Gr.

CK

0280

155

(380

)1

1..

...

.10

1..

.C

Wel

ded

pipe

SA

-135

A..

.48

(330

)1

1..

...

.10

1..

.C

E.R

.W.

pipe

SA

-135

B..

.60

(415

)1

1..

...

.10

1..

.C

E.R

.W.

pipe

A13

9A

...

48(3

30)

...

...

11

...

101

CW

elde

dpi

peA

139

BK

0300

360

(415

)..

...

.1

1..

.10

1C

Wel

ded

pipe

A13

9C

K03

004

60(4

15)

...

...

11

...

101

CW

elde

dpi

peA

139

DK

0301

060

(415

)..

...

.1

1..

.10

1C

Wel

ded

pipe

A13

9E

K03

012

66(4

55)

...

...

11

...

101

CW

elde

dpi

pe

A14

890

–60

...

90(6

20)

...

...

43

...

103

...

Cas

ting

s

A16

7T

ype

302B

S30

215

75(5

15)

...

...

81

...

102

18C

r–8N

i–2S

iP

late

,sh

eet

&st

rip

A16

7T

ype

308

S30

800

75(5

15)

...

...

82

...

102

20C

r–10

Ni

Pla

te,

shee

t&

stri

pA

167

Typ

e30

9S

3090

075

(515

)..

...

.8

2..

.10

223

Cr–

12N

iP

late

,sh

eet

&st

rip

A16

7T

ype

310

S31

000

75(5

15)

...

...

82

...

102

25C

r–20

Ni

Pla

te,

shee

t&

stri

p

SA

-178

AK

0120

047

(325

)1

1..

...

.10

1..

.C

E.R

.W.

tube

2007 SECTION IX

Page 104: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

75

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-178

CK

0350

360

(415

)1

1..

...

.10

1..

.C

E.R

.W.

tube

SA

-178

D..

.70

(485

)1

2..

...

.10

1..

.C

–Mn–

Si

E.R

.W.

tube

SA

-179

...

K01

200

47(3

25)

11

...

...

101

...

CS

mls

.tu

be

SA

-181

Cl.

60K

0350

260

(415

)1

1..

...

.10

1..

.C

–Si

Pip

efla

nge

&fit

ting

sS

A-1

81C

l.70

K03

502

70(4

85)

12

...

...

101

...

C–S

iP

ipe

flang

e&

fitti

ngs

SA

-182

F12

,C

l.1

K11

562

60(4

15)

41

...

...

102

...

1Cr–

0.5M

oF

orgi

ngs

SA

-182

F12

,C

l.2

K11

564

70(4

85)

41

...

...

102

...

1Cr–

0.5M

oF

orgi

ngs

SA

-182

F11

,C

l.2

K11

572

70(4

85)

41

...

...

102

...

1.25

Cr–

0.5M

o–S

iF

orgi

ngs

SA

-182

F11

,C

l.3

K11

572

75(5

15)

41

...

...

102

...

1.25

Cr–

0.5M

o–S

iF

orgi

ngs

SA

-182

F11

,C

l.1

K11

597

60(4

15)

41

...

...

102

...

1.25

Cr–

0.5M

o–S

iF

orgi

ngs

SA

-182

F2

K12

122

70(4

85)

32

...

...

101

...

0.5C

r–0.

5Mo

For

ging

sS

A-1

82F

1K

1282

270

(485

)3

2..

...

.10

1..

.C

–0.5

Mo

For

ging

sS

A-1

82F

22,

Cl.

1K

2159

060

(415

)5A

1..

...

.10

2..

.2.

25C

r–1M

oF

orgi

ngs

SA

-182

F22

,C

l.3

K21

590

75(5

15)

5A1

...

...

102

...

2.25

Cr–

1Mo

For

ging

sS

A-1

82F

RK

2203

563

(435

)9A

1..

...

.10

1..

.2N

i–1C

uF

orgi

ngs

SA

-182

F21

K31

545

75(5

15)

5A1

...

...

102

...

3Cr–

1Mo

For

ging

sS

A-1

82F

3VK

3183

085

(585

)5C

1..

...

.10

2..

.3C

r–1M

o–V

–Ti–

BF

orgi

ngs

SA

-182

F3V

Cb

...

85(5

85)

5C1

...

...

102

...

3Cr–

1Mo–

0.25

V–C

b–C

aF

orgi

ngs

SA

-182

F22

VK

3183

585

(585

)5C

1..

...

.10

2..

.2.

25C

r–1M

o–V

For

ging

sS

A-1

82F

5K

4154

570

(485

)5B

1..

...

.10

2..

.5C

r–0.

5Mo

For

ging

s

SA

-182

F5a

K42

544

90(6

20)

5B1

...

...

102

...

5Cr–

0.5M

oF

orgi

ngs

SA

-182

F9

K90

941

85(5

85)

5B1

...

...

102

...

9Cr–

1Mo

For

ging

sS

A-1

82F

91K

9090

185

(585

)5B

2..

...

.10

2..

.9C

r–1M

o–V

For

ging

sS

A-1

82F

6a,

Cl.

1S

4100

070

(485

)6

1..

...

.10

2..

.13

Cr

For

ging

sS

A-1

82F

6a,

Cl.

2S

4100

085

(585

)6

3..

...

.10

2..

.13

Cr

For

ging

s

SA

-182

FX

M–1

9S

2091

010

0(6

90)

83

...

...

102

...

22C

r–13

Ni–

5Mn

For

ging

sS

A-1

82F

XM

–11

S21

904

90(6

20)

83

...

...

102

...

21C

r–6N

i–9M

nF

orgi

ngs

SA

-182

F30

4S

3040

070

(485

)8

1..

...

.10

2..

.18

Cr–

8Ni

For

ging

s>

5in

.(1

27m

m)

SA

-182

F30

4S

3040

075

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni

For

ging

sS

A-1

82F

304L

S30

403

65(4

50)

81

...

...

102

...

18C

r–8N

iF

orgi

ngs

>5

in.

(127

mm

)

SA

-182

F30

4LS

3040

370

(485

)8

1..

...

.10

2..

.18

Cr–

8Ni

For

ging

sS

A-1

82F

304H

S30

409

70(4

85)

81

...

...

102

...

18C

r–8N

iF

orgi

ngs

>5

in.

(127

mm

)S

A-1

82F

304H

S30

409

75(5

15)

81

...

...

102

...

18C

r–8N

iF

orgi

ngs

SA

-182

F30

4NS

3045

180

(550

)8

1..

...

.10

2..

.18

Cr–

8Ni–

NF

orgi

ngs

SA

-182

F30

4LN

S30

453

70(4

85)

81

...

...

102

...

18C

r–8N

i–N

For

ging

s>

5in

.(1

27m

m)

SA

-182

F30

4LN

S30

453

75(5

15)

81

...

...

102

...

18C

r–8N

i–N

For

ging

s

2007 SECTION IX

Page 105: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

76

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-182

F46

S30

600

78(5

40)

81

...

...

102

...

18C

r–15

Ni–

4Si

For

ging

sS

A-1

82F

45S

3081

587

(600

)8

2..

...

.10

2..

.21

Cr–

11N

i–N

For

ging

sS

A-1

82F

310

S31

000

70(4

85)

82

...

...

102

...

25C

r–20

Ni

For

ging

s>

5in

.(1

27m

m)

SA

-182

F31

0S

3100

075

(515

)8

2..

...

.10

2..

.25

Cr–

20N

iF

orgi

ngs

SA

-182

F31

0MoL

NS

3105

078

(540

)8

2..

...

.10

2..

.25

Cr–

22N

i–2M

o–N

For

ging

s

SA

-182

F50

S31

200

100

(690

)10

H1

...

...

102

...

25C

r–6N

i–M

o–N

For

ging

sS

A-1

82F

44S

3125

494

(650

)8

4..

...

.10

2..

.20

Cr–

18N

i–6M

oF

orgi

ngs

SA

-182

F31

6S

3160

070

(485

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oF

orgi

ngs

>5

in.

(127

mm

)S

A-1

82F

316

S31

600

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

For

ging

sS

A-1

82F

316L

S31

603

65(4

50)

81

...

...

102

...

16C

r–12

Ni–

2Mo

For

ging

s>

5in

.(1

27m

m)

SA

-182

F31

6LS

3160

370

(485

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oF

orgi

ngs

SA

-182

F31

6HS

3160

970

(485

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oF

orgi

ngs

>5

in.

(127

mm

)S

A-1

82F

316H

S31

609

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

For

ging

sS

A-1

82F

316N

S31

651

80(5

50)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NF

orgi

ngs

SA

-182

F31

6LN

S31

653

70(4

85)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NF

orgi

ngs

>5

in.

(127

mm

)

SA

-182

F31

6LN

S31

653

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NF

orgi

ngs

SA

-182

F31

7S

3170

070

(485

)8

1..

...

.10

2..

.18

Cr–

13N

i–3M

oF

orgi

ngs

>5

in.

(127

mm

)S

A-1

82F

317

S31

700

75(5

15)

81

...

...

102

...

18C

r–13

Ni–

3Mo

For

ging

sS

A-1

82F

317L

S31

703

65(4

50)

81

...

...

102

...

18C

r–13

Ni–

3Mo

For

ging

s>

5in

.(1

27m

m)

SA

-182

F31

7LS

3170

370

(485

)8

1..

...

.10

2..

.18

Cr–

13N

i–3M

oF

orgi

ngs

SA

-182

F51

S31

803

90(6

20)

10H

1..

...

.10

2..

.22

Cr–

5Ni–

3Mo–

NF

orgi

ngs

SA

-182

F32

1S

3210

070

(485

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iF

orgi

ngs

>5

in.

(127

mm

)S

A-1

82F

321

S32

100

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Ti

For

ging

sS

A-1

82F

321H

S32

109

70(4

85)

81

...

...

102

...

18C

r–10

Ni–

Ti

For

ging

s>

5in

.(1

27m

m)

SA

-182

F32

1HS

3210

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iF

orgi

ngs

SA

-182

F55

S32

760

109

(750

)..

...

.10

H1

...

102

25C

r–8N

i–3M

o–W

–Cu–

NF

orgi

ngs

SA

-182

F10

S33

100

80(5

50)

82

...

...

102

...

20N

i–8C

rF

orgi

ngs

SA

-182

F34

7S

3470

070

(485

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bF

orgi

ngs

>5

in.

(127

mm

)S

A-1

82F

347

S34

700

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

For

ging

sS

A-1

82F

347H

S34

709

70(4

85)

81

...

...

102

...

18C

r–10

Ni–

Cb

For

ging

s>

5in

.(1

27m

m)

SA

-182

F34

7HS

3470

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bF

orgi

ngs

SA

-182

F34

8S

3480

070

(485

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bF

orgi

ngs

>5

in.

(127

mm

)S

A-1

82F

348

S34

800

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

For

ging

sS

A-1

82F

348H

S34

809

70(4

85)

81

...

...

102

...

18C

r–10

Ni–

Cb

For

ging

s>

5in

.(1

27m

m)

SA

-182

F34

8HS

3480

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bF

orgi

ngs

SA

-182

F6b

S41

026

110

(760

)6

3..

...

.10

2..

.13

Cr–

0.5M

oF

orgi

ngs

2007 SECTION IX

Page 106: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

77

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-182

F6N

MS

4150

011

5(7

95)

64

...

...

102

...

13C

r–4.

5Ni–

Mo

For

ging

sS

A-1

82F

429

S42

900

60(4

15)

62

...

...

102

...

15C

rF

orgi

ngs

SA

-182

F43

0S

4300

060

(415

)7

2..

...

.10

2..

.17

Cr

For

ging

sS

A-1

82F

XM

–27C

bS

4462

760

(415

)10

I1

...

...

102

...

27C

r–1M

oF

orgi

ngs

SA

-182

F53

S32

750

116

(800

)10

H1

...

...

102

...

25C

r–7N

i–4M

o–N

For

ging

sS

A-1

82F

54S

3927

411

6(8

00)

10H

1..

...

.10

2..

.25

Cr–

7Ni–

3Mo–

2W–C

u–N

For

ging

s

A18

2F

60S

3220

595

(655

)..

...

.10

H1

...

102

22C

r–5N

i–3M

o–N

For

ging

sA

182

F6a

,C

l.3

S41

000

110

(760

)..

...

.6

3..

.10

213

Cr

For

ging

sA

182

F6a

,C

l.4

S41

000

130

(895

)..

...

.6

3..

.10

213

Cr

For

ging

sA

182

S34

565

S34

565

115

(795

)..

...

.8

4..

...

.24

Cr–

17N

i–6M

n–4.

5Mo–

NF

orgi

ngs

SA

-192

...

K01

201

47(3

25)

11

...

...

101

...

C–S

iS

mls

.tu

be

SA

-202

AK

1174

275

(515

)4

1..

...

.10

1..

.0.

5Cr–

1.25

Mn–

Si

Pla

teS

A-2

02B

K12

542

85(5

85)

41

...

...

101

...

0.5C

r–1.

25M

n–S

iP

late

SA

-203

AK

2170

365

(450

)9A

1..

...

.10

1..

.2.

5Ni

Pla

teS

A-2

03B

K22

103

70(4

85)

9A1

...

...

101

...

2.5N

iP

late

SA

-203

DK

3171

865

(450

)9B

1..

...

.10

1..

.3.

5Ni

Pla

teS

A-2

03E

K32

018

70(4

85)

9B1

...

...

101

...

3.5N

iP

late

SA

-203

F..

.75

(515

)9B

1..

...

.10

1..

.3.

5Ni

Pla

te>

2in

.(5

1m

m)

SA

-203

F..

.80

(550

)9B

1..

...

.10

1..

.3.

5Ni

Pla

te,

2in

.(5

1m

m)

&un

der

SA

-204

AK

1182

065

(450

)3

1..

...

.10

1..

.C

–0.5

Mo

Pla

teS

A-2

04B

K12

020

70(4

85)

32

...

...

101

...

C–0

.5M

oP

late

SA

-204

CK

1232

075

(515

)3

2..

...

.10

1..

.C

–0.5

Mo

Pla

te

SA

-209

T1b

K11

422

53(3

65)

31

...

...

101

...

C–0

.5M

oS

mls

.tu

beS

A-2

09T

1K

1152

255

(380

)3

1..

...

.10

1..

.C

–0.5

Mo

Sm

ls.

tube

SA

-209

T1a

K12

023

60(4

15)

31

...

...

101

...

C–0

.5M

oS

mls

.tu

be

SA

-210

A–1

K02

707

60(4

15)

11

...

...

101

...

C–S

iS

mls

.tu

beS

A-2

10C

K03

501

70(4

85)

12

...

...

101

...

C–M

n–S

iS

mls

.tu

be

A21

1A

570-

30K

0250

249

(340

)..

...

.1

1..

.10

1C

Wel

ded

pipe

A21

1A

570-

33K

0250

252

(360

)..

...

.1

1..

.10

1C

Wel

ded

pipe

A21

1A

570-

40K

0250

255

(380

)..

...

.1

1..

.10

1C

Wel

ded

pipe

SA

-213

T2

K11

547

60(4

15)

31

...

...

101

...

0.5C

r–0.

5Mo

Sm

ls.

tube

SA

-213

T12

K11

562

60(4

15)

41

...

...

102

...

1Cr–

0.5M

oS

mls

.tu

beS

A-2

13T

11K

1159

760

(415

)4

1..

...

.10

2..

.1.

25C

r–0.

5Mo–

Si

Sm

ls.

tube

SA

-213

T17

K12

047

60(4

15)

10B

1..

...

.10

2..

.1C

r–V

Sm

ls.

tube

SA

-213

T22

K21

590

60(4

15)

5A1

...

...

102

...

2.25

Cr–

1Mo

Sm

ls.

tube

2007 SECTION IX

Page 107: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

78

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-213

T21

K31

545

60(4

15)

5A1

...

...

102

...

3Cr–

1Mo

Sm

ls.

tube

SA

-213

T5c

K41

245

60(4

15)

5B1

...

...

102

...

5Cr–

0.5M

o–T

iS

mls

.tu

beS

A-2

13T

5K

4154

560

(415

)5B

1..

...

.10

2..

.5C

r–0.

5Mo

Sm

ls.

tube

SA

-213

T5b

K51

545

60(4

15)

5B1

...

...

102

...

5Cr–

0.5M

o–S

iS

mls

.tu

beS

A-2

13T

9K

9094

160

(415

)5B

1..

...

.10

2..

.9C

r–1M

oS

mls

.tu

be

SA

-213

T91

K90

901

85(5

85)

5B2

...

...

102

...

9Cr–

1Mo–

VS

mls

.tu

beS

A-2

13T

P20

1S

2010

095

(655

)8

3..

...

.10

2..

.17

Cr–

4Ni–

6Mn

Sm

ls.

tube

SA

-213

TP

202

S20

200

90(6

20)

83

...

...

102

...

18C

r–5N

i–9M

nS

mls

.tu

beS

A-2

13X

M-1

9S

2091

010

0(6

90)

83

...

...

102

...

22C

r–13

Ni–

5Mn

Sm

ls.

tube

SA

-213

TP

304

S30

400

75(5

15)

81

...

...

102

...

18C

r–8N

iS

mls

.tu

be

SA

-213

TP

304L

S30

403

70(4

85)

81

...

...

102

...

18C

r–8N

iS

mls

.tu

beS

A-2

13T

P30

4HS

3040

975

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni

Sm

ls.

tube

SA

-213

TP

304N

S30

451

80(5

50)

81

...

...

102

...

18C

r–8N

i–N

Sm

ls.

tube

SA

-213

TP

304L

NS

3045

375

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni–

NS

mls

.tu

beS

A-2

13S

3081

5S

3081

587

(600

)8

2..

...

.10

2..

.21

Cr–

11N

i–N

Sm

ls.

tube

SA

-213

TP

309S

S30

908

75(5

15)

82

...

...

102

...

23C

r–12

Ni

Sm

ls.

tube

SA

-213

TP

309H

S30

909

75(5

15)

82

...

...

102

...

23C

r–12

Ni

Sm

ls.

tube

SA

-213

TP

309C

bS

3094

075

(515

)8

2..

...

.10

2..

.23

Cr–

12N

i–C

bS

mls

.tu

beS

A-2

13T

P30

9HC

bS

3094

175

(515

)8

2..

...

.10

2..

.23

Cr–

12N

i–C

bS

mls

.tu

beS

A-2

13T

P31

0SS

3100

875

(515

)8

2..

...

.10

2..

.25

Cr–

20N

iS

mls

.tu

be

SA

-213

TP

310H

S31

009

75(5

15)

82

...

...

102

...

25C

r–20

Ni

Sm

ls.

tube

SA

-213

TP

310C

bS

3104

075

(515

)8

2..

...

.10

2..

.25

Cr–

20N

i–C

bS

mls

.tu

beS

A-2

13T

P31

0HC

bS

3104

175

(515

)8

2..

...

.10

2..

.25

Cr–

20N

i–C

bS

mls

.tu

beS

A-2

13T

P31

0MoL

NS

3105

078

(540

)8

2..

...

.10

2..

.25

Cr–

22N

i–2M

o–N

Sm

ls.

tube

,t

>1 ⁄ 4

in.

(6m

m)

SA

-213

TP

310M

oLN

S31

050

84(5

80)

82

...

...

102

...

25C

r–22

Ni–

2Mo–

NS

mls

.tu

be,

t≤

1 ⁄ 4in

.(6

mm

)

SA

-213

S31

277

S31

277

112

(770

)45

...

...

...

111

...

27N

i–22

Cr–

7Mo–

Mn–

Cu

Sm

ls.

tube

SA

-213

TP

316

S31

600

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Sm

ls.

tube

SA

-213

TP

316L

S31

603

70(4

85)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Sm

ls.

tube

SA

-213

TP

316H

S31

609

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Sm

ls.

tube

SA

-213

TP

316N

S31

651

80(5

50)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NS

mls

.tu

be

SA

-213

TP

316L

NS

3165

375

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–N

Sm

ls.

tube

SA

-213

S31

725

S31

725

75(5

15)

84

...

...

102

...

19C

r–15

Ni–

4Mo

Sm

ls.

tube

SA

-213

S31

726

S31

726

80(5

50)

84

...

...

102

...

19C

r–15

.5N

i–4M

oS

mls

.tu

beS

A-2

13T

P32

1S

3210

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iS

mls

.tu

beS

A-2

13T

P32

1HS

3210

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iS

mls

.tu

be

SA

-213

TP

347

S34

700

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Sm

ls.

tube

2007 SECTION IX

Page 108: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

79

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-213

TP

347H

S34

709

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Sm

ls.

tube

SA

-213

TP

347H

FG

S34

710

80(5

50)

81

...

...

102

...

18C

r–10

Ni–

Cb

Sm

ls.

tube

SA

-213

TP

348

S34

800

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Sm

ls.

tube

SA

-213

TP

348H

S34

809

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Sm

ls.

tube

SA

-213

XM

–15

S38

100

75(5

15)

81

...

...

102

...

18C

r–18

Ni–

2Si

Sm

ls.

tube

SA

-213

S30

600

S30

600

75(5

15)

81

...

...

102

...

17C

r–14

Ni–

4Si

Sm

ls.

tube

SA

-213

S30

601

S30

601

78(5

40)

81

...

...

102

...

17.5

Cr–

17.5

Ni–

5.3S

iS

mls

.tu

beS

A-2

13S

3261

5S

3261

580

(550

)8

1..

...

.10

2..

.18

Cr–

20N

i–5.

5Si

Sm

ls.

tube

SA

-214

...

K01

807

47(3

25)

11

...

...

101

...

CE

.R.W

.tu

be

SA

-216

WC

AJ0

2502

60(4

15)

11

...

...

101

...

C–S

iC

asti

ngs

SA

-216

WC

CJ0

2503

70(4

85)

12

...

...

101

...

C–M

n–S

iC

asti

ngs

SA

-216

WC

BJ0

3002

70(4

85)

12

...

...

101

...

C–S

iC

asti

ngs

SA

-217

WC

6J1

2072

70(4

85)

41

...

...

102

...

1.25

Cr–

0.5M

oC

asti

ngs

SA

-217

WC

4J1

2082

70(4

85)

41

...

...

101

...

1Ni–

0.5C

r–0.

5Mo

Cas

ting

sS

A-2

17W

C1

J125

2465

(450

)3

1..

...

.10

1..

.C

–0.5

Mo

Cas

ting

sS

A-2

17W

C9

J218

9070

(485

)5A

1..

...

.10

2..

.2.

25C

r–1M

oC

asti

ngs

SA

-217

WC

5J2

2000

70(4

85)

41

...

...

101

...

0.75

Ni–

1Mo–

0.75

Cr

Cas

ting

s

SA

-217

C5

J420

4590

(620

)5B

1..

...

.10

2..

.5C

r–0.

5Mo

Cas

ting

sS

A-2

17C

12J8

2090

90(6

20)

5B1

...

...

102

...

9Cr–

1Mo

Cas

ting

sS

A-2

17C

A15

J911

5090

(620

)6

3..

...

.10

2..

.13

Cr

Cas

ting

sA

217

C12

AJ8

4090

85(5

85)

...

...

5B2

...

102

9Cr–

1Mo–

VC

asti

ngs

SA

-225

DK

1200

475

(515

)10

A1

...

...

101

...

Mn–

0.5N

i–V

Pla

te>

3in

.(7

6m

m)

SA

-225

DK

1200

480

(550

)10

A1

...

...

101

...

Mn–

0.5N

i–V

Pla

te,

3in

.(7

6m

m)

&un

der

SA

-225

CK

1252

410

5(7

25)

10A

1..

...

.10

1..

.M

n–0.

5Ni–

VP

late

SA

-234

WP

BK

0300

660

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

Pip

ing

fitti

ngS

A-2

34W

PC

K03

501

70(4

85)

12

...

...

101

...

C–M

n–S

iP

ipin

gfit

ting

SA

-234

WP

11,

Cl.

1..

.60

(415

)4

1..

...

.10

2..

.1.

25C

r–0.

5Mo–

Si

Pip

ing

fitti

ngS

A-2

34W

P12

,C

l.1

K12

062

60(4

15)

41

...

...

101

...

1Cr–

0.5M

oP

ipin

gfit

ting

SA

-234

WP

1K

1282

155

(380

)3

1..

...

.10

1..

.C

–0.5

Mo

Pip

ing

fitti

ng

SA

-234

WP

22,

Cl.

1K

2159

060

(415

)5A

1..

...

.10

2..

.2.

25C

r–1M

oP

ipin

gfit

ting

SA

-234

WP

RK

2203

563

(435

)9A

1..

...

.10

1..

.2N

i–1C

uP

ipin

gfit

ting

SA

-234

WP

5K

4154

560

(415

)5B

1..

...

.10

2..

.5C

r–0.

5Mo

Pip

ing

fitti

ngS

A-2

34W

P9

K90

941

60(4

15)

5B1

...

...

102

...

9Cr–

1Mo

Pip

ing

fitti

ngS

A-2

34W

P91

K90

901

85(5

85)

5B2

...

...

102

...

9Cr–

1Mo–

VP

ipin

gfit

ting

SA

-240

Typ

e20

1-1

S20

100

75(5

15)

83

...

...

102

...

17C

r–4N

i–6M

nP

late

,sh

eet

&st

rip

SA

-240

Typ

e20

1-2

S20

100

95(6

55)

83

...

...

102

...

17C

r–4N

i–6M

nP

late

,sh

eet

&st

rip

2007 SECTION IX

Page 109: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

80

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-240

Typ

e20

1LN

S20

153

95(6

55)

83

...

...

...

...

16C

r–4N

i–6M

nP

late

,sh

eet

&st

rip

SA

-240

Typ

e20

2S

2020

090

(620

)8

3..

...

.10

2..

.18

Cr–

5Ni–

9Mn

Pla

te,

shee

t&

stri

pS

A-2

40..

.S

2040

095

(655

)8

3..

...

.10

2..

.16

Cr–

9Mn–

2Ni–

NP

late

,sh

eet

&st

rip

SA

-240

Typ

eX

M–1

9S

2091

010

0(6

90)

83

...

...

102

...

22C

r–13

Ni–

5Mn

Pla

teS

A-2

40T

ype

XM

–19

S20

910

105

(725

)8

3..

...

.10

2..

.22

Cr–

13N

i–5M

nS

heet

&st

rip

SA

-240

Typ

eX

M–1

7S

2160

090

(620

)8

3..

...

.10

2..

.19

Cr–

8Mn–

6Ni–

Mo–

NP

late

SA

-240

Typ

eX

M–1

7S

2160

010

0(6

90)

83

...

...

102

...

19C

r–8M

n–6N

i–M

o–N

She

et&

stri

pS

A-2

40T

ype

XM

–18

S21

603

90(6

20)

83

...

...

102

...

19C

r–8M

n–6N

i–M

o–N

Pla

teS

A-2

40T

ype

XM

–18

S21

603

100

(690

)8

3..

...

.10

2..

.19

Cr–

8Mn–

6Ni–

Mo–

NS

heet

&st

rip

SA

-240

S21

800

S21

800

95(6

55)

83

...

...

102

...

18C

r–8N

i–4S

i–N

Pla

te,

shee

t&

stri

p

SA

-240

Typ

eX

M–2

9S

2400

010

0(6

90)

83

...

...

102

...

18C

r–3N

i–12

Mn

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

301

S30

100

75(5

15)

81

...

...

102

...

17C

r–7N

iP

late

,sh

eet

&st

rip

SA

-240

Typ

e30

2S

3020

075

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

304

S30

400

75(5

15)

81

...

...

102

...

18C

r–8N

iP

late

,sh

eet

&st

rip

SA

-240

Typ

e30

4LS

3040

370

(485

)8

1..

...

.10

2..

.18

Cr–

8Ni

Pla

te,

shee

t&

stri

p

SA

-240

Typ

e30

4HS

3040

975

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

304N

S30

451

80(5

50)

81

...

...

102

...

18C

r–8N

i–N

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

XM

–21

S30

452

85(5

85)

81

...

...

102

...

18C

r–8N

i–N

Pla

teS

A-2

40T

ype

XM

–21

S30

452

90(6

20)

81

...

...

102

...

18C

r–8N

i–N

She

et&

stri

pS

A-2

40T

ype

304L

NS

3045

375

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni–

NP

late

,sh

eet

&st

rip

SA

-240

Typ

e30

5S

3050

075

(515

)8

1..

...

.10

2..

.18

Cr–

11N

iP

late

,sh

eet

&st

rip

SA

-240

S30

600

S30

600

78(5

40)

81

...

...

102

...

18C

r–15

Ni–

4Si

Pla

te,

shee

t&

stri

pS

A-2

40S

3060

1S

3060

178

(540

)8

1..

...

.10

2..

.17

.5C

r–17

.5N

i–5.

3Si

Pla

te,

shee

t&

stri

pS

A-2

40S

3081

5S

3081

587

(600

)8

2..

...

.10

2..

.21

Cr–

11N

i–N

Pla

te,

shee

t&

stri

pS

A-2

40S

3261

5S

3261

580

(550

)8

1..

...

.10

2..

.18

Cr–

20N

i–5.

5Si

Pla

te,

shee

t&

stri

p

SA

-240

Typ

e30

9SS

3090

875

(515

)8

2..

...

.10

2..

.23

Cr–

12N

iP

late

,sh

eet

&st

rip

SA

-240

Typ

e30

9HS

3090

975

(515

)8

2..

...

.10

2..

.23

Cr–

12N

iP

late

,sh

eet

&st

rip

SA

-240

Typ

e30

9Cb

S30

940

75(5

15)

82

...

...

102

...

23C

r–12

Ni–

Cb

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

309H

Cb

S30

941

75(5

15)

82

...

...

102

...

23C

r–12

Ni–

Cb

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

310S

S31

008

75(5

15)

82

...

...

102

...

25C

r–20

Ni

Pla

te,

shee

t&

stri

p

SA

-240

Typ

e31

0HS

3100

975

(515

)8

2..

...

.10

2..

.25

Cr–

20N

iP

late

,sh

eet

&st

rip

SA

-240

Typ

e31

0Cb

S31

040

75(5

15)

82

...

...

102

...

25C

r–20

Ni–

Cb

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

310H

Cb

S31

041

75(5

15)

82

...

...

102

...

25C

r–20

Ni–

Cb

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

310M

oLN

S31

050

80(5

50)

82

...

...

102

...

25C

r–22

Ni–

2Mo–

NP

late

,sh

eet

&st

rip

SA

-240

S31

200

S31

200

100

(690

)10

H1

...

...

102

...

25C

r–6N

i–M

o–N

Pla

te,

shee

t&

stri

p

SA

-240

S31

254

S31

254

94(6

50)

84

...

...

102

...

20C

r–18

Ni–

6Mo

Pla

te,

shee

t&

stri

p

2007 SECTION IX

Page 110: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

81

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-240

S31

260

S31

260

100

(690

)10

H1

...

...

102

...

25C

r–6.

5Ni–

3Mo–

NP

late

,sh

eet

&st

rip

SA

-240

S31

277

S31

277

112

(770

)45

...

...

...

111

...

27N

i–22

Cr–

7Mo–

Mn–

Cu

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

316

S31

600

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

316L

S31

603

70(4

85)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

316H

S31

609

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Pla

te,

shee

t&

stri

p

SA

-240

Typ

e31

6Ti

S31

635

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

Ti

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

316C

bS

3164

075

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–C

bP

late

,sh

eet

&st

rip

SA

-240

Typ

e31

6NS

3165

180

(550

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–N

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

316L

NS

3165

375

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–N

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

317

S31

700

75(5

15)

81

...

...

102

...

18C

r–13

Ni–

3Mo

Pla

te,

shee

t&

stri

p

SA

-240

Typ

e31

7LS

3170

375

(515

)8

1..

...

.10

2..

.18

Cr–

13N

i–3M

oP

late

,sh

eet

&st

rip

SA

-240

S31

725

S31

725

75(5

15)

84

...

...

102

...

19C

r–15

Ni–

4Mo

Pla

te,

shee

t&

stri

pS

A-2

40S

3172

6S

3172

680

(550

)8

4..

...

.10

2..

.19

Cr–

15.5

Ni–

4Mo

Pla

te,

shee

t&

stri

pS

A-2

40S

3175

3S

3175

380

(550

)8

1..

...

.10

2..

.18

Cr–

13N

i–3M

o–N

Pla

te,

shee

t&

stri

pS

A-2

40S

3180

3S

3180

390

(620

)10

H1

...

...

102

...

22C

r–5N

i–3M

o–N

Pla

te,

shee

t&

stri

p

SA

-240

Typ

e32

1S

3210

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iP

late

,sh

eet

&st

rip

SA

-240

Typ

e32

1HS

3210

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iP

late

,sh

eet

&st

rip

SA

-240

S32

550

S32

550

110

(760

)10

H1

...

...

102

...

25C

r–5N

i–3M

o–2C

uP

late

,sh

eet

&st

rip

SA

-240

S32

750

S32

750

116

(800

)10

H1

...

...

102

...

25C

r–7N

i–4M

o–N

Pla

te,

shee

t&

stri

pS

A-2

40S

3276

0S

3276

010

8(7

45)

...

...

10H

1..

.10

225

Cr–

8Ni–

3Mo–

W–C

u–N

Pla

te,

shee

t&

stri

p

SA

-240

Typ

e32

9S

3290

090

(620

)10

H1

...

...

102

...

26C

r–4N

i–M

oP

late

,sh

eet

&st

rip

SA

-240

S32

906

S32

906

109

(750

)10

H1

...

...

102

...

29C

r–6.

5Ni–

2Mo–

NP

late

,sh

eet

&st

rip

≥0.

40in

.(1

0m

m)

SA

-240

S32

906

S32

906

116

(800

)10

H1

...

...

102

...

29C

r–6.

5Ni–

2Mo–

NP

late

,sh

eet

&st

rip

<0.

40in

.(1

0m

m)

SA

-240

S32

950

S32

950

100

(690

)10

H1

...

...

102

...

26C

r–4N

i–M

o–N

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

347

S34

700

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Pla

te,

shee

t&

stri

p

SA

-240

Typ

e34

7HS

3470

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bP

late

,sh

eet

&st

rip

SA

-240

Typ

e34

8S

3480

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bP

late

,sh

eet

&st

rip

SA

-240

Typ

e34

8HS

3480

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bP

late

,sh

eet

&st

rip

SA

-240

Typ

eX

M–1

5S

3810

075

(515

)8

1..

...

.10

2..

.18

Cr–

18N

i–2S

iP

late

,sh

eet

&st

rip

SA

-240

Typ

e40

5S

4050

060

(415

)7

1..

...

.10

2..

.12

Cr–

1Al

Pla

te,

shee

t&

stri

p

SA

-240

Typ

e40

9S

4091

055

(380

)7

1..

...

.10

2..

.11

Cr–

Ti

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

409

S40

920

55(3

80)

71

...

...

102

...

11C

r–T

iP

late

,sh

eet

&st

rip

SA

-240

Typ

e40

9S

4093

055

(380

)7

1..

...

.10

2..

.11

Cr–

Ti

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

410

S41

000

65(4

50)

61

...

...

102

...

13C

rP

late

,sh

eet

&st

rip

SA

-240

Typ

e41

0SS

4100

860

(415

)7

1..

...

.10

2..

.13

Cr

Pla

te,

shee

t&

stri

p

SA

-240

S41

500

S41

500

115

(795

)6

4..

...

.10

2..

.13

Cr–

4.5N

i–M

oP

late

,sh

eet

&st

rip

2007 SECTION IX

Page 111: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

82

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-240

Typ

e42

9S

4290

065

(450

)6

2..

...

.10

2..

.15

Cr

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

430

S43

000

65(4

50)

72

...

...

102

...

17C

rP

late

,sh

eet

&st

rip

SA

-240

Typ

e43

9S

4303

560

(415

)7

2..

...

.10

2..

.18

Cr–

Ti

Pla

te,

shee

t&

stri

pS

A-2

40S

4440

0S

4440

060

(415

)7

2..

...

.10

2..

.18

Cr–

2Mo

Pla

te,

shee

t&

stri

pS

A-2

40T

ype

XM

–33

S44

626

68(4

70)

10I

1..

...

.10

2..

.27

Cr–

1Mo–

Ti

Pla

te,

shee

t&

stri

p

SA

-240

Typ

eX

M–2

7S

4462

765

(450

)10

I1

...

...

102

...

27C

r–1M

oP

late

,sh

eet

&st

rip

SA

-240

S44

635

S44

635

90(6

20)

10I

1..

...

.10

2..

.25

Cr–

4Ni–

4Mo–

Ti

Pla

te,

shee

t&

stri

pS

A-2

40S

4466

0S

4466

085

(585

)10

K1

...

...

102

...

26C

r–3N

i–3M

oP

late

,sh

eet

&st

rip

SA

-240

S44

700

S44

700

80(5

50)

10J

1..

...

.10

2..

.29

Cr–

4Mo

Pla

te,

shee

t&

stri

pS

A-2

40S

4480

0S

4480

080

(550

)10

K1

...

...

102

...

29C

r–4M

o–2N

iP

late

,sh

eet

&st

rip

A24

0S

3220

5S

3220

590

(620

)..

...

.10

H1

...

102

22C

r–5N

i–3M

o–N

Pla

te,

shee

t&

stri

pA

240

S34

565

S34

565

115

(795

)..

...

.8

4..

...

.24

Cr–

17N

i–6M

n–4.

5Mo–

NP

late

,sh

eet

&st

rip

SA

-249

TP

201

S20

100

95(6

55)

83

...

...

102

...

17C

r–4N

i–6M

nW

elde

dtu

beS

A-2

49T

P20

2S

2020

090

(620

)8

3..

...

.10

2..

.18

Cr–

5Ni–

9Mn

Wel

ded

tube

SA

-249

TP

XM

–19

S20

910

100

(690

)8

3..

...

.10

2..

.22

Cr–

13N

i–5M

nW

elde

dtu

beS

A-2

49T

PX

M–2

9S

2400

010

0(6

90)

83

...

...

102

...

18C

r–3N

i–12

Mn

Wel

ded

tube

SA

-249

TP

304

S30

400

75(5

15)

81

...

...

102

...

18C

r–8N

iW

elde

dtu

be

SA

-249

TP

304L

S30

403

70(4

85)

81

...

...

102

...

18C

r–8N

iW

elde

dtu

beS

A-2

49T

P30

4HS

3040

975

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni

Wel

ded

tube

SA

-249

TP

304N

S30

451

80(5

50)

81

...

...

102

...

18C

r–8N

i–N

Wel

ded

tube

SA

-249

TP

304L

NS

3045

375

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni–

NW

elde

dtu

beS

A-2

49S

3081

5S

3081

587

(600

)8

2..

...

.10

2..

.21

Cr–

11N

i–N

Wel

ded

tube

SA

-249

TP

309S

S30

908

75(5

15)

82

...

...

102

...

23C

r–12

Ni

Wel

ded

tube

SA

-249

TP

309H

S30

909

75(5

15)

82

...

...

102

...

23C

r–12

Ni

Wel

ded

tube

SA

-249

TP

309C

bS

3094

075

(515

)8

2..

...

.10

2..

.23

Cr–

12N

i–C

bW

elde

dtu

beS

A-2

49T

P30

9HC

bS

3094

175

(515

)8

2..

...

.10

2..

.23

Cr–

12N

i–C

bW

elde

dtu

beS

A-2

49T

P31

0SS

3100

875

(515

)8

2..

...

.10

2..

.25

Cr–

20N

iW

elde

dtu

be

SA

-249

TP

310H

S31

009

75(5

15)

82

...

...

102

...

25C

r–20

Ni

Wel

ded

tube

SA

-249

TP

310C

bS

3104

075

(515

)8

2..

...

.10

2..

.25

Cr–

20N

i–C

bW

elde

dtu

beS

A-2

49T

P31

0HC

bS

3104

175

(515

)8

2..

...

.10

2..

.25

Cr–

20N

i–C

bW

elde

dtu

beS

A-2

49T

P31

0MoL

NS

3105

078

(540

)8

2..

...

.10

2..

.25

Cr–

22N

i–2M

o–N

Wel

ded

tube

,t

>1 ⁄ 4

in.

(6m

m)

SA

-249

TP

310M

oLN

S31

050

84(5

80)

82

...

...

102

...

25C

r–22

Ni–

2Mo–

NW

elde

dtu

be,

t≤

1 ⁄ 4in

.(6

mm

)

SA

-249

S31

254

S31

254

95(6

55)

84

...

...

102

...

20C

r–18

Ni–

6Mo

Wel

ded

tube

,t

>3 ⁄ 16

in.

(5m

m)

SA

-249

S31

254

S31

254

98(6

75)

84

...

...

102

...

20C

r–12

Ni–

6Mo

Wel

ded

tube

,t

≤3 ⁄ 16

in.

(5m

m)

SA

-249

S31

277

S31

277

112

(770

)45

...

...

...

111

...

27N

i–22

Cr–

7Mo–

Mn-

Cu

Wel

ded

tube

SA

-249

TP

316

S31

600

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Wel

ded

tube

2007 SECTION IX

Page 112: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

83

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-249

TP

316L

S31

603

70(4

85)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Wel

ded

tube

SA

-249

TP

316H

S31

609

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Wel

ded

tube

SA

-249

TP

316N

S31

651

80(5

50)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NW

elde

dtu

beS

A-2

49T

P31

6LN

S31

653

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NW

elde

dtu

beS

A-2

49T

P31

7S

3170

075

(515

)8

1..

...

.10

2..

.18

Cr–

13N

i–3M

oW

elde

dtu

be

SA

-249

TP

317L

S31

703

75(5

15)

81

...

...

102

...

18C

r–13

Ni–

3Mo

Wel

ded

tube

SA

-249

S31

725

S31

725

75(5

15)

84

...

...

102

...

19C

r–15

Ni–

4Mo

Wel

ded

tube

SA

-249

S31

726

S31

726

80(5

50)

84

...

...

102

...

19C

r–15

.5N

i–4M

oW

elde

dtu

beS

A-2

49T

P32

1S

3210

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iW

elde

dtu

beS

A-2

49T

P32

1HS

3210

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iW

elde

dtu

be

SA

-249

TP

347

S34

700

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Wel

ded

tube

SA

-249

TP

347H

S34

709

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Wel

ded

tube

SA

-249

TP

348

S34

800

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Wel

ded

tube

SA

-249

TP

348H

S34

809

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Wel

ded

tube

SA

-249

TP

XM

–15

S38

100

75(5

15)

81

...

...

102

...

18C

r–18

Ni–

2Si

Wel

ded

tube

SA

-250

T1b

K11

422

53(3

65)

31

...

...

101

...

C–0

.5M

oE

.R.W

.tu

beS

A-2

50T

1K

1152

255

(380

)3

1..

...

.10

1..

.C

–0.5

Mo

E.R

.W.

tube

SA

-250

T2

K11

547

60(4

15)

31

...

...

101

...

0.5C

r–0.

5Mo

E.R

.W.

tube

SA

-250

T11

K11

597

60(4

15)

41

...

...

102

...

1.25

Cr–

0.5M

o–S

iE

.R.W

.tu

beS

A-2

50T

1aK

1202

360

(415

)3

1..

...

.10

1..

.C

–0.5

Mo

E.R

.W.

tube

SA

-250

T12

K11

564

60(4

15)

41

...

...

102

...

1Cr–

0.5M

oE

.R.W

.tu

beS

A-2

50T

22K

2159

060

(415

)5A

1..

...

.10

2..

.2.

25C

r–1M

oE

.R.W

.tu

be

A25

4C

l.1K

0100

142

(290

)..

...

...

...

...

.10

1C

Cu

braz

edtu

beA

254

Cl.2

K01

001

42(2

90)

...

...

...

...

...

101

CC

ubr

azed

tube

SA

-266

4K

0301

770

(485

)1

2..

...

.10

1..

.C

–Mn–

Si

For

ging

sS

A-2

661

K03

506

60(4

15)

11

...

...

101

...

C–S

iF

orgi

ngs

SA

-266

2K

0350

670

(485

)1

2..

...

.10

1..

.C

–Si

For

ging

sS

A-2

663

K05

001

75(5

15)

12

...

...

101

...

C–S

iF

orgi

ngs

SA

-268

TP

405

S40

500

60(4

15)

71

...

...

102

...

12C

r–1A

lS

mls

.&

wel

ded

tube

SA

-268

S40

800

S40

800

55(3

80)

71

...

...

102

...

12C

r–T

iS

mls

.&

wel

ded

tube

SA

-268

TP

409

S40

900

55(3

80)

71

...

...

102

...

11C

r–T

iS

mls

.&

wel

ded

tube

SA

-268

TP

410

S41

000

60(4

15)

61

...

...

102

...

13C

rS

mls

.&

wel

ded

tube

SA

-268

S41

500

S41

500

115

(795

)6

4..

...

.10

2..

.13

Cr–

4.5N

i–M

oS

mls

.&

wel

ded

tube

SA

-268

TP

429

S42

900

60(4

15)

62

...

...

102

...

15C

rS

mls

.&

wel

ded

tube

SA

-268

TP

430

S43

000

60(4

15)

72

...

...

102

...

17C

rS

mls

.&

wel

ded

tube

SA

-268

TP

439

S43

035

60(4

15)

72

...

...

102

...

18C

r–T

iS

mls

.&

wel

ded

tube

2007 SECTION IX

Page 113: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

84

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-268

TP

430T

iS

4303

660

(415

)7

1..

...

.10

2..

.18

Cr–

Ti–

Cb

Sm

ls.

&w

elde

dtu

beS

A-2

6818

Cr–

2Mo

S44

400

60(4

15)

72

...

...

102

...

18C

r–2M

oS

mls

.&

wel

ded

tube

SA

-268

TP

446–

2S

4460

065

(450

)10

I1

...

...

102

...

27C

rS

mls

.&

wel

ded

tube

SA

-268

TP

446–

1S

4460

070

(485

)10

I1

...

...

102

...

27C

rS

mls

.&

wel

ded

tube

SA

-268

TP

XM

–33

S44

626

68(4

70)

10I

1..

...

.10

2..

.27

Cr–

1Mo–

Ti

Sm

ls.

&w

elde

dtu

be

SA

-268

TP

XM

–27

S44

627

65(4

50)

10I

1..

...

.10

2..

.27

Cr–

1Mo

Sm

ls.

&w

elde

dtu

beS

A-2

6825

–4–4

S44

635

90(6

20)

10I

1..

...

.10

2..

.25

Cr–

4Ni–

4Mo–

Ti

Sm

ls.

&w

elde

dtu

beS

A-2

6826

–3–3

S44

660

85(5

85)

10K

1..

...

.10

2..

.26

Cr–

3Ni–

3Mo

Sm

ls.

&w

elde

dtu

beS

A-2

6829

–4S

4470

080

(550

)10

J1

...

...

102

...

29C

r–4M

oS

mls

.&

wel

ded

tube

SA

-268

S44

735

S44

735

75(5

15)

10J

1..

...

.10

2..

.29

Cr–

4Mo–

Ti

Sm

ls.

&w

elde

dtu

beS

A-2

6829

–4–2

S44

800

80(5

50)

10K

1..

...

.10

2..

.29

Cr–

4Mo–

2Ni

Sm

ls.

&w

elde

dtu

be

A26

9T

P31

6S

3160

075

(515

)..

...

.8

1..

.10

216

Cr–

12N

i–2M

oS

mls

.&

wel

ded

tube

A26

9T

P31

6LS

3160

370

(485

)..

...

.8

1..

.10

216

Cr–

12N

i–2M

oS

mls

.&

wel

ded

tube

A26

9T

P30

4S

3040

075

(515

)..

...

.8

1..

.10

218

Cr–

8Ni

Sm

ls.

&w

elde

dtu

beA

269

TP

304L

S30

403

70(4

85)

...

...

81

...

102

18C

r–8N

iS

mls

.&

wel

ded

tube

A27

6T

P30

4S

3040

075

(515

)..

...

.8

1..

.10

218

Cr–

8Ni

Bar

A27

6T

P30

4LS

3040

370

(485

)..

...

.8

1..

.10

218

Cr–

8Ni

Bar

A27

6T

P31

6S

3160

075

(515

)..

...

.8

1..

.10

216

Cr–

12N

i–2M

oB

arA

276

TP

316L

S31

603

70(4

85)

...

...

81

...

102

16C

r–12

Ni–

2Mo

Bar

A27

6S

3220

5S

3220

595

(655

)..

...

.10

H1

...

102

22C

r–5N

i–3M

o–N

Bar

A27

6T

P41

0S

4100

065

(450

)..

...

.6

1..

.10

213

Cr

Bar

SA

-283

AK

0140

045

(310

)1

1..

...

.10

1..

.C

Pla

teS

A-2

83B

K01

702

50(3

45)

11

...

...

101

...

CP

late

SA

-283

CK

0240

155

(380

)1

1..

...

.10

1..

.C

Pla

teS

A-2

83D

K02

702

60(4

15)

11

...

...

101

...

CP

late

SA

-285

AK

0170

045

(310

)1

1..

...

.10

1..

.C

Pla

teS

A-2

85B

K02

200

50(3

45)

11

...

...

101

...

CP

late

SA

-285

CK

0280

155

(380

)1

1..

...

.10

1..

.C

Pla

te

SA

-299

...

K02

803

75(5

15)

12

...

...

101

...

C–M

n–S

iP

late

SA

-302

AK

1202

175

(515

)3

2..

...

.10

1..

.M

n–0.

5Mo

Pla

teS

A-3

02B

K12

022

80(5

50)

33

...

...

101

...

Mn–

0.5M

oP

late

SA

-302

CK

1203

980

(550

)3

3..

...

.10

1..

.M

n–0.

5Mo–

0.5N

iP

late

SA

-302

DK

1205

480

(550

)3

3..

...

.10

1..

.M

n–0.

5Mo–

0.75

Ni

Pla

te

SA

-312

TP

XM

–19

S20

910

100

(690

)8

3..

...

.10

2..

.22

Cr–

13N

i–5M

nS

mls

.&

wel

ded

pipe

SA

-312

TP

XM

–11

S21

904

90(6

20)

83

...

...

102

...

21C

r–6N

i–9M

nS

mls

.&

wel

ded

pipe

SA

-312

TP

XM

–29

S24

000

100

(690

)8

3..

...

.10

2..

.18

Cr–

3Ni–

12M

nS

mls

.&

wel

ded

pipe

2007 SECTION IX

Page 114: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

85

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-312

TP

304

S30

400

75(5

15)

81

...

...

102

...

18C

r–8N

iS

mls

.&

wel

ded

pipe

SA

-312

TP

304L

S30

403

70(4

85)

81

...

...

102

...

18C

r–8N

iS

mls

.&

wel

ded

pipe

SA

-312

TP

304H

S30

409

75(5

15)

81

...

...

102

...

18C

r–8N

iS

mls

.&

wel

ded

pipe

SA

-312

TP

304N

S30

451

80(5

50)

81

...

...

102

...

18C

r–8N

i–N

Sm

ls.

&w

elde

dpi

peS

A-3

12T

P30

4LN

S30

453

75(5

15)

81

...

...

102

...

18C

r–8N

i–N

Sm

ls.

&w

elde

dpi

pe

SA

-312

S30

600

S30

600

78(5

40)

81

...

...

102

...

18C

r–15

Ni–

4Si

Sm

ls.

&w

elde

dpi

peS

A-3

12S

3060

1S

3060

178

(540

)8

1..

...

.10

2..

.17

.5C

r–17

.5N

i–5.

3Si

Sm

ls.

&w

elde

dpi

peS

A-3

12S

3081

5S

3081

587

(600

)8

2..

...

.10

2..

.21

Cr–

11N

i–N

Sm

ls.

&w

elde

dpi

peS

A-3

12S

3261

5S

3261

580

(550

)8

1..

...

.10

2..

.18

Cr–

20N

i–5.

5Si

Sm

ls.

&w

elde

dpi

peS

A-3

12T

P30

9SS

3090

875

(515

)8

2..

...

.10

2..

.23

Cr–

12N

iS

mls

.&

wel

ded

pipe

SA

-312

TP

309H

S30

909

75(5

15)

82

...

...

102

...

23C

r–12

Ni

Sm

ls.

&w

elde

dpi

peS

A-3

12T

P30

9Cb

S30

940

75(5

15)

82

...

...

102

...

23C

r–12

Ni–

Cb

Sm

ls.

&w

elde

dpi

peS

A-3

12T

P30

9HC

bS

3094

175

(515

)8

2..

...

.10

2..

.23

Cr–

12N

i–C

bS

mls

.&

wel

ded

pipe

SA

-312

TP

310S

S31

008

75(5

15)

82

...

...

102

...

25C

r–20

Ni

Sm

ls.

&w

elde

dpi

peS

A-3

12T

P31

0HS

3100

975

(515

)8

2..

...

.10

2..

.25

Cr–

20N

iS

mls

.&

wel

ded

pipe

SA

-312

TP

310C

bS

3104

075

(515

)8

2..

...

.10

2..

.25

Cr–

20N

i–C

bS

mls

.&

wel

ded

pipe

SA

-312

TP

310H

Cb

S31

041

75(5

15)

82

...

...

102

...

25C

r–20

Ni–

Cb

Sm

ls.

&w

elde

dpi

peS

A-3

12T

P31

0MoL

NS

3105

078

(540

)8

2..

...

.10

2..

.25

Cr–

22N

i–2M

o–N

Wel

ded

pipe

,t

>1 ⁄ 4

in.

(6m

m)

SA

-312

TP

310M

oLN

S31

050

84(5

80)

82

...

...

102

...

25C

r–22

Ni–

2Mo–

NW

elde

dpi

pe,

t≤

1 ⁄ 4in

.(6

mm

)S

A-3

12S

3125

4S

3125

495

(655

)8

4..

...

.10

2..

.20

Cr–

18N

i–6M

oW

elde

dpi

pe,

t>

3 ⁄ 16in

.(5

mm

)

SA

-312

S31

254

S31

254

98(6

75)

84

...

...

102

...

20C

r–18

Ni–

6Mo

Wel

ded

pipe

,t

≤3 ⁄ 16

in.

(5m

m)

SA

-312

S31

277

S31

277

112

(770

)45

...

...

...

111

...

27N

i–22

Cr–

7Mo–

Mn–

Cu

Sm

ls.

&w

elde

dpi

peS

A-3

12T

P31

6S

3160

075

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oS

mls

.&

wel

ded

pipe

SA

-312

TP

316L

S31

603

70(4

85)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Sm

ls.

&w

elde

dpi

peS

A-3

12T

P31

6HS

3160

975

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oS

mls

.&

wel

ded

pipe

SA

-312

TP

316N

S31

651

80(5

50)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NS

mls

.&

wel

ded

pipe

SA

-312

TP

316L

NS

3165

375

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–N

Sm

ls.

&w

elde

dpi

peS

A-3

12T

P31

7S

3170

075

(515

)8

1..

...

.10

2..

.18

Cr–

13N

i–3M

oS

mls

.&

wel

ded

pipe

SA

-312

TP

317L

S31

703

75(5

15)

81

...

...

102

...

18C

r–13

Ni–

3Mo

Sm

ls.

&w

elde

dpi

peS

A-3

12S

3172

5S

3172

575

(515

)8

4..

...

.10

2..

.19

Cr–

15N

i–4M

oS

mls

.&

wel

ded

pipe

SA

-312

S31

726

S31

726

80(5

50)

84

...

...

102

...

19C

r–15

.5N

i–4M

oS

mls

.&

wel

ded

pipe

SA

-312

TP

321

S32

100

70(4

85)

81

...

...

102

...

18C

r–10

Ni–

Ti

Sm

ls.

pipe

>3 ⁄ 8

in.

(10

mm

)S

A-3

12T

P32

1S

3210

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iS

mls

.pi

pe≤

3 ⁄ 8in

.(1

0m

m)

SA

-312

TP

321

S32

100

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Ti

Wel

ded

pipe

SA

-312

TP

321H

S32

109

70(4

85)

81

...

...

102

...

18C

r–10

Ni–

Ti

Sm

ls.

pipe

>3 ⁄ 8

in.

(10

mm

)

SA

-312

TP

321H

S32

109

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Ti

Sm

ls.

pipe

≤3 ⁄ 8

in.

(10

mm

)

2007 SECTION IX

Page 115: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

86

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-312

TP

321H

S32

109

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Ti

Wel

ded

pipe

SA

-312

TP

347

S34

700

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Sm

ls.

&w

elde

dpi

peS

A-3

12T

P34

7HS

3470

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bS

mls

.&

wel

ded

pipe

SA

-312

TP

348

S34

800

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Sm

ls.

&w

elde

dpi

peS

A-3

12T

P34

8HS

3480

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bS

mls

.&

wel

ded

pipe

SA

-312

TP

XM

–15

S38

100

75(5

15)

81

...

...

102

...

18C

r–18

Ni–

2Si

Sm

ls.

&w

elde

dpi

peA

312

S34

565

S34

565

115

(795

)..

...

.8

4..

...

.24

Cr–

17N

i–6M

n–4.

5Mo–

NS

mls

.&w

elde

dpi

pe

SA

-333

6K

0300

660

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

Sm

ls.

&w

elde

dpi

peS

A-3

331

K03

008

55(3

80)

11

...

...

101

...

C–M

nS

mls

.&

wel

ded

pipe

SA

-333

10..

.80

(550

)1

3..

...

.10

1..

.C

–Mn–

Si

Sm

ls.

&w

elde

dpi

peS

A-3

334

K11

267

60(4

15)

42

...

...

102

...

0.75

Cr–

0.75

Ni–

Cu–

Al

Sm

ls.

&w

elde

dpi

peS

A-3

337

K21

903

65(4

50)

9A1

...

...

101

...

2.5N

iS

mls

.&

wel

ded

pipe

SA

-333

9K

2203

563

(435

)9A

1..

...

.10

1..

.2N

i–1C

uS

mls

.&

wel

ded

pipe

SA

-333

3K

3191

865

(450

)9B

1..

...

.10

1..

.3.

5Ni

Sm

ls.

&w

elde

dpi

peS

A-3

338

K81

340

100

(690

)11

A1

...

...

101

...

9Ni

Sm

ls.

&w

elde

dpi

pe

SA

-334

6K

0300

660

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

Wel

ded

tube

SA

-334

1K

0300

855

(380

)1

1..

...

.10

1..

.C

–Mn

Wel

ded

tube

SA

-334

7K

2190

365

(450

)9A

1..

...

.10

1..

.2.

5Ni

Wel

ded

tube

SA

-334

9K

2203

563

(435

)9A

1..

...

.10

1..

.2N

i–1C

uW

elde

dtu

beS

A-3

343

K31

918

65(4

50)

9B1

...

...

101

...

3.5N

iW

elde

dtu

beS

A-3

348

K81

340

100

(690

)11

A1

...

...

101

...

9Ni

Wel

ded

tube

SA

-335

P1

K11

522

55(3

80)

31

...

...

101

...

C–0

.5M

oS

mls

.pi

peS

A-3

35P

2K

1154

755

(380

)3

1..

...

.10

1..

.0.

5Cr–

0.5M

oS

mls

.pi

peS

A-3

35P

12K

1156

260

(415

)4

1..

...

.10

2..

.1C

r–0.

5Mo

Sm

ls.

pipe

SA

-335

P15

K11

578

60(4

15)

31

...

...

101

...

1.5S

i–0.

5Mo

Sm

ls.

pipe

SA

-335

P11

K11

597

60(4

15)

41

...

...

102

...

1.25

Cr–

0.5M

o–S

iS

mls

.pi

pe

SA

-335

P22

K21

590

60(4

15)

5A1

...

...

102

...

2.25

Cr–

1Mo

Sm

ls.

pipe

SA

-335

P21

K31

545

60(4

15)

5A1

...

...

102

...

3Cr–

1Mo

Sm

ls.

pipe

SA

-335

P5c

K41

245

60(4

15)

5B1

...

...

102

...

5Cr–

0.5M

o–T

iS

mls

.pi

peS

A-3

35P

5K

4154

560

(415

)5B

1..

...

.10

2..

.5C

r–0.

5Mo

Sm

ls.

pipe

SA

-335

P5b

K51

545

60(4

15)

5B1

...

...

102

...

5Cr–

0.5M

o–S

iS

mls

.pi

pe

SA

-335

P9

K90

941

60(4

15)

5B1

...

...

102

...

9Cr–

1Mo

Sm

ls.

pipe

SA

-335

P91

K90

901

85(5

85)

5B2

...

...

102

...

9Cr–

1Mo–

VS

mls

.pi

pe

SA

-336

F3C

b..

.85

(585

)5C

1..

...

.10

2..

.3C

r–1M

o–0.

25V

–Cb–

Ca

For

ging

sS

A-3

36F

6S

4100

085

(585

)6

3..

...

.10

2..

.13

Cr

For

ging

sS

A-3

36F

12K

1156

470

(485

)4

1..

...

.10

2..

.1C

r–0.

5Mo

For

ging

s

2007 SECTION IX

Page 116: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

87

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-336

F11

,C

l.1

K11

597

60(4

15)

41

...

...

102

...

1.25

Cr–

0.5M

o–S

iF

orgi

ngs

SA

-336

F11

,C

l.2

K11

572

70(4

85)

41

...

...

102

...

1.25

Cr–

0.5M

o–S

iF

orgi

ngs

SA

-336

F11

,C

l.3

K11

572

75(5

15)

41

...

...

102

...

1.25

Cr–

0.5M

o–S

iF

orgi

ngs

SA

-336

F1

K12

520

70(4

85)

32

...

...

101

...

C–0

.5M

oF

orgi

ngs

SA

-336

F22

,C

l.1

K21

590

60(4

15)

5A1

...

...

102

...

2.25

Cr–

1Mo

For

ging

s

SA

-336

F22

,C

l.3

K21

590

75(5

15)

5A1

...

...

102

...

2.25

Cr–

1Mo

For

ging

sS

A-3

36F

21,

Cl.

1K

3154

560

(415

)5A

1..

...

.10

2..

.3C

r–1M

oF

orgi

ngs

SA

-336

F21

,C

l.3

K31

545

75(5

15)

5A1

...

...

102

...

3Cr–

1Mo

For

ging

sS

A-3

36F

3VK

3183

085

(585

)5C

1..

...

.10

2..

.3C

r–1M

o–V

–Ti–

BF

orgi

ngs

SA

-336

F22

VK

3183

585

(585

)5C

1..

...

.10

2..

.2.

25C

r–1M

o–V

For

ging

s

SA

-336

F5

K41

545

60(4

15)

5B1

...

...

102

...

5Cr–

0.5M

oF

orgi

ngs

SA

-336

F5A

K42

544

80(5

50)

5B1

...

...

102

...

5Cr–

0.5M

oF

orgi

ngs

SA

-336

F9

K90

941

85(5

85)

5B1

...

...

102

...

9Cr–

1Mo

For

ging

sS

A-3

36F

91K

9090

185

(585

)5B

2..

...

.10

2..

.9C

r–1M

o–V

For

ging

s

SA

-350

LF

1K

0300

960

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

For

ging

sS

A-3

50L

F2

K03

011

70(4

85)

12

...

...

101

...

C–M

n–S

iF

orgi

ngs

SA

-350

LF

5,C

l.1

K13

050

60(4

15)

9A1

...

...

101

...

1.5N

iF

orgi

ngs

SA

-350

LF

5,C

l.2

K13

050

70(4

85)

9A1

...

...

101

...

1.5N

iF

orgi

ngs

SA

-350

LF

9K

2203

663

(435

)9A

1..

...

.10

1..

.2N

i–1C

uF

orgi

ngs

SA

-350

LF

3K

3202

570

(485

)9B

1..

...

.10

1..

.3.

5Ni

For

ging

s

SA

-351

CF

3J9

2500

70(4

85)

81

...

...

102

...

18C

r–8N

iC

asti

ngs

SA

-351

CF

3AJ9

2500

77(5

30)

81

...

...

102

...

18C

r–8N

iC

asti

ngs

SA

-351

CF

8J9

2600

70(4

85)

81

...

...

102

...

18C

r–8N

iC

asti

ngs

SA

-351

CF

8AJ9

2600

77(5

30)

81

...

...

102

...

18C

r–8N

iC

asti

ngs

SA

-351

CF

8CJ9

2710

70(4

85)

81

...

...

102

...

18C

r–10

Ni–

Cb

Cas

ting

s

SA

-351

CF

3MJ9

2800

70(4

85)

81

...

...

102

...

18C

r–12

Ni–

2Mo

Cas

ting

sS

A-3

51C

F8M

J929

0070

(485

)8

1..

...

.10

2..

.18

Cr–

12N

i–2M

oC

asti

ngs

SA

-351

CF

10J9

2590

70(4

85)

81

...

...

102

...

19C

r–9N

i–0.

5Mo

Cas

ting

sS

A-3

51C

F10

MJ9

2901

70(4

85)

81

...

...

102

...

19C

r–9N

i–2M

oC

asti

ngs

SA

-351

CG

8MJ9

3000

75(5

15)

81

...

...

102

...

19C

r–10

Ni–

3Mo

Cas

ting

s

SA

-351

CK

3MC

uNJ9

3254

80(5

50)

84

...

...

102

...

20C

r–18

Ni–

6Mo

Cas

ting

sS

A-3

51C

D3M

WC

uNJ9

3380

100

(690

)..

...

.10

H1

...

102

25C

r–8N

i–3M

o–W

–Cu–

NC

asti

ngs

SA

-351

CH

8J9

3400

65(4

50)

82

...

...

102

...

25C

r–12

Ni

Cas

ting

sS

A-3

51C

H20

J934

0270

(485

)8

2..

...

.10

2..

.25

Cr–

12N

iC

asti

ngs

SA

-351

CG

6MM

NJ9

3790

85(5

85)

83

...

...

102

...

22C

r–12

Ni–

5Mn

Cas

ting

s

SA

-351

CK

20J9

4202

65(4

50)

82

...

...

102

...

25C

r–20

Ni

Cas

ting

s

2007 SECTION IX

Page 117: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

88

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-351

CN

7MN

0800

762

(425

)45

...

...

...

111

...

28N

i–19

Cr–

Cu–

Mo

Cas

ting

sS

A-3

51C

T15

CN

0815

163

(435

)45

...

...

...

111

...

32N

i–45

Fe–

20C

r–C

bC

asti

ngs

SA

-351

CN

3MN

J946

5180

(550

)45

...

...

...

111

...

46F

e–24

Ni–

21C

r–6M

o–C

u–N

Cas

ting

s

A35

1C

A15

...

90(6

20)

...

...

63

...

102

13C

rC

asti

ngs

A35

1C

E20

N..

.80

(550

)..

...

.8

2..

.10

225

Cr–

8Ni–

NC

asti

ngs

A35

1C

F10

MC

J929

7170

(485

)..

...

.8

1..

.10

216

Cr–

14N

i–2M

oC

asti

ngs

A35

1C

H10

J934

0170

(485

)..

...

.8

2..

.10

225

Cr–

12N

iC

asti

ngs

A35

1H

K30

J942

0365

(450

)..

...

.8

2..

.10

225

Cr–

20N

i–0.

5Mo

Cas

ting

s

A35

1H

K40

J942

0462

(425

)..

...

.8

2..

.10

225

Cr–

20N

i–0.

5Mo

Cas

ting

sA

351

HT

30N

0860

365

(450

)..

...

.45

...

...

111

35N

i–15

Cr–

0.5M

oC

asti

ngs

SA

-352

LC

AJ0

2504

60(4

15)

11

...

...

101

...

C–S

iC

asti

ngs

SA

-352

LC

CJ0

2505

70(4

85)

12

...

...

101

...

C–M

n–S

iC

asti

ngs

SA

-352

LC

BJ0

3003

65(4

50)

11

...

...

101

...

C–S

iC

asti

ngs

SA

-352

LC

1J1

2522

65(4

50)

31

...

...

101

...

C–0

.5M

oC

asti

ngs

SA

-352

LC

2J2

2500

70(4

85)

9A1

...

...

101

...

2.5N

iC

asti

ngs

SA

-352

LC

3J3

1550

70(4

85)

9B1

...

...

101

...

3.5N

iC

asti

ngs

SA

-352

LC

4J4

1500

70(4

85)

9C1

...

...

101

...

4.5N

iC

asti

ngs

SA

-352

LC

2–1

J422

1510

5(7

25)

11A

5..

...

.10

2..

.3N

i–1.

5Cr–

0.5M

oC

asti

ngs

SA

-352

CA

6NM

J915

4011

0(7

60)

64

...

...

102

...

13C

r–4N

iC

asti

ngs

SA

-353

...

K81

340

100

(690

)11

A1

...

...

101

...

9Ni

Pla

te

A35

61

J035

0270

(485

)..

...

.1

2..

.10

1C

–Si

Cas

ting

sA

356

2J1

2523

65(4

50)

...

...

31

...

101

C–0

.5M

oC

asti

ngs

A35

66

J120

7370

(485

)..

...

.4

1..

.10

21.

25C

r–0.

5Mo

Cas

ting

sA

356

8J1

1697

80(5

50)

...

...

41

...

102

1Cr–

1Mo–

VC

asti

ngs

A35

69

J216

1085

(585

)..

...

.4

1..

.10

21C

r–1M

o–V

Cas

ting

s

A35

610

J220

9085

(585

)..

...

.5A

1..

.10

22.

25C

r–1M

oC

asti

ngs

A35

612

AJ8

0490

85(5

85)

...

...

5B2

...

102

9Cr–

1Mo–

VC

asti

ngs

SA

-358

XM

–19

S20

910

100

(690

)8

3..

...

.10

2..

.22

Cr–

13N

i–5M

nF

usio

nw

elde

dpi

peS

A-3

58X

M–2

9S

2400

010

0(6

90)

83

...

...

102

...

18C

r–3N

i–12

Mn

Fus

ion

wel

ded

pipe

SA

-358

304

S30

400

75(5

15)

81

...

...

102

...

18C

r–8N

iF

usio

nw

elde

dpi

peS

A-3

5830

4LS

3040

370

(485

)8

1..

...

.10

2..

.18

Cr–

8Ni

Fus

ion

wel

ded

pipe

SA

-358

304H

S30

409

75(5

15)

81

...

...

102

...

18C

r–8N

iF

usio

nw

elde

dpi

pe

SA

-358

304N

S30

451

80(5

50)

81

...

...

102

...

18C

r–8N

i–N

Fus

ion

wel

ded

pipe

SA

-358

304L

NS

3045

375

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni–

NF

usio

nw

elde

dpi

peS

A-3

58S

3081

5S

3081

587

(600

)8

2..

...

.10

2..

.21

Cr–

11N

i–N

Fus

ion

wel

ded

pipe

SA

-358

309S

S30

908

75(5

15)

82

...

...

102

...

23C

r–12

Ni

Fus

ion

wel

ded

pipe

2007 SECTION IX

Page 118: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

89

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-358

309C

bS

3094

075

(515

)8

2..

...

.10

2..

.23

Cr–

12N

i–C

bF

usio

nw

elde

dpi

peS

A-3

5831

0SS

3100

875

(515

)8

2..

...

.10

2..

.25

Cr–

20N

iF

usio

nw

elde

dpi

peS

A-3

5831

0Cb

S31

040

75(5

15)

82

...

...

102

...

25C

r–20

Ni–

Cb

Fus

ion

wel

ded

pipe

SA

-358

S31

254

S31

254

94(6

50)

84

...

...

102

...

20C

r–18

Ni–

6Mo

Fus

ion

wel

ded

pipe

SA

-358

316

S31

600

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Fus

ion

wel

ded

pipe

SA

-358

316L

S31

603

70(4

85)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Fus

ion

wel

ded

pipe

SA

-358

316H

S31

609

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Fus

ion

wel

ded

pipe

SA

-358

316N

S31

651

80(5

50)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NF

usio

nw

elde

dpi

peS

A-3

5831

6LN

S31

653

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NF

usio

nw

elde

dpi

peS

A-3

58S

3172

5S

3172

575

(515

)8

4..

...

.10

2..

.19

Cr–

15N

i–4M

oF

usio

nw

elde

dpi

pe

SA

-358

S31

726

S31

726

80(5

50)

84

...

...

102

...

19C

r–15

.5N

i–4M

oF

usio

nw

elde

dpi

peS

A-3

5832

1S

3210

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iF

usio

nw

elde

dpi

peS

A-3

5834

7S

3470

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bF

usio

nw

elde

dpi

peS

A-3

5834

8S

3480

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bF

usio

nw

elde

dpi

pe

SA

-369

FP

AK

0250

148

(330

)1

1..

...

.10

1..

.C

–Si

For

ged

pipe

SA

-369

FP

BK

0300

660

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

For

ged

pipe

SA

-369

FP

1K

1152

255

(380

)3

1..

...

.10

1..

.C

–0.5

Mo

For

ged

pipe

SA

-369

FP

2K

1154

755

(380

)3

1..

...

.10

1..

.0.

5Cr–

0.5M

oF

orge

dpi

peS

A-3

69F

P12

K11

562

60(4

15)

41

...

...

102

...

1Cr–

0.5M

oF

orge

dpi

pe

SA

-369

FP

11K

1159

760

(415

)4

1..

...

.10

2..

.1.

25C

r–0.

5Mo–

Si

For

ged

pipe

SA

-369

FP

22K

2159

060

(415

)5A

1..

...

.10

2..

.2.

25C

r–1M

oF

orge

dpi

peS

A-3

69F

P21

K31

545

60(4

15)

5A1

...

...

102

...

3Cr–

1Mo

For

ged

pipe

SA

-369

FP

5K

4154

560

(415

)5B

1..

...

.10

2..

.5C

r–0.

5Mo

For

ged

pipe

SA

-369

FP

9K

9094

160

(415

)5B

1..

...

.10

2..

.9C

r–1M

oF

orge

dpi

peS

A-3

69F

P91

K90

901

85(5

85)

5B2

...

...

102

...

9Cr–

1Mo–

VF

orge

dpi

pe

SA

-372

AK

0300

260

(415

)1

1..

...

.10

1..

.C

–Si

For

ging

sS

A-3

72B

K04

001

75(5

15)

12

...

...

101

...

C–M

n–S

iF

orgi

ngs

SA

-376

16–8

–2H

S16

800

75(5

15)

81

...

...

102

...

16C

r–8N

i–2M

oS

mls

.pi

peS

A-3

76T

P30

4S

3040

070

(485

)8

1..

...

.10

2..

.18

Cr–

8Ni

Sm

ls.

pipe

≥0.

812

in.

(21

mm

)S

A-3

76T

P30

4S

3040

075

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni

Sm

ls.

pipe

<0.

812

in.

(21

mm

)S

A-3

76T

P30

4HS

3040

975

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni

Sm

ls.

pipe

SA

-376

TP

304N

S30

451

80(5

50)

81

...

...

102

...

18C

r–8N

i–N

Sm

ls.

pipe

SA

-376

TP

304L

NS

3045

375

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni–

NS

mls

.pi

peS

A-3

76T

P31

6S

3160

075

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oS

mls

.pi

peS

A-3

76T

P31

6HS

3160

975

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oS

mls

.pi

peS

A-3

76T

P31

6NS

3165

180

(550

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–N

Sm

ls.

pipe

2007 SECTION IX

Page 119: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

90

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-376

TP

316L

NS

3165

375

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–N

Sm

ls.

pipe

SA

-376

S31

725

S31

725

75(5

15)

84

...

...

102

...

19C

r–15

Ni–

4Mo

Sm

ls.

pipe

SA

-376

S31

726

S31

726

80(5

50)

84

...

...

102

...

19C

r–15

.5N

i–4M

oS

mls

.pi

peS

A-3

76T

P32

1S

3210

070

(485

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iS

mls

.pi

pe>

3 ⁄ 8in

.(1

0m

m)

SA

-376

TP

321

S32

100

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Ti

Sm

ls.

pipe

≤3 ⁄ 8

in.

(10

mm

)

SA

-376

TP

321H

S32

109

70(4

85)

81

...

...

102

...

18C

r–10

Ni–

Ti

Sm

ls.

pipe

>3 ⁄ 8

in.

(10

mm

)S

A-3

76T

P32

1HS

3210

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iS

mls

.pi

pe≤

3 ⁄ 8in

.(1

0m

m)

SA

-376

TP

347

S34

700

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Sm

ls.

pipe

SA

-376

TP

347H

S34

709

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Sm

ls.

pipe

SA

-376

TP

348

S34

800

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Sm

ls.

pipe

A38

1Y

35K

0301

360

(415

)..

...

.1

1..

.10

1C

Wel

ded

pipe

A38

1Y

42..

.60

(415

)..

...

.1

1..

.10

1C

Wel

ded

pipe

A38

1Y

48..

.62

(425

)..

...

.1

1..

.10

1C

Wel

ded

pipe

>3 ⁄ 8

in.

(10

mm

)A

381

Y46

...

63(4

35)

...

...

11

...

101

CW

elde

dpi

peA

381

Y50

...

64(4

40)

...

...

11

...

101

CW

elde

dpi

pe>

3 ⁄ 8in

.(1

0m

m)

A38

1Y

52..

.66

(455

)..

...

.1

2..

.10

1C

Wel

ded

pipe

>3 ⁄ 8

in.

(10

mm

)A

381

Y56

...

71(4

90)

...

...

12

...

101

CW

elde

dpi

pe>

3 ⁄ 8in

.(1

0m

m)

A38

1Y

52..

.72

(495

)..

...

.1

2..

.10

1C

Wel

ded

pipe

,to

3 ⁄ 8in

.(1

0m

m)

A38

1Y

56..

.75

(515

)..

...

.1

2..

.10

1C

Wel

ded

pipe

,to

3 ⁄ 8in

.(1

0m

m)

A38

1Y

60..

.75

(515

)..

...

.1

2..

.10

1C

Wel

ded

pipe

>3 ⁄ 8

in.

(10

mm

)A

381

Y60

...

78(5

40)

...

...

12

...

101

CW

elde

dpi

pe≤

3 ⁄ 8in

.(1

0m

m)

SA

-387

12,

Cl.

1K

1175

755

(380

)4

1..

...

.10

2..

.1C

r–0.

5Mo

Pla

teS

A-3

8712

,C

l.2

K11

757

65(4

50)

41

...

...

102

...

1Cr–

0.5M

oP

late

SA

-387

11,

Cl.

1K

1178

960

(415

)4

1..

...

.10

2..

.1.

25C

r–0.

5Mo–

Si

Pla

teS

A-3

8711

,C

l.2

K11

789

75(5

15)

41

...

...

102

...

1.25

Cr–

0.5M

o–S

iP

late

SA

-387

Gr.

2,C

l.1

K12

143

55(3

80)

31

...

...

101

...

0.5C

r–0.

5Mo

Pla

te

SA

-387

Gr.

2,C

l.2

K12

143

70(4

85)

32

...

...

101

...

0.5C

r–0.

5Mo

Pla

teS

A-3

8722

,C

l.1

K21

590

60(4

15)

5A1

...

...

102

...

2.25

Cr–

1Mo

Pla

teS

A-3

8722

,C

l.2

K21

590

75(5

15)

5A1

...

...

102

...

2.25

Cr–

1Mo

Pla

teS

A-3

8721

,C

l.1

K31

545

60(4

15)

5A1

...

...

102

...

3Cr–

1Mo

Pla

teS

A-3

8721

,C

l.2

K31

545

75(5

15)

5A1

...

...

102

...

3Cr–

1Mo

Pla

te

SA

-387

5,C

l.1

K41

545

60(4

15)

5B1

...

...

102

...

5Cr–

0.5M

oP

late

SA

-387

5,C

l.2

K41

545

75(5

15)

5B1

...

...

102

...

5Cr–

0.5M

oP

late

SA

-387

Gr.

91,

Cl.

2K

9090

185

(585

)5B

2..

...

.10

2..

.9C

r–1M

o–V

Pla

te

SA

-403

WP

XM

–19

S20

910

100

(690

)8

3..

...

.10

2..

.22

Cr–

13N

i–5M

nW

roug

htpi

ping

fitti

ngs

SA

-403

WP

304

S30

400

75(5

15)

81

...

...

102

...

18C

r–8N

iW

roug

htpi

ping

fitti

ngs

2007 SECTION IX

Page 120: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

91

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-403

WP

304L

S30

403

70(4

85)

81

...

...

102

...

18C

r–8N

iW

roug

htpi

ping

fitti

ngs

SA

-403

WP

304H

S30

409

75(5

15)

81

...

...

102

...

18C

r–8N

iW

roug

htpi

ping

fitti

ngs

SA

-403

WP

304N

S30

451

80(5

50)

81

...

...

102

...

18C

r–8N

i–N

Wro

ught

pipi

ngfit

ting

sS

A-4

03W

P30

4LN

S30

453

75(5

15)

81

...

...

102

...

18C

r–8N

i–N

Wro

ught

pipi

ngfit

ting

sS

A-4

03W

P30

9S

3090

075

(515

)8

2..

...

.10

2..

.23

Cr–

12N

iW

roug

htpi

ping

fitti

ngs

SA

-403

WP

310S

S31

008

75(5

15)

82

...

...

102

...

25C

r–20

Ni

Wro

ught

pipi

ngfit

ting

sS

A-4

03W

P31

6S

3160

075

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oW

roug

htpi

ping

fitti

ngs

SA

-403

WP

316L

S31

603

70(4

85)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Wro

ught

pipi

ngfit

ting

sS

A-4

03..

.S

3125

494

(650

)8

4..

...

.10

2..

.20

Cr–

18N

i–6M

oW

roug

htpi

ping

fitti

ngs

SA

-403

WP

316H

S31

609

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Wro

ught

pipi

ngfit

ting

s

SA

-403

WP

316N

S31

651

80(5

50)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NW

roug

htpi

ping

fitti

ngs

SA

-403

WP

316L

NS

3165

375

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–N

Wro

ught

pipi

ngfit

ting

sS

A-4

03W

P31

7S

3170

075

(515

)8

1..

...

.10

2..

.18

Cr–

13N

i–3M

oW

roug

htpi

ping

fitti

ngs

SA

-403

WP

317L

S31

703

75(5

15)

81

...

...

102

...

18C

r–13

Ni–

3Mo

Wro

ught

pipi

ngfit

ting

sS

A-4

03W

P32

1S

3210

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iW

roug

htpi

ping

fitti

ngs

SA

-403

WP

321H

S32

109

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Ti

Wro

ught

pipi

ngfit

ting

sS

A-4

03W

P34

7S

3470

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bW

roug

htpi

ping

fitti

ngs

SA

-403

WP

347H

S34

709

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Wro

ught

pipi

ngfit

ting

sS

A-4

03W

P34

8S

3480

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bW

roug

htpi

ping

fitti

ngs

SA

-403

WP

348H

S34

809

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Wro

ught

pipi

ngfit

ting

s

A40

3S

3456

5S

3456

511

5(7

95)

...

...

84

...

...

24C

r–17

Ni–

6Mn–

4.5M

o–N

Wro

ught

pipi

ngfit

ting

s

SA

-409

TP

304

S30

400

75(5

15)

81

...

...

102

...

18C

r–8N

iW

elde

dpi

peS

A-4

09T

P30

4LS

3040

370

(485

)8

1..

...

.10

2..

.18

Cr–

8Ni

Wel

ded

pipe

SA

-409

S30

815

S30

815

87(6

00)

82

...

...

102

...

21C

r–11

Ni–

NW

elde

dpi

peS

A-4

09T

P30

9SS

3090

875

(515

)8

2..

...

.10

2..

.23

Cr–

12N

iW

elde

dpi

peS

A-4

09T

P30

9Cb

S30

940

75(5

15)

82

...

...

102

...

23C

r–12

Ni–

Cb

Wel

ded

pipe

SA

-409

TP

310S

S31

008

75(5

15)

82

...

...

102

...

25C

r–20

Ni

Wel

ded

pipe

SA

-409

TP

310C

bS

3104

075

(515

)8

2..

...

.10

2..

.25

Cr–

20N

i–C

bW

elde

dpi

peS

A-4

09S

3125

4S

3125

494

(650

)8

4..

...

.10

2..

.20

Cr–

18N

i–6M

oW

elde

dpi

peS

A-4

09T

P31

6S

3160

075

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oW

elde

dpi

peS

A-4

09T

P31

6LS

3160

370

(485

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oW

elde

dpi

pe

SA

-409

TP

317

S31

700

75(5

15)

81

...

...

102

...

18C

r–13

Ni–

3Mo

Wel

ded

pipe

SA

-409

S31

725

S31

725

75(5

15)

84

...

...

102

...

19C

r–15

Ni–

4Mo

Wel

ded

pipe

SA

-409

S31

726

S31

726

80(5

50)

84

...

...

102

...

19C

r–15

.5N

i–4M

oW

elde

dpi

peS

A-4

09T

P32

1S

3210

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iW

elde

dpi

peS

A-4

09T

P34

7S

3470

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bW

elde

dpi

pe

2007 SECTION IX

Page 121: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

92

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-409

TP

348

S34

800

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Wel

ded

pipe

SA

-414

AK

0150

145

(310

)1

1..

...

.10

1..

.C

She

etS

A-4

14B

K02

201

50(3

45)

11

...

...

101

...

CS

heet

SA

-414

CK

0250

355

(380

)1

1..

...

.10

1..

.C

She

etS

A-4

14D

K02

505

60(4

15)

11

...

...

101

...

C–M

nS

heet

SA

-414

EK

0270

465

(450

)1

1..

...

.10

1..

.C

–Mn

She

et

SA

-414

FK

0310

270

(485

)1

2..

...

.10

1..

.C

–Mn

She

etS

A-4

14G

K03

103

75(5

15)

12

...

...

101

...

C–M

nS

heet

SA

-420

WP

L6

K03

006

60(4

15)

11

...

...

101

...

C–M

n–S

iP

ipin

gfit

ting

SA

-420

WP

L9

K22

035

63(4

35)

9A1

...

...

101

...

2Ni–

1Cu

Pip

ing

fitti

ngS

A-4

20W

PL

3K

3191

865

(450

)9B

1..

...

.10

1..

.3.

5Ni

Pip

ing

fitti

ngS

A-4

20W

PL

8K

8134

010

0(6

90)

11A

1..

...

.10

1..

.9N

iP

ipin

gfit

ting

SA

-423

1K

1153

560

(415

)4

2..

...

.10

2..

.0.

75C

r–0.

5Ni–

Cu

Sm

ls.

&w

elde

dtu

beS

A-4

232

K11

540

60(4

15)

42

...

...

102

...

0.75

Ni–

0.5C

u–M

oS

mls

.&

wel

ded

tube

SA

-426

CP

15J1

1522

60(4

15)

31

...

...

101

...

C–0

.5M

o–S

iC

entr

ifug

alca

stpi

peS

A-4

26C

P2

J115

4760

(415

)3

1..

...

.10

1..

.0.

5Cr–

0.5M

oC

entr

ifug

alca

stpi

peS

A-4

26C

P12

J115

6260

(415

)4

1..

...

.10

2..

.1C

r–0.

5Mo

Cen

trif

ugal

cast

pipe

SA

-426

CP

11J1

2072

70(4

85)

41

...

...

102

...

1.25

Cr–

0.5M

oC

entr

ifug

alca

stpi

peS

A-4

26C

P1

J125

2165

(450

)3

1..

...

.10

1..

.C

–0.5

Mo

Cen

trif

ugal

cast

pipe

SA

-426

CP

22J2

1890

70(4

85)

5A1

...

...

102

...

2.25

Cr–

1Mo

Cen

trif

ugal

cast

pipe

SA

-426

CP

21J3

1545

60(4

15)

5A1

...

...

102

...

3Cr–

1Mo

Cen

trif

ugal

cast

pipe

SA

-426

CP

5J4

2045

90(6

20)

5B1

...

...

102

...

5Cr–

0.5M

oC

entr

ifug

alca

stpi

peS

A-4

26C

P5b

J515

4560

(415

)5B

1..

...

.10

2..

.5C

r–1.

5Si–

0.5M

oC

entr

ifug

alca

stpi

peS

A-4

26C

P9

J820

9090

(620

)5B

1..

...

.10

2..

.9C

r–1M

oC

entr

ifug

alca

stpi

peS

A-4

26C

PC

A15

J911

5090

(620

)6

3..

...

.10

2..

.13

Cr

Cen

trif

ugal

cast

pipe

SA

-451

CP

F8

J926

0070

(485

)8

1..

...

.10

2..

.18

Cr–

8Ni

Cen

trif

ugal

cast

pipe

SA

-451

CP

F8A

J926

0077

(530

)8

1..

...

.10

2..

.18

Cr–

8Ni

Cen

trif

ugal

cast

pipe

SA

-451

CP

F8C

J927

1070

(485

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bC

entr

ifug

alca

stpi

peS

A-4

51C

PF

8MJ9

2900

70(4

85)

81

...

...

102

...

18C

r–12

Ni–

2Mo

Cen

trif

ugal

cast

pipe

SA

-451

CP

F3

J925

0070

(485

)8

1..

...

.10

2..

.18

Cr–

8Ni

Cen

trif

ugal

cast

pipe

SA

-451

CP

F3M

J928

0070

(485

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oC

entr

ifug

alca

stpi

peS

A-4

51C

PF

3AJ9

2500

77(5

30)

81

...

...

102

...

18C

r–8N

iC

entr

ifug

alca

stpi

peS

A-4

51C

PH

8J9

3400

65(4

50)

82

...

...

102

...

25C

r–12

Ni

Cen

trif

ugal

cast

pipe

SA

-451

CP

H20

J934

0270

(485

)8

2..

...

.10

2..

.25

Cr–

12N

iC

entr

ifug

alca

stpi

peS

A-4

51C

PK

20J9

4202

65(4

50)

82

...

...

102

...

25C

r–20

Ni

Cen

trif

ugal

cast

pipe

A45

1C

PF

10M

CJ9

2971

70(4

85)

...

...

81

...

102

16C

r–14

Ni–

2Mo

Cen

trif

ugal

cast

pipe

2007 SECTION IX

Page 122: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

93

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

A45

1C

PE

20N

...

80(5

50)

...

...

82

...

102

25C

r–8N

i–N

Cen

trif

ugal

cast

pipe

SA

-455

...

K03

300

70(4

85)

12

...

...

101

...

C–M

n–S

iP

late

>0.

580

in.–

0.75

0in

.(1

5m

m–1

9m

m)

SA

-455

...

K03

300

73(5

05)

12

...

...

101

...

C–M

n–S

iP

late

>0.

375

in.–

0.58

0in

.(1

0m

m–1

5m

m)

SA

-455

...

K03

300

75(5

15)

12

...

...

101

...

C–M

n–S

iP

late

,up

to0.

375

in.

(10

mm

)

SA

-479

XM

–19

S20

910

100

(690

)8

3..

...

.10

2..

.22

Cr–

13N

i–5M

nB

ars

&sh

apes

SA

-479

XM

–17

S21

600

90(6

20)

83

...

...

102

...

19C

r–8M

n–6N

i–M

o–N

Bar

s&

shap

esS

A-4

79X

M–1

8S

2160

390

(620

)8

3..

...

.10

2..

.19

Cr–

8Mn–

6Ni–

Mo–

NB

ars

&sh

apes

SA

-479

S21

800

S21

800

95(6

55)

83

...

...

102

...

18C

r–8N

i–4S

i–N

Bar

s&

shap

esS

A-4

79X

M–1

1S

2190

490

(620

)8

3..

...

.10

2..

.21

Cr–

6Ni–

9Mn

Bar

s&

shap

es

SA

-479

XM

–29

S24

000

100

(690

)8

3..

...

.10

2..

.18

Cr–

3Ni–

12M

nB

ars

&sh

apes

SA

-479

302

S30

200

75(5

15)

81

...

...

102

...

18C

r–8N

iB

ars

&sh

apes

SA

-479

304

S30

400

75(5

15)

81

...

...

102

...

18C

r–8N

iB

ars

&sh

apes

SA

-479

304L

S30

403

70(4

85)

81

...

...

102

...

18C

r–8N

iB

ars

&sh

apes

SA

-479

304H

S30

409

75(5

15)

81

...

...

102

...

18C

r–8N

iB

ars

&sh

apes

SA

-479

304N

S30

451

80(5

50)

81

...

...

102

...

18C

r–8N

i–N

Bar

s&

shap

esS

A-4

7930

4LN

S30

453

75(5

15)

81

...

...

102

...

18C

r–8N

i–N

Bar

s&

shap

esS

A-4

79S

3060

0S

3060

078

(540

)8

1..

...

.10

2..

.18

Cr–

15N

i–4S

iB

ars

&sh

apes

SA

-479

S30

601

S30

601

78(5

40)

81

...

...

102

...

17.5

Cr–

17.5

Ni–

5.3S

iB

ars

&sh

apes

SA

-479

S30

815

S30

815

87(6

00)

82

...

...

102

...

21C

r–11

Ni–

NB

ars

&sh

apes

SA

-479

309S

S30

908

75(5

15)

82

...

...

102

...

23C

r–12

Ni

Bar

s&

shap

esS

A-4

7930

9Cb

S30

940

75(5

15)

82

...

...

102

...

23C

r–12

Ni–

Cb

Bar

s&

shap

esS

A-4

7931

0SS

3100

875

(515

)8

2..

...

.10

2..

.25

Cr–

20N

iB

ars

&sh

apes

SA

-479

310C

bS

3104

075

(515

)8

2..

...

.10

2..

.25

Cr–

20N

i–C

bB

ars

&sh

apes

SA

-479

S31

254

S31

254

95(6

55)

84

...

...

102

...

20C

r–18

Ni–

6Mo

Bar

s&

shap

es

SA

-479

S31

277

S31

277

112

(770

)45

...

...

...

111

...

27N

i–22

Cr–

7Mo–

Mn–

Cu

Bar

s&

shap

esS

A-4

7931

6S

3160

075

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oB

ars

&sh

apes

SA

-479

316L

S31

603

70(4

85)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Bar

s&

shap

esS

A-4

7931

6HS

3160

975

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oB

ars

&sh

apes

SA

-479

316T

iS

3163

575

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–T

iB

ars

&sh

apes

SA

-479

316C

bS

3164

075

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–C

bB

ars

&sh

apes

SA

-479

316N

S31

651

80(5

50)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NB

ars

&sh

apes

SA

-479

316L

NS

3165

375

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–N

Bar

s&

shap

esS

A-4

79S

3172

5S

3172

575

(515

)8

4..

...

.10

2..

.19

Cr–

15N

i–4M

oB

ars

&sh

apes

SA

-479

S31

726

S31

726

80(5

50)

84

...

...

102

...

19C

r–15

.5N

i–4M

oB

ars

&sh

apes

2007 SECTION IX

Page 123: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

94

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-479

...

S31

803

90(6

20)

10H

1..

...

.10

2..

.22

Cr–

5Ni–

3Mo–

NB

ars

&sh

apes

SA

-479

321

S32

100

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Ti

Bar

s&

shap

esS

A-4

7932

1HS

3210

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iB

ars

&sh

apes

SA

-479

S32

550

S32

550

110

(760

)10

H1

...

...

102

...

25C

r–5N

i–3M

o–2C

uB

ars

&sh

apes

SA

-479

S32

615

S32

615

80(5

50)

81

...

...

102

...

18C

r–20

Ni–

5.5S

iB

ars

&sh

apes

SA

-479

347

S34

700

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Bar

s&

shap

esS

A-4

7934

7HS

3470

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bB

ars

&sh

apes

SA

-479

348

S34

800

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Bar

s&

shap

esS

A-4

7934

8HS

3480

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bB

ars

&sh

apes

SA

-479

403

S40

300

70(4

85)

61

...

...

102

...

12C

rB

ars

&sh

apes

SA

-479

405

S40

500

60(4

15)

71

...

...

102

...

12C

r–1A

lB

ars

&sh

apes

SA

-479

410

S41

000

70(4

85)

61

...

...

102

...

13C

rB

ars

&sh

apes

SA

-479

414

S41

400

115

(795

)6

4..

...

.10

2..

.12

.5C

r–2N

i–S

iB

ars

&sh

apes

SA

-479

S41

500

S41

500

115

(795

)6

4..

...

.10

2..

.13

Cr–

4.5N

i–M

oB

ars

&sh

apes

SA

-479

430

S43

000

70(4

85)

72

...

...

102

...

17C

rB

ars

&sh

apes

SA

-479

439

S43

035

70(4

85)

72

...

...

102

...

18C

r–T

iB

ars

&sh

apes

SA

-479

S44

400

S44

400

60(4

15)

72

...

...

102

...

18C

r–2M

oB

ars

&sh

apes

SA

-479

XM

–27

S44

627

65(4

50)

10I

1..

...

.10

2..

.27

Cr–

1Mo

Bar

s&

shap

esS

A-4

79S

4470

0S

4470

070

(485

)10

J1

...

...

102

...

29C

r–4M

oB

ars

&sh

apes

SA

-479

S44

800

S44

800

70(4

85)

10K

1..

...

.10

2..

.29

Cr–

4Mo–

2Ni

Bar

s&

shap

es

SA

-487

Gr.

16,

Cl.

AJ3

1200

70(4

85)

12

...

...

101

...

Low

C–M

n–N

iC

asti

ngs

SA

-487

Gr.

1,C

l.A

J130

0285

(585

)10

A1

...

...

101

...

Mn–

VC

asti

ngs

SA

-487

Gr.

1,C

l.B

J130

0290

(620

)10

A1

...

...

101

...

Mn–

VC

asti

ngs

SA

-487

Gr.

2,C

l.A

J130

0585

(585

)3

3..

...

.10

1..

.M

n–0.

25M

o–V

Cas

ting

sS

A-4

87G

r.2,

Cl.

BJ1

3005

90(6

20)

33

...

...

101

...

Mn–

0.25

Mo–

VC

asti

ngs

SA

-487

Gr.

4,C

l.A

J130

4790

(620

)3

3..

...

.10

1..

.0.

5Ni–

0.5C

r–0.

25M

o–V

Cas

ting

sS

A-4

87G

r.4,

Cl.

BJ1

3047

105

(725

)11

A3

...

...

101

...

0.5N

i–0.

5Cr–

0.25

Mo–

VC

asti

ngs

SA

-487

Gr.

4,C

l.E

J130

4711

5(7

95)

11A

3..

...

.10

1..

.0.

5Ni–

0.5C

r–0.

25M

o–V

Cas

ting

sS

A-4

87G

r.8,

Cl.

AJ2

2091

85(5

85)

5C1

...

...

102

...

2.25

Cr–

1Mo

Cas

ting

sS

A-4

87G

r.8,

Cl.

CJ2

2091

100

(690

)5C

4..

...

.10

2..

.2.

25C

r–1M

oC

asti

ngs

SA

-487

Gr.

8,C

l.B

J220

9110

5(7

25)

5C4

...

...

102

...

2.25

Cr–

1Mo

Cas

ting

sS

A-4

87C

A15

MC

l.A

J911

5190

(620

)6

3..

...

.10

2..

.13

Cr–

Mo

Cas

ting

sS

A-4

87C

A15

Cl.

CJ9

1150

90(6

20)

63

...

...

102

...

13C

rC

asti

ngs

SA

-487

CA

15C

l.B

J911

7190

(620

)6

3..

...

.10

2..

.13

Cr

Cas

ting

sS

A-4

87C

A15

Cl.

DJ9

1171

100

(690

)6

3..

...

.10

2..

.13

Cr

Cas

ting

s

SA

-487

CA

6NM

Cl.

BJ9

1540

100

(690

)6

4..

...

.10

2..

.13

Cr–

4Ni

Cas

ting

s

2007 SECTION IX

Page 124: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

95

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-487

CA

6NM

Cl.

AJ9

1540

110

(760

)6

4..

...

.10

2..

.13

Cr–

4Ni

Cas

ting

s

SA

-494

CX

2MW

N26

022

80(5

50)

43..

...

...

.11

1..

.59

Ni–

22C

r–14

Mo–

4Fe–

3WC

asti

ngs

A49

4C

W-6

MN

3010

772

(495

)..

...

.44

...

...

112

56N

i–19

Mo–

18C

r–2F

eC

asti

ngs

A50

0C

K02

705

62(4

25)

...

...

11

...

101

CT

ube

A50

0B

K03

000

58(4

00)

...

...

11

...

101

CT

ube

A50

1..

.K

0300

058

(400

)..

...

.1

1..

.10

1C

Tub

e

SA

-508

3,C

l.1

K12

042

80(5

50)

33

...

...

101

...

0.75

Ni–

0.5M

o–C

r–V

For

ging

sS

A-5

083,

Cl.

2K

1204

290

(620

)3

3..

...

.10

2..

.0.

75N

i–0.

5Mo–

Cr–

VF

orgi

ngs

SA

-508

2,C

l.1

K12

766

80(5

50)

33

...

...

101

...

0.75

Ni–

0.5M

o–0.

3Cr–

VF

orgi

ngs

SA

-508

2,C

l.2

K12

766

90(6

20)

33

...

...

101

...

0.75

Ni–

0.5M

o–0.

3Cr–

VF

orgi

ngs

SA

-508

1K

1350

270

(485

)1

2..

...

.10

1..

.C

For

ging

s

SA

-508

1AK

1350

270

(485

)1

2..

...

.10

1..

.C

For

ging

sS

A-5

0822

,C

l.3

K21

590

85(5

85)

5C1

...

...

...

...

2.25

Cr–

1Mo

For

ging

sS

A-5

084N

,C

l.3

K22

375

90(6

20)

33

...

...

102

...

3.5N

i–1.

75C

r–0.

5Mo–

VF

orgi

ngs

SA

-508

4N,

Cl.

1K

2237

510

5(7

25)

11A

5..

...

.10

2..

.3.

5Ni–

1.75

Cr–

0.5M

o–V

For

ging

sS

A-5

084N

,C

l.2

K22

375

115

(795

)11

B10

...

...

102

...

3.5N

i–1.

75C

r–0.

5Mo–

VF

orgi

ngs

SA

-508

3VK

3183

085

(585

)5C

1..

...

.10

2..

.3C

r–1M

o–V

–Ti–

BF

orgi

ngs

SA

-508

3VC

b..

.85

(585

)5C

1..

...

.10

2..

.3C

r–1M

o–0.

25V

–Cb–

Ca

For

ging

sS

A-5

085,

Cl.

1K

4236

510

5(7

25)

11A

5..

...

.10

2..

.3.

5Ni–

1.75

Cr–

0.5M

o–V

For

ging

sS

A-5

085,

Cl.

2K

4236

511

5(7

95)

11B

10..

...

.10

2..

.3.

5Ni–

1.75

Cr–

0.5M

o–V

For

ging

s

SA

-513

1008

G10

080

42(2

90)

11

...

...

101

...

CT

ube

SA

-513

1010

G10

100

45(3

10)

11

...

...

101

...

CT

ube

SA

-513

1015

G10

150

48(3

30)

11

...

...

101

...

CT

ube

A51

310

15C

WG

1015

065

(450

)..

...

.1

1..

.10

1C

Tub

eA

513

1020

CW

G10

200

70(4

85)

...

...

12

...

101

CT

ube

A51

310

25C

WG

1025

075

(515

)..

...

.1

2..

.10

1C

Tub

eA

513

1026

CW

G10

260

80(5

50)

...

...

13

...

101

CT

ube

A51

4F

K11

576

110

(760

)..

...

.11

B3

...

101

0.75

Ni–

0.5C

r–0.

5Mo–

VP

late

,2

1 ⁄ 2in

.(6

4m

m)

max

.A

514

BK

1163

011

0(7

60)

...

...

11B

4..

.10

10.

5Cr–

0.2M

o–V

Pla

te,

11 ⁄ 4

in.

(32

mm

)m

ax.

A51

4A

K11

856

110

(760

)..

...

.11

B1

...

101

0.5C

r–0.

25M

o–S

iP

late

,1

1 ⁄ 4in

.(3

2m

m)

max

.A

514

EK

2160

410

0(6

90)

...

...

11B

2..

.10

21.

75C

r–0.

5Mo–

Cu

Pla

te>

21 ⁄ 2

in.–

6in

.(6

4m

m–1

52m

m),

incl

.A

514

EK

2160

411

0(7

60)

...

...

11B

2..

.10

21.

75C

r–0.

5Mo–

Cu

Pla

te,

21 ⁄ 2

in.

(64

mm

)m

ax.

A51

4P

K21

650

100

(690

)..

...

.11

B8

...

102

1.25

Ni–

1Cr–

0.5M

oP

late

>2

1 ⁄ 2in

.–6

in.

(64

mm

–152

mm

),in

cl.

2007 SECTION IX

Page 125: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

96

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

A51

4P

K21

650

110

(760

)..

...

.11

B8

...

102

1.25

Ni–

1Cr–

0.5M

oP

late

,2

1 ⁄ 2in

.(6

4m

m)

max

.A

514

Q..

.10

0(6

90)

...

...

11B

9..

.10

21.

3Ni–

1.3C

r–0.

5Mo–

VP

late

>2

1 ⁄ 2in

.–6

in.

(64

mm

–152

mm

),in

cl.

A51

4Q

...

110

(760

)..

...

.11

B9

...

102

1.3N

i–1.

3Cr–

0.5M

o–V

Pla

te,

21 ⁄ 2

in.

(64

mm

)m

ax.

SA

-515

60K

0240

160

(415

)1

1..

...

.10

1..

.C

Pla

teS

A-5

1565

K02

800

65(4

50)

11

...

...

101

...

C–S

iP

late

SA

-515

70K

0310

170

(485

)1

2..

...

.10

1..

.C

–Si

Pla

te

SA

-516

55K

0180

055

(380

)1

1..

...

.10

1..

.C

–Si

Pla

teS

A-5

1660

K02

100

60(4

15)

11

...

...

101

...

C–M

n–S

iP

late

SA

-516

65K

0240

365

(450

)1

1..

...

.10

1..

.C

–Mn–

Si

Pla

teS

A-5

1670

K02

700

70(4

85)

12

...

...

101

...

C–M

n–S

iP

late

SA

-517

FK

1157

611

5(7

95)

11B

3..

...

.10

1..

.0.

75N

i–0.

5Cr–

0.5M

o–V

Pla

te≤

21 ⁄ 2in

.(6

4m

m)

SA

-517

JK

1162

511

5(7

95)

11B

6..

...

.10

1..

.C

–0.5

Mo

Pla

te≤

11 ⁄ 4in

.(3

2m

m)

SA

-517

BK

1163

011

5(7

95)

11B

4..

...

.10

1..

.0.

5Cr–

0.2M

o–V

Pla

te≤

11 ⁄ 4in

.(3

2m

m)

SA

-517

AK

1185

611

5(7

95)

11B

1..

...

.10

1..

.0.

5Cr–

0.25

Mo–

Si

Pla

te≤

11 ⁄ 4in

.(3

2m

m)

SA

-517

EK

2160

410

5(7

25)

11B

2..

...

.10

2..

.1.

75C

r–0.

5Mo–

Cu

Pla

te>

21 ⁄ 2

in.–

6in

.(6

4m

m–1

52m

m)

SA

-517

EK

2160

411

5(7

95)

11B

2..

...

.10

2..

.1.

75C

r–0.

5Mo–

Cu

Pla

te≤

21 ⁄ 2in

.(6

4m

m)

SA

-517

PK

2165

010

5(7

25)

11B

8..

...

.10

2..

.1.

25N

i–1C

r–0.

5Mo

Pla

te>

21 ⁄ 2–

4in

.(6

4–10

2m

m)

SA

-517

PK

2165

011

5(7

95)

11B

8..

...

.10

2..

.1.

25N

i–1C

r–0.

5Mo

Pla

te≤

21 ⁄ 2in

.(6

4m

m)

A51

910

18H

RG

1018

050

(345

)..

...

.1

1..

.10

1C

Tub

eA

519

1018

CW

G10

180

70(4

85)

...

...

12

...

101

CT

ube

A51

910

20H

RG

1020

050

(345

)..

...

.1

1..

.10

1C

Tub

eA

519

1020

CW

G10

200

70(4

85)

...

...

12

...

101

CT

ube

A51

910

22H

RG

1022

050

(345

)..

...

.1

1..

.10

1C

Tub

e

A51

910

22C

WG

1022

070

(485

)..

...

.1

2..

.10

1C

Tub

eA

519

1025

HR

G10

250

55(3

80)

...

...

11

...

101

CT

ube

A51

910

25C

WG

1025

075

(515

)..

...

.1

2..

.10

1C

Tub

eA

519

1026

HR

G10

260

55(3

80)

...

...

11

...

101

CT

ube

A51

910

26C

WG

1026

075

(515

)..

...

.1

2..

.10

1C

Tub

e

A52

1C

l.C

C..

.60

(415

)..

...

.1

1..

.10

1C

For

ging

sA

521

Cl.

CE

...

75(5

15)

...

...

12

...

101

CF

orgi

ngs

SA

-522

Typ

eII

K71

340

100

(690

)11

A1

...

...

101

...

8Ni

For

ging

sS

A-5

22T

ype

IK

8134

010

0(6

90)

11A

1..

...

.10

1..

.9N

iF

orgi

ngs

SA

-524

IIK

0210

455

(380

)1

1..

...

.10

1..

.C

–Mn–

Si

Sm

ls.

pipe

SA

-524

IK

0210

460

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

Sm

ls.

pipe

2007 SECTION IX

Page 126: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

97

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-533

Typ

eA

,C

l.1

K12

521

80(5

50)

33

...

...

101

...

Mn–

0.5M

oP

late

SA

-533

Typ

eA

,C

l.2

K12

521

90(6

20)

33

...

...

101

...

Mn–

0.5M

oP

late

SA

-533

Typ

eA

,C

l.3

K12

521

100

(690

)11

A4

...

...

101

...

Mn–

0.5M

oP

late

SA

-533

Typ

eD

,C

l.1

K12

529

80(5

50)

33

...

...

101

...

Mn–

0.5M

o–0.

25N

iP

late

SA

-533

Typ

eD

,C

l.2

K12

529

90(6

20)

33

...

...

101

...

Mn–

0.5M

o–0.

25N

iP

late

SA

-533

Typ

eD

,C

l.3

K12

529

100

(690

)11

A4

...

...

101

...

Mn–

0.5M

o–0.

25N

iP

late

SA

-533

Typ

eB

,C

l.1

K12

539

80(5

50)

33

...

...

101

...

Mn–

0.5M

o–0.

5Ni

Pla

teS

A-5

33T

ype

B,

Cl.

2K

1253

990

(620

)3

3..

...

.10

1..

.M

n–0.

5Mo–

0.5N

iP

late

SA

-533

Typ

eB

,C

l.3

K12

539

100

(690

)11

A4

...

...

101

...

Mn–

0.5M

o–0.

5Ni

Pla

teS

A-5

33T

ype

C,

Cl.

1K

1255

480

(550

)3

3..

...

.10

1..

.M

n–0.

5Mo–

0.75

Ni

Pla

te

SA

-533

Typ

eC

,C

l.2

K12

554

90(6

20)

33

...

...

101

...

Mn–

0.5M

o–0.

75N

iP

late

SA

-533

Typ

eC

,C

l.3

K12

554

100

(690

)11

A4

...

...

101

...

Mn–

0.5M

o–0.

75N

iP

late

SA

-537

Cl.

1K

1243

765

(450

)1

2..

...

.10

1..

.C

–Mn–

Si

Pla

te>

21 ⁄ 2

in.–

4in

.(6

4m

m–1

02m

m)

SA

-537

Cl.

1K

1243

770

(485

)1

2..

...

.10

1..

.C

–Mn–

Si

Pla

te,

21 ⁄ 2

in.

(64

mm

)&

unde

rS

A-5

37C

l.2

K12

437

70(4

85)

13

...

...

101

...

C–M

n–S

iP

late

>4

in.–

6in

.(1

02m

m–1

52m

m),

incl

.S

A-5

37C

l.2

K12

437

75(5

15)

13

...

...

101

...

C–M

n–S

iP

late

>2

1 ⁄ 2in

.–4

in.

(64

mm

–102

mm

)

SA

-537

Cl.

2K

1243

780

(550

)1

3..

...

.10

1..

.C

–Mn–

Si

Pla

te,

21 ⁄ 2

in.

(64

mm

)&

unde

rS

A-5

37C

l.3

K12

437

70(4

85)

13

...

...

101

...

C–M

n–S

iP

late

>4

in.

(102

mm

)S

A-5

37C

l.3

K12

437

75(5

15)

13

...

...

101

...

C–M

n–S

iP

late

,2

1 ⁄ 2in

.<

t≤

4in

.(6

4m

m<

t≤

102

mm

)S

A-5

37C

l.3

K12

437

80(5

50)

13

...

...

101

...

C–M

n–S

iP

late

≤21 ⁄ 2

in.

(64

mm

)

SA

-541

1K

0350

670

(485

)1

2..

...

.10

1..

.C

–Si

For

ging

sS

A-5

411A

K03

020

70(4

85)

12

...

...

101

...

C–M

n–S

iF

orgi

ngs

SA

-541

11,

Cl.

4K

1157

280

(550

)4

1..

...

.10

2..

.1.

25C

r–0.

5Mo–

Si

For

ging

sS

A-5

413,

Cl.

1K

1204

580

(550

)3

3..

...

.10

1..

.0.

5Ni–

0.5M

o–V

For

ging

sS

A-5

413,

Cl.

2K

1204

590

(620

)3

3..

...

.10

1..

.0.

5Ni–

0.5M

o–V

For

ging

s

SA

-541

2,C

l.1

K12

765

80(5

50)

33

...

...

101

...

0.75

Ni–

0.5M

o–0.

3Cr–

VF

orgi

ngs

SA

-541

2,C

l.2

K12

765

90(6

20)

33

...

...

101

...

0.75

Ni–

0.5M

o–0.

3Cr–

VF

orgi

ngs

SA

-541

22,

Cl.

3K

2139

085

(585

)5C

1..

...

.10

2..

.2.

25C

r–1M

oF

orgi

ngs

SA

-541

22,

Cl.

4K

2139

010

5(7

25)

5C4

...

...

102

...

2.25

Cr–

1Mo

For

ging

sS

A-5

4122

,C

l.5

K21

390

115

(795

)5C

5..

...

.10

2..

.2.

25C

r–1M

oF

orgi

ngs

SA

-541

3VK

3183

085

(585

)5C

1..

...

.10

2..

.3C

r–1M

o–V

–Ti–

BF

orgi

ngs

SA

-541

3VC

b..

.85

(585

)5C

1..

...

.10

2..

.3C

r–1M

o–0.

25V

–Cb–

Ca

For

ging

sS

A-5

4122

VK

3183

585

(585

)5C

1..

...

...

...

.2.

25C

r–1M

o–V

For

ging

s

2007 SECTION IX

Page 127: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

98

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-542

B,

Cl.

4aK

2159

085

(585

)5C

1..

...

.10

2..

.2.

25C

r–1M

oP

late

SA

-542

B,

Cl.

4K

2159

085

(585

)5C

1..

...

.10

2..

.2.

25C

r–1M

oP

late

SA

-542

A,

Cl.

4K

2159

085

(585

)5C

1..

...

.10

2..

.2.

25C

r–1M

oP

late

SA

-542

A,

Cl.

4aK

2159

085

(585

)5C

1..

...

.10

2..

.2.

25C

r–1M

oP

late

SA

-542

A,

Cl.

3K

2159

095

(655

)5C

3..

...

.10

2..

.2.

25C

r–1M

oP

late

SA

-542

B,

Cl.

3K

2159

095

(655

)5C

3..

...

.10

2..

.2.

25C

r–1M

oP

late

SA

-542

A,

Cl.

1K

2159

010

5(7

25)

5C4

...

...

102

...

2.25

Cr–

1Mo

Pla

teS

A-5

42B

,C

l.1

K21

590

105

(725

)5C

4..

...

.10

2..

.2.

25C

r–1M

oP

late

SA

-542

B,

Cl.

2K

2159

011

5(7

95)

5C5

...

...

102

...

2.25

Cr–

1Mo

Pla

teS

A-5

42A

,C

l.2

K21

590

115

(795

)5C

5..

...

.10

2..

.2.

25C

r–1M

oP

late

SA

-542

C,

Cl.

4K

3183

085

(585

)5C

1..

...

.10

2..

.3C

r–1M

o–V

–Ti–

BP

late

SA

-542

C,

Cl.

4aK

3183

085

(585

)5C

1..

...

.10

2..

.3C

r–1M

o–V

–Ti–

BP

late

SA

-542

C,

Cl.

3K

3183

095

(655

)5C

3..

...

.10

2..

.3C

r–1M

o–V

–Ti–

BP

late

SA

-542

C,

Cl.

1K

3183

010

5(7

25)

5C4

...

...

102

...

3Cr–

1Mo–

V–T

i–B

Pla

teS

A-5

42C

,C

l.2

K31

830

115

(795

)5C

5..

...

.10

2..

.3C

r–1M

o–V

–Ti–

BP

late

SA

-542

D,

Cl.

4aK

3183

585

(585

)5C

1..

...

...

...

.2.

25C

r–1M

o–V

Pla

teS

A-5

42E

,C

l.4a

...

85(5

85)

5C1

...

...

102

...

3Cr–

1Mo–

0.25

V–C

b–C

aP

late

SA

-543

B,

Cl.

3K

4233

990

(620

)3

3..

...

.10

2..

.3N

i–1.

75C

r–0.

5Mo

Pla

teS

A-5

43B

,C

l.1

K42

339

105

(725

)11

A5

...

...

102

...

3Ni–

1.75

Cr–

0.5M

oP

late

SA

-543

B,

Cl.

2K

4233

911

5(7

95)

11B

10..

...

.10

2..

.3N

i–1.

75C

r–0.

5Mo

Pla

teS

A-5

43C

,C

l.3

...

90(6

20)

33

...

...

102

...

2.75

Ni–

1.5C

r–0.

5Mo

Pla

teS

A-5

43C

,C

l.1

...

105

(725

)11

A5

...

...

102

...

2.75

Ni–

1.5C

r–0.

5Mo

Pla

teS

A-5

43C

,C

l.2

...

115

(795

)11

B10

...

...

102

...

2.75

Ni–

1.5C

r–0.

5Mo

Pla

te

SA

-553

IIK

7134

010

0(6

90)

11A

1..

...

.10

1..

.8N

iP

late

SA

-553

IK

8134

010

0(6

90)

11A

1..

...

.10

1..

.9N

iP

late

SA

-556

A2

K01

807

47(3

25)

11

...

...

101

...

CS

mls

.tu

beS

A-5

56B

2K

0270

760

(415

)1

1..

...

.10

1..

.C

–Si

Sm

ls.

tube

SA

-556

C2

K03

006

70(4

85)

12

...

...

101

...

C–M

n–S

iS

mls

.tu

be

SA

-557

A2

K01

807

47(3

25)

11

...

...

101

...

CE

.R.W

.tu

beS

A-5

57B

2K

0300

760

(415

)1

1..

...

.10

1..

.C

E.R

.W.

tube

SA

-557

C2

K03

505

70(4

85)

12

...

...

101

...

C–M

nE

.R.W

.tu

be

SA

-562

...

K11

224

55(3

80)

11

...

...

101

...

C–M

n–T

iP

late

A57

242

...

60(4

15)

...

...

11

...

101

C–M

n–S

iP

late

&sh

apes

A57

250

...

65(4

50)

...

...

11

...

101

C–M

n–S

iP

late

&sh

apes

A57

260

...

75(5

15)

...

...

12

...

101

C–M

n–S

iP

late

&sh

apes

2007 SECTION IX

Page 128: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

99

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

A57

358

...

58(4

00)

...

...

11

...

101

CP

late

A57

365

...

65(4

50)

...

...

11

...

101

CP

late

A57

370

...

70(4

85)

...

...

12

...

101

CP

late

A57

5M

1008

...

...

...

...

11

...

101

CB

arA

575

M10

10..

...

...

...

.1

1..

.10

1C

Bar

A57

5M

1012

...

...

...

...

11

...

101

CB

arA

575

M10

15..

...

...

...

.1

1..

.10

1C

Bar

A57

5M

1017

...

...

...

...

11

...

101

CB

ar

A57

5M

1020

...

...

...

...

11

...

101

CB

arA

575

M10

23..

...

...

...

.1

1..

.10

1C

Bar

A57

5M

1025

...

...

...

...

11

...

101

CB

ar

A57

6G

1008

0..

...

...

...

.1

1..

.10

1C

Bar

A57

6G

1010

0..

...

...

...

.1

1..

.10

1C

Bar

A57

6G

1012

0..

...

...

...

.1

1..

.10

1C

Bar

A57

6G

1015

0..

...

...

...

.1

1..

.10

1C

Bar

A57

6G

1016

0..

...

...

...

.1

1..

.10

1C

Bar

A57

6G

1017

0..

...

...

...

.1

1..

.10

1C

Bar

A57

6G

1018

0..

...

...

...

.1

1..

.10

1C

Bar

A57

6G

1019

0..

...

...

...

.1

1..

.10

1C

Bar

A57

6G

1020

0..

...

...

...

.1

1..

.10

1C

Bar

A57

6G

1021

0..

...

...

...

.1

1..

.10

1C

Bar

A57

6G

1022

0..

...

...

...

.1

1..

.10

1C

Bar

A57

6G

1023

0..

...

...

...

.1

1..

.10

1C

Bar

A57

6G

1025

0..

...

...

...

.1

1..

.10

1C

Bar

SA

-587

...

K11

500

48(3

30)

11

...

...

101

...

CE

.R.W

.pi

pe

A58

8A

,a

K11

430

63(4

35)

...

...

31

...

101

Mn–

0.5C

r–0.

3Cu–

Si–

VP

late

&ba

rA

588

A,

bK

1143

067

(460

)..

...

.3

1..

.10

1M

n–0.

5Cr–

0.3C

u–S

i–V

Pla

te&

bar

A58

8A

,c

K11

430

70(4

85)

...

...

31

...

101

Mn–

0.5C

r–0.

3Cu–

Si–

VP

late

&sh

apes

A58

8B

,a

K12

043

63(4

35)

...

...

31

...

101

Mn–

0.6C

r–0.

3Cu–

Si–

VP

late

&ba

rA

588

B,

bK

1204

367

(460

)..

...

.3

1..

.10

1M

n–0.

6Cr–

0.3C

u–S

i–V

Pla

te&

bar

A58

8B

,c

K12

043

70(4

85)

...

...

31

...

101

Mn–

0.6C

r–0.

3Cu–

Si–

VP

late

&sh

apes

SA

-592

FK

1157

610

5(7

25)

11B

3..

...

.10

1..

.0.

75N

i–0.

5Cr–

0.5M

o–V

For

ging

s,2

1 ⁄ 2in

.–4

in.

(64

mm

–102

mm

)S

A-5

92F

K11

576

115

(795

)11

B3

...

...

101

...

0.75

Ni–

0.5C

r–0.

5Mo–

VF

orgi

ngs,

21 ⁄ 2

in.

(64

mm

)&

unde

rS

A-5

92E

K11

695

105

(725

)11

B2

...

...

102

...

1.75

Cr–

0.5M

o–C

uF

orgi

ngs,

21 ⁄ 2

in.–

4in

.(6

4m

m–1

02m

m)

2007 SECTION IX

Page 129: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

100

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-592

EK

1169

511

5(7

95)

11B

2..

...

.10

2..

.1.

75C

r–0.

5Mo–

Cu

For

ging

s,2

1 ⁄ 2in

.(6

4m

m)

&un

der

SA

-592

AK

1185

610

5(7

25)

11B

1..

...

.10

1..

.0.

5Cr–

0.25

Mo–

Si

For

ging

s,2

1 ⁄ 2in

.–4

in.

(64

mm

–102

mm

)S

A-5

92A

K11

856

115

(795

)11

B1

...

...

101

...

0.5C

r–0.

25M

o–S

iF

orgi

ngs,

21 ⁄ 2

in.

(64

mm

)&

unde

r

SA

-612

...

K02

900

83(5

60)

10C

1..

...

.10

1..

.C

–Mn–

Si

Pla

te>

1 ⁄ 2in

.–1

in.

(13

mm

–25

mm

)S

A-6

12..

.K

0290

083

(570

)10

C1

...

...

101

...

C–M

n–S

iP

late

,1 ⁄ 2

in.

(13

mm

)&

unde

r

A61

8II

,b

K12

609

67(4

60)

...

...

12

...

101

Mn–

Cu–

VT

ube

>3 ⁄ 4

in.–

11 ⁄ 2in

.(1

9m

m–3

8m

m)

A61

8II

,a

K12

609

70(4

85)

...

...

12

...

101

Mn–

Cu–

VT

ube,

3 ⁄ 4in

.(1

9m

m)

&un

der

A61

8II

IK

1270

065

(450

)..

...

.1

1..

.10

1M

n–V

Tub

e

A63

3A

K01

802

63(4

35)

...

...

11

...

101

Mn–

Cb

Pla

te&

shap

esA

633

Cb

K12

000

65(4

50)

...

...

11

...

101

Mn–

Cb

Pla

te>

21 ⁄ 2

in.–

4in

.(6

4m

m–1

02m

m),

shap

esA

633

Ca

K12

000

70(4

85)

...

...

12

...

101

Mn–

Cb

Pla

teto

21 ⁄ 2

in.

(64

mm

),sh

apes

A63

3D

bK

1203

765

(450

)..

...

.1

1..

.10

1C

–Mn–

Si

Pla

te>

21 ⁄ 2

in.–

4in

.(6

4m

m–1

02m

m),

shap

esA

633

Da

K12

037

70(4

85)

...

...

12

...

101

C–M

n–S

iP

late

to2

1 ⁄ 2in

.(6

4m

m),

shap

esA

633

EK

1220

280

(550

)..

...

.1

3..

.10

1C

–Mn–

Si–

VP

late

&sh

apes

SA

-645

...

K41

583

95(6

55)

11A

2..

...

.10

1..

.5N

i–0.

25M

oP

late

SA

-660

WC

AJ0

2504

60(4

15)

11

...

...

101

...

C–S

iC

entr

ifug

alca

stpi

peS

A-6

60W

CC

J025

0570

(485

)1

2..

...

.10

1..

.C

–Mn–

Si

Cen

trif

ugal

cast

pipe

SA

-660

WC

BJ0

3003

70(4

85)

12

...

...

101

...

C–S

iC

entr

ifug

alca

stpi

pe

SA

-662

AK

0170

158

(400

)1

1..

...

.10

1..

.C

–Mn–

Si

Pla

teS

A-6

62C

K02

007

70(4

85)

12

...

...

101

...

C–M

n–S

iP

late

SA

-662

BK

0220

365

(450

)1

1..

...

.10

1..

.C

–Mn–

Si

Pla

te

A6 6

3..

...

...

...

...

.1

1..

.1 0

1C

Ba r

SA

-666

201-

1S

2010

075

(515

)8

3..

...

.10

2..

.17

Cr–

4Ni–

6Mn

Pla

te,

shee

t&

stri

pS

A-6

6620

1-2

S20

100

95(6

55)

83

...

...

102

...

17C

r–4N

i–6M

nP

late

,sh

eet

&st

rip

SA

-666

XM

–11

S21

904

90(6

20)

83

...

...

102

...

21C

r–6N

i–9M

nP

late

,sh

eet

&st

rip

SA

-666

302

S30

200

75(5

15)

81

...

...

102

...

18C

r–8N

iP

late

,sh

eet

&st

rip

SA

-666

304

S30

400

75(5

15)

81

...

...

102

...

18C

r–8N

iP

late

,sh

eet

&st

rip

SA

-666

304L

S30

403

70(4

85)

81

...

...

102

...

18C

r–8N

iP

late

,sh

eet

&st

rip

SA

-666

304N

S30

451

80(5

50)

81

...

...

102

...

18C

r–8N

i–N

Pla

te,

shee

t&

stri

pS

A-6

6630

4LN

S30

453

75(5

15)

81

...

...

102

...

18C

r–8N

i–N

Pla

te,

shee

t&

stri

pS

A-6

6631

6S

3160

075

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oP

late

,sh

eet

&st

rip

SA

-666

316L

S31

603

70(4

85)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Pla

te,

shee

t&

stri

pS

A-6

6631

6NS

3165

180

(550

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–N

Pla

te,

shee

t&

stri

p

2007 SECTION IX

Page 130: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

101

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

A66

8C

l.B

G10

200

60(4

15)

...

...

11

...

101

CF

orgi

ngs

A66

8C

l.C

G10

250

66(4

55)

...

...

11

...

101

CF

orgi

ngs

A66

8C

l.D

G10

300

75(5

15)

...

...

12

...

101

C–M

nF

orgi

ngs

A66

8C

l.F

b..

.85

(585

)..

...

.1

3..

.10

1C

–Mn

For

ging

s>

4in

.–10

in.

(102

mm

–254

mm

)A

668

Cl.

Fa

...

90(6

20)

...

...

13

...

101

C–M

nF

orgi

ngs,

to4

in.

(102

mm

)

A66

8C

l.K

b..

.10

0(6

90)

...

...

43

...

101

CF

orgi

ngs

>7

in.–

10in

.(1

78m

m–2

54m

m)

A66

8C

l.K

a..

.10

5(7

25)

...

...

43

...

101

CF

orgi

ngs,

to7

in.

(178

mm

)A

668

Cl.

Lc

...

110

(760

)..

...

.4

3..

.10

1C

For

ging

s>

7in

.–10

in.

(178

mm

–254

mm

)A

668

Cl.

Lb

...

115

(795

)..

...

.4

3..

.10

1C

For

ging

s>

4in

.–7

in.

(102

mm

–178

mm

)A

668

Cl.

La

...

125

(860

)..

...

.4

3..

.10

1C

For

ging

s,to

4in

.(1

02m

m)

SA

-671

CC

60K

0210

060

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

Fus

ion

wel

ded

pipe

SA

-671

CE

55K

0220

255

(380

)1

1..

...

.10

1..

.C

Fus

ion

wel

ded

pipe

SA

-671

CD

70K

1243

770

(485

)1

2..

...

.10

1..

.C

–Mn–

Si

Fus

ion

wel

ded

pipe

SA

-671

CD

80K

1243

780

(550

)1

3..

...

.10

1..

.C

–Mn–

Si

Fus

ion

wel

ded

pipe

SA

-671

CB

60K

0240

160

(415

)1

1..

...

.10

1..

.C

Fus

ion

wel

ded

pipe

SA

-671

CE

60K

0240

260

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

Fus

ion

wel

ded

pipe

SA

-671

CC

65K

0240

365

(450

)1

1..

...

.10

1..

.C

–Mn–

Si

Fus

ion

wel

ded

pipe

SA

-671

CC

70K

0270

070

(485

)1

2..

...

.10

1..

.C

–Mn–

Si

Fus

ion

wel

ded

pipe

SA

-671

CB

65K

0280

065

(450

)1

1..

...

.10

1..

.C

–Si

Fus

ion

wel

ded

pipe

SA

-671

CA

55K

0280

155

(380

)1

1..

...

.10

1..

.C

Fus

ion

wel

ded

pipe

SA

-671

CK

75K

0280

375

(515

)1

2..

...

.10

1..

.C

–Mn–

Si

Fus

ion

wel

ded

pipe

SA

-671

CB

70K

0310

170

(485

)1

2..

...

.10

1..

.C

–Si

Fus

ion

wel

ded

pipe

SA

-672

A45

K01

700

45(3

10)

11

...

...

101

...

CF

usio

nw

elde

dpi

peS

A-6

72C

55K

0180

055

(380

)1

1..

...

.10

1..

.C

–Si

Fus

ion

wel

ded

pipe

SA

-672

B55

K02

001

55(3

80)

11

...

...

101

...

C–S

iF

usio

nw

elde

dpi

peS

A-6

72C

60K

0210

060

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

Fus

ion

wel

ded

pipe

SA

-672

A50

K02

200

50(3

45)

11

...

...

101

...

CF

usio

nw

elde

dpi

pe

SA

-672

E55

K02

202

55(3

80)

11

...

...

101

...

CF

usio

nw

elde

dpi

peS

A-6

72D

70K

1243

770

(485

)1

2..

...

.10

1..

.C

–Mn–

Si

Fus

ion

wel

ded

pipe

SA

-672

D80

K12

437

80(5

50)

13

...

...

101

...

C–M

n–S

iF

usio

nw

elde

dpi

peS

A-6

72B

60K

0240

160

(415

)1

1..

...

.10

1..

.C

Fus

ion

wel

ded

pipe

SA

-672

E60

K02

402

60(4

15)

11

...

...

101

...

C–M

n–S

iF

usio

nw

elde

dpi

pe

2007 SECTION IX

Page 131: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

102

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-672

C65

K02

403

65(4

50)

11

...

...

101

...

C–M

n–S

iF

usio

nw

elde

dpi

peS

A-6

72C

70K

0270

070

(485

)1

2..

...

.10

1..

.C

–Mn–

Si

Fus

ion

wel

ded

pipe

SA

-672

B65

K02

800

65(4

50)

11

...

...

101

...

C–S

iF

usio

nw

elde

dpi

peS

A-6

72A

55K

0280

155

(380

)1

1..

...

.10

1..

.C

Fus

ion

wel

ded

pipe

SA

-672

N75

K02

803

75(5

15)

12

...

...

101

...

C–M

n–S

iF

usio

nw

elde

dpi

pe

SA

-672

B70

K03

101

70(4

85)

12

...

...

101

...

C–S

iF

usio

nw

elde

dpi

peS

A-6

72L

65K

1182

065

(450

)3

1..

...

.10

1..

.C

–0.5

Mo

Fus

ion

wel

ded

pipe

SA

-672

L70

K12

020

70(4

85)

32

...

...

101

...

C–0

.5M

oF

usio

nw

elde

dpi

peS

A-6

72H

75K

1202

175

(515

)3

2..

...

.10

1..

.M

n–0.

5Mo

Fus

ion

wel

ded

pipe

SA

-672

H80

K12

022

80(5

50)

33

...

...

101

...

Mn–

0.5M

oF

usio

nw

elde

dpi

pe

SA

-672

L75

K12

320

75(5

15)

32

...

...

101

...

C–0

.5M

oF

usio

nw

elde

dpi

peS

A-6

72J1

00K

1252

110

0(6

90)

11A

4..

...

.10

1..

.M

n–0.

5Mo

Fus

ion

wel

ded

pipe

SA

-672

J80

...

80(5

50)

33

...

...

101

...

Mn–

0.5M

o–0.

75N

iF

usio

nw

elde

dpi

peS

A-6

72J9

0..

.90

(620

)3

3..

...

.10

1..

.M

n–0.

5Mo–

0.75

Ni

Fus

ion

wel

ded

pipe

SA

-675

45..

.45

(310

)1

1..

...

.10

1..

.C

Bar

SA

-675

50..

.50

(345

)1

1..

...

.10

1..

.C

Bar

SA

-675

55..

.55

(380

)1

1..

...

.10

1..

.C

Bar

SA

-675

60..

.60

(415

)1

1..

...

.10

1..

.C

Bar

SA

-675

65..

.65

(450

)1

1..

...

.10

1..

.C

Bar

SA

-675

70..

.70

(485

)1

2..

...

.10

1..

.C

Bar

A67

575

...

75(5

15)

...

...

12

...

101

CB

ar

SA

-688

XM

–29

S24

000

100

(690

)8

3..

...

.10

2..

.18

Cr–

3Ni–

12M

nW

elde

dtu

beS

A-6

88T

P30

4S

3040

075

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni

Wel

ded

tube

SA

-688

TP

304L

S30

403

70(4

85)

81

...

...

102

...

18C

r–8N

iW

elde

dtu

beS

A-6

88T

P30

4NS

3045

180

(550

)8

1..

...

.10

2..

.18

Cr–

8Ni–

NW

elde

dtu

beS

A-6

88T

P30

4LN

S30

453

75(5

15)

81

...

...

102

...

18C

r–8N

i–N

Wel

ded

tube

SA

-688

TP

316

S31

600

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Wel

ded

tube

SA

-688

TP

316L

S31

603

70(4

85)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Wel

ded

tube

SA

-688

TP

316N

S31

651

80(5

50)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NW

elde

dtu

beS

A-6

88T

P31

6LN

S31

653

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NW

elde

dtu

be

SA

-691

CM

SH

–70

K12

437

65(4

50)

12

...

...

101

...

C–M

n–S

iF

usio

nw

elde

dpi

pe>

21 ⁄ 2in

.–4

in.

(64

mm

–102

mm

)S

A-6

91C

MS

H–7

0K

1243

770

(485

)1

2..

...

.10

1..

.C

–Mn–

Si

Fus

ion

wel

ded

pipe

≤21 ⁄ 2

in.

(64

mm

)S

A-6

91C

MS

H–8

0K

1243

775

(515

)1

3..

...

.10

1..

.C

–Mn–

Si

Fus

ion

wel

ded

pipe

>21 ⁄ 2

in.–

4in

.(6

4m

m–1

02m

m)

2007 SECTION IX

Page 132: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

103

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-691

CM

SH

–80

K12

437

80(5

50)

13

...

...

101

...

C–M

n–S

iF

usio

nw

elde

dpi

pe≤

21 ⁄ 2in

.(6

4m

m)

SA

-691

CM

S–7

5K

0280

375

(515

)1

2..

...

.10

1..

.C

–Mn–

Si

Fus

ion

wel

ded

pipe

SA

-691

1CR

,C

l.1

K11

757

55(3

80)

41

...

...

102

...

1Cr–

0.5M

oF

usio

nw

elde

dpi

peS

A-6

911C

R,

Cl.

2K

1175

765

(450

)4

1..

...

.10

2..

.1C

r–0.

5Mo

Fus

ion

wel

ded

pipe

SA

-691

1.25

CR

,C

l.1

K11

789

60(4

15)

41

...

...

102

...

1.25

Cr–

0.5M

o–S

iF

usio

nw

elde

dpi

pe

SA

-691

1.25

CR

,C

l.2

K11

789

75(5

15)

41

...

...

102

...

1.25

Cr–

0.5M

o–S

iF

usio

nw

elde

dpi

peS

A-6

91C

M–6

5K

1182

065

(450

)3

1..

...

.10

1..

.C

–0.5

Mo

Fus

ion

wel

ded

pipe

SA

-691

CM

–70

K12

020

70(4

85)

32

...

...

101

...

C–0

.5M

oF

usio

nw

elde

dpi

peS

A-6

910.

5CR

,C

l.1

K12

143

55(3

80)

31

...

...

101

...

0.5C

r–0.

5Mo

Fus

ion

wel

ded

pipe

SA

-691

0.5C

R,

Cl.

2K

1214

370

(485

)3

2..

...

.10

1..

.0.

5Cr–

0.5M

oF

usio

nw

elde

dpi

pe

SA

-691

CM

–75

K12

320

75(5

15)

32

...

...

101

...

C–0

.5M

oF

usio

nw

elde

dpi

peS

A-6

912.

25C

R,

Cl.

1K

2159

060

(415

)5A

1..

...

.10

2..

.2.

25C

r–1M

oF

usio

nw

elde

dpi

peS

A-6

912.

25C

R,

Cl.

2K

2159

075

(515

)5A

1..

...

.10

2..

.2.

25C

r–1M

oF

usio

nw

elde

dpi

peS

A-6

913C

R,

Cl.

1K

3154

560

(415

)5A

1..

...

.10

2..

.3C

r–1M

oF

usio

nw

elde

dpi

peS

A-6

913C

R,

Cl.

2K

3154

575

(515

)5A

1..

...

.10

2..

.3C

r–1M

oF

usio

nw

elde

dpi

pe

SA

-691

5CR

,C

l.1

K41

545

60(4

15)

5B1

...

...

102

...

5Cr–

0.5M

oF

usio

nw

elde

dpi

peS

A-6

915C

R,

Cl.

2K

4154

575

(515

)5B

1..

...

.10

2..

.5C

r–0.

5Mo

Fus

ion

wel

ded

pipe

A69

19C

R,

Cl.

2..

.85

(585

)..

...

.5B

2..

...

.9C

r-1M

o-V

Fus

ion

wel

ded

pipe

A69

4F

42K

0301

460

(415

)..

...

.1

1..

.10

1C

–Mn

For

ging

sA

694

F46

K03

014

60(4

15)

...

...

11

...

101

C–M

nF

orgi

ngs

A69

4F

52K

0301

466

(455

)..

...

.1

1..

.10

1C

–Mn

For

ging

sA

694

F56

K03

014

68(4

70)

...

...

12

...

101

C–M

nF

orgi

ngs

A69

4F

60K

0301

475

(515

)..

...

.1

2..

.10

1C

–Mn

For

ging

s

A69

4F

65K

0301

477

(530

)..

...

.1

2..

.10

1C

–Mn

For

ging

sA

694

F70

K03

014

82(5

65)

...

...

13

...

101

C–M

nF

orgi

ngs

SA

-695

Typ

eB

,G

r.35

K03

504

60(4

15)

11

...

...

101

...

CB

arS

A-6

95T

ype

B,

Gr.

40K

0350

470

(485

)1

2..

...

.10

1..

.C

Bar

SA

-696

BK

0320

060

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

Bar

SA

-696

CK

0320

070

(485

)1

2..

...

.10

1..

.C

–Mn–

Si

Bar

A70

7L

1,C

l.1

K02

302

60(4

15)

...

...

11

...

101

C–M

nF

orgi

ngs

A70

7L

1,C

l.2

K02

302

66(4

55)

...

...

11

...

101

C–M

nF

orgi

ngs

A70

7L

2,C

l.1

K03

301

60(4

15)

...

...

11

...

101

C–M

nF

orgi

ngs

A70

7L

2,C

l.2

K03

301

66(4

55)

...

...

11

...

101

C–M

nF

orgi

ngs

A70

7L

2,C

l.3

K03

301

75(5

15)

...

...

12

...

101

C–M

nF

orgi

ngs

A70

7L

3,C

l.1

K12

510

60(4

15)

...

...

11

...

101

C–M

n–V

–NF

orgi

ngs

2007 SECTION IX

Page 133: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

104

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

A70

7L

3,C

l.2

K12

510

66(4

55)

...

...

11

...

101

C–M

n–V

–NF

orgi

ngs

A70

7L

3,C

l.3

K12

510

75(5

15)

...

...

12

...

101

C–M

n–V

–NF

orgi

ngs

A71

4G

r.V

,T

p.E

K22

035

65(4

50)

...

...

9A1

...

102

2Ni–

1Cu

Sm

ls.

&w

elde

dpi

peA

714

Gr.

VK

2203

565

(450

)..

...

.9A

1..

.10

22N

i–1C

uS

mls

.&

wel

ded

pipe

SA

-724

AK

1183

190

(620

)1

4..

...

.10

1..

.C

–Mn–

Si

Pla

teS

A-7

24B

K12

031

95(6

55)

14

...

...

101

...

C–M

n–S

iP

late

SA

-724

CK

1203

790

(620

)1

4..

...

.10

1..

.C

–Mn–

Si

Pla

te

SA

-727

...

K02

506

60(4

15)

11

...

...

101

...

C–M

n–S

iF

orgi

ngs

SA

-731

S41

500

S41

500

115

(795

)6

4..

...

.10

2..

.13

Cr–

4.5N

i–M

oS

mls

.&

wel

ded

pipe

SA

-731

TP

439

S43

035

60(4

15)

72

...

...

102

...

18C

r–T

iS

mls

.&

wel

ded

pipe

SA

-731

18C

r–2M

oS

4440

060

(415

)7

2..

...

.10

2..

.18

Cr–

2Mo

Sm

ls.

&w

elde

dpi

peS

A-7

31T

PX

M–3

3S

4462

665

(450

)10

I1

...

...

102

...

27C

r–1M

o–T

iS

mls

.&

wel

ded

pipe

SA

-731

TP

XM

–27

S44

627

65(4

50)

10I

1..

...

.10

2..

.27

Cr–

1Mo

Sm

ls.

&w

elde

dpi

pe

SA

-731

S44

660

S44

660

85(5

85)

10K

1..

...

.10

2..

.26

Cr–

3Ni–

3Mo

Sm

ls.

&w

elde

dpi

peS

A-7

31S

4470

0S

4470

080

(550

)10

J1

...

...

102

...

29C

r–4M

oS

mls

.&

wel

ded

pipe

SA

-731

S44

800

S44

800

80(5

50)

10K

1..

...

.10

2..

.29

Cr–

4Mo–

2Ni

Sm

ls.

&w

elde

dpi

pe

SA

-737

BK

1200

170

(485

)1

2..

...

.10

1..

.C

–Mn–

Si–

Cb

Pla

teS

A-7

37C

K12

202

80(5

50)

13

...

...

101

...

C–M

n–S

i–V

Pla

te

SA

-738

AK

1244

775

(515

)1

2..

...

.10

1..

.C

–Mn–

Si

Pla

teS

A-7

38B

K12

007

85(5

85)

13

...

...

101

...

C–M

n–S

i–C

bP

late

,2

1 ⁄ 2in

.(6

4m

m)

&un

der

SA

-738

CK

0200

870

(485

)1

3..

...

.10

1..

.C

–Mn–

Si

Pla

te>

4in

.–6

in.

(102

mm

–152

mm

),in

cl.

SA

-738

CK

0200

875

(515

)1

3..

...

.10

1..

.C

–Mn–

Si

Pla

te>

21 ⁄ 2

in.–

4in

.(6

4m

m–1

02m

m)

SA

-738

CK

0200

880

(550

)1

3..

...

.10

1..

.C

–Mn–

Si

Pla

te,

21 ⁄ 2

in.

(64

mm

)&

unde

r

SA

-739

B11

K11

797

70(4

85)

41

...

...

102

...

1.25

Cr–

0.5M

oB

arS

A-7

39B

22K

2139

075

(515

)5A

1..

...

.10

2..

.2.

25C

r–1M

oB

ar

SA

-765

IK

0304

660

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

For

ging

sS

A-7

65II

K03

047

70(4

85)

12

...

...

101

...

C–M

n–S

iF

orgi

ngs

SA

-765

III

K32

026

70(4

85)

9B1

...

...

101

...

3.5N

iF

orgi

ngs

SA

-765

IVK

0200

980

(550

)1

3..

...

.10

1..

.C

–Mn–

Si

For

ging

s

SA

-789

S31

200

S31

200

100

(690

)10

H1

...

...

102

...

25C

r–6N

i–M

o–N

Sm

ls.

&w

elde

dtu

beS

A-7

89S

3126

0S

3126

010

0(6

90)

10H

1..

...

.10

2..

.25

Cr–

6.5N

i–3M

o–N

Sm

ls.

&w

elde

dtu

beS

A-7

89S

3150

0S

3150

092

(635

)10

H1

...

...

102

...

18C

r–5N

i–3M

o–N

Sm

ls.

&w

elde

dtu

beS

A-7

89S

3180

3S

3180

390

(620

)10

H1

...

...

102

...

22C

r–5N

i–3M

o–N

Sm

ls.

&w

elde

dtu

beS

A-7

89S

3230

4S

3230

487

(600

)10

H1

...

...

102

...

23C

r–4N

i–M

o–C

u–N

Sm

ls.

&w

elde

dtu

be>

1in

.(2

5m

m)

2007 SECTION IX

Page 134: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

105

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-789

S32

304

S32

304

100

(690

)10

H1

...

...

102

...

23C

r–4N

i–M

o–C

u–N

Sm

ls.

&w

elde

dtu

be≤

1in

.(2

5m

m)

SA

-789

S32

550

S32

550

110

(760

)10

H1

...

...

102

...

25C

r–5N

i–3M

o–2C

uS

mls

.&

wel

ded

tube

SA

-789

S32

750

S32

750

116

(800

)10

H1

...

...

102

...

25C

r–7N

i–4M

o–N

Sm

ls.

&w

elde

dtu

beS

A-7

89S

3290

0S

3290

090

(620

)10

H1

...

...

102

...

26C

r–4N

i–M

oS

mls

.&

wel

ded

tube

SA

-789

S32

906

S32

906

109

(750

)10

H1

...

...

102

...

29C

r–6.

5Ni–

2Mo–

NS

mls

.&

wel

ded

tube

≥0.

40in

.(1

0m

m)

SA

-789

S32

906

S32

906

116

(800

)10

H1

...

...

102

...

29C

r–6.

5Ni–

2Mo–

NS

mls

.&

wel

ded

tube

<0.

40in

.(1

0m

m)

SA

-789

S32

950

S32

950

100

(690

)10

H1

...

...

102

...

26C

r–4N

i–M

o–N

Sm

ls.

&w

elde

dtu

beS

A-7

89S

3276

0S

3276

010

9(7

50)

...

...

10H

1..

.10

225

Cr–

8Ni–

3Mo–

W–C

u–N

Sm

ls.

&w

elde

dtu

beS

A-7

89S

3927

4S

3927

411

6(8

00)

10H

1..

...

.10

2..

.25

Cr–

7Ni–

3Mo–

2W–C

u–N

Sm

ls.

&w

elde

dtu

be

A78

9S

3220

5S

3220

595

(655

)..

...

.10

H1

...

102

22C

r–5N

i–3M

o–N

Sm

ls.

&w

elde

dtu

be

SA

-790

S31

200

S31

200

100

(690

)10

H1

...

...

102

...

25C

r–6N

i–M

o–N

Sm

ls.

&w

elde

dpi

peS

A-7

90S

3126

0S

3126

010

0(6

90)

10H

1..

...

.10

2..

.25

Cr–

6.5N

i–3M

o–N

Sm

ls.

&w

elde

dpi

peS

A-7

90S

3150

0S

3150

092

(635

)10

H1

...

...

102

...

18C

r–5N

i–3M

o–N

Sm

ls.

&w

elde

dpi

peS

A-7

90S

3180

3S

3180

390

(620

)10

H1

...

...

102

...

22C

r–5N

i–3M

o–N

Sm

ls.

&w

elde

dpi

peS

A-7

90S

3230

4S

3230

487

(600

)10

H1

...

...

102

...

23C

r–4N

i–M

o–C

u–N

Sm

ls.

&w

elde

dpi

pe

SA

-790

S32

550

S32

550

110

(760

)10

H1

...

...

102

...

25C

r–5N

i–3M

o–2C

uS

mls

.&

wel

ded

pipe

SA

-790

S32

750

S32

750

116

(800

)10

H1

...

...

102

...

25C

r–7N

i–4M

o–N

Sm

ls.

&w

elde

dtu

beS

A-7

90S

3290

0S

3290

090

(620

)10

H1

...

...

102

...

26C

r–4N

i–M

oS

mls

.&

wel

ded

pipe

SA

-790

S32

906

S32

906

109

(750

)10

H1

...

...

102

...

29C

r–6.

5Ni–

2Mo–

NS

mls

.&

wel

ded

pipe

≥0.

40in

.(1

0m

m)

SA

-790

S32

906

S32

906

116

(800

)10

H1

...

...

102

...

29C

r–6.

5Ni–

2Mo–

NS

mls

.&

wel

ded

pipe

<0.

40in

.(1

0m

m)

SA

-790

S32

950

S32

950

100

(690

)10

H1

...

...

102

...

26C

r–4N

i–M

o–N

Sm

ls.

&w

elde

dpi

peS

A-7

90S

3276

0S

3276

010

9(7

50)

...

...

10H

1..

.10

225

Cr–

8Ni–

3Mo–

W–C

u–N

Sm

ls.

&w

elde

dpi

peS

A-7

90S

3927

4S

3927

411

6(8

00)

10H

1..

...

.10

2..

.25

Cr–

7Ni–

3Mo–

2W–C

u–N

Sm

ls.

&w

elde

dpi

pe

A79

0S

3220

5S

3220

590

(620

)..

...

.10

H1

...

102

22C

r–5N

i–3M

o–N

Sm

ls.

&w

elde

dpi

pe

SA

-803

TP

439

S43

035

60(4

15)

72

...

...

102

...

18C

r–T

iW

elde

dtu

beS

A-8

0326

–3–3

S44

660

85(5

85)

10K

1..

...

.10

2..

.26

Cr–

3Ni–

3Mo

Wel

ded

tube

SA

-813

TP

XM

–19

S20

910

100

(690

)8

3..

...

.10

2..

.22

Cr–

13N

i–5M

nW

elde

dpi

peS

A-8

13T

PX

M–1

1S

2190

490

(620

)8

3..

...

.10

2..

.21

Cr–

6Ni–

9Mn

Wel

ded

pipe

SA

-813

TP

XM

–29

S24

000

100

(690

)8

3..

...

.10

2..

.18

Cr–

3Ni–

12M

nW

elde

dpi

peS

A-8

13T

P30

4S

3040

075

(515

)8

1..

...

.10

2..

.18

Cr–

8Ni

Wel

ded

pipe

SA

-813

TP

304L

S30

403

70(4

85)

81

...

...

102

...

18C

r–8N

iW

elde

dpi

pe

SA

-813

TP

304H

S30

409

75(5

15)

81

...

...

102

...

18C

r–8N

iW

elde

dpi

peS

A-8

13T

P30

4NS

3045

180

(550

)8

1..

...

.10

2..

.18

Cr–

8Ni–

NW

elde

dpi

peS

A-8

13T

P30

4LN

S30

453

75(5

15)

81

...

...

102

...

18C

r–8N

i–N

Wel

ded

pipe

SA

-813

S30

815

S30

815

87(6

00)

82

...

...

102

...

21C

r–11

Ni–

NW

elde

dpi

peS

A-8

13T

P30

9SS

3090

875

(515

)8

2..

...

.10

2..

.23

Cr–

12N

iW

elde

dpi

pe

2007 SECTION IX

Page 135: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

106

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-813

TP

309C

bS

3094

075

(515

)8

2..

...

.10

2..

.23

Cr–

12N

i–C

bW

elde

dpi

peS

A-8

13T

P31

0SS

3100

875

(515

)8

2..

...

.10

2..

.25

Cr–

20N

iW

elde

dpi

peS

A-8

13T

P31

0Cb

S31

040

75(5

15)

82

...

...

102

...

25C

r–20

Ni–

Cb

Wel

ded

pipe

SA

-813

S31

254

S31

254

94(6

50)

84

...

...

102

...

20C

r–18

Ni–

6Mo

Wel

ded

pipe

SA

-813

TP

316

S31

600

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Wel

ded

pipe

SA

-813

TP

316L

S31

603

70(4

85)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Wel

ded

pipe

SA

-813

TP

316H

S31

609

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Wel

ded

pipe

SA

-813

TP

316N

S31

651

80(5

50)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NW

elde

dpi

peS

A-8

13T

P31

6LN

S31

653

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NW

elde

dpi

peS

A-8

13T

P31

7S

3170

075

(515

)8

1..

...

.10

2..

.18

Cr–

13N

i–3M

oW

elde

dpi

pe

SA

-813

TP

317L

S31

703

75(5

15)

81

...

...

102

...

18C

r–13

Ni–

3Mo

Wel

ded

pipe

SA

-813

TP

321

S32

100

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Ti

Wel

ded

pipe

SA

-813

TP

321H

S32

109

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Ti

Wel

ded

pipe

SA

-813

TP

347

S34

700

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Wel

ded

pipe

SA

-813

TP

347H

S34

709

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Wel

ded

pipe

SA

-813

TP

348

S34

800

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Wel

ded

pipe

SA

-813

TP

348H

S34

809

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Wel

ded

pipe

SA

-813

TP

XM

–15

S38

100

75(5

15)

81

...

...

102

...

18C

r–18

Ni–

2Si

Wel

ded

pipe

SA

-814

TP

XM

–19

S20

910

100

(690

)8

3..

...

.10

2..

.22

Cr–

13N

i–5M

nC

old

wor

ked

wel

ded

pipe

SA

-814

TP

XM

–11

S21

904

90(6

20)

83

...

...

102

...

21C

r–6N

i–9M

nC

old

wor

ked

wel

ded

pipe

SA

-814

TP

XM

–29

S24

000

100

(690

)8

3..

...

.10

2..

.18

Cr–

3Ni–

12M

nC

old

wor

ked

wel

ded

pipe

SA

-814

TP

304

S30

400

75(5

15)

81

...

...

102

...

18C

r–8N

iC

old

wor

ked

wel

ded

pipe

SA

-814

TP

304L

S30

403

70(4

85)

81

...

...

102

...

18C

r–8N

iC

old

wor

ked

wel

ded

pipe

SA

-814

TP

304H

S30

409

75(5

15)

81

...

...

102

...

18C

r–8N

iC

old

wor

ked

wel

ded

pipe

SA

-814

TP

304N

S30

451

80(5

50)

81

...

...

102

...

18C

r–8N

i–N

Col

dw

orke

dw

elde

dpi

peS

A-8

14T

P30

4LN

S30

453

75(5

15)

81

...

...

102

...

18C

r–8N

i–N

Col

dw

orke

dw

elde

dpi

peS

A-8

14S

3081

5S

3081

587

(600

)8

2..

...

.10

2..

.21

Cr–

11N

i–N

Col

dw

orke

dw

elde

dpi

peS

A-8

14T

P30

9SS

3090

875

(515

)8

2..

...

.10

2..

.23

Cr–

12N

iC

old

wor

ked

wel

ded

pipe

SA

-814

TP

309C

bS

3094

075

(515

)8

2..

...

.10

2..

.23

Cr–

12N

i–C

bC

old

wor

ked

wel

ded

pipe

SA

-814

TP

310S

S31

008

75(5

15)

82

...

...

102

...

25C

r–20

Ni

Col

dw

orke

dw

elde

dpi

peS

A-8

14T

P31

0Cb

S31

040

75(5

15)

82

...

...

102

...

25C

r–20

Ni–

Cb

Col

dw

orke

dw

elde

dpi

peS

A-8

14S

3125

4S

3125

494

(650

)8

4..

...

.10

2..

.20

Cr–

18N

i–6M

oC

old

wor

ked

wel

ded

pipe

SA

-814

TP

316

S31

600

75(5

15)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Col

dw

orke

dw

elde

dpi

pe

SA

-814

TP

316L

S31

603

70(4

85)

81

...

...

102

...

16C

r–12

Ni–

2Mo

Col

dw

orke

dw

elde

dpi

peS

A-8

14T

P31

6HS

3160

975

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oC

old

wor

ked

wel

ded

pipe

SA

-814

TP

316N

S31

651

80(5

50)

81

...

...

102

...

16C

r–12

Ni–

2Mo–

NC

old

wor

ked

wel

ded

pipe

2007 SECTION IX

Page 136: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

107

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-814

TP

316L

NS

3165

375

(515

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–N

Col

dw

orke

dw

elde

dpi

peS

A-8

14T

P31

7S

3170

075

(515

)8

1..

...

.10

2..

.18

Cr–

13N

i–3M

oC

old

wor

ked

wel

ded

pipe

SA

-814

TP

317L

S31

703

75(5

15)

81

...

...

102

...

18C

r–13

Ni–

3Mo

Col

dw

orke

dw

elde

dpi

peS

A-8

14T

P32

1S

3210

075

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iC

old

wor

ked

wel

ded

pipe

SA

-814

TP

321H

S32

109

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Ti

Col

dw

orke

dw

elde

dpi

pe

SA

-814

TP

347

S34

700

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Col

dw

orke

dw

elde

dpi

peS

A-8

14T

P34

7HS

3470

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bC

old

wor

ked

wel

ded

pipe

SA

-814

TP

348

S34

800

75(5

15)

81

...

...

102

...

18C

r–10

Ni–

Cb

Col

dw

orke

dw

elde

dpi

peS

A-8

14T

P34

8HS

3480

975

(515

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bC

old

wor

ked

wel

ded

pipe

SA

-814

TP

XM

–15

S38

100

75(5

15)

81

...

...

102

...

18C

r–18

Ni–

2Si

Col

dw

orke

dw

elde

dpi

pe

SA

-815

S31

803

S31

803

90(6

20)

10H

1..

...

.10

2..

.22

Cr–

5Ni–

3Mo–

NF

itti

ngs

SA

-815

S41

500

S41

500

110

(760

)6

4..

...

.10

2..

.13

Cr–

4.5N

i–M

oF

itti

ngs

SA

-815

S32

760

S32

760

109

(750

)..

...

.10

H1

...

102

25C

r–8N

i–3M

o–W

–Cu–

NF

itti

ngs

A81

5S

3220

5S

3220

595

(655

)..

...

.10

H1

...

102

22C

r–5N

i–3M

o–N

Fit

ting

s

SA

-832

21V

K31

830

85(5

85)

5C1

...

...

102

...

3Cr–

1Mo–

V–T

i–B

Pla

teS

A-8

3222

VK

3183

585

(585

)5C

1..

...

...

...

.2.

25C

r–1M

o–V

Pla

teS

A-8

3223

V..

.85

(585

)5C

1..

...

.10

2..

.3C

r–1M

o–0.

25V

–Cb–

Ca

Pla

te

SA

-836

...

...

55(3

80)

11

...

...

101

...

C–S

i–T

iF

orgi

ngs

A89

0C

D3M

WC

uNJ9

3380

100

(690

)..

...

.10

H1

...

102

25C

r–8N

i–3M

o–W

–Cu–

NC

asti

ngs

A92

8..

.S

3276

010

9(7

50)

...

...

10H

1..

.10

225

Cr–

8Ni–

3Mo–

W–C

u–N

Wel

ded

pipe

A92

8S

3220

5S

3220

590

(620

)..

...

.10

H1

...

102

22C

r–5N

i–3M

o–N

Wel

ded

pipe

SA

-965

F46

S30

600

78(5

40)

81

...

...

102

...

18C

r–15

Ni–

4Si

For

ging

sS

A-9

65F

XM

–19

S20

910

100

(690

)8

3..

...

.10

2..

.22

Cr–

13N

i–5M

nF

orgi

ngs

SA

-965

FX

M–1

1S

2190

490

(620

)8

3..

...

.10

2..

.21

Cr–

6Ni–

9Mn

For

ging

sS

A-9

65F

304

S30

400

70(4

85)

81

...

...

102

...

18C

r–8N

iF

orgi

ngs

SA

-965

F30

4LS

3040

365

(450

)8

1..

...

.10

2..

.18

Cr–

8Ni

For

ging

s

SA

-965

F30

4HS

3040

970

(485

)8

1..

...

.10

2..

.18

Cr–

8Ni

For

ging

sS

A-9

65F

304N

S30

451

80(5

50)

81

...

...

102

...

18C

r–8N

i–N

For

ging

sS

A-9

65F

304L

NS

3045

370

(485

)8

1..

...

.10

2..

.18

Cr–

8Ni–

NF

orgi

ngs

SA

-965

F31

0S

3100

075

(515

)8

2..

...

.10

2..

.25

Cr–

20N

iF

orgi

ngs

SA

-965

F31

6S

3160

070

(485

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oF

orgi

ngs

SA

-965

F31

6LS

3160

365

(450

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oF

orgi

ngs

SA

-965

F31

6HS

3160

970

(485

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

oF

orgi

ngs

SA

-965

F31

6NS

3165

180

(550

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–N

For

ging

sS

A-9

65F

316L

NS

3165

370

(485

)8

1..

...

.10

2..

.16

Cr–

12N

i–2M

o–N

For

ging

s

2007 SECTION IX

Page 137: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

108

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

-965

F32

1S

3210

070

(485

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iF

orgi

ngs

SA

-965

F32

1HS

3210

970

(485

)8

1..

...

.10

2..

.18

Cr–

10N

i–T

iF

orgi

ngs

SA

-965

F34

7S

3470

070

(485

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bF

orgi

ngs

SA

-965

F34

7HS

3470

970

(485

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bF

orgi

ngs

SA

-965

F34

8S

3480

070

(485

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bF

orgi

ngs

SA

-965

F34

8HS

3480

965

(450

)8

1..

...

.10

2..

.18

Cr–

10N

i–C

bF

orgi

ngs

A99

2..

...

.65

(450

)..

...

.1

1..

.10

1C

–Mn–

Si

Sha

pes

SA

-995

2AJ9

3345

95(6

55)

10H

1..

...

.10

2..

.24

Cr–

10N

i–4M

o–N

Cas

ting

sS

A-9

951B

J933

7210

0(6

90)

10H

1..

...

.10

2..

.25

Cr–

5Ni–

3Mo–

2Cu

Cas

ting

s

SA

-100

8C

ST

ype

A..

.40

(275

)1

1..

...

.10

1..

.C

She

etS

A-1

008

CS

Typ

eB

...

40(2

75)

11

...

...

101

...

CS

heet

A10

08D

ST

ype

B..

.40

(275

)..

...

.1

1..

.10

1C

She

et&

stri

p

A10

11C

ST

ype

B..

.40

(275

)..

...

.1

1..

.10

1C

She

et&

stri

pA

1011

DS

Typ

eB

...

40(2

75)

...

...

11

...

101

CS

heet

&st

rip

AP

I5L

A25

,C

l.I

...

45(3

10)

...

...

11

...

101

C–M

nS

mls

.&

wel

ded

pipe

&tu

bes

AP

I5L

A25

,C

l.II

...

45(3

10)

...

...

11

...

101

C–M

nS

mls

.&

wel

ded

pipe

&tu

bes

AP

I5L

A..

.48

(330

)..

...

.1

1..

.10

1C

–Mn

Sm

ls.

&w

elde

dpi

pe&

tube

sA

PI

5LB

...

60(4

15)

...

...

11

...

101

C–M

nS

mls

.&

wel

ded

pipe

&tu

bes

AP

I5L

X42

...

60(4

15)

...

...

11

...

101

C–M

nS

mls

.&

wel

ded

pipe

&tu

bes

AP

I5L

X46

...

63(4

35)

...

...

11

...

101

C–M

nS

mls

.&

wel

ded

pipe

&tu

bes

AP

I5L

X52

...

66(4

55)

...

...

11

...

101

C–M

nS

mls

.&

wel

ded

pipe

&tu

bes

AP

I5L

X56

...

71(4

90)

...

...

12

...

101

C–M

nS

mls

.&

wel

ded

pipe

&tu

bes

AP

I5L

X60

...

75(5

15)

...

...

12

...

101

C–M

nS

mls

.&

wel

ded

pipe

&tu

bes

AP

I5L

X65

...

77(5

30)

...

...

12

...

101

C–M

nS

mls

.&

wel

ded

pipe

&tu

bes

AP

I5L

X70

...

82(5

65)

...

...

13

...

101

C–M

nS

mls

.&

wel

ded

pipe

&tu

bes

AP

I5L

X80

...

90(6

20)

...

...

14

...

101

C–M

nS

mls

.&

wel

ded

pipe

&tu

bes

MS

SS

P-7

5W

PH

Y-4

2..

.60

(415

)..

...

.1

1..

.10

1C

–Mn

Sm

ls./w

elde

dfit

ting

sM

SS

SP

-75

WP

HY

-46

...

63(4

35)

...

...

11

...

101

C–M

nS

mls

./wel

ded

fitti

ngs

MS

SS

P-7

5W

PH

Y-5

2..

.66

(455

)..

...

.1

1..

.10

1C

–Mn

Sm

ls./w

elde

dfit

ting

sM

SS

SP

-75

WP

HY

-56

...

71(4

90)

...

...

12

...

101

C–M

nS

mls

./wel

ded

fitti

ngs

MS

SS

P-7

5W

PH

Y-6

0..

.75

(515

)..

...

.1

2..

.10

1C

–Mn

Sm

ls./w

elde

dfit

ting

s

MS

SS

P-7

5W

PH

Y-6

5..

.77

(530

)..

...

.1

2..

.10

1C

–Mn

Sm

ls./w

elde

dfit

ting

sM

SS

SP

-75

WP

HY

-70

...

82(5

65)

...

...

13

...

101

C–M

nS

mls

./wel

ded

fitti

ngs

SA

/AS

1548

5-49

0..

.71

(490

)1

2..

...

.10

1..

.C

Pla

te

2007 SECTION IX

Page 138: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

109

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Fer

rous

(CO

NT

’D)

Min

imum

Wel

ding

Bra

zing

Spe

cifi

edU

NS

Ten

sile

,P

-G

roup

S-

Gro

upP

-S

-S

pec.

No.

Typ

eor

Gra

deN

o.ks

i(M

Pa)

No.

No.

No.

No.

No.

No.

Nom

inal

Com

posi

tion

Pro

duct

For

m

SA

/AS

1548

7-43

0..

.62

.5(4

30)

11

...

...

101

...

CP

late

SA

/AS

1548

7-46

0..

.66

.5(4

60)

11

...

...

101

...

CP

late

SA

/AS

1548

7-49

0..

.71

(490

)1

2..

...

.10

1..

.C

Pla

te

SA

/CS

A-G

40.2

1G

r.38

W..

.60

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

Pla

te,

bar

&sh

apes

SA

/CS

A-G

40.2

1G

r.44

W..

.60

(415

)1

1..

...

.10

1..

.C

–Mn–

Si

Pla

te,

bar

&sh

apes

SA

/EN

1002

8-2

P29

5GH

...

64(4

40)

11

...

...

101

...

C–M

n–S

iP

late

>4

in.

(102

mm

)S

A/E

N10

028-

2P

295G

H..

.67

(460

)1

1..

...

.10

1..

.C

–Mn–

Si

Pla

te≤

4in

.(1

02m

m)

SA

/EN

1002

8-3

P27

5NH

...

53.5

(370

)1

1..

...

.10

1..

.C

Pla

te>

2in

.≤

4in

.(5

1m

m–1

02m

m)

SA

/EN

1002

8-3

P27

5GH

...

56.5

(390

)1

1..

...

.10

1..

.C

Pla

te≤

2in

.(5

1m

m)

SA

/JIS

G31

18S

GV

480

...

70(4

85)

12

...

...

101

...

C–M

n–S

iP

late

2007 SECTION IX

Page 139: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

110

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

Min

imum

Spe

cifie

dW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

B16

C36

000

...

48(3

30)

...

...

...

107

65C

u–Z

n–3P

bR

od≤

1in

.(2

5m

m)

B16

C36

000

...

44(3

05)

...

...

...

107

65C

u–Z

n–3P

bR

od>

1in

.–2

in.

(25

mm

–51

mm

),in

cl.

B16

C36

000

...

40(2

75)

...

...

...

107

65C

u–Z

n–3P

bR

od>

2in

.(5

1m

m)

B16

C36

000

...

44(3

05)

...

...

...

107

65C

u–Z

n–3P

bB

ar≤

1in

.(2

5m

m)

B16

C36

000

...

40(2

75)

...

...

...

107

65C

u–Z

n–3P

bB

ar>

1in

.(2

5m

m)

B26

A24

430

...

17(1

15)

...

21..

.10

4A

l–S

iC

asti

ngs

B26

A03

560

T71

25(1

70)

...

21..

.10

4A

l–S

iC

asti

ngs

B26

A03

560

T6

30(2

05)

...

21..

.10

4A

l–S

iC

asti

ngs

SB

-42

C10

200

...

30(2

05)

31..

.10

7..

.99

.95C

u–P

Sm

ls.

pipe

SB

-42

C12

000

...

30(2

05)

31..

.10

7..

.99

.9C

u–P

Sm

ls.

pipe

SB

-42

C12

200

...

30(2

05)

31..

.10

7..

.99

.9C

u–P

Sm

ls.

pipe

SB

-43

C23

000

...

40(2

75)

32..

.10

7..

.85

Cu–

15Z

nS

mls

.pi

pe

SB

-61

C92

200

...

30(2

05)

...

...

107

...

88C

u–S

n–Z

n–P

bC

asti

ngs

SB

-62

C83

600

...

28(1

95)

...

...

107

...

85C

u–5S

n–5Z

n–5P

bC

asti

ngs

B68

C10

200

102

30(2

05)

...

31..

.10

799

.95C

u–P

Tub

eB

68C

1200

012

030

(205

)..

.31

...

107

99.9

Cu–

PT

ube

B68

C12

200

122

30(2

05)

...

31..

.10

799

.9C

u–P

Tub

e

SB

-75

C10

200

...

30(2

05)

31..

.10

7..

.99

.95C

u–P

Sm

ls.

tube

SB

-75

C12

000

...

30(2

05)

31..

.10

7..

.99

.9C

u–P

Sm

ls.

tube

SB

-75

C12

200

...

30(2

05)

31..

.10

7..

.99

.9C

u–P

Sm

ls.

tube

B88

C10

200

102

30(2

05)

...

31..

.10

799

.95C

u–P

Tub

eB

88C

1200

012

030

(205

)..

.31

...

107

99.9

Cu–

PT

ube

B88

C12

200

122

30(2

05)

...

31..

.10

799

.9C

u–P

Tub

e

SB

-96

C65

500

...

50(3

45)

33..

.10

7..

.97

Cu–

3Si

Pla

te,

sht,

stri

p&

bar

SB

-98

C65

100

...

40(2

75)

33..

.10

7..

.98

.5C

u–1.

5Si

Rod

,ba

r&

shap

esS

B-9

8C

6550

0..

.52

(360

)33

...

107

...

97C

u–3S

iR

od,

bar

&sh

apes

SB

-98

C66

100

...

52(3

60)

33..

.10

7..

.94

Cu–

3Si

Rod

,ba

r&

shap

es

SB

-111

C10

200

...

30(2

05)

31..

.10

7..

.99

.95C

u–P

Sm

ls.

tube

SB

-111

C12

000

...

30(2

05)

31..

.10

7..

.99

.9C

u–P

Sm

ls.

tube

SB

-111

C12

200

...

30(2

05)

31..

.10

7..

.99

.9C

u–P

Sm

ls.

tube

SB

-111

C14

200

...

30(2

05)

31..

.10

7..

.99

.4C

u–A

s–P

Sm

ls.

tube

SB

-111

C19

200

...

38(2

60)

31..

.10

7..

.99

.7C

u–F

e–P

Sm

ls.

tube

SB

-111

C23

000

...

40(2

75)

32..

.10

7..

.85

Cu–

15Z

nS

mls

.tu

beS

B-1

11C

2800

0..

.50

(345

)32

...

107

...

60C

u–40

Zn

Sm

ls.

tube

2007 SECTION IX

Page 140: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

111

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-111

C44

300

...

45(3

10)

32..

.10

7..

.71

Cu–

28Z

n–1S

n–0.

06A

sS

mls

.tu

beS

B-1

11C

4440

0..

.45

(310

)32

...

107

...

71C

u–28

Zn–

1Sn–

0.06

Sb

Sm

ls.

tube

SB

-111

C44

500

...

45(3

10)

32..

.10

7..

.71

Cu–

28Z

n–1S

n–0.

06P

Sm

ls.

tube

SB

-111

C60

800

...

50(3

45)

35..

.10

8..

.95

Cu–

5Al

Sm

ls.

tube

SB

-111

C68

700

...

50(3

45)

32..

.10

8..

.78

Cu–

20Z

n–2A

lS

mls

.tu

be

SB

-111

C70

400

...

38(2

60)

34..

.10

7..

.95

Cu–

5Ni

Sm

ls.

tube

SB

-111

C70

600

...

40(2

75)

34..

.10

7..

.90

Cu–

10N

iS

mls

.tu

beS

B-1

11C

7100

0..

.45

(310

)34

...

107

...

80C

u–20

Ni

Sm

ls.

tube

SB

-111

C71

500

...

52(3

60)

34..

.10

7..

.70

Cu–

30N

iS

mls

.tu

beS

B-1

11C

7220

0..

.45

(310

)34

...

107

...

80C

u–16

Ni–

0.75

Fe–

0.5C

rS

mls

.tu

be

SB

-127

N04

400

...

70(4

85)

42..

.11

0..

.67

Ni–

30C

uP

late

,sh

eet

&st

rip

SB

-135

C23

000

...

40(2

75)

32..

.10

7..

.85

Cu–

15Z

nS

mls

.tu

be

SB

-148

C95

200

...

65(4

50)

35..

.10

8..

.88

Cu–

9Al-

3Fe

Cas

ting

sS

B-1

48C

9540

0..

.75

(515

)35

...

108

...

85C

u–11

Al-

4Fe

Cas

ting

s

B14

8C

9530

0..

.65

(450

)..

.35

...

108

89C

u–10

Al–

1Fe

Cas

ting

sB

148

C95

500

...

90(6

20)

...

35..

.10

882

Cu–

11A

l–4F

e–3M

nC

asti

ngs

B14

8C

9560

0..

.60

(415

)..

.35

...

108

90C

u–7A

l–3S

iC

asti

ngs

SB

-150

C61

400

...

70(4

85)

35..

.10

8..

.90

Cu–

7Al–

3Fe

Rod

&ba

rS

B-1

50C

6230

0..

.75

(515

)35

...

108

...

88C

u–9A

l–3F

eR

od(r

ound

)S

B-1

50C

6300

0..

.85

(585

)35

...

108

...

81C

u–10

Al–

5Ni–

3Fe

Rod

&ba

rS

B-1

50C

6420

0..

.70

(485

)35

...

108

...

91C

u–7A

l–2S

iR

od&

bar

SB

-151

C70

600

...

38(2

60)

34..

.10

7..

.90

Cu–

10N

iR

od&

bar

SB

-152

C10

200

...

30(2

05)

31..

.10

7..

.99

.95C

u–P

Plt

,sh

t,st

rip

&ba

rS

B-1

52C

1040

0..

.30

(205

)31

...

107

...

99.9

5Cu

+A

gP

lt,

sht,

stri

p&

bar

SB

-152

C10

500

...

30(2

05)

31..

.10

7..

.99

.95C

u+

Ag

Plt

,sh

t,st

rip

&ba

rS

B-1

52C

1070

0..

.30

(205

)31

...

107

...

99.9

5Cu

+A

gP

lt,

sht,

stri

p&

bar

SB

-152

C11

000

...

30(2

05)

31..

.10

7..

.99

.90C

uP

lt,

sht,

stri

p&

bar

SB

-152

C12

200

...

30(2

05)

31..

.10

7..

.99

.9C

u–P

Plt

,sh

t,st

rip

&ba

rS

B-1

52C

1230

0..

.30

(205

)31

...

107

...

99.9

Cu–

PP

lt,

sht,

stri

p&

bar

SB

-152

C14

200

...

30(2

05)

31..

.10

7..

.99

.4C

u–A

s–P

Plt

,sh

t,st

rip

&ba

r

SB

-160

N02

200

...

55(3

80)

41..

.11

0..

.99

.0N

iR

od&

bar

SB

-160

N02

201

...

50(3

45)

41..

.11

0..

.99

.0N

i–L

owC

Rod

&ba

r

SB

-161

N02

200

...

55(3

80)

41..

.11

0..

.99

.0N

iS

mls

.pi

pe&

tube

SB

-161

N02

201

...

50(3

45)

41..

.11

0..

.99

.0N

i–L

owC

Sm

ls.

pipe

&tu

be

2007 SECTION IX

Page 141: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

112

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-162

N02

200

...

55(3

80)

41..

.11

0..

.99

.0N

iP

late

,sh

eet

&st

rip

SB

-162

N02

201

...

50(3

45)

41..

.11

0..

.99

.0N

i–L

owC

Pla

te,

shee

t&

stri

p

SB

-163

N02

200

...

55(3

80)

41..

.11

0..

.99

.0N

iS

mls

.tu

beS

B-1

63N

0220

1..

.50

(345

)41

...

110

...

99.0

Ni–

Low

CS

mls

.tu

beS

B-1

63N

0440

0..

.70

(485

)42

...

110

...

67N

i–30

Cu

Sm

ls.

tube

SB

-163

N06

600

...

80(5

50)

43..

.11

1..

.72

Ni–

15C

r–8F

eS

mls

.tu

beS

B-1

63N

0660

1..

.80

(550

)43

...

111

...

60N

i–23

Cr–

12F

e–A

lS

mls

.tu

be

SB

-163

N06

690

...

85(5

85)

43..

.11

1..

.58

Ni–

29C

r–9F

eS

mls

.tu

beS

B-1

63N

0812

0..

.90

(620

)45

...

111

...

37N

i–33

Fe–

25C

rS

mls

.tu

beS

B-1

63N

0880

0..

.75

(515

)45

...

111

...

33N

i–42

Fe–

21C

rS

mls

.tu

beS

B-1

63N

0880

1..

.65

(450

)45

...

111

...

32N

i–45

Fe–

20.5

Cr–

Ti

Sm

ls.

tube

SB

-163

N08

810

...

65(4

50)

45..

.11

1..

.33

Ni–

42F

e–21

Cr

Sm

ls.

tube

SB

-163

N08

811

...

65(4

50)

45..

...

...

.33

Ni–

42F

e–21

Cr–

Al–

Ti

Sm

ls.

tube

SB

-163

N08

825

...

85(5

85)

45..

.11

1..

.42

Ni–

21.5

Cr–

3Mo–

2.3C

uS

mls

.tu

be

SB

-164

N04

400

...

70(4

85)

42..

.11

0..

.67

Ni–

30C

uR

od,

bar

&w

ire

SB

-164

N04

405

...

70(4

85)

42..

.11

0..

.67

Ni–

30C

uR

od,

bar

&w

ire

SB

-165

N04

400

...

70(4

85)

42..

.11

0..

.67

Ni–

30C

uS

mls

.pi

pe&

tube

SB

-166

N06

045

...

90(6

20)

46..

...

...

.46

Ni–

27C

r–23

Fe–

2.75

Si

Rod

,ba

r&

wir

eS

B-1

66N

0660

0..

.80

(550

)43

...

111

...

72N

i–15

Cr–

8Fe

Rod

,ba

r&

wir

eS

B-1

66N

0660

1..

.80

(550

)43

...

111

...

60N

i–23

Cr–

12F

e–A

lS

mls

.tu

beS

B-1

66N

0661

7..

.95

(655

)43

...

111

...

52N

i–22

Cr–

13C

o–9M

oR

od,

bar

&w

ire

SB

-166

N06

690

...

85(5

85)

43..

.11

1..

.58

Ni–

29C

r–9F

eR

od,

bar

&w

ire

SB

-167

N06

045

...

90(6

20)

46..

...

...

.46

Ni–

27C

r–23

Fe–

2.75

Si

Sm

ls.

pipe

&tu

beS

B-1

67N

0660

0..

.75

(515

)43

...

111

...

72N

i–15

Cr–

8Fe

Sm

ls.

pipe

&tu

beS

B-1

67N

0660

1..

.80

(550

)43

...

111

...

60N

i–23

Cr–

12F

e–A

lS

mls

.pi

peor

tube

SB

-167

N06

617

...

95(6

55)

43..

.11

1..

.52

Ni–

22C

r–13

Co–

9Mo

Sm

ls.

pipe

&tu

beS

B-1

67N

0669

0..

.75

(515

)43

...

111

...

58N

i–29

Cr–

9Fe

Sm

ls.

pipe

&tu

be

SB

-168

N06

045

...

90(6

20)

46..

...

...

.46

Ni–

27C

r–23

Fe–

2.75

Si

Pla

te,

shee

t&

stri

pS

B-1

68N

0660

0..

.80

(550

)43

...

111

...

72N

i–15

Cr–

8Fe

Pla

te,

shee

t&

stri

pS

B-1

68N

0660

1..

.80

(550

)43

...

111

...

60N

i–23

Cr–

12F

e–A

lP

late

,sh

eet

&st

rip

SB

-168

N06

617

...

95(6

55)

43..

.11

1..

.52

Ni–

22C

r–13

Co–

9Mo

Pla

te,

shee

t&

stri

pS

B-1

68N

0669

0..

.85

(585

)43

...

111

...

58N

i–29

Cr–

9Fe

Pla

te,

shee

t&

stri

p

SB

-169

C61

400

...

65(4

50)

35..

.10

8..

.90

Cu–

7Al–

3Fe

Plt

,sh

t,st

rip

&ba

r

SB

-171

C36

500

...

40(2

75)

32..

.10

7..

.60

Cu–

39Z

n–P

bP

late

&sh

eet

SB

-171

C44

300

...

45(3

10)

32..

.10

7..

.71

Cu–

28Z

n–1S

n–0.

06A

sP

late

&sh

eet

2007 SECTION IX

Page 142: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

113

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-171

C44

400

...

45(3

10)

32..

.10

7..

.71

Cu–

28Z

n–1S

n–0.

06S

bP

late

&sh

eet

SB

-171

C44

500

...

45(3

10)

32..

.10

7..

.71

Cu–

28Z

n–1S

n–0.

06P

Pla

te&

shee

tS

B-1

71C

4640

0..

.50

(345

)32

...

107

...

60C

u–39

Zn–

Sn

Pla

te&

shee

tS

B-1

71C

4650

0..

.50

(345

)32

...

107

...

60C

u–39

Zn–

As

Pla

te&

shee

tS

B-1

71C

6140

0..

.65

(450

)35

...

108

...

90C

u–7A

l–3F

eP

late

&sh

eet

>2

in.–

5in

.(5

1m

m–1

27m

m),

incl

.

SB

-171

C61

400

...

70(4

85)

35..

.10

8..

.90

Cu–

7Al–

3Fe

Pla

te&

shee

t≤

2in

.(5

1m

m)

SB

-171

C63

000

...

80(5

50)

35..

.10

8..

.81

Cu–

10A

l–5N

i–3F

eP

late

&sh

eet

>3

1 ⁄ 2in

.–5

in.

(89

mm

–127

mm

),in

cl.

SB

-171

C63

000

...

85(5

85)

35..

.10

8..

.81

Cu–

10A

l–5N

i–3F

eP

late

&sh

eet

>2

in.–

3.5

in.

(51

mm

–89

mm

),in

cl.

SB

-171

C63

000

...

90(6

20)

35..

.10

8..

.81

Cu–

10A

l–5N

i–3F

eP

late

&sh

eet

≤2

in.

(51

mm

)S

B-1

71C

7060

0..

.40

(275

)34

...

107

...

90C

u–10

Ni

Pla

te&

shee

t

SB

-171

C71

500

...

45(3

10)

34..

.10

7..

.70

Cu–

30N

iP

late

&sh

eet

>2.

5in

.–5

in.

(64

mm

–127

mm

),in

cl.

SB

-171

C71

500

...

50(3

45)

34..

.10

7..

.70

Cu–

30N

iP

late

&sh

eet

≤2.

5in

.(6

4m

m)

SB

-187

C10

200

O60

28(1

95)

31..

...

...

.99

.95C

u–P

Rod

&ba

rS

B-1

87C

1100

0O

6028

(195

)31

...

...

...

99.9

Cu

Rod

&ba

r

SB

-209

A91

060

1060

8(5

5)21

...

104

...

99.6

0Al

Pla

te&

shee

tS

B-2

09A

9110

011

0011

(76)

21..

.10

4..

.99

.0A

l–C

uP

late

&sh

eet

SB

-209

A93

003

3003

14(9

7)21

...

104

...

Al–

Mn–

Cu

Pla

te&

shee

tS

B-2

09A

9300

430

0422

(150

)22

...

104

...

Al–

Mn–

Mg

Pla

te&

shee

tS

B-2

09A

9505

250

5225

(170

)22

...

105

...

Al–

2.5M

gP

late

&sh

eet

SB

-209

A95

083

5083

36(2

50)

25..

.10

5..

.A

l–4.

4Mg–

Mn

Pla

te&

shee

t>

7in

.–8

in.

(178

mm

–203

mm

),in

cl.

SB

-209

A95

083

5083

37(2

55)

25..

.10

5..

.A

l–4.

4Mg–

Mn

Pla

te&

shee

t>

5in

.–7

in.

(127

mm

–178

mm

),in

cl.

SB

-209

A95

083

5083

38(2

60)

25..

.10

5..

.A

l–4.

4Mg–

Mn

Pla

te&

shee

t>

3in

.–5

in.

(76

mm

–127

mm

),in

cl.

SB

-209

A95

083

5083

39(2

70)

25..

.10

5..

.A

l–4.

4Mg–

Mn

Pla

te&

shee

t>

1.5

in.–

3in

.(3

8m

m–7

6m

m),

incl

.S

B-2

09A

9508

350

8340

(275

)25

...

105

...

Al–

4.4M

g–M

nP

late

&sh

eet

>0.

05in

.–1.

5in

.(1

.3m

m–3

8m

m),

incl

.

SB

-209

A95

086

5086

34(2

35)

25..

.10

5..

.A

l–4.

0Mg–

Mn

Pla

te&

shee

t>

2in

.–3

in.

(51

mm

–76

mm

),in

cl.

SB

-209

A95

086

5086

35(2

40)

25..

.10

5..

.A

l–4.

0Mg–

Mn

Pla

te&

shee

t>

0.05

in.–

2in

.(1

.3m

m–5

1m

m),

incl

.S

B-2

09A

9515

451

5430

(205

)22

...

105

...

Al–

3.5M

gP

late

&sh

eet

SB

-209

A95

254

5254

30(2

05)

22..

.10

5..

.A

l–3.

5Mg

Pla

te&

shee

tS

B-2

09A

9545

454

5431

(215

)22

...

105

...

Al–

2.7M

g–M

nP

late

&sh

eet

SB

-209

A95

456

5456

38(2

60)

25..

.10

5..

.A

l–5.

1Mg–

Mn

Pla

te&

shee

t>

7in

.–8

in.

(178

mm

–203

mm

),in

cl.

SB

-209

A95

456

5456

39(2

70)

25..

.10

5..

.A

l–5.

1Mg–

Mn

Pla

te&

shee

t>

5in

.–7

in.

(127

mm

–178

mm

),in

cl.

SB

-209

A95

456

5456

40(2

75)

25..

.10

5..

.A

l–5.

1Mg–

Mn

Pla

te&

shee

t>

3in

.–5

in.

(76

mm

–127

mm

),in

cl.

SB

-209

A95

456

5456

41(2

85)

25..

.10

5..

.A

l–5.

1Mg–

Mn

Pla

te&

shee

t>

1.5

in.–

3in

.(3

8m

m–7

6m

m),

incl

.S

B-2

09A

9545

654

5642

(290

)25

...

105

...

Al–

5.1M

g–M

nP

late

&sh

eet

>0.

05in

.–1.

5in

.(1

.3m

m–3

8m

m),

incl

.

SB

-209

A95

652

5652

25(1

70)

22..

.10

5..

.A

l–2.

5Mg

Pla

te&

shee

tS

B-2

09A

9606

160

6124

(165

)23

...

105

...

Al–

Mg–

Si–

Cu

Pla

te&

shee

t

2007 SECTION IX

Page 143: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

114

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-209

...

Alc

lad

3003

13(9

0)21

...

104

...

Al–

Mn–

Cu

Pla

te&

shee

t>

0.05

in.

<0.

5in

.(>

1.3

mm

<1

3m

m)

SB

-209

...

Alc

lad

3003

14(9

7)21

...

104

...

Al–

Mn–

Cu

Pla

te&

shee

t≥

0.5

in.–

3in

.(1

3m

m–7

6m

m),

incl

.S

B-2

09..

.A

lcla

d30

0421

(145

)22

...

104

...

Al–

Mn–

Mg

Pla

te&

shee

t>

0.05

in.

<0.

5in

.(>

1.3

mm

<1

3m

m)

SB

-209

...

Alc

lad

3004

22(1

50)

22..

.10

4..

.A

l–M

n–M

gP

late

&sh

eet

≥0.

5in

.–3

in.

(13

mm

–76

mm

),in

cl.

SB

-209

...

Alc

lad

6061

24(1

65)

23..

.10

5..

.A

l–M

g–S

i–C

uP

late

&sh

eet

B20

9A

9505

050

5018

(125

)..

.21

...

105

Al–

1.5M

gP

late

&sh

eet

SB

-210

A91

060

1060

8.5

(59)

21..

.10

4..

.99

.60A

lS

mls

.tu

beS

B-2

10..

.A

lcla

d30

0313

(90)

21..

.10

4..

.A

l–M

n–C

uS

mls

.tu

beS

B-2

10A

9300

330

0314

(97)

21..

.10

4..

.A

l–M

n–C

uS

mls

.tu

beS

B-2

10A

9505

250

5225

(170

)22

...

105

...

Al–

2.5M

gS

mls

.tu

beS

B-2

10A

9515

451

5430

(205

)22

...

105

...

Al–

3.5M

gS

mls

.tu

be

SB

-210

A96

061

6061

24(1

65)

23..

.10

5..

.A

l–M

g–S

i–C

uS

mls

.tu

beS

B-2

10A

9606

360

6317

(115

)23

...

105

...

Al–

Mg–

Si

Sm

ls.

tube

B21

0A

9508

350

8339

(270

)..

.25

...

105

Al–

4.4M

g–M

nS

mls

.tu

beB

210

A95

086

5086

35(2

40)

...

25..

.10

5A

l–4.

0Mg–

Mn

Sm

ls.

tube

B21

0A

9545

654

5641

(285

)..

.25

...

...

Al–

5.1M

g–M

nS

mls

.tu

be

SB

-211

A96

061

6061

24(1

65)

23..

.10

5..

.A

l–M

g–S

i–C

uB

ar,

rod

&w

ire

SA

-213

S31

277

...

112

(770

)45

...

111

...

27N

i–22

Cr–

7Mo–

Mn–

Cu

Sm

ls.

tube

SB

-221

A91

060

1060

8.5

(59)

21..

.10

4..

.99

.60A

lB

ar,

rod

&sh

apes

SB

-221

A91

100

1100

11(7

6)21

...

104

...

99.0

Al–

Cu

Bar

,ro

d&

shap

esS

B-2

21A

9300

330

0314

(97)

21..

.10

4..

.A

l–M

n–C

uB

ar,

rod

&sh

apes

SB

-221

A95

083

5083

39(2

70)

25..

.10

5..

.A

l–4.

4Mg–

Mn

Bar

,ro

d&

shap

esS

B-2

21A

9515

451

5430

(205

)22

...

105

...

Al–

3.5M

gB

ar,

rod

&sh

apes

SB

-221

A95

454

5454

31(2

15)

22..

.10

5..

.A

l–2.

7Mg–

Mn

Bar

,ro

d&

shap

esS

B-2

21A

9545

654

5641

(285

)25

...

105

...

Al–

5.1M

g–M

nB

ar,

rod

&sh

apes

SB

-221

A96

061

6061

24(1

65)

23..

.10

5..

.A

l–M

g–S

i–C

uB

ar,

rod

&sh

apes

SB

-221

A96

063

6063

17(1

15)

23..

.10

5..

.A

l–M

g–S

iB

ar,

rod

&sh

apes

SB

-234

A91

060

1060

8.5

(59)

21..

.10

4..

.99

.60A

lS

mls

.tu

beS

B-2

34..

.A

lcla

d30

0313

(90)

21..

.10

4..

.A

l–M

n–C

uS

mls

.tu

beS

B-2

34A

9300

330

0314

(97)

21..

.10

4..

.A

l–M

n–C

uS

mls

.tu

beS

B-2

34A

9505

250

5225

(170

)22

...

105

...

Al–

2.5M

gS

mls

.tu

beS

B-2

34A

9545

454

5431

(215

)22

...

105

...

Al–

2.7M

g–M

nS

mls

.tu

beS

B-2

34A

9606

160

6124

(165

)23

...

105

...

Al–

Mg–

Si–

Cu

Sm

ls.

tube

SA

-240

S31

277

...

112

(770

)45

...

111

...

27N

i–22

Cr–

7Mo–

Mn–

Cu

Pla

te,

shee

t&

stri

p

SB

-241

A91

060

1060

8.5

(59)

21..

.10

4..

.99

.60A

lS

mls

.pi

pe&

tube

2007 SECTION IX

Page 144: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

115

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-241

A91

100

1100

11(7

6)21

...

104

...

99.0

Al–

Cu

Sm

ls.

pipe

&tu

beS

B-2

41..

.A

lcla

d30

0313

(90)

21..

.10

4..

.A

l–M

n–C

uS

mls

.pi

pe&

tube

SB

-241

A93

003

3003

14(9

7)21

...

104

...

Al–

Mn–

Cu

Pip

e&

tube

SB

-241

A95

052

5052

25(1

70)

22..

.10

5..

.A

l–2.

5Mg

Sm

ls.

pipe

&tu

beS

B-2

41A

9508

350

8339

(270

)25

...

105

...

Al–

4.4M

g–M

nS

mls

.pi

pe&

tube

SB

-241

A95

086

5086

35(2

40)

25..

.10

5..

.A

l–4.

0Mg–

Mn

Sm

ls.

pipe

&tu

beS

B-2

41A

9545

454

5431

(215

)22

...

105

...

Al–

2.7M

g–M

nS

mls

.pi

pe&

tube

SB

-241

A95

456

5456

41(2

85)

25..

.10

5..

.A

l–5.

1Mg–

Mn

Sm

ls.

pipe

&tu

beS

B-2

41A

9606

160

6124

(165

)23

...

105

...

Al–

Mg–

Si–

Cu

Sm

ls.

pipe

&tu

beS

B-2

41A

9606

360

6317

(115

)23

...

105

...

Al–

Mg–

Si

Sm

ls.

pipe

&tu

be

SB

-247

A93

003

3003

14(9

7)21

...

104

...

Al–

Mn–

Cu

For

ging

sS

B-2

47A

9508

350

8338

(260

)25

...

105

...

Al–

4.4M

g–M

nF

orgi

ngs

SB

-247

A96

061

6061

24(1

65)

23..

.10

5..

.A

l–M

g–S

i–C

uF

orgi

ngs

SA

-249

S31

277

...

112

(770

)45

...

111

...

27N

i–22

Cr–

7Mo–

Mn–

Cu

Wel

ded

tube

SB

-265

R50

250

135

(240

)51

...

115

...

Ti

Pla

te,

shee

t&

stri

pS

B-2

65R

5040

02

50(3

45)

51..

.11

5..

.T

iP

late

,sh

eet

&st

rip

SB

-265

R50

550

365

(450

)52

...

115

...

Ti

Pla

te,

shee

t&

stri

pS

B-2

65R

5225

011

35(2

40)

51..

.11

5..

.T

i–P

dP

late

,sh

eet

&st

rip

SB

-265

R52

252

1735

(240

)51

...

...

...

Ti–

Pd

Pla

te,

shee

t&

stri

p

SB

-265

R52

254

2735

(240

)51

...

115

...

Ti–

Ru

Pla

te,

shee

t&

stri

pS

B-2

65R

5240

07

50(3

45)

51..

.11

5..

.T

i–P

dP

late

,sh

eet

&st

rip

SB

-265

R52

402

1650

(345

)51

...

115

...

Ti–

Pd

Pla

te,

shee

t&

stri

pS

B-2

65R

5240

426

50(3

45)

51..

.11

5..

.T

i–R

uP

late

,sh

eet

&st

rip

SB

-265

R53

400

1270

(485

)52

...

115

...

Ti–

0.3M

o–0.

8Ni

Pla

te,

shee

t&

stri

pS

B-2

65R

5632

09

90(6

20)

53..

.11

5..

.T

i–3A

l–2.

5VP

late

,sh

eet

&st

rip

SB

-271

C95

200

...

65(4

50)

35..

.10

8..

.88

Cu–

9Al–

3Fe

Cas

ting

sS

B-2

71C

9540

0..

.75

(515

)35

...

108

...

85C

u–11

Al–

4Fe

Cas

ting

s

B28

0C

1020

010

230

(205

)..

.31

...

107

99.9

5Cu–

PS

mls

.tu

beB

280

C12

000

120

30(2

05)

...

31..

.10

799

.9C

u–P

Sm

ls.

tube

B28

0C

1220

012

230

(205

)..

.31

...

107

99.9

Cu–

PS

mls

.tu

be

B28

3C

1100

0C

u33

(230

)..

.31

...

107

99.9

Cu

For

ging

sB

283

C37

700

For

ging

bras

s46

(315

)..

...

...

.10

760

Cu–

38Z

n–2P

bF

orgi

ngs

>1.

5in

.(3

8m

m)

B28

3C

3770

0F

orgi

ngbr

ass

50(3

45)

...

...

...

107

60C

u–38

Zn–

2Pb

For

ging

s≤

1.5

in.

(38

mm

)B

283

C46

400

Nav

albr

ass

64(4

40)

...

32..

.10

760

Cu–

39Z

n–S

nF

orgi

ngs

B28

3C

6550

0H

igh

Si

bron

ze52

(360

)..

.33

...

107

97C

u–3S

iF

orgi

ngs

B28

3C

6750

0M

nbr

onze

72(4

95)

...

32..

.10

759

Cu–

39Z

n–F

e–S

nF

orgi

ngs

2007 SECTION IX

Page 145: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

116

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

B30

2C

1200

0..

.36

(250

)..

.31

...

107

99.9

Cu–

PP

ipe

B30

2C

1220

0..

.36

(250

)..

.31

...

107

99.9

Cu–

PP

ipe

SB

-308

A96

061

6061

24(1

65)

23..

.10

5..

.A

l–M

g–S

i–C

uS

hape

s

SA

-312

S31

277

...

112

(770

)45

...

111

...

27N

i–22

Cr–

7Mo–

Mn–

Cu

Sm

ls.

&w

elde

dpi

pe

SB

-315

C65

500

...

50(3

45)

33..

.10

7..

.97

Cu–

3Si

Sm

ls.

pipe

&tu

be

SB

-333

N10

001

...

100

(690

)44

...

112

...

62N

i–28

Mo–

5Fe

Pla

te,

shee

t&

stri

p≥

0.18

75in

.–2.

5in

.(4

.8m

m–6

4m

m),

incl

.S

B-3

33N

1000

1..

.11

5(7

95)

44..

.11

2..

.62

Ni–

28M

o–5F

eP

late

,sh

eet

&st

rip

<0.

1875

in.

(48

mm

)S

B-3

33N

1062

9..

.11

0(7

60)

44..

.11

2..

.66

Ni–

28M

o–3F

e–1.

3Cr–

0.25

Al

Pla

te,

shee

t&

stri

pS

B-3

33N

1066

5..

.11

0(7

60)

44..

.11

2..

.65

Ni–

28M

o–2F

eP

late

,sh

eet

&st

rip

SB

-333

N10

675

...

110

(760

)44

...

112

...

65N

i–29

.5M

o–2F

e–2C

rP

late

,sh

eet

&st

rip

SB

-335

N10

001

...

100

(690

)44

...

112

...

62N

i–28

Mo–

5Fe

Rod

>1.

5in

.–3.

5in

.(3

8m

m–8

9m

m),

incl

.S

B-3

35N

1000

1..

.11

5(7

95)

44..

.11

2..

.62

Ni–

28M

o–5F

eR

od≥

0.31

25in

.–1.

5in

.(8

mm

–38

mm

),in

cl.

SB

-335

N10

629

...

110

(760

)44

...

112

...

66N

i–28

Mo–

3Fe–

1.3C

r–0.

25A

lR

odS

B-3

35N

1066

5..

.11

0(7

60)

44..

.11

2..

.65

Ni–

28M

o–2F

eR

odS

B-3

35N

1067

5..

.11

0(7

60)

44..

.11

2..

.65

Ni–

29.5

Mo–

2Fe–

2Cr

Rod

SB

-338

R50

250

135

(240

)51

...

115

...

Ti

Sm

ls.

&w

elde

dtu

beS

B-3

38R

5040

02

50(3

45)

51..

.11

5..

.T

iS

mls

.&

wel

ded

tube

SB

-338

R50

550

365

(450

)52

...

115

...

Ti

Sm

ls.

&w

elde

dtu

beS

B-3

38R

5240

07

50(3

45)

51..

.11

5..

.T

i–P

dS

mls

.&

wel

ded

tube

SB

-338

R52

402

1650

(345

)51

...

115

...

Ti–

Pd

Sm

ls.

&w

elde

dtu

be

SB

-338

R52

404

2650

(345

)51

...

115

...

Ti–

Ru

Sm

ls.

&w

elde

dtu

beS

B-3

38R

5340

012

70(4

85)

52..

.11

5..

.T

i–0.

3Mo–

0.8N

iS

mls

.&

wel

ded

tube

SB

-338

R56

320

990

(620

)53

...

115

...

Ti–

3Al–

2.5V

Sm

ls.

&w

elde

dtu

be

B34

5A

9106

010

608.

5(5

9)..

.21

...

104

99.6

0Al

Sm

ls.

pipe

&tu

beB

345

A93

003

3003

14(9

7)..

.21

...

104

Al–

Mn–

Cu

Sm

ls.

pipe

&tu

beB

345

A95

083

5083

39(2

70)

...

25..

.10

5A

l–4.

4Mg–

Mn

Sm

ls.

pipe

&tu

beB

345

A95

086

5086

37(2

55)

...

25..

.10

5A

l–4.

0Mg–

Mn

Sm

ls.

pipe

&tu

beB

345

A96

061

6061

24(1

65)

...

23..

.10

5A

l–M

g–S

i–C

uS

mls

.pi

pe&

tube

B34

5A

9606

360

6317

(115

)..

.23

...

105

Al–

Mg–

Si

Sm

ls.

pipe

&tu

be

SB

-348

R50

250

135

(240

)51

...

115

...

Ti

Bar

s&

bille

tsS

B-3

48R

5040

02

50(3

45)

51..

.11

5..

.T

iB

ars

&bi

llets

SB

-348

R50

550

365

(450

)52

...

115

...

Ti

Bar

s&

bille

tsS

B-3

48R

5240

07

50(3

45)

51..

.11

5..

.T

i–P

dB

ars

&bi

llets

SB

-348

R52

404

2650

(345

)51

...

115

...

Ti–

Ru

Bar

s&

bille

ts

2007 SECTION IX

Page 146: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

117

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-348

R53

400

1270

(485

)52

...

115

...

Ti–

0.3M

o–0.

8Ni

Bar

s&

bille

tsS

B-3

48R

5240

216

50(3

45)

51..

...

...

.T

i–P

dB

ars

&bi

llets

SB

-348

R56

320

990

(620

)53

...

115

...

Ti–

3Al–

2.5V

Bar

s&

bille

ts

A35

1N

0860

3H

T30

65(4

50)

...

45..

.11

135

Ni–

15C

r–0.

5Mo

Cas

ting

s

SA

-351

J946

51C

N3M

N80

(550

)45

...

111

...

46F

e–24

Ni–

21C

r–6M

o–C

u–N

Cas

ting

sS

A-3

51N

0800

7C

N7M

62(4

25)

45..

.11

1..

.28

Ni–

19C

r–C

u–M

oC

asti

ngs

SA

-351

N08

151

CT

15C

63(4

35)

45..

.11

1..

.32

Ni–

45F

e–20

Cr–

Cb

Cas

ting

s

SB

-359

C12

200

...

30(2

05)

31..

.10

7..

.99

.9C

u–P

Sm

ls.

tube

SB

-359

C44

300

...

45(3

10)

32..

.10

7..

.71

Cu–

28Z

n–1S

n–0.

06A

sS

mls

.tu

beS

B-3

59C

4440

0..

.45

(310

)32

...

107

...

71C

u–28

Zn–

1Sn–

0.06

Sb

Sm

ls.

tube

SB

-359

C44

500

...

45(3

10)

32..

.10

7..

.71

Cu–

28Z

n–1S

n–0.

06P

Sm

ls.

tube

SB

-359

C70

600

...

40(2

75)

34..

.10

7..

.90

Cu–

10N

iS

mls

.tu

beS

B-3

59C

7100

0..

.45

(310

)34

...

107

...

80C

u–20

Ni

Sm

ls.

tube

SB

-359

C71

500

...

52(3

60)

34..

.10

7..

.70

Cu–

30N

iS

mls

.tu

be

B36

1A

9106

0W

P10

608

(55)

...

21..

.10

499

.60A

lF

itti

ngs

B36

1A

9110

0W

P11

0011

(76)

...

21..

.10

499

.0A

l–C

uF

itti

ngs

B36

1..

.W

PA

lcla

d30

0313

(90)

...

21..

.10

4A

l–M

n–C

uF

itti

ngs

B36

1A

9300

3W

P30

0314

(97)

...

21..

.10

4A

l–M

n–C

uF

itti

ngs

B36

1A

9508

350

8339

(270

)..

.25

...

105

Al–

4.4M

g–M

nF

itti

ngs

B36

1A

9515

451

5430

(205

)..

.22

...

105

Al–

3.5M

gF

itti

ngs

B36

1A

9606

1W

P60

6124

(165

)..

.23

...

105

Al–

Mg–

Si–

Cu

Fit

ting

sB

361

A96

063

WP

6063

17(1

15)

...

23..

.10

5A

l–M

g–S

iF

itti

ngs

SB

-363

R50

250

WP

T1

35(2

40)

51..

.11

5..

.T

iS

mls

.&

wel

ded

fitti

ngs

SB

-363

R50

400

WP

T2

50(3

45)

51..

.11

5..

.T

iS

mls

.&

wel

ded

fitti

ngs

SB

-363

R50

550

WP

T3

65(4

50)

52..

.11

5..

.T

iS

mls

.&

wel

ded

fitti

ngs

SB

-363

R52

400

750

(345

)51

...

115

...

Ti–

Pd

Sm

ls.

&w

elde

dpi

pe

SB

-363

R52

404

WP

T-2

650

(345

)51

...

115

...

Ti–

Ru

Sm

ls.

&w

elde

dfit

ting

sS

B-3

63R

5340

012

70(4

85)

52..

.11

5..

.T

i–0.

3Mo–

0.8N

iS

mls

.&

wel

ded

pipe

SB

-363

R56

320

WP

T-9

90(6

20)

53..

.11

5..

.T

i–3A

l–2.

5VS

mls

.&

wel

ded

fitti

ngs

SB

-366

N02

200

...

55(3

80)

41..

.11

0..

.99

Ni

Fit

ting

sS

B-3

66N

0220

1..

.50

(345

)41

...

110

...

99N

i-L

owC

Fit

ting

sS

B-3

66N

0440

0..

.70

(485

)42

...

110

...

67N

i–30

Cu

Fit

ting

sS

B-3

66N

0600

2..

.10

0(6

90)

43..

.11

1..

.47

Ni–

22C

r–18

Fe–

9Mo

Fit

ting

sS

B-3

66N

0600

7..

.90

(620

)45

...

111

...

47N

i–22

Cr–

19F

e–6M

oF

itti

ngs

SB

-366

N06

022

...

100

(690

)43

...

111

...

55N

i–21

Cr–

13.5

Mo

Fit

ting

s

2007 SECTION IX

Page 147: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

118

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-366

N06

030

...

85(5

85)

45..

.11

1..

.40

Ni–

29C

r–15

Fe–

5Mo

Fit

ting

sS

B-3

66N

0604

5..

.90

(620

)46

...

111

...

46N

i–27

Cr–

23F

e–2.

75S

iF

itti

ngs

SB

-366

N06

059

...

100

(690

)43

...

111

...

59N

i–23

Cr–

16M

oF

itti

ngs

SB

-366

N06

200

...

100

(690

)43

...

111

...

59N

i–23

Cr–

16M

o–1.

6Cu

Fit

ting

sS

B-3

66N

0623

0..

.11

0(7

60)

43..

.11

1..

.53

Ni–

22C

r–14

W–C

o–F

e–M

oF

itti

ngs

SB

-366

N06

455

...

100

(690

)43

...

111

...

61N

i–15

Mo–

16C

rF

itti

ngs

SB

-366

N06

600

...

80(5

50)

43..

.11

1..

.72

Ni–

15C

r–8F

eF

itti

ngs

SB

-366

N06

625

...

110

(760

)43

...

111

...

60N

i–22

Cr–

9Mo–

3.5C

bF

itti

ngs

SB

-366

N06

985

...

90(6

20)

45..

.11

1..

.47

Ni–

22C

r–20

Fe–

7Mo

Fit

ting

sS

B-3

66N

0802

0..

.80

(550

)45

...

111

...

35N

i–35

Fe–

20C

r–C

bF

itti

ngs

SB

-366

N08

031

...

94(6

50)

45..

.11

1..

.31

Ni–

31F

e–27

Cr–

7Mo

Fit

ting

sS

B-3

66N

0812

0..

.90

(620

)45

...

111

...

37N

i–33

Fe–

25C

rF

itti

ngs

SB

-366

N08

330

...

70(4

85)

46..

.11

1..

.35

Ni–

19C

r–1.

25S

lF

itti

ngs

SB

-366

N08

367

...

95(6

55)

45..

.11

1..

.46

Fe–

24N

i–21

Cr–

6Mo–

Cu–

NF

itti

ngs

>3 ⁄ 16

in.

(4.8

mm

)S

B-3

66N

0836

7..

.10

0(6

90)

45..

.11

1..

.46

Fe–

24N

i–21

Cr–

6Mo–

Cu–

NF

itti

ngs

≤3 ⁄ 16

in.

(4.8

mm

)

SB

-366

N08

800

...

75(5

15)

45..

.11

1..

.33

Ni–

42F

e–21

Cr

Fit

ting

sS

B-3

66N

0882

5..

.85

(585

)45

...

111

...

42N

i–21

.5C

r–3M

o–2.

3Cu

Fit

ting

sS

B-3

66N

0892

5..

.87

(600

)45

...

111

...

25N

i–20

Cr–

6Mo–

Cu–

NF

itti

ngs

SB

-366

N10

001

...

100

(690

)44

...

112

...

62N

i–28

Mo–

5Fe

Fit

ting

sS

B-3

66N

1000

3..

.10

0(6

90)

44..

.11

2..

.70

Ni–

16M

o–7C

r–5F

eF

itti

ngs

SB

-366

N10

242

...

105

(725

)44

...

112

...

62N

i–25

Mo–

8Cr–

2Fe

Fit

ting

sS

B-3

66N

1027

6..

.10

0(6

90)

43..

.11

1..

.54

Ni–

16M

o–15

Cr

Fit

ting

sS

B-3

66N

1062

9..

.11

0(7

60)

44..

.11

2..

.66

Ni–

28M

o–3F

e–1.

3Cr–

0.25

Al

Fit

ting

sS

B-3

66N

1066

5..

.11

0(7

60)

44..

.11

2..

.65

Ni–

28M

o–2F

eF

itti

ngs

SB

-366

N10

675

...

110

(760

)44

...

112

...

65N

i–29

.5M

o–2F

e–2C

rF

itti

ngs

SB

-366

N12

160

...

90(6

20)

46..

...

...

.37

Ni–

30C

o–28

Cr–

2.7S

iF

itti

ngs

SB

-366

R20

033

...

109

(750

)45

...

...

...

33C

r–31

Ni–

32F

e–1.

5Mo–

0.6C

u–N

Fit

ting

sS

B-3

66R

3055

6..

.10

0(6

90)

45..

.11

1..

.21

Ni–

30F

e–22

Cr–

18C

o–3M

o–3W

Fit

ting

s

B36

6N

0892

6..

.94

(650

)..

.45

...

111

25N

i–20

Cr–

6Mo–

Cu–

NF

itti

ngs

SB

-367

R50

400

Gr.

C–2

50(3

45)

51..

.11

5..

.T

iC

asti

ngs

SB

-367

R50

550

Gr.

C–3

65(4

50)

52..

.11

5..

.T

iC

asti

ngs

SB

-369

C96

200

...

45(3

10)

34..

.10

7..

.87

.5C

u–10

Ni–

Fe–

Mn

Cas

ting

s

SB

-381

R50

250

F–1

35(2

40)

51..

.11

5..

.T

iF

orgi

ngs

SB

-381

R50

400

F–2

50(3

45)

51..

.11

5..

.T

iF

orgi

ngs

SB

-381

R50

550

F–3

65(4

50)

52..

.11

5..

.T

iF

orgi

ngs

SB

-381

R52

400

F–7

50(3

45)

51..

.11

5..

.T

i–P

dF

orgi

ngs

2007 SECTION IX

Page 148: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

119

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-381

R52

402

F–1

650

(345

)51

...

...

...

Ti–

Pd

For

ging

sS

B-3

81R

5240

4F

–26

50(3

45)

51..

.11

5..

.T

i–R

uF

orgi

ngs

SB

-381

R53

400

F–1

270

(485

)52

...

115

...

Ti–

0.3M

o–0.

8Ni

For

ging

sS

B-3

81R

5632

0F

–990

(620

)53

...

115

...

Ti–

3Al–

2.5V

For

ging

s

SB

-395

C10

200

...

36(2

50)

31..

.10

7..

.99

.95C

u–P

Sm

ls.

tube

SB

-395

C12

000

...

36(2

50)

31..

.10

7..

.99

.9C

u–P

Sm

ls.

tube

SB

-395

C12

200

...

36(2

50)

31..

.10

7..

.99

.9C

u–P

Sm

ls.

tube

SB

-395

C14

200

...

36(2

50)

31..

.10

7..

.99

.4C

u–A

s–P

Sm

ls.

tube

SB

-395

C19

200

...

38(2

60)

31..

.10

7..

.99

.7C

u–F

e–P

Sm

ls.

tube

SB

-395

C23

000

...

40(2

75)

32..

.10

7..

.85

Cu–

15Z

nS

mls

.tu

beS

B-3

95C

4430

0..

.45

(310

)32

...

107

...

71C

u–28

Zn–

1Sn–

0.06

As

Sm

ls.

tube

SB

-395

C44

400

...

45(3

10)

32..

.10

7..

.71

Cu–

28Z

n–1S

n–0.

06S

bS

mls

.tu

beS

B-3

95C

4450

0..

.45

(310

)32

...

107

...

71C

u–28

Zn–

1Sn–

0.06

PS

mls

.tu

beS

B-3

95C

6080

0..

.50

(345

)35

...

108

...

95C

u–5A

lS

mls

.tu

be

SB

-395

C68

700

...

50(3

45)

32..

.10

8..

.78

Cu–

20Z

n–2A

lS

mls

.tu

beS

B-3

95C

7060

0..

.40

(275

)34

...

107

...

90C

u–10

Ni

Sm

ls.

tube

SB

-395

C71

000

...

45(3

10)

34..

.10

7..

.80

Cu–

20N

iS

mls

.tu

beS

B-3

95C

7150

0..

.52

(360

)34

...

107

...

70C

u–30

Ni

Sm

ls.

tube

SB

-407

N08

120

...

90(6

20)

45..

.11

1..

.37

Ni–

33F

e–25

Cr

Sm

ls.

pipe

&tu

beS

B-4

07N

0880

0..

.75

(515

)45

...

111

...

33N

i–42

Fe–

21C

rS

mls

.pi

pe&

tube

SB

-407

N08

801

...

65(4

50)

45..

.11

1..

.32

Ni–

45F

e–20

.5C

r–T

iS

mls

.pi

pe&

tube

SB

-407

N08

810

...

65(4

50)

45..

.11

1..

.33

Ni–

42F

e–21

Cr

Sm

ls.

pipe

&tu

beS

B-4

07N

0881

1..

.65

(450

)45

...

111

...

33N

i–42

Fe–

21C

r–A

l–T

iS

mls

.pi

pe&

tube

SB

-408

N08

120

...

90(6

20)

45..

.11

1..

.37

Ni–

33F

e–25

Cr

Rod

&ba

rS

B-4

08N

0880

0..

.75

(515

)45

...

111

...

33N

i–42

Fe–

21C

rR

od&

bar

SB

-408

N08

810

...

65(4

50)

45..

.11

1..

.33

Ni–

42F

e–21

Cr

Rod

&ba

rS

B-4

08N

0881

1..

.65

(450

)45

...

111

...

33N

i–42

Fe–

21C

r–A

l–T

iR

od&

bar

SB

-409

N08

120

...

90(6

20)

45..

.11

1..

.37

Ni–

33F

e–25

Cr

Pla

te,

shee

t&

stri

pS

B-4

09N

0880

0..

.75

(515

)45

...

111

...

33N

i–42

Fe–

21C

rP

late

,sh

eet

&st

rip

SB

-409

N08

810

...

65(4

50)

45..

.11

1..

.33

Ni–

42F

e–21

Cr

Pla

te,

shee

t&

stri

pS

B-4

09N

0881

1..

.65

(450

)45

...

111

...

33N

i–42

Fe–

21C

r–A

l–T

iP

late

,sh

eet

&st

rip

SB

-423

N08

825

...

75(5

15)

45..

.11

1..

.42

Ni–

21.5

Cr–

3Mo–

2.3C

uS

mls

.pi

pe&

tube

SB

-424

N08

825

...

85(5

85)

45..

.11

1..

.42

Ni–

21.5

Cr–

3Mo–

2.3C

uP

late

,sh

eet

&st

rip

SB

-425

N08

825

...

85(5

85)

45..

.11

1..

.42

Ni–

21.5

Cr–

3Mo–

2.3C

uR

od&

bar

SB

-434

N10

003

...

100

(690

)44

...

112

...

70N

i–16

Mo–

7Cr–

5Fe

Pla

te,

shee

t&

stri

pS

B-4

34N

1024

2..

.10

5(7

25)

44..

.11

2..

.62

Ni–

25M

o–8C

r–2F

eP

late

,sh

eet

&st

rip

2007 SECTION IX

Page 149: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

120

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-435

N06

002

...

95(6

55)

43..

.11

1..

.47

Ni–

22C

r–9M

o–18

Fe

Pla

te,

shee

t&

stri

pS

B-4

35N

0623

0..

.11

0(7

60)

43..

.11

1..

.53

Ni–

22C

r–14

W–C

o–F

e–M

oP

late

,sh

eet

&st

rip

SB

-435

N12

160

...

90(6

20)

46..

...

...

.37

Ni–

30C

o–28

Cr–

2.7S

iP

late

,sh

eet,

&st

rip

SB

-435

R30

556

...

100

(690

)45

...

111

...

21N

i–30

Fe–

22C

r–18

Co–

3Mo–

3WP

late

,sh

eet

&st

rip

SB

-443

N06

625

210

0(6

90)

43..

.11

1..

.60

Ni–

22C

r–9M

o–3.

5Cb

Pla

te,

shee

t&

stri

pS

B-4

43N

0662

51

110

(760

)43

...

111

...

60N

i–22

Cr–

9Mo–

3.5C

bP

late

,sh

eet

&st

rip

SB

-444

N06

625

112

0(8

25)

43..

.11

1..

.60

Ni–

22C

r–9M

o–3.

5Cb

Sm

ls.

pipe

&tu

beS

B-4

44N

0662

52

100

(690

)43

...

111

...

60N

i–22

Cr–

9Mo–

3.5C

bS

mls

.pi

pe&

tube

SB

-446

N06

625

112

0(8

25)

43..

.11

1..

.60

Ni–

22C

r–9M

o–3.

5Cb

Rod

&ba

rS

B-4

46N

0662

52

100

(690

)43

...

111

...

60N

i–22

Cr–

9Mo–

3.5C

bR

od&

bar

SB

-462

N06

022

...

100

(690

)43

...

111

...

55N

i–21

Cr–

13.5

Mo

For

ging

sS

B-4

62N

0603

0..

.85

(585

)45

...

111

...

40N

i–29

Cr–

15F

e–5M

oF

orgi

ngs

SB

-462

N06

045

...

90(6

20)

46..

.11

1..

.46

Ni–

27C

r–23

Fe–

2.75

Si

For

ging

sS

B-4

62N

0605

9..

.10

0(6

90)

44..

.11

2..

.59

Ni–

23C

r–16

Mo

For

ging

sS

B-4

62N

0620

0..

.10

0(6

90)

43..

.11

1..

.59

Ni–

23C

r–16

Mo–

1.6C

uF

orgi

ngs

SB

-462

N06

686

...

100

(690

)43

...

111

...

58N

i–21

Cr–

16M

o–3.

5NF

orgi

ngs

SB

-462

N08

020

...

80(5

50)

45..

.11

1..

.35

Ni–

35F

e–20

Cr–

Cb

For

ging

sS

B-4

62N

0803

1..

.94

(650

)45

...

111

...

31N

i–33

Fe–

22C

r–6.

5Mo–

Cu–

NF

orgi

ngs

SB

-462

N08

367

...

95(6

55)

45..

.11

1..

.46

Fe–

24N

i–21

Cr–

6Mo–

Cu–

NF

orgi

ngs

SB

-462

N10

276

...

100

(690

)43

...

111

...

54N

i–16

Mo–

15C

rF

orgi

ngs

SB

-462

N10

629

...

110

(760

)44

...

112

...

66N

i–28

Mo–

3Fe–

1.3C

r–0.

25A

lF

orgi

ngs

SB

-462

N10

665

...

110

(760

)44

...

112

...

65N

i–28

Mo–

2Fe

For

ging

sS

B-4

62N

1067

5..

.11

0(7

60)

44..

.11

2..

.65

Ni–

29.5

Mo–

2Fe–

2Cr

For

ging

sS

B-4

62R

2003

3..

.10

9(7

50)

45..

.11

1..

.33

Cr–

31N

i–32

Fe–

1.5M

o–0.

6Cu–

NF

orgi

ngs

SB

-463

N08

020

...

80(5

50)

45..

.11

1..

.35

Ni–

35F

e–20

Cr–

Cb

Pla

te,

shee

t&

stri

pS

B-4

63N

0802

4..

.80

(550

)45

...

111

...

37N

i–33

Fe–

23C

r–4M

oP

late

,sh

eet

&st

rip

SB

-463

N08

026

...

80(5

50)

45..

.11

1..

.35

Ni–

30F

e–24

Cr–

6Mo–

3Cu

Pla

te,

shee

t&

stri

p

SB

-464

N08

020

...

80(5

50)

45..

.11

1..

.35

Ni–

35F

e–20

Cr–

Cb

Wel

ded

pipe

SB

-464

N08

024

...

80(5

50)

45..

.11

1..

.37

Ni–

33F

e–23

Cr–

4Mo

Wel

ded

pipe

SB

-464

N08

026

...

80(5

50)

45..

.11

1..

.35

Ni–

30F

e–24

Cr–

6Mo–

3Cu

Wel

ded

pipe

SB

-466

C70

600

...

38(2

60)

34..

.10

7..

.90

Cu–

10N

iS

mls

.pi

pe&

tube

SB

-466

C71

000

...

45(3

10)

34..

.10

7..

.80

Cu–

20N

iS

mls

.pi

pe&

tube

SB

-466

C71

500

...

52(3

60)

34..

.10

7..

.70

Cu–

30N

iS

mls

.pi

pe&

tube

SB

-467

C70

600

...

38(2

60)

34..

.10

7..

.90

Cu–

10N

iW

elde

dpi

pe>

4.5

in.

(114

mm

)O

.D.

SB

-467

C70

600

...

40(2

75)

34..

.10

7..

.90

Cu–

10N

iW

elde

dpi

pe≤

4.5

in.

(114

mm

)O

.D.

2007 SECTION IX

Page 150: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

121

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-467

C71

500

...

45(3

10)

34..

.10

7..

.70

Cu–

30N

iW

elde

dpi

pe>

4.5

in.

(114

mm

)O

.D.

SB

-467

C71

500

...

50(3

45)

34..

.10

7..

.70

Cu–

30N

iW

elde

dpi

pe≤

4.5

in.

(114

mm

)O

.D.

SB

-468

N08

020

...

80(5

50)

45..

.11

1..

.35

Ni–

35F

e–20

Cr–

Cb

Wel

ded

tube

SB

-468

N08

024

...

80(5

50)

45..

.11

1..

.37

Ni–

33F

e–23

Cr–

4Mo

Wel

ded

tube

SB

-468

N08

026

...

80(5

50)

45..

.11

1..

.35

Ni–

30F

e–24

Cr–

6Mo–

3Cu

Wel

ded

tube

SB

-473

N08

020

...

80(5

50)

45..

.11

1..

.35

Ni–

35F

e–20

Cr–

Cb

Bar

SA

-479

S31

277

...

112

(770

)45

...

111

...

27N

i–22

Cr–

7Mo–

Mn–

Cu

Bar

&sh

apes

B49

1A

9300

330

0314

(97)

...

21..

.10

4A

l–M

n–C

uE

xtru

ded

tube

s

SB

-493

R60

702

R60

702

55(3

80)

61..

.11

7..

.99

.2Z

rF

orgi

ngs

SB

-493

R60

705

R60

705

70(4

85)

62..

.11

7..

.95

.5Z

r+2.

5Cb

For

ging

s

SA

-494

N26

022

CX

2MW

80(5

50)

43..

.11

1..

.59

Ni–

22C

r–14

Mo–

4Fe–

3WC

asti

ngs

SB

-505

C95

200

...

68(4

70)

35..

.10

8..

.88

Cu–

9Al–

3Fe

Cas

ting

s

SB

-511

N08

330

...

70(4

85)

46..

.11

1..

.35

Ni–

19C

r–1.

25S

iB

ars

&sh

apes

SB

-514

N08

120

...

90(6

20)

45..

.11

1..

.37

Ni–

33F

e–25

Cr

Wel

ded

pipe

SB

-514

N08

800

...

75(5

15)

45..

.11

1..

.33

Ni–

42F

e–21

Cr

Wel

ded

pipe

SB

-514

N08

810

...

65(4

50)

45..

.11

1..

.33

Ni–

42F

e–21

Cr

Wel

ded

pipe

SB

-515

N08

120

...

90(6

20)

45..

.11

1..

.37

Ni–

33F

e–25

Cr

Wel

ded

tube

SB

-515

N08

800

...

75(5

15)

45..

.11

1..

.33

Ni–

42F

e–21

Cr

Wel

ded

tube

SB

-515

N08

810

...

65(4

50)

45..

.11

1..

.33

Ni–

42F

e–21

Cr

Wel

ded

tube

SB

-515

N08

811

...

65(4

50)

45..

...

...

.33

Ni–

42F

e–21

Cr–

Al–

Ti

Wel

ded

tube

SB

-516

N06

045

...

90(6

20)

46..

...

...

.46

Ni–

27C

r–23

Fe–

2.75

Si

Wel

ded

tube

SB

-516

N06

600

...

80(5

50)

43..

.11

1..

.72

Ni–

15C

r–8F

eW

elde

dtu

be

SB

-517

N06

045

...

90(6

20)

46..

...

...

.46

Ni–

27C

r–23

Fe–

2.75

Si

Wel

ded

pipe

SB

-517

N06

600

...

80(5

50)

43..

.11

1..

.72

Ni–

15C

r–8F

eW

elde

dpi

pe

SB

-523

R60

702

R60

702

55(3

80)

61..

.11

7..

.99

.2Z

rS

mls

.&

wel

ded

tube

SB

-523

R60

705

R60

705

80(5

50)

62..

.11

7..

.95

.5Z

r+2.

5Cb

Sm

ls.

&w

elde

dtu

be

SB

-535

N08

330

...

70(4

85)

46..

.11

1..

.35

Ni–

19C

r–1.

25S

iS

mls

.pi

pe

SB

-536

N08

330

...

70(4

85)

46..

.11

1..

.35

Ni–

19C

r–1.

25S

iP

late

,sh

eet

&st

rip

SB

-543

C12

200

...

30(2

05)

31..

.10

7..

.99

.9C

u–P

Wel

ded

tube

SB

-543

C19

400

...

45(3

10)

31..

.10

7..

.97

.5C

u–P

Wel

ded

tube

SB

-543

C23

000

...

40(2

75)

32..

.10

7..

.85

Cu–

15Z

nW

elde

dtu

beS

B-5

43C

4430

0..

.45

(310

)32

...

107

...

71C

u–28

Zn–

1Sn–

0.06

As

Wel

ded

tube

SB

-543

C44

400

...

45(3

10)

32..

.10

7..

.71

Cu–

28Z

n–1S

n–0.

06S

bW

elde

dtu

be

2007 SECTION IX

Page 151: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

122

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-543

C44

500

...

45(3

10)

32..

.10

7..

.71

Cu–

28Z

n–1S

n–0.

06P

Wel

ded

tube

SB

-543

C68

700

...

50(3

45)

32..

.10

8..

.78

Cu–

20Z

n–2A

lW

elde

dtu

beS

B-5

43C

7040

0..

.38

(260

)34

...

107

...

95C

u–5N

iW

elde

dtu

beS

B-5

43C

7060

0..

.40

(275

)34

...

107

...

90C

u–10

Ni

Wel

ded

tube

SB

-543

C71

500

...

52(3

60)

34..

.10

7..

.70

Cu–

30N

iW

elde

dtu

be

B54

7..

.A

lcla

d30

0313

(90)

...

21..

.10

4A

l–M

n–C

uW

elde

dtu

beB

547

A93

003

3003

14(9

7)..

.21

...

104

Al–

Mn–

Cu

Wel

ded

tube

B54

7A

9508

350

8340

(275

)..

.25

...

105

Al–

4.4M

g–M

nW

elde

dtu

beB

547

A95

454

5454

31(2

15)

...

22..

.10

5A

l–2.

7Mg–

Mn

Wel

ded

tube

B54

7A

9606

160

6124

(165

)..

.23

...

105

Al–

Mg–

Si–

Cu

Wel

ded

tube

SB

-550

R60

702

R60

702

55(3

80)

61..

.11

7..

.99

.2Z

rB

ar&

wir

eS

B-5

50R

6070

5R

6070

580

(550

)62

...

117

...

95.5

Zr+

2.5C

bB

ar&

wir

e

SB

-551

R60

702

R60

702

55(3

80)

61..

.11

7..

.99

.2Z

rP

late

,sh

eet

&st

rip

SB

-551

R60

705

R60

705

80(5

50)

62..

.11

7..

.95

.5Z

r+2.

5Cb

Pla

te,

shee

t&

stri

p

SB

-564

N04

400

...

70(4

85)

42..

.11

0..

.67

Ni–

30C

uF

orgi

ngs

SB

-564

N06

022

...

100

(690

)43

...

111

...

55N

i–21

Cr–

13.5

Mo

For

ging

sS

B-5

64N

0604

5..

.90

(620

)46

...

...

...

46N

i–27

Cr–

23F

e–2.

75S

iF

orgi

ngs

SB

-564

N06

059

...

100

(690

)43

...

111

...

59N

i–23

Cr–

16M

oF

orgi

ngs

SB

-564

N06

200

...

100

(690

)43

...

111

...

59N

i–23

Cr–

16M

o–1.

6Cu

For

ging

s

SB

-564

N06

230

...

110

(760

)43

...

111

...

53N

i–22

Cr–

14W

–Co–

Fe–

Mo

For

ging

sS

B-5

64N

0660

0..

.80

(550

)43

...

111

...

72N

i–15

Cr–

8Fe

For

ging

sS

B-5

64N

0661

7..

.95

(655

)43

...

111

...

52N

i–22

Cr–

13C

o–9M

oF

orgi

ngs

SB

-564

N06

625

...

110

(760

)43

...

111

...

60N

i–22

Cr–

9Mo–

3.5C

bF

orgi

ngs

>4

in.–

10in

.(1

02m

m–2

54m

m),

incl

.S

B-5

64N

0668

6..

.10

0(6

90)

43..

.11

1..

.58

Ni–

21C

r–16

Mo–

3.5W

For

ging

s

SB

-564

N06

625

...

120

(825

)43

...

111

...

60N

i–22

Cr–

9Mo–

3.5C

bF

orgi

ngs

≤4

in.

(102

mm

)S

B-5

64N

0669

0..

.85

(585

)43

...

111

...

58N

i–29

Cr–

9Fe

For

ging

sS

B-5

64N

0803

1..

.94

(650

)45

...

111

...

31N

i–31

Fe–

27C

r–7M

oF

orgi

ngs

SB

-564

N08

120

...

90(6

20)

45..

.11

1..

.37

Ni–

33F

e–25

Cr

For

ging

sS

B-5

64N

0836

7..

.95

(655

)45

...

111

...

46F

e–24

Ni–

21C

r–6M

o–C

u–N

For

ging

sS

B-5

64N

0880

0..

.75

(515

)45

...

111

...

33N

i–42

Fe–

21C

rF

orgi

ngs

SB

-564

N08

810

...

65(4

50)

45..

.11

1..

.33

Ni–

42F

e–21

Cr

For

ging

sS

B-5

64N

0881

1..

.65

(450

)45

...

...

...

33N

i–42

Fe–

21C

r–A

l–T

iF

orgi

ngs

SB

-564

N08

825

...

85(5

85)

45..

.11

1..

.42

Ni–

21.5

Cr–

3Mo–

2.3C

uF

orgi

ngs

SB

-564

N10

242

...

105

(725

)44

...

112

...

62N

i–25

Mo–

8Cr–

2Fe

For

ging

sS

B-5

64N

1027

6..

.10

0(6

90)

43..

.11

1..

.54

Ni–

16M

o–15

Cr

For

ging

s

SB

-564

N10

629

...

110

(760

)44

...

112

...

66N

i–28

Mo–

3Fe–

1.3C

r–0.

25A

lF

orgi

ngs

2007 SECTION IX

Page 152: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

123

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-564

N10

675

...

110

(760

)44

...

112

...

65N

i–29

.5M

o–2F

e–2C

rF

orgi

ngs

SB

-564

R20

033

...

109

(750

)45

...

...

...

33C

r–31

Ni–

32F

e–1.

5Mo–

0.6C

u–N

For

ging

sS

B-5

64N

1216

0..

.90

(620

)46

...

...

...

37N

i–30

Co–

28C

r–2.

7Si

For

ging

s

SB

-572

N06

002

...

95(6

55)

43..

.11

1..

.47

Ni–

22C

r–9M

o–18

Fe

Rod

SB

-572

N06

230

...

110

(760

)43

...

111

...

53N

i–22

Cr–

14W

–Co–

Fe–

Mo

Rod

SB

-572

N12

160

...

90(6

20)

46..

...

...

.37

Ni–

30C

o–28

Cr–

2.7S

iR

odS

B-5

72R

3055

6..

.10

0(6

90)

45..

.11

1..

.21

Ni–

30F

e–22

Cr–

18C

o–3M

o–3W

Rod

SB

-573

N10

003

...

100

(690

)44

...

112

...

70N

i–16

Mo–

7Cr–

5Fe

Rod

SB

-573

N10

242

...

105

(725

)44

...

112

...

62N

i–25

Mo–

8Cr–

2Fe

Rod

SB

-574

N06

022

...

100

(690

)43

...

111

...

55N

i–21

Cr–

13.5

Mo

Rod

SB

-574

N06

059

...

100

(690

)43

...

111

...

59N

i–23

Cr–

16M

oR

odS

B-5

74N

0620

0..

.10

0(6

90)

43..

.11

1..

.59

Ni–

23C

r–16

Mo–

1.6C

uR

odS

B-5

74N

0645

5..

.10

0(6

90)

43..

.11

1..

.61

Ni–

16M

o–16

Cr

Rod

SB

-574

N06

686

...

100

(690

)43

...

111

...

58N

i–21

Cr–

16M

o–3.

5WR

odS

B-5

74N

1027

6..

.10

0(6

90)

43..

.11

1..

.54

Ni–

16M

o–15

Cr

Rod

SB

-575

N06

022

...

100

(690

)43

...

111

...

55N

i–21

Cr–

13.5

Mo

Pla

te,

shee

t&

stri

pS

B-5

75N

0605

9..

.10

0(6

90)

43..

.11

1..

.59

Ni–

23C

r–16

Mo

Pla

te,

shee

t&

stri

pS

B-5

75N

0620

0..

.10

0(6

90)

43..

.11

1..

.59

Ni–

23C

r–16

Mo–

1.6C

uP

late

,sh

eet

&st

rip

SB

-575

N06

455

...

100

(690

)43

...

111

...

61N

i–16

Mo–

16C

rP

late

,sh

eet

&st

rip

SB

-575

N06

686

...

100

(690

)43

...

111

...

58N

i–21

Cr–

16M

o–3.

5WP

late

,sh

eet

&st

rip

SB

-575

N10

276

...

100

(690

)43

...

111

...

54N

i–16

Mo–

15C

rP

late

,sh

eet

&st

rip

SB

-581

N06

007

...

85(5

85)

45..

.11

1..

.47

Ni–

22C

r–19

Fe–

6Mo

Rod

>0.

75in

.–3.

5in

.(1

9m

m–8

9m

m),

incl

.S

B-5

81N

0600

7..

.90

(620

)45

...

111

...

47N

i–22

Cr–

19F

e–6M

oR

od,

0.31

25in

.–0.

75in

.(8

mm

–19

mm

),in

cl.

SB

-581

N06

030

...

85(5

85)

45..

.11

1..

.40

Ni–

29C

r–15

Fe–

5Mo

Rod

SB

-581

N06

975

...

85(5

85)

45..

.11

1..

.49

Ni–

25C

r–18

Fe–

6Mo

Rod

SB

-581

N06

985

...

85(5

85)

45..

.11

1..

.47

Ni–

22C

r–20

Fe–

7Mo

Rod

>0.

75in

.–3.

5in

.(1

9m

m–8

9m

m),

incl

.S

B-5

81N

0698

5..

.90

(620

)45

...

111

...

47N

i–22

Cr–

20F

e–7M

oR

od,

0.31

25in

.–0.

75in

.(8

mm

–19

mm

),in

cl.

SB

-581

N08

031

...

94(6

50)

45..

.11

1..

.31

Ni–

31F

e–27

Cr–

7Mo

Rod

SB

-582

N06

007

...

85(5

85)

45..

.11

1..

.47

Ni–

22C

r–19

Fe–

6Mo

Pla

te,

shee

t&

stri

p>

0.75

in.–

2.5

in.

(19

mm

–64

mm

),in

cl.

SB

-582

N06

007

...

90(6

20)

45..

.11

1..

.47

Ni–

22C

r–19

Fe–

6Mo

Pla

te,

shee

t&

stri

p≤

0.75

in.

(19

mm

)S

B-5

82N

0603

0..

.85

(585

)45

...

111

...

40N

i–29

Cr–

15F

e–5M

oP

late

,sh

eet

&st

rip

SB

-582

N06

975

...

85(5

85)

45..

.11

1..

.49

Ni–

25C

r–18

Fe–

6Mo

Pla

te,

shee

t&

stri

pS

B-5

82N

0698

5..

.85

(585

)45

...

111

...

47N

i–22

Cr–

20F

e–7M

oP

late

,sh

eet

&st

rip

>0.

75in

.–2.

5in

.(1

9m

m–6

4m

m),

incl

.S

B-5

82N

0698

5..

.90

(620

)45

...

111

...

47N

i–22

Cr–

20F

e–7M

oP

late

,sh

eet

&st

rip

≤0.

75in

.(1

9m

m)

2007 SECTION IX

Page 153: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

124

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-599

N08

700

...

80(5

50)

45..

.11

1..

.25

Ni–

47F

e–21

Cr–

5Mo

Pla

te,

shee

t&

stri

p

SB

-619

N06

002

...

100

(690

)43

...

111

...

47N

i–22

Cr–

9Mo–

18F

eW

elde

dpi

peS

B-6

19N

0600

7..

.90

(620

)45

...

111

...

47N

i–22

Cr–

19F

e–6M

oW

elde

dpi

peS

B-6

19N

0602

2..

.10

0(6

90)

43..

.11

1..

.55

Ni–

21C

r–13

.5M

oW

elde

dpi

peS

B-6

19N

0603

0..

.85

(585

)45

...

111

...

40N

i–29

Cr–

15F

e–5M

oW

elde

dpi

peS

B-6

19N

0605

9..

.10

0(6

90)

43..

.11

1..

.59

Ni–

23C

r–16

Mo

Wel

ded

pipe

SB

-619

N06

200

...

100

(690

)43

...

111

...

59N

i–23

Cr–

16M

o–1.

6Cu

Wel

ded

pipe

SB

-619

N06

230

...

110

(760

)43

...

111

...

53N

i–22

Cr–

14W

–Co–

Fe–

Mo

Wel

ded

pipe

SB

-619

N06

455

...

100

(690

)43

...

111

...

61N

i–16

Mo–

16C

rW

elde

dpi

peS

B-6

19N

0668

6..

.10

0(6

90)

43..

.11

1..

.58

Ni–

21C

r–16

Mo–

3.5W

Wel

ded

pipe

SB

-619

N06

975

...

85(5

85)

45..

.11

1..

.49

Ni–

25C

r–18

Fe–

6Mo

Wel

ded

pipe

SB

-619

N06

985

...

90(6

20)

45..

.11

1..

.47

Ni–

22C

r–20

Fe–

7Mo

Wel

ded

pipe

SB

-619

N08

031

...

94(6

50)

45..

.11

1..

.31

Ni–

31F

e–27

Cr–

7Mo

Wel

ded

pipe

SB

-619

N08

320

...

75(5

15)

45..

.11

1..

.26

Ni–

22C

r–5M

o–T

iW

elde

dpi

peS

B-6

19N

1000

1..

.10

0(6

90)

44..

.11

2..

.62

Ni–

28M

o–5F

eW

elde

dpi

peS

B-6

19N

1024

2..

.10

5(7

25)

44..

.11

2..

.62

Ni–

25M

o–8C

r–2F

eW

elde

dpi

pe

SB

-619

N10

276

...

100

(690

)43

...

111

...

54N

i–16

Mo–

15C

rW

elde

dpi

peS

B-6

19N

1062

9..

.11

0(7

60)

44..

.11

2..

.66

Ni–

28M

o–3F

e–1.

3Cr–

0.25

Al

Wel

ded

pipe

SB

-619

N10

665

...

110

(760

)44

...

112

...

65N

i–28

Mo–

2Fe

Wel

ded

pipe

SB

-619

N10

675

...

110

(760

)44

...

112

...

65N

i–29

.5M

o–2F

e–2C

rW

elde

dpi

peS

B-6

19N

1216

0..

.90

(620

)46

...

...

...

37N

i–30

Co–

28C

r–2.

7Si

Wel

ded

pipe

SB

-619

R20

033

...

109

(750

)45

...

...

...

33C

r–31

Ni–

32F

e–1.

5Mo–

0.6C

u–N

Wel

ded

pipe

SB

-619

R30

556

...

100

(690

)45

...

111

...

21N

i–30

Fe–

22C

r–18

Co–

3Mo–

3WW

elde

dpi

pe

SB

-620

N08

320

...

75(5

15)

45..

.11

1..

.26

Ni–

22C

r–5M

o–T

iP

late

,sh

eet

&st

rip

SB

-621

N08

320

...

75(5

15)

45..

.11

1..

.26

Ni–

22C

r–5M

o–T

iR

od

SB

-622

N06

002

...

100

(690

)43

...

111

...

47N

i–22

Cr–

9Mo–

18F

eS

mls

.pi

pe&

tube

SB

-622

N06

007

...

90(6

20)

45..

.11

1..

.47

Ni–

22C

r–19

Fe–

6Mo

Sm

ls.

pipe

&tu

beS

B-6

22N

0602

2..

.10

0(6

90)

43..

.11

1..

.55

Ni–

21C

r–13

.5M

oS

mls

.pi

pe&

tube

SB

-622

N06

030

...

85(5

85)

45..

.11

1..

.40

Ni–

29C

r–15

Fe–

5Mo

Sm

ls.

pipe

&tu

beS

B-6

22N

0605

9..

.10

0(6

90)

43..

.11

1..

.59

Ni–

23C

r–16

Mo

Sm

ls.

pipe

&tu

be

SB

-622

N06

200

...

100

(690

)43

...

111

...

59N

i–23

Cr–

16M

o–1.

6Cu

Sm

ls.

pipe

&tu

beS

B-6

22N

0623

0..

.11

0(7

60)

43..

.11

1..

.53

Ni–

22C

r–14

W–C

o–F

e–M

oS

mls

.pi

pe&

tube

SB

-622

N06

455

...

100

(690

)43

...

111

...

61N

i–16

Mo–

16C

rS

mls

.pi

pe&

tube

SB

-622

N06

686

...

100

(690

)43

...

111

...

58N

i–21

Cr–

16M

o–3.

5WS

mls

.pi

pe&

tube

SB

-622

N06

975

...

85(5

85)

45..

.11

1..

.49

Ni–

25C

r–18

Fe–

6Mo

Sm

ls.

pipe

&tu

be

2007 SECTION IX

Page 154: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

125

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-622

N06

985

...

90(6

20)

45..

.11

1..

.47

Ni–

22C

r–20

Fe–

7Mo

Sm

ls.

pipe

&tu

beS

B-6

22N

0803

1..

.94

(650

)45

...

111

...

31N

i–31

Fe–

27C

r–7M

oS

mls

.pi

pe&

tube

SB

-622

N08

320

...

75(5

15)

45..

.11

1..

.26

Ni–

22C

r–5M

o–T

iS

mls

.pi

pe&

tube

SB

-622

N10

001

...

100

(690

)44

...

112

...

62N

i–28

Mo–

5Fe

Sm

ls.

pipe

&tu

beS

B-6

22N

1024

2..

.10

5(7

25)

44..

.11

2..

.62

Ni–

25M

o–8C

r–2F

eS

mls

.pi

pe&

tube

SB

-622

N10

276

...

100

(690

)43

...

111

...

54N

i–16

Mo–

15C

rS

mls

.pi

pe&

tube

SB

-622

N10

629

...

110

(760

)44

...

112

...

66N

i–28

Mo–

3Fe–

1.3C

r–0.

25A

lS

mls

.pi

pe&

tube

SB

-622

N10

665

...

110

(760

)44

...

112

...

65N

i–28

Mo–

2Fe

Sm

ls.

pipe

&tu

beS

B-6

22R

2003

3..

.10

9(7

50)

45..

...

...

.33

Cr–

31N

i–32

Fe–

1.5M

o–0.

6Cu–

NS

mls

.pi

pe&

tube

SB

-622

R30

556

...

100

(690

)45

...

111

...

21N

i–30

Fe–

22C

r–18

Co–

3Mo–

3WS

mls

.pi

pe&

tube

SB

-622

N10

675

...

110

(760

)44

...

112

...

65N

i–29

.5M

o–2F

e–2C

rS

mls

.pi

pe&

tube

SB

-622

N12

160

...

90(6

20)

46..

...

...

.37

Ni–

30C

o–28

Cr–

2.7S

iS

mls

.pi

pe&

tube

B62

5N

0892

6..

.94

(650

)..

.45

...

111

25N

i–20

Cr–

6Mo–

Co–

NP

late

,sh

eet

&st

rip

SB

-625

N08

031

...

94(6

50)

45..

.11

1..

.31

Ni–

31F

e–27

Cr–

7Mo

Pla

te,

shee

t&

stri

pS

B-6

25N

0890

4..

.71

(490

)45

...

111

...

44F

e–25

Ni–

21C

r–M

oP

late

,sh

eet

&st

rip

SB

-625

N08

925

...

87(6

00)

45..

.11

1..

.25

Ni–

20C

r–6M

o–C

u–N

Pla

te,

shee

t&

stri

pS

B-6

25R

2003

3..

.10

9(7

50)

45..

...

...

.33

Cr–

31N

i–32

Fe–

1.5M

o–0.

6Cu–

NP

late

,sh

eet

&st

rip

SB

-626

N06

002

...

100

(690

)43

...

111

...

47N

i–22

Cr–

9Mo–

18F

eW

elde

dtu

beS

B-6

26N

0600

7..

.90

(620

)45

...

111

...

47N

i–22

Cr–

19F

e–6M

oW

elde

dtu

beS

B-6

26N

0602

2..

.10

0(6

90)

43..

.11

1..

.55

Ni–

21C

r–13

.5M

oW

elde

dtu

beS

B-6

26N

0603

0..

.85

(585

)45

...

111

...

40N

i–29

Cr–

15F

e–5M

oW

elde

dtu

beS

B-6

26N

0605

9..

.10

0(6

90)

43..

.11

1..

.59

Ni–

23C

r–16

Mo

Wel

ded

tube

SB

-626

N06

200

...

100

(690

)43

...

111

...

59N

i–23

Cr–

16M

o–1.

6Cu

Wel

ded

tube

SB

-626

N06

230

...

110

(760

)43

...

111

...

53N

i–22

Cr–

14W

–Co–

Fe–

Mo

Wel

ded

tube

SB

-626

N06

455

...

100

(690

)43

...

111

...

61N

i–16

Mo–

16C

rW

elde

dtu

beS

B-6

26N

0668

6..

.10

0(6

90)

43..

.11

1..

.58

Ni–

21C

r–16

Mo–

3.5W

Wel

ded

tube

SB

-626

N06

975

...

85(5

85)

45..

.11

1..

.49

Ni–

25C

r–18

Fe–

6Mo

Wel

ded

tube

SB

-626

N06

985

...

90(6

20)

45..

.11

1..

.47

Ni–

22C

r–20

Fe–

7Mo

Wel

ded

tube

SB

-626

N08

031

...

94(6

50)

45..

.11

1..

.31

Ni–

31F

e–27

Cr–

7Mo

Wel

ded

tube

SB

-626

N08

320

...

75(5

15)

45..

.11

1..

.26

Ni–

22C

r–5M

o–T

iW

elde

dtu

beS

B-6

26N

1000

1..

.10

0(6

90)

44..

.11

2..

.62

Ni–

28M

o–5F

eW

elde

dtu

beS

B-6

26N

1024

2..

.10

5(7

25)

44..

.11

2..

.62

Ni–

25M

o–8C

r–2F

eW

elde

dtu

be

SB

-626

N10

276

...

100

(690

)43

...

111

...

54N

i–16

Mo–

15C

rW

elde

dtu

beS

B-6

26N

1062

9..

.11

0(7

60)

44..

.11

2..

.66

Ni–

28M

o–3F

e–1.

3Cr–

0.25

Al

Wel

ded

tube

SB

-626

N10

665

...

110

(760

)44

...

112

...

65N

i–28

Mo–

2Fe

Wel

ded

tube

SB

-626

R20

033

...

109

(750

)45

...

...

...

33C

r–31

Ni–

32F

e–1.

5Mo–

0.6C

u–N

Wel

ded

tube

2007 SECTION IX

Page 155: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

126

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-626

R30

556

...

100

(690

)45

...

111

...

21N

i–30

Fe–

22C

r–18

Co–

3Mo–

3WW

elde

dtu

beS

B-6

26N

1067

5..

.11

0(7

60)

44..

.11

2..

.65

Ni–

29.5

Mo–

2Fe–

2Cr

Wel

ded

tube

SB

-626

N12

160

...

90(6

20)

46..

...

...

.37

Ni–

30C

o–28

Cr–

2.7S

iW

elde

dtu

be

B64

9N

0892

6..

.94

(650

)..

.45

...

111

25N

i–20

Cr–

6Mo–

Cu–

NB

ar&

wir

e

SB

-649

N08

904

...

71(4

90)

45..

.11

1..

.44

Fe–

25N

i–21

Cr–

Mo

Bar

&w

ire

SB

-649

N08

925

...

87(6

00)

45..

.11

1..

.25

Ni–

20C

r–6M

o–C

u–N

Bar

&w

ire

SB

-649

R20

033

...

109

(750

)45

...

...

...

33C

r–31

Ni–

32F

e–1.

5Mo–

0.6C

u–N

Bar

&w

ire

SB

-658

R60

702

R60

702

55(3

80)

61..

.11

7..

.99

.2Z

rS

mls

.&

wel

ded

pipe

SB

-658

R60

705

R60

705

80(5

50)

62..

.11

7..

.95

.5Z

r+2.

5Cb

Sm

ls.

&w

elde

dpi

pe

SB

-668

N08

028

...

73(5

05)

45..

.11

1..

.31

Ni–

31F

e–29

Cr–

Mo

Sm

ls.

tube

SB

-672

N08

700

...

80(5

50)

45..

.11

1..

.25

Ni–

47F

e–21

Cr–

5Mo

Bar

&w

ire

B67

3N

0892

6..

.94

(650

)..

.45

...

111

25N

i–20

Cr–

6Mo–

Cu–

NW

elde

dpi

pe

SB

-673

N08

904

...

71(4

90)

45..

.11

1..

.44

Fe–

25N

i–21

Cr–

Mo

Wel

ded

pipe

SB

-673

N08

925

...

87(6

00)

45..

.11

1..

.25

Ni–

20C

r–6M

o–C

u–N

Wel

ded

pipe

SB

-674

N08

904

...

71(4

90)

45..

.11

1..

.44

Fe–

25N

i–21

Cr–

Mo

Wel

ded

tube

SB

-674

N08

925

...

87(6

00)

45..

.11

1..

.25

Ni–

20C

r–6M

o–C

u–N

Wel

ded

tube

B67

4N

0892

6..

.94

(650

)..

.45

...

111

25N

i–20

Cr–

6Mo–

Cu–

NW

elde

dtu

be

SB

-675

N08

367

...

95(6

55)

45..

.11

1..

.46

Fe–

24N

i–21

Cr–

6Mo–

Cu–

NW

elde

dpi

pe>

3 ⁄ 16in

.(4

.8m

m)

SB

-675

N08

367

...

100

(690

)45

...

111

...

46F

e–24

Ni–

21C

r–6M

o–C

u–N

Wel

ded

pipe

≤3 ⁄ 16

in.

(4.8

mm

)

SB

-676

N08

367

...

95(6

55)

45..

.11

1..

.46

Fe–

24N

i–21

Cr–

6Mo–

Cu–

NW

elde

dtu

be>

3 ⁄ 16in

.(4

.8m

m)

SB

-676

N08

367

...

100

(690

)45

...

111

...

46F

e–24

Ni–

21C

r–6M

o–C

u–N

Wel

ded

tube

≤3 ⁄ 16

in.

(4.8

mm

)

B67

7N

0892

6..

.94

(650

)..

.45

...

111

25N

i–20

Cr–

6Mo–

Cu–

NS

mls

.pi

pe&

tube

SB

-677

N08

904

...

71(4

90)

45..

.11

1..

.44

Fe–

25N

i–21

Cr–

Mo

Sm

ls.

pipe

&tu

beS

B-6

77N

0892

5..

.87

(600

)45

...

111

...

25N

i–20

Cr–

6Mo–

Cu–

NS

mls

.pi

pe&

tube

SB

-688

N08

367

...

95(6

55)

45..

...

...

.46

Fe–

24N

i–21

Cr–

6Mo–

Cu–

NP

late

,sh

eet

&st

rip

>3 ⁄ 16

in.

(4.8

mm

)S

B-6

88N

0836

7..

.10

0(6

90)

45..

.11

1..

.46

Fe–

24N

i–21

Cr–

6Mo–

Cu–

NP

late

,sh

eet

&st

rip

≤3 ⁄ 16

in.

(4.8

mm

)

SB

-690

N08

367

...

95(6

55)

45..

.11

1..

.46

Fe–

24N

i–21

Cr–

6Mo–

Cu–

NS

mls

.pi

pe&

tube

>3 ⁄ 16

in.

(4.8

mm

)S

B-6

90N

0836

7..

.10

0(6

90)

45..

.11

1..

.46

Fe–

24N

i–21

Cr–

6Mo–

Cu–

NS

mls

.pi

pe&

tube

≤3 ⁄ 16

in.

(4.8

mm

)

SB

-691

N08

367

...

95(6

55)

45..

.11

1..

.46

Fe–

24N

i–21

Cr–

6Mo–

Cu–

NR

od,

bar

&w

ire

SB

-704

N06

625

...

120

(825

)43

...

111

...

60N

i–22

Cr–

9Mo–

3.5C

bW

elde

dtu

beS

B-7

04N

0882

5..

.85

(585

)45

...

111

...

42N

i–21

.5C

r–3M

o–2.

3Cu

Wel

ded

tube

SB

-705

N06

625

...

120

(825

)43

...

111

...

60N

i–22

Cr–

9Mo–

3.5C

bW

elde

dpi

peS

B-7

05N

0882

5..

.85

(585

)45

...

111

...

42N

i–21

.5C

r–3M

o–2.

3Cu

Wel

ded

pipe

2007 SECTION IX

Page 156: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

127

07

QW

/QB

-422

FE

RR

OU

S/N

ON

FE

RR

OU

SP

-NU

MB

ER

SA

ND

S-N

UM

BE

RS

(CO

NT

’D)

Gro

upin

gof

Bas

eM

etal

sfo

rQ

ualif

icat

ion

Non

ferr

ous

(CO

NT

’D)

Min

imum

Spe

cifi

edW

eldi

ngB

razi

ngU

NS

Allo

y,T

ype,

orT

ensi

le,

Spe

cN

o.N

o.G

rade

ksi(

MP

a)P

-No.

S-N

o.P

-No.

S-N

o.N

omin

alC

ompo

siti

onP

rodu

ctF

orm

SB

-709

N08

028

...

73(5

05)

45..

.11

1..

.31

Ni–

31F

e–29

Cr–

Mo

Pla

te,

shee

t&

stri

p

SB

-710

N08

330

...

70(4

85)

46..

.11

1..

.35

Ni–

19C

r–1.

25S

iW

elde

dpi

pe

SB

-729

N08

020

...

80(5

50)

45..

.11

1..

.35

Ni–

35F

e–20

Cr–

Cb

Sm

ls.

pipe

&tu

be

B72

5N

0220

0..

.55

(380

)..

.41

...

110

99.0

Ni

Wel

ded

pipe

SB

-815

R31

233

...

120

(825

)49

...

...

...

Co–

26C

r–9N

i–5M

o–3F

e–2W

Rod

SB

-818

R31

233

...

120

(825

)49

...

...

...

Co–

26C

r–9N

i–5M

o–3F

e–2W

Pla

te,

shee

t&

stri

p

B81

9C

1220

0C

1220

030

(205

)..

...

...

.10

799

.9C

u–P

Wro

ught

pipe

SB

-861

R50

250

135

(240

)51

...

115

...

Ti

Sm

ls.

pipe

SB

-861

R50

400

250

(345

)51

...

115

...

Ti

Sm

ls.

pipe

SB

-861

R50

550

365

(450

)52

...

115

...

Ti

Sm

ls.

pipe

SB

-861

R52

400

750

(345

)51

...

115

...

Ti–

Pd

Sm

ls.

pipe

SB

-861

R52

404

2650

(345

)51

...

115

...

Ti–

Ru

Sm

ls.

pipe

SB

-861

R53

400

1270

(485

)52

...

115

...

Ti–

0.3M

o–0.

8Ni

Sm

ls.

pipe

SB

-861

R56

320

990

(620

)53

...

115

...

Ti–

3Al–

2.5V

Sm

ls.

pipe

SB

-862

R50

250

135

(240

)51

...

115

...

Ti

Wel

ded

pipe

SB

-862

R50

400

250

(345

)51

...

115

...

Ti

Wel

ded

pipe

SB

-862

R50

550

365

(450

)52

...

115

...

Ti

Wel

ded

pipe

SB

-862

R52

400

750

(345

)51

...

115

...

Ti–

Pd

Wel

ded

pipe

SB

-862

R52

404

2650

(345

)51

...

115

...

Ti–

Ru

Wel

ded

pipe

SB

-862

R53

400

1270

(485

)52

...

115

...

Ti–

0.3M

o–0.

8Ni

Wel

ded

pipe

SB

-862

R56

320

990

(620

)53

...

115

...

Ti–

3Al–

2.5V

Wel

ded

pipe

SB

-928

A95

083

5083

39(2

70)

25..

.10

5..

.A

l–4.

4Mg–

Mn

Pla

te&

shee

t>

1.5

in.–

3in

.(3

8m

m–7

6m

m),

incl

.S

B-9

28A

9508

650

8635

(240

)25

...

105

...

Al–

4.0M

g–M

nP

late

&sh

eet

>0.

05in

.–2

in.

(1.3

mm

–51

mm

),in

cl.

SB

-928

A95

456

5456

41(2

85)

25..

.10

5..

.A

l–5.

1Mg–

Mn

Pla

te&

shee

t>

1.5

in.–

3in

.(3

8m

m–7

6m

m),

incl

.

B16

.18

C83

600

...

40(2

75)

...

...

...

107

5Sn–

5Zn–

5Pb

Cas

tfit

ting

sB

16.1

8C

8380

0..

.40

(275

)..

...

...

.10

74S

n–6.

5Zn–

6Pb

Cas

tfit

ting

sB

16.1

8C

8440

0..

.40

(275

)..

...

...

.10

72.

5Sn–

8.5Z

n–7P

bC

ast

fitti

ngs

B16

.22

C10

200

...

30(2

05)

...

...

...

107

99.9

5Cu–

PW

roug

htpi

pefit

ting

sB

16.2

2C

1200

0..

.30

(205

)..

...

...

.10

799

.9C

u–P

Wro

ught

pipe

fitti

ngs

B16

.22

C12

200

...

30(2

05)

...

...

...

107

99.9

Cu–

PW

roug

htpi

pefit

ting

sB

16.2

2C

2300

0..

.30

(205

)..

...

...

.10

785

Cu–

15Z

nW

roug

htpi

pefit

ting

s

2007 SECTION IX

Page 157: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-423 Alternate Base Materials for WelderQualification

QW-423.1 Base metal used for welder qualificationmay be substituted for the metal specified in the WPS inaccordance with the following table. When a base metalshown in the left column is used for welder qualification,the welder is qualified to weld all combinations of basemetals shown in the right column, including unassignedmetals of similar chemical composition to these metals.

Base Metals for Welder Qualified ProductionQualification Base Metals

P- or S-No. 1 through P- or P- or S-No. 1 through P- orS- No. 11, P- or S-No. 34, S- No. 11, P- or S-No. 34,and P- or S-No. 41 and P- or S-No. 41 throughthrough P- or S-No. 49 P- or S-No. 49

P- or S-No. 21 through P- or P- or S-No. 21 through P- orS- No. 25 S- No. 25

P- or S-No. 51 through P- or P- or S-No. 51 through P- orS-No. 53 or P- or S-No. 61 S- No. 53 and P- or S-No.through P- or S-No. 62 61 through P- or S-No. 62

QW-423.2 Metals used for welder qualification con-forming to national or international standards or specifica-tions may be considered as having the same P- or S-Numberas an assigned metal provided it meets the mechanical andchemical requirements of the assigned metal. The basemetal specification and corresponding P- or S-Numbershall be recorded on the qualification record.

QW-424 Base Metals Used for ProcedureQualification

QW-424.1 Base metals are assigned P- or S-Numbersin table QW/QB-422; metals that do not appear in tableQW/QB-422 are considered to be unassigned metals exceptas otherwise defined in QW-420.1 for base metals havingthe same UNS numbers. Unassigned metals shall be identi-fied in the WPS and on the PQR by specification, type andgrade, or by chemical analysis and mechanical properties.The minimum tensile strength shall be defined by the orga-nization that specified the unassigned metal if the tensilestrength of that metal is not defined by the material specifi-cation.

128

Base Metal(s) Used forProcedure Qualification

Coupon Base Metals Qualified

One metal from a P-Number to Any metals assigned that P- orany metal from the same S-NumberP-Number

One metal from a P-Number to Any metal assigned the firstany metal from any other P- or S-Number to anyP- Number metal assigned the second P-

or S-NumberOne metal from P-No. 3 to Any P- or S-No. 3 metal to

any metal from P-No. 3 any metal assigned P- orS-No. 3 or 1

One metal from P-No. 4 to Any P- or S-No. 4 metal toany metal from P-No. 4 any metal assigned P- or

S-No. 4, 3, or 1One metal from P-No. 5A to Any P- or S-No. 5A metal to

any metal from P-No. 5A any metal assigned P- orS-No. 5A, 4, 3, or 1

One metal from P-No. 5A to a Any P- or S-No. 5A metal tometal from P-No. 4, or any metal assigned to P- orP-No. 3, or P-No. 1 S-No. 4, 3, or 1

One metal from P-No. 4 to a Any P- or S-No. 4 metal tometal from P-No. 3 or any metal assigned to P- orP-No. 1 S-No. 3 or 1

Any unassigned metal to the The unassigned metal to itselfsame unassigned metal

Any unassigned metal to any The unassigned metal to anyP- Number metal metal assigned to the same

P- or S-Number as thequalified metal

Any unassigned metal to any The first unassigned metal toother unassigned metal the second unassigned metal

QW-430 F-NUMBERSQW-431 General

The following F-Number grouping of electrodes andwelding rods in table QW-432 is based essentially on theirusability characteristics, which fundamentally determinethe ability of welders to make satisfactory welds with agiven filler metal. This grouping is made to reduce thenumber of welding procedure and performance qualifica-tions, where this can logically be done. The grouping doesnot imply that base metals or filler metals within a groupmay be indiscriminately substituted for a metal that wasused in the qualification test without consideration of thecompatibility of the base and filler metals from the stand-point of metallurgical properties, postweld heat treatmentdesign and service requirements, and mechanical prop-erties.QW-432.1 Steel and Steel AlloysQW-432.2 Aluminum and Aluminum-Base AlloysQW-432.3 Copper and Copper-Base AlloysQW-432.4 Nickel and Nickel-Base AlloysQW-432.5 Titanium and Titanium AlloysQW-432.6 Zirconium and Zirconium AlloysQW-432.7 Hard-Facing Weld Metal Overlay

Page 158: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-432F-NUMBERS

Grouping of Electrodes and Welding Rods for Qualification

F-No. ASME Specification AWS Classification UNS No.

Steel and Steel Alloys

1 SFA-5.1 EXX20 . . .1 SFA-5.1 EXX22 . . .1 SFA-5.1 EXX24 . . .1 SFA-5.1 EXX27 . . .1 SFA-5.1 EXX28 . . .

1 SFA-5.4 EXXX(X)-26 . . .1 SFA-5.5 EXX20-X . . .1 SFA-5.5 EXX27-X . . .

2 SFA-5.1 EXX12 . . .2 SFA-5.1 EXX13 . . .2 SFA-5.1 EXX14 . . .2 SFA-5.1 EXX19 . . .2 SFA-5.5 E(X)XX13-X . . .

3 SFA-5.1 EXX10 . . .3 SFA-5.1 EXX11 . . .3 SFA-5.5 E(X)XX10-X . . .3 SFA-5.5 E(X)XX11-X . . .

4 SFA-5.1 EXX15 . . .4 SFA-5.1 EXX16 . . .4 SFA-5.1 EXX18 . . .4 SFA-5.1 EXX18M . . .4 SFA-5.1 EXX48 . . .

4 SFA-5.4 other than austenitic and duplex EXXX(X)-15 . . .4 SFA-5.4 other than austenitic and duplex EXXX(X)-16 . . .4 SFA-5.4 other than austenitic and duplex EXXX(X)-17 . . .4 SFA-5.5 E(X)XX15-X . . .4 SFA-5.5 E(X)XX16-X . . .

4 SFA-5.5 E(X)XX18-X . . .4 SFA-5.5 E(X)XX18M . . .4 SFA-5.5 E(X)XX18M1 . . .4 SFA-5.5 E(X)XX45 . . .

5 SFA-5.4 austenitic and duplex EXXX(X)-15 . . .5 SFA-5.4 austenitic and duplex EXXX(X)-16 . . .5 SFA-5.4 austenitic and duplex EXXX(X)-17 . . .

6 SFA-5.2 All classifications . . .6 SFA-5.9 All classifications . . .6 SFA-5.17 All classifications . . .6 SFA-5.18 All classifications . . .6 SFA-5.20 All classifications . . .

6 SFA-5.22 All classifications . . .6 SFA-5.23 All classifications . . .6 SFA-5.25 All classifications . . .6 SFA-5.26 All classifications . . .6 SFA-5.28 All classifications . . .

6 SFA-5.29 All classifications . . .6 SFA-5.30 INMs-X . . .6 SFA-5.30 IN5XX . . .6 SFA-5.30 IN3XX(X) . . .

129

07

Page 159: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-432F-NUMBERS (CONT’D)

Grouping of Electrodes and Welding Rods for Qualification

F-No. ASME Specification AWS Classification UNS No.

Aluminum and Aluminum Alloys

21 SFA-5.3 E1100 A9110021 SFA-5.3 E3003 A9300321 SFA-5.10 ER1100 A9110021 SFA-5.10 ER1188 A9118821 SFA-5.10 R1100 A9110021 SFA-5.10 R1188 A91188

22 SFA-5.10 ER5183 A9518322 SFA-5.10 ER5356 A9535622 SFA-5.10 ER5554 A9555422 SFA-5.10 ER5556 A9555622 SFA-5.10 ER5654 A95654

22 SFA-5.10 R5183 A9518322 SFA-5.10 R5356 A9535622 SFA-5.10 R5554 A9555422 SFA-5.10 R5556 A9555622 SFA-5.10 R5654 A95654

23 SFA-5.3 E4043 A9404323 SFA-5.10 ER4009 A9400923 SFA-5.10 ER4010 A9401023 SFA-5.10 ER4043 A9404323 SFA-5.10 ER4047 A94047

23 SFA-5.10 ER4145 A9414523 SFA-5.10 ER4643 A9464323 SFA-5.10 R4009 A9400923 SFA-5.10 R4010 A9401023 SFA-5.10 R4011 A94011

23 SFA-5.10 R4043 A9404323 SFA-5.10 R4047 A9404723 SFA-5.10 R4145 A9414523 SFA-5.10 R4643 A94643

24 SFA-5.10 R-A356.0 A1356024 SFA-5.10 R-A357.0 A1357024 SFA-5.10 R-C355.0 A3355024 SFA-5.10 R206.0 A0206024 SFA-5.10 R357.0 A03570

25 SFA-5.10 ER2319 A9231925 SFA-5.10 R2319 A92319

Copper and Copper Alloys

31 SFA-5.6 ECu W6018931 SFA-5.7 ERCu C18980

32 SFA-5.6 ECuSi W6065632 SFA-5.7 ERCuSi-A C65600

33 SFA-5.6 ECuSn-A W6051833 SFA-5.6 ECuSn-C W6052133 SFA-5.7 ERCuSn-A WC51800

34 SFA-5.6 ECuNi W6071534 SFA-5.7 ERCuNi C7158034 SFA-5.30 IN67 C71581

35 SFA-5.8 RBCuZn-A C4700035 SFA-5.8 RBCuZn-B C68000

130

Page 160: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-432F-NUMBERS (CONT’D)

Grouping of Electrodes and Welding Rods for Qualification

F-No. ASME Specification AWS Classification UNS No.

Copper and Copper Alloys (CONT’D)

35 SFA-5.8 RBCuZn-C C6810035 SFA-5.8 RBCuZn-D C77300

36 SFA-5.6 ECuAl-A2 W6061436 SFA-5.6 ECuAl-B W6061936 SFA-5.7 ERCuAl-A1 C6100036 SFA-5.7 ERCuAl-A2 C6180036 SFA-5.7 ERCuAl-A3 C62400

37 SFA-5.6 ECuMnNiAl C6063337 SFA-5.6 ECuNiAl C6063237 SFA-5.7 ERCuMnNiAl C6338037 SFA-5.7 ERCuNiAl C63280

Nickel and Nickel Alloys

41 SFA-5.11 ENi-1 W8214141 SFA-5.14 ERNi-1 N0206141 SFA-5.30 IN61 N02061

42 SFA-5.11 ENiCu-7 W8419042 SFA-5.14 ERNiCu-7 N0406042 SFA-5.14 ERNiCu-8 N0550442 SFA-5.30 IN60 N04060

43 SFA-5.11 ENiCr-4 W8617243 SFA-5.11 ENiCrCoMo-1 W8611743 SFA-5.11 ENiCrFe-1 W8613243 SFA-5.11 ENiCrFe-2 W8613343 SFA-5.11 ENiCrFe-3 W86182

43 SFA-5.11 ENiCrFe-4 W8613443 SFA-5.11 ENiCrFe-7 W8615243 SFA-5.11 ENiCrFe-9 W8609443 SFA-5.11 ENiCrFe-10 W8609543 SFA-5.11 ENiCrFe-12 W86025

43 SFA-5.11 ENiCrMo-2 W8600243 SFA-5.11 ENiCrMo-3 W8611243 SFA-5.11 ENiCrMo-4 W8027643 SFA-5.11 ENiCrMo-5 W8000243 SFA-5.11 ENiCrMo-6 W86620

43 SFA-5.11 ENiCrMo-7 W8645543 SFA-5.11 ENiCrMo-10 W8602243 SFA-5.11 ENiCrMo-12 W8603243 SFA-5.11 ENiCrMo-13 W8605943 SFA-5.11 ENiCrMo-14 W86026

43 SFA-5.11 ENiCrMo-17 W8620043 SFA-5.11 ENiCrMo-18 W8665043 SFA-5.11 ENiCrMo-19 W8605843 SFA-5.11 ENiCrWMo-1 W8623143 SFA-5.14 ERNiCr-3 N06082

43 SFA-5.14 ERNiCr-4 N0607243 SFA-5.14 ERNiCr-6 N0607643 SFA-5.14 ERNiCrCoMo-1 N0661743 SFA-5.14 ERNiCrFe-5 N0606243 SFA-5.14 ERNiCrFe-6 N07092

131

Page 161: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-432F-NUMBERS (CONT’D)

Grouping of Electrodes and Welding Rods for Qualification

F-No. ASME Specification AWS Classification UNS No.

Nickel and Nickel Alloys (CONT’D)

43 SFA-5.14 ERNiCrFe-7 N0605243 SFA-5.14 ERNiCrFe-7A N0605443 SFA-5.14 ERNiCrFe-8 N0706943 SFA-5.14 ERNiCrFe-11 N0660143 SFA-5.14 ERNiCrFe-12 N06025

43 SFA-5.14 ERNiCrFeAl-1 N0669343 SFA-5.14 ERNiCrMo-2 N0600243 SFA-5.14 ERNiCrMo-3 N0662543 SFA-5.14 ERNiCrMo-4 N1027643 SFA-5.14 ERNiCrMo-7 N06455

43 SFA-5.14 ERNiCrMo-10 N0602243 SFA-5.14 ERNiCrMo-13 N0605943 SFA-5.14 ERNiCrMo-14 N0668643 SFA-5.14 ERNiCrMo-16 N0605743 SFA-5.14 ERNiCrMo-17 N06200

43 SFA-5.14 ERNiCrMo-18 N0665043 SFA-5.14 ERNiCrMo-19 N0705843 SFA-5.14 ERNiCrMo-20 N0666043 SFA-5.14 ERNiCrMo-21 N0620543 SFA-5.14 ERNiCrWMo-1 N06231

43 SFA-5.30 IN52 N0605243 SFA-5.30 IN62 N0606243 SFA-5.30 IN6A N0709243 SFA-5.30 IN82 N06082

44 SFA-5.11 ENiMo-1 W8000144 SFA-5.11 ENiMo-3 W8000444 SFA-5.11 ENiMo-7 W8066544 SFA-5.11 ENiMo-8 W8000844 SFA-5.11 ENiMo-9 W80009

44 SFA-5.11 ENiMo-10 W8067544 SFA-5.11 ENiMo-11 W8067544 SFA-5.14 ERNiMo-1 N1000144 SFA-5.14 ERNiMo-2 N1000344 SFA-5.14 ERNiMo-3 N10004

44 SFA-5.14 ERNiMo-7 N1066544 SFA-5.14 ERNiMo-8 N1000844 SFA-5.14 ERNiMo-9 N1000944 SFA-5.14 ERNiMo-10 N1067544 SFA-5.14 ERNiMo-11 N1062944 SFA-5.14 ERNiMo-12 N10242

45 SFA-5.11 ENiCrMo-1 W8600745 SFA-5.11 ENiCrMo-9 W8698545 SFA-5.11 ENiCrMo-11 W8603045 SFA-5.14 ERNiCrMo-1 N0600745 SFA-5.14 ERNiCrMo-8 N06975

45 SFA-5.14 ERNiCrMo-9 N0698545 SFA-5.14 ERNiCrMo-11 N0603045 SFA-5.14 ERNiFeCr-1 N08065

46 SFA-5.11 ENiCrFeSi-1 W8604546 SFA-5.14 ERNiCrFeSi-1 N0604546 SFA-5.14 ERNiCoCrSi-1 N12160

132

Page 162: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-432F-NUMBERS (CONT’D)

Grouping of Electrodes and Welding Rods for Qualification

F-No. ASME Specification AWS Classification UNS No.

Titanium and Titanium Alloys

51 SFA-5.16 ERTi-1 R5010051 SFA-5.16 ERTi-11 R5225151 SFA-5.16 ERTi-13 R5342351 SFA-5.16 ERTi-17 R5225351 SFA-5.16 ERTi-27 R52255

51 SFA-5.16 ERTi-2 R5012051 SFA-5.16 ERTi-7 R5240151 SFA-5.16 ERTi-14 R5342451 SFA-5.16 ERTi-16 R5240351 SFA-5.16 ERTi-26 R52405

51 SFA-5.16 ERTi-30 R5353151 SFA-5.16 ERTi-33 R5344351 SFA-5.16 ERTi-3 R5012551 SFA-5.16 ERTi-15A R5341651 SFA-5.16 ERTi-31 R5353351 SFA-5.16 ERTi-34 R53444

52 SFA-5.16 ERTi-4 R50130

53 SFA-5.16 ERTi-9 R5632053 SFA-5.16 ERTi-9ELI R5632153 SFA-5.16 ERTi-18 R5632653 SFA-5.16 ERTi-28 R56324

54 SFA-5.16 ERTi-12 R53400

55 SFA-5.16 ERTi-5 R5640055 SFA-5.16 ERTi-23 R5640855 SFA-5.16 ERTi-29 R5641455 SFA-5.16 ERTi-24 R5641555 SFA-5.16 ERTi-25 R56413

56 SFA-5.16 ERTi-32 R55112

Zirconium and Zirconium Alloys

61 SFA-5.24 ERZr2 R6070261 SFA-5.24 ERZr3 R6070461 SFA-5.24 ERZr4 R60705

Hard-Facing Weld Metal Overlay

71 SFA-5.13 ECoCr-A W7300671 SFA-5.13 ECoCr-B W7301271 SFA-5.13 ECoCr-C W7300171 SFA-5.13 ECoCr-E W7302171 SFA-5.13 ECuAl-A2 W60617

71 SFA-5.13 ECuAl-B W6061971 SFA-5.13 ECuAl-C W6062571 SFA-5.13 ECuAl-D W6162571 SFA-5.13 ECuAl-E W6262571 SFA-5.13 ECuMnNiAl W60633

71 SFA-5.13 ECuNi W6071571 SFA-5.13 ECuNiAl W6063271 SFA-5.13 ECuSi W6065671 SFA-5.13 ECuSn-A W6051871 SFA-5.13 ECuSn-C W60521

71 SFA-5.13 EFe1 W74001

133

Page 163: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-432F-NUMBERS (CONT’D)

Grouping of Electrodes and Welding Rods for Qualification

F-No. ASME Specification AWS Classification UNS No.

Hard-Facing Weld Metal Overlay (CONT’D)

71 SFA-5.13 EFe2 W7400271 SFA-5.13 EFe3 W7400371 SFA-5.13 EFe4 W7400471 SFA-5.13 EFe5 W75110

71 SFA-5.13 EFe6 W7751071 SFA-5.13 EFe7 W7761071 SFA-5.13 EFeCr-A1A W7401171 SFA-5.13 EFeCr-A2 W7401271 SFA-5.13 EFeCr-A3 W74013

71 SFA-5.13 EFeCr-A4 W7401471 SFA-5.13 EFeCr-A5 W7401571 SFA-5.13 EFeCr-A6 W7401671 SFA-5.13 EFeCr-A7 W7401771 SFA-5.13 EFeCr-A8 W74018

71 SFA-5.13 EFeCr-E1 W7421171 SFA-5.13 EFeCr-E2 W7421271 SFA-5.13 EFeCr-E3 W7421371 SFA-5.13 EFeCr-E4 W7421471 SFA-5.13 EFeMn-A W79110

71 SFA-5.13 EFeMn-B W7931071 SFA-5.13 EFeMn-C W7921071 SFA-5.13 EFeMn-D W7941071 SFA-5.13 EFeMn-E W7951071 SFA-5.13 EFeMn-F W79610

71 SFA-5.13 EFeMnCr W7971071 SFA-5.13 ENiCr-C W8960671 SFA-5.13 ENiCrFeCo W8300271 SFA-5.13 ENiCrMo-5A W8000271 SFA-5.13 EWCX-12/30 . . .

71 SFA-5.13 EWCX-20/30 . . .71 SFA-5.13 EWCX-30/40 . . .71 SFA-5.13 EWCX-40 . . .71 SFA-5.13 EWCX-40/120 . . .

72 SFA-5.21 ERCCoCr-A W7303672 SFA-5.21 ERCCoCr-B W7304272 SFA-5.21 ERCCoCr-C W7303172 SFA-5.21 ERCCoCr-E W7304172 SFA-5.21 ERCCoCr-G W73032

72 SFA-5.21 ERCCuAl-A2 W6061872 SFA-5.21 ERCCuAl-A3 W6062472 SFA-5.21 ERCCuAl-C W6062672 SFA-5.21 ERCCuAl-D W6162672 SFA-5.21 ERCCuAl-E W62626

72 SFA-5.21 ERCCuSi-A W6065772 SFA-5.21 ERCCuSn-A W6051872 SFA-5.21 ERCCuSn-D W6052472 SFA-5.21 ERCFe-1 W7403072 SFA-5.21 ERCFe-1A W74031

72 SFA-5.21 ERCFe-2 W7403272 SFA-5.21 ERCFe-3 W7403372 SFA-5.21 ERCFe-5 W74035

134

Page 164: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-432F-NUMBERS (CONT’D)

Grouping of Electrodes and Welding Rods for Qualification

F-No. ASME Specification AWS Classification UNS No.

Hard-Facing Weld Metal Overlay (CONT’D)

72 SFA-5.21 ERCFe-6 W7753072 SFA-5.21 ERCFe-8 W77538

72 SFA-5.21 ERCFeCr-A W7453172 SFA-5.21 ERCFeCr-A1A W7453072 SFA-5.21 ERCFeCr-A3A W7453372 SFA-5.21 ERCFeCr-A4 W7453472 SFA-5.21 ERCFeCr-A5 W74535

72 SFA-5.21 ERCFeCr-A9 W7453972 SFA-5.21 ERCFeCr-A10 W7454072 SFA-5.21 ERCFeMn-C W7923072 SFA-5.21 ERCFeMn-F W7963072 SFA-5.21 ERCFeMn-G W79231

72 SFA-5.21 ERCFeMn-H W7923272 SFA-5.21 ERCFeMnCr W7973072 SFA-5.21 ERCNiCr-A W8963472 SFA-5.21 ERCNiCr-B W8963572 SFA-5.21 ERCNiCr-C W89636

72 SFA-5.21 ERCNiCrFeCo W8303272 SFA-5.21 ERCNiCrMo-5A W8003672 SFA-5.21 ERCoCr-A R3000672 SFA-5.21 ERCoCr-B R3001272 SFA-5.21 ERCoCr-C R30001

72 SFA-5.21 ERCoCr-E R3002172 SFA-5.21 ERCoCr-F R3000272 SFA-5.21 ERCoCr-G R3001472 SFA-5.21 ERCuAl-A2 C6180072 SFA-5.21 ERCuAl-A3 C62400

72 SFA-5.21 ERCuAl-C C6258072 SFA-5.21 ERCuAl-D C6258172 SFA-5.21 ERCuAl-E C6258272 SFA-5.21 ERCuSi-A C6560072 SFA-5.21 ERCuSn-A C51800

72 SFA-5.21 ERCuSn-D C5240072 SFA-5.21 ERFe-1 T7400072 SFA-5.21 ERFe-1A T7400172 SFA-5.21 ERFe-2 T7400272 SFA-5.21 ERFe-3 T74003

72 SFA-5.21 ERFe-5 T7400572 SFA-5.21 ERFe-6 T7400672 SFA-5.21 ERFe-8 T7400872 SFA-5.21 ERFeCr-A . . .72 SFA-5.21 ERFeCr-A1A . . .

72 SFA-5.21 ERFeCr-A3A . . .72 SFA-5.21 ERFeCr-A4 . . .72 SFA-5.21 ERFeCr-A5 . . .72 SFA-5.21 ERFeCr-A9 . . .72 SFA-5.21 ERFeCr-A10 . . .

72 SFA-5.21 ERFeMn-C . . .72 SFA-5.21 ERFeMn-F . . .72 SFA-5.21 ERFeMn-G . . .72 SFA-5.21 ERFeMn-H . . .

135

Page 165: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-432F-NUMBERS (CONT’D)

Grouping of Electrodes and Welding Rods for Qualification

F-No. ASME Specification AWS Classification UNS No.

Hard-Facing Weld Metal Overlay (CONT’D)

72 SFA-5.21 ERFeMnCr . . .

72 SFA-5.21 ERNiCr-A N9964472 SFA-5.21 ERNiCr-B N9964572 SFA-5.21 ERNiCr-C N9964672 SFA-5.21 ERNiCr-D N9964772 SFA-5.21 ERNiCr-E N99648

72 SFA-5.21 ERNiCrFeCo F4610072 SFA-5.21 ERNiCrMo-5A N1000672 SFA-5.21 ERWCX-20/30 . . .72 SFA-5.21 ERWCX-30/40 . . .72 SFA-5.21 ERWCX-40 . . .

72 SFA-5.21 ERWCX-40/120 . . .72 SFA-5.21 RWCX-20/30 . . .72 SFA-5.21 RWCX-30/40 . . .72 SFA-5.21 RWCX-40 . . .72 SFA-5.21 RWCX-40/120 . . .

136

Page 166: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-433 Alternate F-Numbers for Welder Performance QualificationThe following tables identify the filler metal or electrode that the welder used during qualification testing as “Qualified

With,” and the electrodes or filler metals that the welder is qualified to use in production welding as “Qualified For.”See table QW-432 for the F-Number assignments.

F-No. 1 F-No. 1 F-No. 2 F-No. 2 F-No. 3 F-No. 3 F-No. 4 F-No. 4 F-No. 5 F-No. 5Qualified With →With Without With Without With Without With Without With Without

Qualified For ↓ Backing Backing Backing Backing Backing Backing Backing Backing Backing Backing

F-No. 1 WithX X X X X X X X X X

Backing

F-No. 1 WithoutX

Backing

F-No. 2 WithX X X X X X

Backing

F-No. 2 WithoutX

Backing

F-No. 3 WithX X X X

Backing

F-No. 3 WithoutX

Backing

F-No. 4 WithX X

Backing

F-No. 4 WithoutX

Backing

F-No. 5 WithX X

Backing

F-No. 5 WithoutX

Backing

Qualified With Qualified For

Any F-No. 6 All F-No. 6 [Note (1)]

Any F-No. 21 through F-No. 25 All F-No. 21 through F-No. 25

Any F-No. 31, F-No. 32, Only the same F-Number as wasF-No. 33, F-No. 35, F-No. 36, used during the qualificationor F-No. 37 test

F-No. 34 or any F-No. 41 F-No. 34 and all F-No. 41through F-No. 46 through F-No. 46

Any F-No. 51 through F-No. 55 All F-No. 51 through F-No. 55

Any F-No. 61 All F-No. 61

Any F-No. 71 through F-No. 72 Only the same F-Number as wasused during the qualificationtest

NOTE:

(1) Deposited weld metal made using a bare rod not covered by an SFASpecification but which conforms to an analysis listed in QW-442shall be considered to be classified as F-No. 6.

137

Page 167: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-440 WELD METAL CHEMICAL COMPOSITION

QW-441 General

Identification of weld metal chemical composition designated on the PQR and WPS shall be as given in QW-404.5.

QW-442A-NUMBERS

Classification of Ferrous Weld Metal Analysis for Procedure Qualification

Analysis, % [Note (1)]Types of WeldA-No. Deposit C Cr Mo Ni Mn Si

1 Mild Steel 0.20 . . . . . . . . . 1.60 1.00

2 Carbon-Molybdenum 0.15 0.50 0.40–0.65 . . . 1.60 1.00

3 Chrome (0.4% to 2%)–Molybdenum 0.15 0.40–2.00 0.40–0.65 . . . 1.60 1.004 Chrome (2% to 6%)–Molybdenum 0.15 2.00–6.00 0.40–1.50 . . . 1.60 2.005 Chrome (6% to 10.5%)–Molybdenum 0.15 6.00–10.50 0.40–1.50 . . . 1.20 2.00

6 Chrome-Martensitic 0.15 11.00–15.00 0.70 . . . 2.00 1.00

7 Chrome-Ferritic 0.15 11.00–30.00 1.00 . . . 1.00 3.00

8 Chromium–Nickel 0.15 14.50–30.00 4.00 7.50–15.00 2.50 1.009 Chromium–Nickel 0.30 19.00–30.00 6.00 15.00–37.00 2.50 1.00

10 Nickel to 4% 0.15 . . . 0.55 0.80–4.00 1.70 1.00

11 Manganese–Molybdenum 0.17 . . . 0.25–0.75 0.85 1.25–2.25 1.00

12 Nickel–Chrome—Molybdenum 0.15 1.50 0.25–0.80 1.25–2.80 0.75–2.25 1.00

NOTE:(1) Single values shown above are maximum.

138

Page 168: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW

-450

SPE

CIM

EN

S

QW

-451

Pro

cedu

reQ

ualifi

cati

onT

hick

ness

Lim

its

and

Tes

tSp

ecim

ens

07

QW

-451

.1G

RO

OV

E-W

EL

DT

EN

SIO

NT

ES

TS

AN

DT

RA

NS

VE

RS

E-B

EN

DT

ES

TS

Ran

geof

Thi

ckne

ssT

ofT

ype

and

Num

ber

ofT

ests

Req

uire

dB

ase

Met

al,

Qua

lified

,(T

ensi

onan

dG

uide

d-B

end

Tes

ts)

[Not

e(2

)]M

axim

umT

hick

ness

tof

in.

(mm

)D

epos

ited

Wel

dM

etal

,Q

ualifi

ed,

Sid

eF

ace

Roo

t[N

otes

(1)

and

(2)]

Thi

ckne

ssT

ofT

est

Cou

pon,

Wel

ded,

in.

(mm

)T

ensi

on,

Ben

d,B

end,

Ben

d,in

.(m

m)

Min

.M

ax.

[Not

es(1

)an

d(2

)]Q

W-1

50Q

W-1

60Q

W-1

60Q

W-1

60

Les

sth

an1 ⁄ 16

(1.5

)T

2T2t

2..

.2

2

1 ⁄ 16to

3 ⁄ 8(1

.5to

10),

incl

.1 ⁄ 16

(1.5

)2T

2t2

Not

e(5

)2

2

Ove

r3 ⁄ 8

(10)

,bu

tle

ssth

an3 ⁄ 4

(19)

3 ⁄ 16(5

)2T

2t2

Not

e(5

)2

2

3 ⁄ 4(1

9)to

less

than

11 ⁄ 2

(38)

3 ⁄ 16(5

)2T

2tw

hen

t<

3 ⁄ 4(1

9)2

[Not

e(4

)]4

...

...

3 ⁄ 4(1

9)to

less

than

11 ⁄ 2

(38)

3 ⁄ 16(5

)2T

2Tw

hen

t≥

3 ⁄ 4(1

9)2

[Not

e(4

)]4

...

...

11 ⁄ 2(3

8)to

6(1

50),

incl

.3 ⁄ 16

(5)

8(2

00)

[Not

e(3

)]2

tw

hen

t<

3 ⁄ 4(1

9)2

[Not

e(4

)]4

...

...

11 ⁄ 2(3

8)to

6(1

50),

incl

.3 ⁄ 16

(5)

8(2

00)

[Not

e(3

)]8

(200

)[N

ote

(3)]

whe

nt

≥3 ⁄ 4

(19)

2[N

ote

(4)]

4..

...

.

Ove

r6

(150

)3 ⁄ 16

(5)

1.33

T[N

ote

(3)]

2t

whe

nt

<3 ⁄ 4

(19)

2[N

ote

(4)]

4..

...

.O

ver

6(1

50)

3 ⁄ 16(5

)1.

33T

[Not

e(3

)]1.

33T

[Not

e(3

)]w

hen

t≥

3 ⁄ 4(1

9)2

[Not

e(4

)]4

...

...

NO

TE

S:

(1)

The

follo

win

gva

riab

les

furt

her

rest

rict

the

limit

ssh

own

inth

ista

ble

whe

nth

eyar

ere

fere

nced

inQ

W-2

50fo

rth

epr

oces

sun

der

cons

ider

atio

n:Q

W-4

03.9

,Q

W-4

03.1

0,Q

W-4

04.3

2,an

dQ

W-4

07.4

.A

lso,

QW

-202

.2,

QW

-202

.3,

and

QW

-202

.4pr

ovid

eex

empt

ions

that

supe

rsed

eth

elim

its

ofth

ista

ble.

(2)

For

com

bina

tion

ofw

eldi

ngpr

oced

ures

,se

eQ

W-2

00.4

.(3

)F

orth

eS

MA

W,

SA

W,

GM

AW

,an

dG

TA

Ww

eldi

ngpr

oces

ses

only

;ot

herw

ise

per

Not

e(1

)or

2T

,o r

2t,

whi

chev

eris

appl

icab

le.

(4)

See

QW

-151

.1,

QW

-151

.2,

and

QW

-151

.3fo

rde

tails

onm

ulti

ple

spec

imen

sw

hen

coup

onth

ickn

esse

sar

eov

er1

in.

(25

mm

).(5

)F

our

side

-ben

dte

sts

may

besu

bsti

tute

dfo

rth

ere

quir

edfa

ce-

and

root

-ben

dte

sts,

whe

nth

ickn

ess

Tis

3 ⁄ 8in

.(1

0m

m)

and

over

.

139

Page 169: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW

-451

.2G

RO

OV

E-W

EL

DT

EN

SIO

NT

ES

TS

AN

DL

ON

GIT

UD

INA

L-B

EN

DT

ES

TS

Thi

ckne

sst

ofR

ange

ofT

hick

ness

TD

epos

ited

Wel

dM

etal

ofB

ase

Met

alQ

ualifi

ed,

Typ

ean

dN

umbe

rof

Tes

tsR

equi

red

Qua

lified

,in

.(m

m)

in.

(mm

)(T

ensi

onan

dG

uide

d-B

end

Tes

ts)

[Not

es(1

)an

d(2

)][N

otes

(1)

and

(2)]

[Not

e(2

)]

Fac

eR

oot

Thi

ckne

ssT

ofT

est

Ten

sion

,B

end,

Ben

d,C

oupo

nW

elde

d,in

.(m

m)

Min

.M

ax.

Max

.Q

W-1

50Q

W-1

60Q

W-1

60

Les

sth

an1 ⁄ 16

(1.5

)T

2T2t

22

21 ⁄ 16

to3 ⁄ 8

(1.5

to10

),in

cl.

1 ⁄ 16(1

.5)

2T2t

22

2O

ver

3 ⁄ 8(1

0)3 ⁄ 16

(5)

2T2t

22

2

NO

TE

S:

(1)

The

follo

win

gva

riab

les

furt

her

rest

rict

the

limit

ssh

own

inth

ista

ble

whe

nth

eyar

ere

fere

nced

inQ

W-2

50fo

rth

epr

oces

sun

der

cons

ider

atio

n:Q

W-4

03.9

,Q

W-4

03.1

0,Q

W-4

04.3

2,an

dQ

W-4

07.4

.A

lso,

QW

-202

.2,

QW

-202

.3,

and

QW

-202

.4pr

ovid

eex

empt

ions

that

supe

rsed

eth

elim

its

ofth

ista

ble.

(2)

For

com

bina

tion

ofw

eldi

ngpr

oced

ures

,se

eQ

W-2

00.4

.

140

Page 170: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-451.3FILLET-WELD TESTS

Type and Number of TestsType of Thickness of Test Required [QW-462.4(a) or QW-462.4(d)]

Joint Coupons as Welded, in. Range Qualified Macro

Fillet Per QW-462.4(a) All fillet sizes on all base 5metal thicknesses and alldiameters

Fillet Per QW-462.4(d) 4

GENERAL NOTE: A production assembly mockup may be substituted in accordance with QW-181.1.1. When a production assembly mockup isused, the range qualified shall be limited to the fillet weld size, base metal thickness, and configuration of the mockup. Alternatively, multipleproduction assembly mockups may be qualified. The range of thickness of the base metal qualified shall be no less than the thickness of the thinnermember tested and no greater than the thickness of the thicker member tested. The range for fillet weld sizes qualified shall be limited to no lessthan the smallest fillet weld tested and no greater than the largest fillet weld tested. The configuration of production assemblies shall be the sameas that used in the production assembly mockup.

QW-451.4FILLET WELDS QUALIFIED BY GROOVE-WELD TESTS

Thickness T of TestCoupon (Plate or Pipe) Type and Number of Tests

as Welded Range Qualified Required

All groove tests All fillet sizes on all base Fillet welds are qualified whenmetal thicknesses and all the groove weld is qualifieddiameters in accordance with either

QW-451.1 or QW-451.2(see QW-202.2)

141

Page 171: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-452 Performance Qualification ThicknessLimits and Test Specimens

QW-452.1 Groove-Weld Test. The following tables identify the required type and number of tests and the thicknessof weld metal qualified.

QW-452.1(a)TEST SPECIMENS

Type and Number of Examinations and Test Specimens Required

Face Bend Root BendVisual Side Bend QW-462.3(a) or QW-462.3(a) or

Thickness of Weld Examination QW-462.2 QW-462.3(b) QW-462.3(b)Metal, in. (mm) per QW-302.4 [Note (1)] [Notes (1), (2)] [Notes (1), (2)]

Less than 3⁄8 (10) X . . . 1 13⁄8 (10) to less than X 2 [Note (3)] Note (3) Note (3)

3⁄4 (19)3⁄4 (19) and over X 2 . . . . . .

GENERAL NOTE: The “Thickness of Weld Metal” is the total weld metal thickness deposited by all weldersand all processes in the test coupon exclusive of the weld reinforcement.

NOTES:(1) To qualify using positions 5G or 6G, a total of four bend specimens are required. To qualify using a

combination of 2G and 5G in a single test coupon, a total of six bend specimens are required. SeeQW-302.3. The type of bend test shall be based on weld metal thickness.

(2) Coupons tested by face and root bends shall be limited to weld deposit made by one welder with one ortwo processes or two welders with one process each. Weld deposit by each welder and each process shallbe present on the convex surface of the appropriate bent specimen.

(3) One face and root bend may be substituted for the two side bends.

QW-452.1(b)THICKNESS OF WELD METAL QUALIFIED

Thickness, t, of Weld Metal in Thickness of Weldthe Coupon, in. (mm) Metal Qualified[Notes (1) and (2)] [Note (3)]

All 2t1⁄2 (13) and over with a Maximum to be

minimum of three layers welded

NOTES:

(1) When more than one welder and/or more than one process andmore than one filler metal F-Number is used to deposit weld metalin a coupon, the thickness, t, of the weld metal in the coupondeposited by each welder with each process and each filler metalF-Number in accordance with the applicable variables under QW-404 shall be determined and used individually in the “Thickness,t, of Weld Metal in the Coupon” column to determine the “Thick-ness of Weld Metal Qualified.”

(2) Two or more pipe test coupons with different weld metal thicknessmay be used to determine the weld metal thickness qualified andthat thickness may be applied to production welds to the smallestdiameter for which the welder is qualified in accordance withQW-452.3.

(3) Thickness of test coupon of 3⁄4 in. (19 mm) or over shall be usedfor qualifying a combination of three or more welders each ofwhom may use the same or a different welding process.

142

Page 172: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-452.3GROOVE-WELD DIAMETER LIMITS

Outside DiameterQualified, in. (mm)Outside Diameter

of Test Coupon, in. (mm) Min. Max.

Less than 1 (25) Size welded Unlimited

1 (25) to 27⁄8 (73) 1 (25) Unlimited

Over 27⁄8 (73) 27⁄8 (73) Unlimited

GENERAL NOTES:(a) Type and number of tests required shall be in accordance with

QW-452.1.(b) 27⁄8 in. (73 mm) O.D. is the equivalent of NPS 21⁄2 (DN 65).

QW-452.4SMALL DIAMETER FILLET-WELD TEST

Minimum Outside Diameter,Outside Diameter of Test Coupon, Qualified, Qualified

in. (mm) in. (mm) Thickness

Less than 1 (25) Size welded All

1 (25) to 27⁄8 (73) 1 (25) All

Over 27⁄8 (73) 27⁄8 (73) All

GENERAL NOTES:(a) Type and number of tests required shall be in accordance with QW-452.5.(b) 27⁄8 in. (73 mm) O.D. is considered the equivalent of NPS 21⁄2 (DN 65).

143

Page 173: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-452.5FILLET-WELD TEST

Type and Number of Tests RequiredThickness of Test[QW-462.4(b) or QW-462.4(c)]Coupon as Welded,

Type of Joint in. (mm) Qualified Range Macro Fracture

Tee fillet 3⁄16–3⁄8 (5–10) All base material thicknesses, fillet sizes, and diameters 1 127⁄8(73) O.D. and over [Note (1)]

Less than 3⁄16 (5) T to 2T base material thickness, T maximum fillet size, 1 1and all diameters 27⁄8 (73) O.D. and over [Note (1)]

GENERAL NOTE: Production assembly mockups may be substituted in accordance with QW-181.2.1. When production assembly mockups areused, range qualified shall be limited to the fillet sizes, base metal thicknesses, and configuration of the mockup.

NOTE:

(1) 27⁄8 in. (73 mm) O.D. is considered the equivalent of NPS 21⁄2 (DN 65). For smaller diameter qualifications, refer to QW-452.4 or QW-452.6.

QW-452.6FILLET QUALIFICATION BY GROOVE-WELD TESTS

Thickness of Test Coupon as Welded, Type and Number ofType of Joint in. (mm) Qualified Range Tests Required

Any groove All thicknesses All base material thicknesses, Fillet welds are qualified when a welder/weldingfillet sizes, and diameters operator qualifies on a groove weld test

144

Page 174: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-453PROCEDURE/PERFORMANCE QUALIFICATION THICKNESS LIMITS AND TEST

SPECIMENS FOR HARD-FACING (WEAR-RESISTANT) AND CORROSION-RESISTANT OVERLAYS

Corrosion-Resistant Overlay Hard-facing Overlay (Wear-Resistant)[Note (1)] [Note (2)]

Thickness of Test Nominal Base Metal Type and Number of Nominal Base Metal Type and NumberCoupon (T ) Thickness Qualified (T ) Tests Required Thickness Qualified (T ) of Tests Required

Procedure QualificationTesting

Less than 1 in. (25 mm) TNotes (4), (5), and (9) Notes (3), (7), (8), and (9)

T qualified to unlimited

1 in. (25 mm)

to unlimited�1 in. (25 mm) and over T

T qualified up to 1 in.

(25 mm)

1 in. (25 mm) to

unlimited�

PerformanceQualificationTesting

Less than 1 in. (25 mm) TNote (6) Notes (8) and (10)

T qualified to unlimited

1 in. (25 mm)

to unlimited�

T qualified to unlimited

1 in. (25 mm)

to unlimited�1 in. (25 mm) and over T

NOTES:(1) The qualification test coupon shall consist of base metal not less than 6 in. (150 mm) � 6 in. (150 mm). The weld overlay cladding shall be

a minimum of 11⁄2 in. (38 mm) wide by approximately 6 in. (150 mm) long. For qualification on pipe, the pipe length shall be a minimumof 6 in. (150 mm), and a minimum diameter to allow the required number of test specimens. The weld overlay shall be continuous aroundthe circumference of the test coupon. For processes (performance qualification only) depositing a weld bead width greater than 1⁄2 in. (13 mm)wide, the weld overlay shall consist of a minimum of three weld beads in the first layer.

(2) The test base metal coupon shall have minimum dimensions of 6 in. (150 mm) wide � approximately 6 in. (150 mm) long with a hard-facedlayer a minimum of 11⁄2 in. (38 mm) wide � 6 in. (150 mm) long. The minimum hard-faced thickness shall be as specified in the WeldingProcedure Specification. Alternatively, the qualification may be performed on a test base metal coupon that represents the size of the productionpart. For qualification on pipe, the pipe length shall be 6 in. (150 mm) minimum, and of a minimum diameter to allow the required numberof test specimens. The weld overlay shall be continuous around the circumference of the test coupon.

(3) The hard-facing surface shall be examined by the liquid penetrant method and shall meet the acceptance standards in QW-195.2 or as specifiedin the WPS. Surface conditioning prior to liquid penetrant examination is permitted.

(4) The corrosion-resistant surface shall be examined by the liquid penetrant method and shall meet the acceptance standards as specified in QW-195.(5) Following the liquid penetrant examination, four guided side-bend tests shall be made from the test coupon in accordance with QW-161. The

test specimens shall be cut so that there are either two specimens parallel and two specimens perpendicular to the direction of the welding,or four specimens perpendicular to the direction of the welding. For coupons that are less than 3⁄8 in. (10 mm) thick, the width of the side-bend specimens may be reduced to the thickness of the test coupon. The side-bend specimens shall be removed from locations specified in QW-462.5(c) or QW-462.5(d).

(6) The test coupon shall be sectioned to make side-bend test specimens perpendicular to the direction of the welding in accordance with QW-161.Test specimens shall be removed at locations specified in QW-462.5(c) or QW-462.5(d).

(7) After surface conditioning to the minimum thickness specified in the WPS, a minimum of three hardness readings shall be made on each ofthe specimens from the locations shown in QW-462.5(b) or QW-462.5(e). All readings shall meet the requirements of the WPS.

(8) The base metal shall be sectioned transversely to the direction of the hard-facing overlay. The two faces of the hard-facing exposed by sectioningshall be polished and etched with a suitable etchant and shall be visually examined with �5 magnification for cracks in the base metal or theheat-affected zone, lack of fusion, or other linear defects. The overlay and the base metal shall meet the requirements specified in the WPS.All exposed faces shall be examined. See QW-462.5(b) for pipe and QW-462.5(e) for plate.

(9) When a chemical composition is specified in the WPS, chemical analysis specimens shall be removed at locations specified in QW-462.5(b)or QW-462.5(e). The chemical analysis shall be performed in accordance with QW-462.5(a) and shall be within the range specified in theWPS. This chemical analysis is not required when a chemical composition is not specified on the WPS.

(10) At a thickness greater than or equal to the minimum thickness specified in the WPS, the weld surface shall be examined by the liquidpenetrant method and shall meet the acceptance standards in QW-195.2 or as specified in the WPS. Surface conditioning prior to liquidpenetrant examination is permitted.

145

Page 175: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-460 GRAPHICS

QW-461 Positions

QW-461.1 POSITIONS OF WELDS — GROOVE WELDS

GENERAL NOTE: The horizontal reference plane is taken to lie always below the weld under consideration.Inclination of axis is measured from the horizontal reference plane toward the vertical.Angle of rotation of face is measured from a line perpendicular to the axis of the weld and lying in a vertical plane containing this axis. The

reference position (0 deg) of rotation of the face invariably points in the direction opposite to that in which the axis angle increases. The angleof rotation of the face of weld is measured in a clockwise direction from this reference position (0 deg) when looking at point P.

146

Page 176: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-461.2 POSITIONS OF WELDS — FILLET WELDS

147

Page 177: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-461.3 GROOVE WELDS IN PLATE — TEST POSITIONS

QW-461.4 GROOVE WELDS IN PIPE — TEST POSITIONS

QW-461.5 FILLET WELDS IN PLATE — TEST POSITIONS

148

Page 178: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-461.6 FILLET WELDS IN PIPE — TEST POSITIONS

149

Page 179: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-461.7 STUD WELDS — TEST POSITIONS

QW-461.8 STUD WELDS — WELDING POSITIONS

150

Page 180: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-461.9PERFORMANCE QUALIFICATION — POSITION AND DIAMETER LIMITATIONS

(Within the Other Limitations of QW-303)

Position and Type Weld Qualified [Note (1)]

Groove

Plate and PipeQualification Test FilletOver 24 in. Pipe ≤ 24 in.

Weld Position (610 mm) O.D. (610 mm) O.D. Plate and Pipe

Plate — Groove 1G F F [Note (2)] F2G F,H F,H [Note (2)] F,H3G F,V F [Note (2)] F,H,V4G F,O F [Note (2)] F,H,O

3G and 4G F,V,O F [Note (2)] All2G, 3G, and 4G All F,H [Note (2)] All

Special Positions (SP) SP,F SP,F SP,F

Plate — Fillet 1F . . . . . . F [Note (2)]2F . . . . . . F,H [Note (2)]3F . . . . . . F,H,V [Note (2)]4F . . . . . . F,H,O [Note (2)]

3F and 4F . . . . . . All [Note (2)]Special Positions (SP) . . . . . . SP,F [Note (2)]

Pipe — Groove [Note (3)] 1G F F F2G F,H F,H F,H5G F,V,O F,V,O All6G All All All

2G and 5G All All AllSpecial Positions (SP) SP,F SP,F SP,F

Pipe — Fillet [Note (3)] 1F . . . . . . F2F . . . . . . F,H

2FR . . . . . . F,H4F . . . . . . F,H,O5F . . . . . . All

Special Positions (SP) . . . . . . SP,F

NOTES:(1) Positions of welding as shown in QW-461.1 and QW-461.2.

F p FlatH p HorizontalV p VerticalO p Overhead

(2) Pipe 27⁄8 in. (73 mm) O.D. and over.(3) See diameter restrictions in QW-452.3, QW-452.4, and QW-452.6.

151

Page 181: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462 Test Specimens

The purpose of the QW-462 figures is to give the manu-facturer or contractor guidance in dimensioning test speci-mens for tests required for procedure and performancequalifications. Unless a minimum, maximum, or toleranceis given in the figures (or as QW-150, QW-160, or QW-180

QW-462.1(a) TENSION — REDUCED SECTION — PLATE

Cold straightening of the test coupon is permitted prior to removal of weld reinforcement

Parallel length equals widest width of weld plus 1/2 in. (13 mm) added length

This section machined preferably by milling

These edges may be thermally cut

Weld reinforcement shall be machined flush with base metal. Machine minimum amount to obtain approx. parallel surfaces.

y

x

W

10 in. (250 mm) or as required

1/4 in. (6 mm) 1/4 in. (6 mm)

1/4 in. (6 mm)

1/4 in. (6 mm)

1 in. (25 mm

)

R min.

Edge of widest face of weld

Length sufficient to extend into grip equal to two-thirds grip length

Distortion

152

requires), the dimensions are to be considered approximate.All welding processes and filler material to be qualifiedmust be included in the test specimen.

T p coupon thickness excluding reinforcementW p specimen width, 3⁄4 in. (19 mm)x p coupon thickness including reinforcementy p specimen thickness

Page 182: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.1(b) TENSION — REDUCED SECTION — PIPE

This section machined preferably by milling

Grind or machine the minimum amount needed to obtain plane parallel faces over the reduced section W. No more material than is needed to perform the test shall be removed.

y

W

x 1/4 in. (6 mm)

1/4 in. (6 mm)

1/4 in. (6 mm)

1/4 in. (6 mm)

1 in

. (25

mm

)

R m

in.

Edge of widest face of weld

On ferrous material these edges may

be thermally cut10 in. (250 mm) or as required

QW-462.1(c) TENSION — REDUCED SECTION ALTERNATE FOR PIPE

T [Note (1)]

y

x

3 in. (75 mm) min.

11/16 in. (27 mm)

1/2 in. (13 mm)

Rad. 1 in. (25 mm) min.

Edge of widest face of weld

NOTES:(1) The weld reinforcement shall be ground or machined so that

the weld thickness does not exceed the base metal thicknessT. Machine minimum amount to obtain approximately parallelsurfaces.

(2) The reduced section shall not be less than the width of the weld plus 2y.

Reduced section [Note (2)]

153

Page 183: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW

-462

.1(d

)T

EN

SIO

N—

RE

DU

CE

DS

EC

TIO

N—

TU

RN

ED

SP

EC

IME

NS

D

AB

C

B

R

Wel

d Sta

ndar

dD

imen

sion

s,in

.(m

m)

(a)

(b)

(c)

(d)

0.50

5S

peci

men

0.35

3S

peci

men

0.25

2S

peci

men

0.18

8S

peci

men

A—

Len

gth

ofre

duce

dse

ctio

nN

ote

(1)

Not

e(1

)N

ote

(1)

Not

e(1

)D

—D

iam

eter

0.50

0.01

0(1

2.7

±0.

350

±0.

007

(8.8

0.25

0.00

5(6

.35

±0.

188

±0.

003

(4.7

0.25

)0.

18)

0.13

)0.

08)

R—

Rad

ius

offil

let

3 ⁄ 8(1

0)m

in.

1 ⁄ 4(6

)m

in.

3 ⁄ 16(5

)m

in.

1 ⁄ 8(3

)m

in.

B—

Len

gth

ofen

dse

ctio

n13 ⁄ 8

(35)

appr

ox.

11 ⁄ 8(2

9)ap

prox

.7 ⁄ 8

(22)

appr

ox.

1 ⁄ 2(1

3)ap

prox

.C

—D

iam

eter

ofen

dse

ctio

n3 ⁄ 4

(19)

1 ⁄ 2(1

3)3 ⁄ 8

(10)

1 ⁄ 4(6

)

GE

NE

RA

LN

OT

ES

:(a

)U

sem

axim

umdi

amet

ersp

ecim

en(a

),(b

),(c

),or

(d)

that

can

becu

tfr

omth

ese

ctio

n.(b

)W

eld

shou

ldbe

ince

nter

ofre

duce

dse

ctio

n.(c

)W

here

only

asi

ngle

coup

onis

requ

ired

,th

ece

nter

ofth

esp

ecim

ensh

ould

bem

idw

aybe

twee

nth

esu

rfac

es.

(d)

The

ends

may

beof

any

shap

eto

fitth

eho

lder

sof

the

test

ing

mac

hine

insu

cha

way

that

the

load

isap

plie

dax

ially

.

NO

TE

:(1

)R

educ

edse

ctio

nA

shou

ldno

tbe

less

than

wid

thof

wel

dpl

us2

D.

154

Page 184: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.1(e) TENSION — FULL SECTION — SMALL DIAMETER PIPE

155

Page 185: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.2 SIDE BEND

x Ty

w

1/8 in. (3 mm) min.

R1 = 1/8 in. (3 mm) max.6 in. (150 mm) or as required

(1a) For procedure qualification of materials other than P-No. 1 in QW-422, if the surfaces of the side bend test specimens are gas cut, removal by machining or grinding of not less than 1/8 in. (3 mm) from the surface shall be required.

(1b) Such removal is not required for P-No. 1 materials, but any resulting roughness shall be dressed by machining or grinding.

(2) For performance qualification of all materials in QW-422, if the surfaces of side bend tests are gas cut, any resulting roughness shall be dressed by machining or grinding.

1/8 (3) 3/8 (10)

1/8 (3) 3/8 (10)

w, in. (mm)y, in. (mm)

Notes (1)and (2)

T, in. (mm)

T[Note (1)]

P-No. 23,F-No. 23, orP-No. 35

All other metals

GENERAL NOTE: Weld reinforcement and backing strip or backing ring, if any, may be removed flush with the surface of the specimen. Thermalcutting, machining, or grinding may be employed. Cold straightening is permitted prior to removal of the reinforcement.

NOTES:(1) When weld deposit t is less than coupon thickness T, side-bend specimen thickness may be t.(2) When coupon thickness T equals or exceeds 11⁄2 in. (38 mm), use one of the following:

(a) Cut specimen into multiple test specimens of thickness y of approximately equal dimensions [3⁄4 in. (19 mm) to 11⁄2 in. (38 mm)].y p tested specimen thickness when multiple specimens are taken from one coupon.(b) The specimen may be bent at full width. See requirements on jig width in QW-466.1.

156

Page 186: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.3(a) FACE AND ROOT BENDS —TRANSVERSE

y

y

6 in. (150 mm) or as required

11/2 in. (38 mm)R = 1/8 in. (3 mm)

max.

T

T

Ty

(Pipe)(Plate)

Face-Bend Specimen — Plate and Pipe

y

y

6 in. (150 mm) or as required

11/2 in. (38 mm)R = 1/8 in. (3 mm)

max.

TT

Ty

(Pipe)(Plate)

Root-Bend Specimen — Plate and Pipe

Y, in. (mm)

P-No. 23, F-No. 23, All OtherT, in. (mm) or P-No. 35 Metals

1⁄16 < 1⁄8 (1.5 < 3) T T1⁄8–

3⁄8 (3–10) 1⁄8 (3) T>3⁄8 (10) 1⁄8 (3) 3⁄8 (10)

GENERAL NOTES:(a) Weld reinforcement and backing strip or backing ring, if any, shall

be removed flush with the surface of the specimen. If a recessedring is used, this surface of the specimen may be machined to adepth not exceeding the depth of the recess to remove the ring,except that in such cases the thickness of the finished specimenshall be that specified above. Do not flame-cut nonferrous material.

(b) If the pipe being tested has a diameter of NPS 4 (DN 100) or less,the width of the bend specimen may be 3⁄4 in. (19 mm) for pipediameters NPS 2 (DN 50) to and including NPS 4 (DN 100). Thebend specimen width may be 3⁄8 in. (10 mm) for pipe diametersless than NPS 2 (DN 50) down to and including NPS 3⁄8 (DN 10)and as an alternative, if the pipe being tested is equal to or lessthan NPS 1 (DN 25) pipe size, the width of the bend specimensmay be that obtained by cutting the pipe into quarter sections, lessan allowance for saw cuts or machine cutting. These specimens cutinto quarter sections are not required to have one surface machinedflat as shown in QW-462.3(a). Bend specimens taken from tubingof comparable sizes may be handled in a similar manner.

157

QW-462.3(b) FACE AND ROOT BENDS —LONGITUDINAL

y

6 in. (150 mm) or as required

11/2 in. (38 mm)R = 1/8 in. (3 mm) max.

TFaceBend

RootBend

y

T

Y, in. (mm)

P-No. 23, F-No. 23, All OtherT, in. (mm) or P-No. 35 Metals

1⁄16 < 1⁄8 (1.5 < 3) T T1⁄8–

3⁄8 (3–10) 1⁄8 (3) T>3⁄8 (10) 1⁄8 (3) 3⁄8 (10)

GENERAL NOTE: Weld reinforcements and backing strip or backingring, if any, shall be removed essentially flush with the undisturbedsurface of the base material. If a recessed strip is used, this surface ofthe specimen may be machined to a depth not exceeding the depth ofthe recess to remove the strip, except that in such cases the thicknessof the finished specimen shall be that specified above.

Page 187: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.4(a) FILLET WELDS — PROCEDURE

12 in

. (30

0 mm

) min

.

6 in. (150 mm) min.

GENERAL NOTE: Macro-test — the fillet shall show fusion at the root of theweld but not necessarily beyond the root. The weld metal and heat-affectedzone shall be free of cracks.

Discard 1 in. (25 mm)

Discard 1 in. (25 mm)

Size of fillet = thickness of T2 not greater than 3/4 in. (19 mm)

1/8 in. (3 mm) and less

Over 1/8 in. (3 mm) Equal to or less than T1, but not less than 1/8 in. (3 mm)

6 in. (150 mm) min.

T1

T2

T2T1

T1

Macro-Test Specimen

QW-462.4(b) FILLET WELDS — PERFORMANCE

Direction of bending

Stop and restart weld near the center

4 in. (100 mm) min.

Max. fillet size = T

3 in. (75 mm) min.

T

Macro-Test SpecimenBase metal thickness ≥ T

GENERAL NOTE: Refer to QW-452.5 for T thickness/qualification ranges.

6 in. (150 mm)

min.4 in. (1

00 mm)

a

pprox.

158

Page 188: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.4(c) FILLET WELDS IN PIPE — PERFORMANCE

GENERAL NOTE: Either pipe-to-plate or pipe-to-pipe may be used as shown.

Base metal thickness ≥ T

3 in. (75 mm) min.

2 in. (50 mm) min.

Direction of bendQuarter section: Macro specimen

Quarter section: Fracture specimen

Start and stop of weld near center of bend

Wall thickness ≥ T

T = wall thickness

Max. fillet size = T

QW-462.4(d) FILLET WELDS IN PIPE — PROCEDURE

GENERAL NOTES:(a) Either pipe-to-plate or pipe-to-pipe may be used as shown.(b) Macro test: (1) The fillet shall show fusion at the root of the weld but not necessarily beyond the root. (2) The weld metal and the heat-affected zone shall be free of cracks.

Base metal thickness ≥ T

3 in. (75 mm) min.

2 in. (50 mm) min.

Quarter section: Macro specimen (four required)

Start and stop of weld near center of specimen

Wall thickness ≥ T

T = wall thickness

Max. fillet size = T

159

Page 189: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.5(a) CHEMICAL ANALYSIS AND HARDNESS SPECIMEN CORROSION-RESISTANT AND HARD-FACINGWELD METAL OVERLAY

Note (1) Note (2) Note (3)

Original test coupon thickness

Approximate weld interface

Prepared surfaceAs welded surface

Fusion face

Chemistry samples

NOTES:(1) When a chemical analysis or hardness test is conducted on the as welded surface, the distance from the

approximate weld interface to the final as welded surface shall become the minimum qualified overlay thickness. The chemical analysis may be performed directly on the as welded surface or on chips of material taken from the as welded surface.

(2) When a chemical analysis or hardness test is conducted after material has been removed from the as welded surface, the distance from the approximate weld interface to the prepared surface shall become the minimum qualified overlay thickness. The chemical analysis may be made directly on the prepared surface or from chips removed from the prepared surface.

(3) When a chemical analysis test is conducted on material removed by a horizontal drilled sample, the distance from the approximate weld interface to the uppermost side of the drilled cavity shall become the minimum qualified overlay thickness. The chemical analysis shall be performed on chips of material removed from the drilled cavity.

160

Page 190: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.5(b) CHEMICAL ANALYSIS SPECIMEN, HARD-FACING OVERLAY HARDNESS, AND MACRO TESTLOCATION(S) FOR CORROSION-RESISTANT AND HARD-FACING WELD METAL OVERLAY

GENERAL NOTE: Overlay may be on the inside or outside of pipe.

NOTES:(1) Location of required test specimen removal (QW-453). Refer to QW-462.5(a) for chemical analysis and hardness test surface locations and

minimum qualified thickness.(2) Testing of circumferential hard-facing weld metal on pipe procedure qualification coupons may be limited to a single segment (completed

utilizing the vertical, up-hill progression) for the chemical analysis, hardness, and macro-etch tests required in QW-453. Removal is requiredfor a change from vertical down to vertical up-hill progression (but not vice-versa).

(3) Location of test specimens shall be in accordance with the angular position limitations of QW-120.(4) When overlay welding is performed using machine or automatic welding and the vertical travel direction of adjacent weld beads is reversed

on alternate passes, only one chemical analysis or hardness specimen is required to represent the vertical portion. Qualification is then restrictedin production to require alternate pass reversal of rotation direction method.

161

Page 191: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.5(c) PIPE BEND SPECIMEN — CORROSION-RESISTANT WELD METAL OVERLAY

GENERAL NOTE: Overlay may be on the inside or outside of pipe.

NOTES:(1) Location for required test specimen removal — Procedure (QW-453).(2) Location for required test specimen removal — Performance (QW-453).

162

Page 192: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.5(d) PLATE BEND SPECIMENS — CORROSION-RESISTANT WELD METAL OVERLAY

NOTES:(1) Location for required test specimen removal — Procedure (QW-453). Four-side-bend test specimens are required for each position.(2) Location for required test specimen removal — Performance (QW-453). Two-side-bend test specimens are required for each position.

Discard

Discard

Discard

Discard

Longitudinal side bends [Note (1)]

Transverse side bends [Notes (1), (2)]

As

req

uir

ed 6

in. (

150

mm

) m

in.

6 in

. (15

0 m

m)

min

.

6 in. (150 mm) min.

6 in. (150 mm) min.

Transverse side bends [Note (1)]

163

Page 193: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.5(e) PLATE MACRO, HARDNESS, AND CHEMICAL ANALYSIS SPECIMENS — CORROSION-RESISTANTAND HARD-FACING WELD METAL OVERLAY

GENERAL NOTES:(a) Location of required test specimen removal (QW-453). One required for each position. Refer to QW-462.5(a) for chemical analysis and

hardness test surface locations and minimum qualified thickness.(b) Removal required for a change from vertical up to vertical down and vice versa.

164

Page 194: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.7.1 RESISTANCE SEAM WELD TEST COUPON

Resistance seam weld

Weld or Braze

6 in. (150 mm)6

in. (

150

mm

)

QW-462.7.2 SEAM WELD SECTION SPECIMEN REMOVAL

Discard Discard

Transverse specimens Longitudinal specimens

D-1 T-1 T-2 T-3 T-4 L-1 L-2

10 in. (250 mm) min.

L-3 L-4 D-2

GENERAL NOTE: Mark the coupon into ten equal length specimens, label one end of the coupon D-1 the other end D-2. Cut the 10 in. (250 mm)coupon (transverse to the weld length) into pieces 5 in. (125 mm) long each.

(a) Transverse Weld Cross Section Instructions(1) Cut five specimens each approximately 1 in. (25 mm) in length from the coupon labeled D-1 and discard the piece marked D-1.(2) Mark the remaining four specimens T-1 through T-4, prepare the specimens as detailed in (b)(2)(a) below for examination, adjacent

faces at the cut shall not be used.(b) Longitudinal Weld Cross Section Instructions

(1) Cut five specimens each approximately 1 in. (25 mm) in length from the coupon labeled D-2 and discard the piece marked D-2.(2) Mark the remaining four specimens L-1 through L-4, cut the specimens at approximately 1⁄3 of the weld width from the weld centerline

through the length of each specimen in the longitudinal weld direction. Discard the four specimens containing approximately the 1⁄3 weld width,the remaining four specimens containing approximately the 2⁄3 weld width shall be prepared as detailed in (a) below for examination.

(a) The specimens shall be smoothed and etched with a suitable etchant (see QW-470) to give a clear definition to the weld metal andheat-affected zone.

165

Page 195: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.7.3 RESISTANCE WELD NUGGET SECTION TEST SPECIMENS

Longitudinal weld cross section specimen, smoothed and etched in preparation for 10� magnification inspection

Cut line

1 in. (25 mm)

Transverse weld cross section specimen, smoothed and etched in preparation for 10� magnification inspection

1.50 in.–2.00 in.

(38 mm– 50 mm)

QW-462.8.1 SPOT WELDS IN SHEETS

166

Page 196: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.8.2 SEAM WELD PEEL TEST SPECIMEN AND METHOD

Slot 1/4 � 2 in. (6 � 50 mm) in a round bar 11/4 in. (30 mm) to 11/2 in. (38 mm) diameter

Step 1 — Separate coupon plies in nonwelded end.Step 2 — Grip in vise or other suitable device, bend specimen.Step 3 — Peel pieces apart with pincers or other suitable tool.

Prior to Peel Test

Step 1

Step 2

Test Peel Tool

Coupon Side View

Coupon End View

Coupon Top View

Not welded

10 in. (250 mm) min.

Step 3

Peel Test

167

Page 197: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.9 SPOT WELDS IN SHEET

5 in. (125 mm) min.

(a) Single SpotShear Specimen

(b) Multiple SpotShear Specimen

[Note (2)]

W W

W

W

L [Note (1)]

L

Nominal Thickness of Thinner W, in.Sheet, in. (mm) (mm) Min.

Over 0.008 to 0.030 (0.20 to 0.8) 0.68 (17)Over 0.030 to 0.100 (0.8 to 2.5) 1.00 (25)Over 0.100 to 0.130 (2.5 to 3) 1.25 (30)Over 0.130 (3) 1.50 (38)

NOTES:(1) L shall be not less than 4W.(2) Sketch (b) shall be made of 5 specimens or more.

168

Page 198: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW

-462

.10

SH

EA

RS

TR

EN

GT

HR

EQ

UIR

EM

EN

TS

FO

RS

PO

TO

RP

RO

JEC

TIO

NW

EL

DS

PE

CIM

EN

S

Cus

tom

ary

Uni

tsS

IU

nits

P-N

o.1

Thr

ough

P-N

o.11

and

P-N

o.41

Thr

ough

P-N

o.47

Met

als

P-1

Thr

ough

P-1

1an

dP

-4X

Met

als

Ult

imat

eS

tren

gth

Ult

imat

eS

tren

gth

Ult

imat

eS

tren

gth

620

Ult

imat

eS

tren

gth

90,0

00to

149,

000

psi

Bel

ow90

,000

psi

MP

ato

102

7M

Pa

Bel

ow62

0M

Pa

Nom

inal

Thi

ckne

ssN

omin

alT

hick

ness

lbpe

rS

pot

lbpe

rS

pot

kgpe

rS

pot

kgpe

rS

pot

ofT

hinn

erS

heet

,of

Thi

nner

She

et,

in.

Min

.M

in.

Avg

.M

in.

Min

.A

vg.

mm

Min

.M

in.

Avg

.M

in.

Min

.A

vg.

0.00

913

016

010

012

50.

259

7345

570.

010

160

195

115

140

0.25

7388

5264

0.01

220

024

515

018

50.

3091

111

6884

0.01

629

536

521

526

00.

4113

416

698

118

0.01

834

041

525

030

50.

4615

418

811

313

80.

020

390

480

280

345

0.51

177

218

127

156

0.02

245

055

033

040

50.

5620

424

915

018

40.

025

530

655

400

495

0.64

240

297

181

225

0.02

863

578

546

557

50.

7128

835

621

126

10.

032

775

955

565

695

0.81

352

433

256

315

0.03

692

01,

140

690

860

0.91

417

517

313

390

0.04

01,

065

1,31

081

51,

000

1.0

483

594

370

454

0.04

51,

285

1,58

51,

005

1,24

01.

158

371

945

656

20.

050

1,50

51,

855

1,19

51,

475

1.3

683

841

542

669

0.05

61,

770

2,18

51,

460

1,80

01.

480

399

166

281

60.

063

2,11

02,

595

1,76

02,

170

1.6

957

117

779

898

40.

071

2,53

53,

125

2,08

02,

560

1.8

115

01

418

943

116

10.

080

3,00

53,

705

2,45

53,

025

2.0

136

31

681

111

41

372

0.09

03,

515

4,33

52,

885

3,56

02.

31

594

196

61

309

161

50.

100

4,00

04,

935

3,30

04,

070

2.54

181

42

239

149

71

846

0.11

24,

545

5,61

03,

795

4,67

52.

842

062

254

51

721

212

10.

125

5,06

56,

250

4,30

05,

310

3.18

229

72

835

195

02

409

169

Page 199: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW

-462

.11

SH

EA

RS

TR

EN

GT

HR

EQ

UIR

EM

EN

TS

FO

RS

PO

TO

RP

RO

JEC

TIO

NW

EL

DS

PE

CIM

EN

S

U.S

.C

usto

mar

yU

nits

SI

Uni

ts

P-N

o.21

Thr

ough

P-N

o.25

Alu

min

umA

lloys

P-2

XA

lum

inum

Allo

ys

Ult

imat

eU

ltim

ate

Ult

imat

eS

tren

gth

Ult

imat

eS

tren

gth

Ult

imat

eU

ltim

ate

Str

engt

hS

tren

gth

Str

engt

h35

,000

to55

,999

19,5

00to

34,9

99S

tren

gth

Bel

ow24

1M

Pa

to38

613

4M

Pa

toB

elow

psi,

psi,

19,5

00ps

i,lb

MP

a,24

1M

Pa,

134

MP

a,N

omin

alN

omin

allb

per

Spo

tlb

per

Spo

tpe

rS

pot

kgpe

rS

pot

kgpe

rS

pot

kgpe

rS

pot

Thi

ckne

ssof

Thi

ckne

ssof

Thi

nner

She

et,

Min

.M

in.

Min

.T

hinn

erS

heet

,M

in.

Min

.M

in.

in.

Min

.A

vg.

Min

.A

vg.

Min

.A

vg.

mm

Min

.A

vg.

Min

.A

vg.

Min

.A

vg.

0.01

050

65..

...

...

...

.0.

2523

29..

...

...

...

.0.

012

6585

3040

2025

0.30

2939

1418

911

0.01

610

012

570

9050

650.

4145

5732

4123

290.

018

115

145

8511

065

850.

4652

6639

5029

39

0.02

013

517

010

012

580

100

0.51

6177

4557

3645

0.02

215

519

512

015

095

120

0.56

7088

5468

4354

0.02

517

520

014

518

511

014

00.

6479

9166

8450

640.

028

205

260

175

220

135

170

0.71

9311

879

100

6177

0.03

223

529

521

026

516

521

00.

8110

713

495

120

7595

0.03

627

534

525

532

019

524

50.

9112

515

611

614

588

111

0.04

031

039

030

037

522

528

51.

014

117

713

617

010

212

90.

045

370

465

350

440

260

325

1.1

168

211

159

200

118

147

0.05

043

054

040

050

029

537

01.

319

524

518

122

713

416

80.

057

515

645

475

595

340

425

1.45

234

293

215

270

154

193

0.06

361

076

557

071

539

549

51.

627

734

725

932

417

922

50.

071

720

900

645

810

450

565

1.8

327

408

293

367

204

256

0.08

085

51,

070

765

960

525

660

2.0

388

485

347

435

238

299

0.09

01,

000

1,25

087

01,

090

595

745

2.3

454

567

395

494

270

338

0.10

01,

170

1,46

594

01,

175

675

845

2.54

531

665

426

533

306

383

0.11

21,

340

1,67

51,

000

1,25

573

592

02.

8460

876

045

456

933

341

7

0.12

51,

625

2,03

51,

050

1,31

578

598

53.

1873

792

347

659

635

644

70.

140

1,92

02,

400

...

...

...

...

3.56

871

108

9..

...

...

...

.0.

160

2,44

03,

050

...

...

...

...

4.06

110

71

383

...

...

...

...

0.18

03,

000

3,75

0..

...

...

...

.4.

571

361

170

1..

...

...

...

.

0.19

03,

240

4,05

0..

...

...

...

.4.

831

470

183

7..

...

...

...

.0.

250

6,40

08,

000

...

...

...

...

6.35

290

33

629

...

...

...

...

170

Page 200: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW

-462

.12

NO

ME

NC

LA

TU

RE

FO

RT

EM

PE

RB

EA

DW

EL

DIN

G

S [

No

te (

1)])

S [

No

te (

1)] S [

No

te (

1)]

S [

No

te (

1)]

LE

GE

ND

See

No

te (

2)

Wel

d B

ead

s ag

ain

st B

ase

Met

al

Firs

t La

yer

Tem

per

ing

Bea

ds

Sec

on

d L

ayer

Tem

per

ing

Bea

ds

Fill

Wel

d B

ead

s

Su

rfac

e Te

mp

er W

eld

Rei

nfo

rcin

g B

ead

s

Pa

rtia

lly

Co

mp

lete

d P

art

ial-

Pe

ne

tra

tio

n W

eld

Co

mp

lete

d P

art

ial-

Pe

ne

tra

tio

n W

eld

Ap

pro

x. 0

.040

in. (

1 m

m)

Als

o s

ho

win

g lo

cati

on

of

har

dn

ess

trav

erse

s w

he n

har

dn

ess

test

ing

is u

sed

.

Als

o s

ho

win

g p

erm

issi

ble

loca

tio

ns

and

ori

enta

tio

ns

of

har

dn

ess

trav

erse

s.

Als

o s

ho

win

g lo

cati

on

of

har

dn

ess

trav

erse

s w

hen

har

dn

ess

test

ing

is u

sed

.

Ty

pic

al

Gro

ov

e W

eld

Ty

pic

al

Fil

let

We

ld

Ov

erl

ay

We

ld

Ap

pro

x. 0

.040

in. (

1 m

m)

Ap

pro

x. 0

.040

in. (

1 m

m)

Ap

pro

x.

0.04

0 in

. (1

mm

)A

pp

rox.

0.04

0 in

.

(1 m

m)

GE

NE

RA

LN

OT

ES

:(a

)W

eld

bead

ssh

own

abov

em

aybe

depo

site

din

any

sequ

ence

that

will

resu

ltin

plac

emen

tof

the

bead

sas

show

n.(b

)S

urfa

cete

mpe

rre

info

rcin

gbe

ads

may

cove

rth

een

tire

wel

dsu

rfac

e,or

may

only

bepl

aced

atth

eto

eof

the

wel

d;th

eym

ayor

may

not

bem

echa

nica

llyre

mov

ed.

NO

TE

S:

(1)

The

dist

ance

,S

,is

mea

sure

dfr

omth

eto

eof

the

wel

dto

the

edge

ofth

ete

mpe

rbe

ads.

Mea

sure

men

tssh

all

bem

ade

para

llel

toth

eba

sem

etal

surf

ace.

(2)

Bea

dsne

arth

efin

ishe

dsu

rfac

em

aybe

both

tem

peri

ngbe

ads

and

surf

ace

tem

per

rein

forc

ing

bead

s.

171

Page 201: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-462.13 MEASUREMENT OF TEMPER BEAD OVERLAP

Overlap length

a

b

Direction of bead sequence

GENERAL NOTE: Measurement of bead overlap − % overlap length p (a−b)/a � 100%. In this figure, the shaded bead overlaps previousbead by 30% to 40%. The distance a is measured before the next bead is deposited.

172

Page 202: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-463.1(a) PLATES — LESS THAN 3/4 in. (19 mm)THICKNESS PROCEDURE QUALIFICATION

QW-463.1(b) PLATES — 3/4 in. (19 mm) AND OVERTHICKNESS AND ALTERNATE FROM 3/8 in. (10 mm)

BUT LESS THAN 3/4 in. (19 mm) THICKNESSPROCEDURE QUALIFICATION

QW-463.1(c) PLATES — LONGITUDINAL PROCEDURE QUALIFICATION

173

Page 203: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-463.1(d) PROCEDURE QUALIFICATION

QW-463.1(e) PROCEDURE QUALIFICATION

174

Page 204: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-463.1(f) NOTCH-TOUGHNESS TEST SPECIMEN LOCATION

QW-463.2(a) PLATES — LESS THAN 3⁄4 in. (19 mm)THICKNESS PERFORMANCE QUALIFICATION

175

QW-463.2(b) PLATES — 3⁄4 in. (19 mm) AND OVERTHICKNESS AND ALTERNATE FROM 3⁄8 in. (10 mm)

BUT LESS THAN 3⁄4 in. (19 mm) THICKNESSPERFORMANCE QUALIFICATION

Page 205: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW--463.2(c) PLATES — LONGITUDINAL PERFORMANCE QUALIFICATION

QW-463.2(d) PERFORMANCE QUALIFICATION

176

QW-463.2(e) PERFORMANCE QUALIFICATION

Page 206: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-463.2(f) PIPE — NPS 10 (DN 250) ASSEMBLY PERFORMANCE QUALIFICATION

177

Page 207: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-463.2(g) NPS 6 (DN 150) OR NPS 8 (DN 200) ASSEMBLY PERFORMANCE QUALIFICATION

GENERAL NOTE: When side bend tests are made in accordance with QW-452.1 and QW-452.3, they shall be removed as shown in QW-463.2(g)in place of the face and root bends.

178

Page 208: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-463.2(h) PERFORMANCE QUALIFICATION

179

Page 209: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-464.1 PROCEDURE QUALIFICATION TEST COUPON AND TEST SPECIMENS

Discard

Discard

Tension shear specimen

Transverse metal specimen

Longitudinal metal specimen

Transverse metal specimen

Longitudinal metal specimen

Transverse metal specimen

Longitudinal metal specimen

Transverse metal specimen

Longitudinal metal specimen

Tension shear specimen

Tension shear specimen

Tension shear specimen

Tension shear specimen

1 in. (25 mm) min.

1 in. (25 mm) min.

3/4 in. (19 mm) min.

Tension shear specimen

W

W

L

T

RecommendedThickness of Thinner, Specimen Width, Length,

Sheet, T, in. (mm) W, in. (mm) L, in. (mm)

Up to 0.029 (0.74) 5⁄8 (16) 3 (75)0.031 to 0.050 (0.79 to 1.2) 3⁄4 (19) 3 (75)0.051 to 0.100 (1.3 to 2.54) 1 (25) 4 (100)0.101 to 0.130 (2.57 to 3.30) 11⁄4 (32) 5 (125)0.131 to 0.190 (3.33 to 4.83) 11⁄2 (38) 5 (125)0.191 (4.85) and over 2 (50) 6 (150)

180

Page 210: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-464.2 PERFORMANCE QUALIFICATION TEST COUPONS AND TEST SPECIMENS

Discard

Peel test specimen

Peel test specimen

Discard

1 in. (25 mm) min. Discard

Discard

11/2 in. (38 mm) min.1/2 in. (13 mm)

(b) Metallurgical ExaminationCoupon and Transverse Specimens

1 in. (25 mm) min.

3/4 in. (19 mm) min.

W

LT

Cu

t in

to 6

str

ips

o

f eq

ual

wid

th

6 in

. (15

2 m

m)

min

.

Thickness of RecommendedThinner Sheet, Specimen Width, Length,

T, in. (mm) W, in. (mm) L, in. (mm)

Up to 0.029 (0.74) 5⁄8 (16) 2 (50)0.030 to 0.058 (0.75 to 1.4) 1 (25) 3 (75)0.059 to 0.125 (1.5 to 3.2) 11⁄2 (38) 4 (100)

(a) Peel Test Coupon and Specimens

181

Page 211: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-466.1 TEST JIG DIMENSIONS

As required As required

Tapped hole to suit testing machine

Hardened rollers 11/2 in. (38 mm) may be substituted for jig shoulders

Shoulders hardened and greased

3/4 in. (19 mm)

3/4 in. (19 mm)

3/4 in. R(19 mm)

B R

D RC

A

3/4 in. (19 mm)

71/2 in. (190 mm)9 in. (225 mm)

3/4 in. (19 mm)1/2 in. (13 mm)

11/8 in. (29 mm)

1/8 in. (3 mm)

63 /

4 in

.

(17

0 m

m)

3 in

. min

.

(75

mm

)2

in. m

in.

(

50 m

m)

3/4 in. (19 mm)

11/8 in. (29 mm)

37/8 in. (97 mm)

2 in. (50 mm)

1/4 in. (6 mm)

Yoke

Plunger

Customary Units

Thickness ofMaterial Specimen, in. A, in. B, in. C, in. D, in.

P-No. 23 to P-No. 21 through P-No 25; P-No. 1⁄8 21⁄16 11⁄32 23⁄8 13⁄16

21 through P-No. 25 with F-No. 23; P-No. 35; t p 1⁄8 or less 161⁄2t 81⁄4t 181⁄2t + 1⁄16 91⁄4t + 1⁄32

any P-No. metal with F-No. 33, 36, or 37

P-No. 11; P-No. 25 to P-No. 21 or P-No. 22 or 3⁄8 21⁄2 11⁄4 33⁄8 111⁄16

P-No. 25 t p 3⁄8 or less 62⁄3t 31⁄3t 82⁄3t + 1⁄8 41⁄3t + 1⁄16

P-No. 51; P-No. 49 3⁄8 3 11⁄2 37⁄8 115⁄16

t p 3⁄8 or less 8t 4t 10t + 1⁄8 5t + 1⁄16

P-No. 52; P-No. 53; P-No. 61; P-No. 62 3⁄8 33⁄4 17⁄8 45⁄8 25⁄16

t p 3⁄8 or less 10t 5t 12t + 1⁄8 6t + 1⁄16

All others with greater than or equal to 20% elon- 3⁄8 11⁄23⁄4 23⁄8 13⁄16

gation t p 3⁄8 or less 4t 2t 6t + 1⁄8 3t + 1⁄16

All others with less than 20% elongation t p (see Note b) 327⁄8t, 167⁄16t, 347⁄8t + 1⁄16, 177⁄16t + 1⁄32,max. max. max. max.

182

Page 212: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-466.1 TEST JIG DIMENSIONS (CONT’D)

SI Units

Thickness ofMaterial Specimen, mm A, mm B, mm C, mm D, mm

P-No. 23 to P-No. 21 through P-No. 25; P-No. 3 52.4 26.2 60.4 30.221 through P-No. 25 with F-No. 23; P-No. 35; t p 3 or less 161⁄2t 81⁄4t 181⁄2t + 1.6 91⁄4t + 0.8any P-No. metal with F-No. 33, 36, or 37

P-No. 11; P-No.25 to P-No. 21 or P-No. 22 or 10 63.5 31.8 85.8 42.9P-No. 25 t p 10 or less 62⁄3t 31⁄3t 82⁄3t + 3.2 41⁄3t + 1.6

P-No. 51; P-No. 49 10 76.2 38.1 98.4 49.2t p 10 or less 8t 4t 10t + 3.2 5t + 1.6

P-No. 52; P-No. 53; P-No. 61; P-No. 62 10 95.2 47.6 117.5 58.7t p 10 or less 10t 5t 12t + 3.2 6t + 1.6

All others with greater than or equal to 20% elon- 10 38.1 19.0 60.4 30.2gation t p 10 or less 4t 2t 6t + 3.2 3t + 1.6

All others with less than 20% elongation t p (see Note b) 327⁄8t, 167⁄16t, 347⁄8t + 1.6 177⁄16t + 0.8max. max. max. max.

GENERAL NOTES:(a) For P-Numbers, see QW/QB-422; for F-Numbers, see QW-432.(b) The dimensions of the test jig shall be such as to give the bend test specimen a calculated percent outer fiber elongation equal to at least that

of the base material with the lower minimum elongation as specified in the base material specification.

percent outer fiber elongation p100tA + t

The following formula is provided for convenience in calculating the bend specimen thickness:

thickness of specimen (t) pA � percent elongation

[100 − (percent elongation)]

(c) For guided-bend jig configuration, see QW-466.2, QW-466.3, and QW-466.4.(d) The weld and heat-affected zone, in the case of a transverse weld bend specimen, shall be completely within the bend portion of the specimen

after testing.

183

Page 213: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-466.2 GUIDED-BEND ROLLER JIG

Notes (1), (2)

Note (3)

Notes (4), (5)

GENERAL NOTE: See QW-466.1 for jig dimensions and general notes.

NOTES:(1) Either hardened and greased shoulders or hardened rollers free to rotate shall be used.(2) The shoulders or rollers shall have a minimum bearing surface of 2 in. (50 mm) for placement

of the specimen. The rollers shall be high enough above the bottom of the jig so that thespecimens will clear the rollers when the ram is in the low position.

(3) The ram shall be fitted with an appropriate base and provision made for attachment tothe testing machine, and shall be of a sufficiently rigid design to prevent deflection andmisalignment while making the bend test. The body of the ram may be less than the dimen-sions shown in column A of QW-466.1.

(4) If desired, either the rollers or the roller supports may be made adjustable in the horizontaldirection so that specimens of t thickness may be tested on the same jig.

(5) The roller supports shall be fitted with an appropriate base designed to safeguard againstdeflection and misalignment and equipped with means for maintaining the rollers centeredmidpoint and aligned with respect to the ram.

C

A

R min.

R min. = 3/4 in. (19 mm)

B = 1/2 A

QW-466.3 GUIDED-BEND WRAP AROUND JIG

GENERAL NOTES: (a) See QW-466.1 for jig dimensions and other general notes.(b) Dimensions not shown are the option of the designer. The essential consideration is to have

adequate rigidity so that the jig parts will not spring.(c) The specimen shall be firmly clamped on one end so that there is no sliding of the specimen

during the bending operation.(d) Test specimens shall be removed from the jig when the outer roll has been removed 180 deg from the starting point.

A

T

T + 1/16 in. (1.5 mm) max.

B = 1/2 A

Roller

184

Page 214: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-466.4 STUD-WELD BEND JIG

Bend adapter

Max. diameter of stud + 1/64 in. (0.40 mm)

Weld

15 deg min.

A

11/4 in. (32 mm)

12 in. (300 mm)

Use AdapterFor Stud Diameter, Gap,

in. (mm) A, in. (mm)1⁄8 (3) 1⁄8 (3)3⁄16 (5) 1⁄8 (3)1⁄4 (6) 3⁄16 (5)

3⁄8 (10) 7⁄32 (5.5)1⁄2 (13) 5⁄16 (8)5⁄8 (16) 11⁄32 (9)3⁄4 (19) 15⁄32 (12)7⁄8 (22) 15⁄32 (12)1 (25) 19⁄32 (15)

185

Page 215: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-466.5 TORQUE TESTING ARRANGEMENT FORSTUD WELDS

QW-466.6 SUGGESTED TYPE TENSILE TEST FIGUREFOR STUD WELDS

186

QW-469.1 BUTT JOINT

QW-469.2 ALTERNATIVE BUTT JOINT

371/2 deg max.

T /2 max. T /3 max. but not greater than 1/8 in. (3 mm)

T

Page 216: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-470 ETCHING — PROCESSES ANDREAGENTS

QW-471 General

The surfaces to be etched should be smoothed by filing,machining, or grinding on metallographic papers. Withdifferent alloys and tempers, the etching period will varyfrom a few seconds to several minutes, and should becontinued until the desired contrast is obtained. As a protec-tion from the fumes liberated during the etching process,this work should be done under a hood. After etching, thespecimens should be thoroughly rinsed and then dried witha blast of warm air. Coating the surface with a thin clearlacquer will preserve the appearance.

QW-472 For Ferrous Metals

Etching solutions suitable for carbon and low alloysteels, together with directions for their use, are suggestedin QW-472.1 through QW-472.4.

QW-472.1 Hydrochloric Acid. Hydrochloric (muri-atic) acid and water, equal parts, by volume. The solutionshould be kept at or near the boiling temperature duringthe etching process. The specimens are to be immersed inthe solution for a sufficient period of time to reveal alllack of soundness that might exist at their cross-sectionalsurfaces.

QW-472.2 Ammonium Persulfate. One part of ammo-nium persulfate to nine parts of water, by weight. Thesolution should be used at room temperature, and shouldbe applied by vigorously rubbing the surface to be etchedwith a piece of cotton saturated with the solution. Theetching process should be continued until there is a cleardefinition of the structure in the weld.

QW-472.3 Iodine and Potassium Iodide. One part ofpowdered iodine (solid form), two parts of powdered potas-sium iodide, and ten parts of water, all by weight. Thesolution should be used at room temperature, and brushedon the surface to be etched until there is a clear definitionor outline of the weld.

QW-472.4 Nitric Acid. One part of nitric acid and threeparts of water, by volume.

CAUTION: Always pour the acid into the water. Nitric acid causesbad stains and severe burns.

The solution may be used at room temperature andapplied to the surface to be etched with a glass stirringrod. The specimens may also be placed in a boiling solutionof the acid, but the work should be done in a well-ventilatedroom. The etching process should be continued for a suffi-cient period of time to reveal all lack of soundness thatmight exist at the cross-sectional surfaces of the weld.

187

QW-473 For Nonferrous Metals

The following etching reagents and directions for theiruse are suggested for revealing the macrostructure.

QW-473.1 Aluminum and Aluminum-Base Alloys

Solution Volume

Hydrochloric acid (concentrated) 15 mlHydrofluoric acid (48%) 10 mlWater 85 ml

This solution is to be used at room temperature, andetching is accomplished by either swabbing or immersingthe specimen.

QW-473.2 For Copper and Copper-Base Alloys:Cold Concentrated Nitric Acid. Etching is accomplishedby either flooding or immersing the specimen for severalseconds under a hood. After rinsing with a flood of water,the process is repeated with a 50-50 solution of concen-trated nitric acid and water.

In the case of the silicon bronze alloys, it may be neces-sary to swab the surface to remove a white (SiO2) deposit.

QW-473.3 For Nickel and Nickel-Base Alloys

Material Formula

Nickel Nitric Acid or Lepito’s EtchLow Carbon Nickel Nitric Acid or Lepito’s EtchNickel–Copper (400) Nitric Acid or Lepito’s EtchNickel–Chromium–Iron Aqua Regia or Lepito’s Etch

(600 and 800)

MAKEUP OF FORMULAS FOR AQUA REGIA ANDLEPITO’S ETCH

Aqua Regia Lepito’s EtchSolution [(1), (2)] [(2), (3)]

Nitric Acid, Concentrated — HNO3 1 part 3 mlHydrochloric Acid, Concentrated —

HCL 2 parts 10 mlAmmonium Sulfate — (NH4)2(SO4) . . . 1.5 gFerric Chloride — FeCl3 . . . 2.5 gWater . . . 7.5 ml

NOTES:(1) Warm the parts for faster action.(2) Etching is accomplished by either swabbing or immersing the

specimen.(3) Mix solution as follows:

(a) Dissolve (NH4)2(SO4) in H2O.(b) Dissolve powdered FeCl3 in warm HCl.(c) Mix (a) and (b) above and add HNO3.

QW-473.4 For Titanium

Solution Kroll’s Etch Keller’s Etch

Hydrofluoric acid (48%) 1 to 3 ml 1⁄2 mlNitric acid (concentrated) 2 to 6 ml 21⁄2 mlHydrochloric Acid . . . 11⁄2 ml

(concentrated)Water To make 100 ml To make 100 ml

Page 217: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-473.5 For Zirconium

Solution Volume

Hydrofluoric acid 3 mlNitric acid (concentrated) 22 mlWater 22 ml

Apply by swab and rinse in cold water.These are general purpose etchants which are applied

at room temperature by swabbing or immersion of thespecimen.

QW-490 DEFINITIONSQW/QB-491 General

Definitions of the more common terms relating to weld-ing/brazing are defined in QW/QB-492. These are identicalto, or substantially in agreement with the definitions of theAmerican Welding Society document, AWS A3.0, Stan-dard Welding Terms and Definitions. There are terms listedthat are specific to ASME Section IX and are not presentlydefined in AWS A3.0. Several definitions have been modi-fied slightly from AWS A3.0 so as to better define thecontext/intent as used in ASME Section IX.

QW/QB-492 Definitions

arc seam weld: a seam weld made by an arc weldingprocess.

arc spot weld: a spot weld made by an arc welding process.

arc strike: any inadvertent discontinuity resulting froman arc, consisting of any localized remelted metal, heat-affected metal, or change in the surface profile of any metalobject. The arc may be caused by arc welding electrodes,magnetic inspection prods, or frayed electrical cable.

arc welding: a group of welding processes wherein coales-cence is produced by heating with an arc or arcs, with orwithout the application of pressure, and with or withoutthe use of filler metal.

as-brazed: adj. pertaining to the condition of brazementsafter brazing, prior to any subsequent thermal, mechani-cal,or chemical treatments.

as-welded: adj. pertaining to the condition of weld metal,welded joints, and weldments after welding but prior to anysubsequent thermal, mechanical, or chemical treatments.

backgouging: the removal of weld metal and base metalfrom the weld root side of a welded joint to facilitatecomplete fusion and complete joint penetration upon subse-quent welding from that side.

backhand welding: a welding technique in which the weld-ing torch or gun is directed opposite to the progress ofwelding.

188

backing: a material placed at the root of a weld joint forthe purpose of supporting molten weld metal so as tofacilitate complete joint penetration. The material may ormay not fuse into the joint. See also retainer.

backing gas: a gas, such as argon, helium, nitrogen, orreactive gas, which is employed to exclude oxygen fromthe root side (opposite from the welding side) of weldjoints.

base metal: the metal or alloy that is welded, brazed, or cut.

bond line (brazing and thermal spraying): the cross sectionof the interface between a braze or thermal spray depositand the substrate.

braze: a joint produced by heating an assembly to suitabletemperatures and by using a filler metal having a liquidusabove 840°F (450°C) and below the solidus of the basematerials. The filler metal is distributed between the closelyfitted surfaces of the joint by capillary action.

brazer: one who performs a manual or semiautomatic braz-ing operation.

brazing: a group of metal joining processes which producescoalescence of materials by heating them to a suitabletemperature, and by using a filler metal having a liquidusabove 840°F (450°C) and below the solidus of the basematerials. The filler metal is distributed between the closelyfitted surfaces of the joint by capillary action.

brazing, automatic: brazing with equipment which per-forms the brazing operation without constant observationand adjustment by a brazing operator. The equipment mayor may not perform the loading and unloading of the work.

brazing, block (BB): a brazing process that uses heat fromheated blocks applied to the joint. This is an obsolete orseldom used process.

brazing, dip (DB): a brazing process in which the heatrequired is furnished by a molten chemical or metal bath.When a molten chemical bath is used, the bath may act asa flux; when a molten metal bath is used, the bath providesthe filler metal.

brazing, furnace (FB): a brazing process in which theworkpieces are placed in a furnace and heated to the brazingtemperature.

brazing, induction (IB): a brazing process that uses heatfrom the resistance of the workpieces to induced electriccurrent.

brazing, machine: brazing with equipment which performsthe brazing operation under the constant observation andcontrol of a brazing operator. The equipment may or may

Page 218: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

not perform the loading and unloading of the work.

brazing, manual: a brazing operation performed and con-trolled completely by hand. See also automatic brazingand machine brazing.

brazing, resistance (RB): a brazing process that uses heatfrom the resistance to electric current flow in a circuit ofwhich the workpieces are a part.

brazing, semiautomatic: brazing with equipment whichcontrols only the brazing filler metal feed. The advance ofthe brazing is manually controlled.

brazing, torch (TB): a brazing process that uses heat froma fuel gas flame.

brazing operator: one who operates machine or automaticbrazing equipment.

brazing temperature: the temperature to which the basemetal(s) is heated to enable the filler metal to wet the basemetal(s) and form a brazed joint.

brazing temperature range: the temperature range withinwhich brazing can be conducted.

build-up of base metal/restoration of base metal thickness:this is the application of a weld material to a base metal soas to restore the design thickness and/or structural integrity.This build-up may be with a chemistry different from thebase metal chemistry which has been qualified via a stan-dard butt welded test coupon. Also, may be called basemetal repair or buildup.

butt joint: a joint between two members aligned approxi-mately in the same plane.

buttering: the addition of material, by welding, on one orboth faces of a joint, prior to the preparation of the jointfor final welding, for the purpose of providing a suitabletransition weld deposit for the subsequent completion ofthe joint.

clad brazing sheet: a metal sheet on which one or bothsides are clad with brazing filler metal.

coalescence: the growing together or growth into one bodyof the materials being joined.

complete fusion: fusion which has occurred over the entirebase material surfaces intended for welding, and betweenall layers and beads.

composite: a material consisting of two or more discretematerials with each material retaining its physical identity.

consumable insert: filler metal that is placed at the jointroot before welding, and is intended to be completely fusedinto the root to become part of the weld.

189

contact tube: a device which transfers current to a continu-ous electrode.

corner joint: a joint between two members located approxi-mately at right angles to each other in the form of an L.

coupon: see test coupon.

crack: a fracture-type discontinuity characterized by asharp tip and high ratio of length and width to openingdisplacement.

defect: a discontinuity or discontinuities that by nature oraccumulated effect (for example, total crack length) rendera part or product unable to meet minimum applicableacceptance standards or specifications. This term desig-nates rejectability. See also discontinuity and flaw.

direct current electrode negative (DCEN): the arrangementof direct current arc welding leads in which the electrodeis the negative pole and the workpiece is the positive poleof the welding arc.

direct current electrode positive (DCEP): the arrangementof direct current arc welding leads in which the electrodeis the positive pole and the workpiece is the negative poleof the welding arc.

discontinuity: an interruption of the typical structure of amaterial, such as a lack of homogeneity in its mechanical,metallurgical, or physical characteristics. A discontinuityis not necessarily a defect. See also defect and flaw.

double-welded joint: a joint that is welded from both sides.

double-welded lap joint: a lap joint in which the overlappededges of the members to be joined are welded along theedges of both members.

dwell: the time during which the energy source pauses atany point in each oscillation.

electrode, arc welding: a component of the welding circuitthrough which current is conducted.

electrode, bare: a filler metal electrode that has been pro-duced as a wire, strip, or bar with no coating or coveringother than that incidental to its manufacture or preservation.

electrode, carbon: a nonfiller material electrode used inarc welding and cutting, consisting of a carbon or graphiterod, which may be coated with copper or other materials.

electrode, composite: a generic term of multicomponentfiller metal electrodes in various physical forms, such asstranded wires, tubes, and covered electrodes.

electrode, covered : a composite filler metal electrode con-sisting of a core of a bare electrode or metal-cored electrode

Page 219: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

to which a covering sufficient to provide a slag layer onthe weld metal has been applied. The covering may containmaterials providing such functions as shielding from theatmosphere, deoxidation, and arc stabilization, and canserve as a source of metallic additions to the weld.

electrode, electroslag welding: a filler metal component ofthe welding circuit through which current is conductedbetween the electrode guiding member and the molten slag.

NOTE: Bare electrodes and composite electrodes as defined under arcwelding electrode are used for electroslag welding. A consumable guidemay also be used as part of the electroslag welding electrode system.

electrode, emissive: a filler metal electrode consisting ofa core of a bare electrode or a composite electrode to whicha very light coating has been applied to produce a stable arc.

electrode, flux-cored: a composite filler metal electrodeconsisting of a metal tube or other hollow configurationcontaining ingredients to provide such functions asshielding atmosphere, deoxidation, arc stabilization, andslag formation. Alloying materials may be included in thecore. External shielding may or may not be used.

electrode, lightly coated: a filler metal electrode consistingof a metal wire with a light coating applied subsequent tothe drawing operation, primarily for stabilizing the arc.

electrode, metal: a filler or nonfiller metal electrode usedin arc welding and cutting that consists of a metal wire orrod that has been manufactured by any method and that iseither bare or covered.

electrode, metal-cored: a composite filler metal electrodeconsisting of a metal tube or other hollow configurationcontaining alloying ingredients. Minor amounts of ingredi-ents providing such functions as arc stabilization and flux-ing of oxides may be included. External shielding gas mayor may not be used.

electrode, resistance welding: the part of a resistance weld-ing machine through which the welding current and, inmost cases, force are applied directly to the workpiece.The electrode may be in the form of a rotating wheel,rotating roll, bar, cylinder, plate, clamp, chuck, or modifi-cation thereof.

electrode, stranded: a composite filler metal electrode con-sisting of stranded wires which may mechanically enclosematerials to improve properties, stabilize the arc, or provideshielding.

electrode, tungsten: a nonfiller metal electrode used in arcwelding, arc cutting, and plasma spraying, made principallyof tungsten.

face feed: the application of filler metal to the face side ofa joint.

190

ferrite number: an arbitrary, standardized value designatingthe ferrite content of an austenitic stainless steel weld metal.It should be used in place of percent ferrite or volumepercent ferrite on a direct one-to-one replacement basis.See the latest edition of AWS A4.2, Standard Proceduresfor Calibrating Magnetic Instruments to Measure the DeltaFerrite Content of Austenitic Stainless Steel Weld Metal.

filler metal: the metal or alloy to be added in making awelded, brazed, or soldered joint.

filler metal, brazing: the metal or alloy used as a fillermetal in brazing, which has a liquidus above 840°F (450°C)and below the solidus of the base metal.

filler metal, powder: filler metal in particle form.

filler metal, supplemental: in electroslag welding or in awelding process in which there is an arc between one ormore consumable electrodes and the workpiece, a powder,solid, or composite material that is introduced into the weldother than the consumable electrode(s).

fillet weld: a weld of approximately triangular cross sectionjoining two surfaces approximately at right angles to eachother in a lap joint, tee joint, or corner joint.

flaw: an undesirable discontinuity. See also defect.

flux (welding/brazing): a material used to dissolve, prevent,or facilitate the removal of oxides or other undesirablesurface substances. It may act to stabilize the arc, shieldthe molten pool, and may or may not evolve shielding gasby decomposition.

flux, active (SAW): a flux from which the amount of ele-ments deposited in the weld metal is dependent upon thewelding conditions, primarily arc voltage.

flux, alloy (SAW): a flux which provides alloying elementsin the weld metal deposit.

flux, neutral (SAW): a flux which will not cause a significantchange in the weld metal composition when there is a largechange in the arc voltage.

flux cover: metal bath dip brazing and dip soldering. Alayer of molten flux over the molten filler metal bath.

forehand welding: a welding technique in which the weld-ing torch or gun is directed toward the progress of welding.

frequency: the completed number of cycles which the oscil-lating head makes in 1 min or other specified timeincrement.

fuel gas: a gas such as acetylene, natural gas, hydrogen,propane, stabilized methylacetylene propadiene, and other

Page 220: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

fuels normally used with oxygen in one of the oxyfuelprocesses and for heating.

fused spray deposit (thermal spraying): a self-fluxing ther-mal spray deposit which is subsequently heated to coales-cence within itself and with the substrate.

fusion (fusion welding): the melting together of filler metaland base metal, or of base metal only, to produce a weld.

fusion face: a surface of the base metal that will be meltedduring welding.

fusion line: a non-standard term for weld interface.

gas backing: see backing gas.

globular transfer (arc welding): a type of metal transferin which molten filler metal is transferred across the arcin large droplets.

groove weld: a weld made in a groove formed within asingle member or in the groove between two members tobe joined. The standard types of groove weld are as follows:

(a) square groove weld(b) single-Vee groove weld(c) single-bevel groove weld(d) single-U groove weld(e) single-J groove weld(f) single-flare-bevel groove weld(g) single-flare-Vee groove weld(h) double-Vee groove weld(i) double-bevel groove weld(j) double-U groove weld(k) double-J groove weld(l) double-flare-bevel groove weld(m) double-flare-Vee groove weld

heat-affected zone: that portion of the base metal whichhas not been melted, but whose mechanical properties ormicrostructures have been altered by the heat of weldingor cutting.

interpass temperature: the highest temperature in the weldjoint immediately prior to welding, or in the case of multi-ple pass welds, the highest temperature in the section ofthe previously deposited weld metal, immediately beforethe next pass is started.

joint: the junction of members or the edges of memberswhich are to be joined or have been joined.

joint penetration: the distance the weld metal extends fromthe weld face into a joint, exclusive of weld reinforcement.

keyhole welding: a technique in which a concentrated heatsource penetrates partially or completely through a work-piece, forming a hole (keyhole) at the leading edge of the

191

weld pool. As the heat source progresses, the molten metalfills in behind the hole to form the weld bead.

lap or overlap: the distance measured between the edgesof two plates when overlapping to form the joint.

lap joint: a joint between two overlapping members inparallel planes.

layer: a stratum of weld metal consisting of one or morebeads. See figures QW/QB-492.1 and QW/QB-492.2.

lower transformation temperature: the temperature atwhich austenite begins to form during heating.

macro-examination: the process of observing a specimencross-section by the unaided eye, or at a specified lowmagnification, with or without the use of smoothing andetching.

melt-in: a technique of welding in which the intensity ofa concentrated heat source is so adjusted that a weld pass-can be produced from filler metal added to the leadingedge of the molten weld metal.

nugget: the volume of weld metal formed in a spot, seam,or projection weld.

oscillation: for a machine or automatic process, an alternat-ing motion relative to the direction of travel of welding,brazing, or thermal spray device. See also weave bead.

overlay: a non-standard term, used in Section IX, for surfac-ing. See also hard-facing and corrosion-resistant overlay.

overlay, corrosion-resistant weld metal: deposition of oneor more layers of weld metal to the surface of a basematerial in an effort to improve the corrosion resistanceproperties of the surface. This would be applied at a levelabove the minimum design thickness as a nonstructuralcomponent of the overall wall thickness.

overlay, hard-facing weld metal: deposition of one or morelayers of weld metal to the surface of a material in aneffort to improve the wear resistance properties of thesurface. This would be applied at a level above the mini-mum design thickness as a nonstructural component of theoverall wall thickness.

pass: a single progression of a welding or surfacing opera-tion along a joint, weld deposit, or substrate. The result ofa pass is a weld bead or layer.

pass, cover: a final or cap pass(es) on the face of a weld.

pass, wash: pass to correct minor surface aberrations and/or prepare the surface for nondestructive testing.

peel test: a destructive method of testing that mechanicallyseparates a lap joint by peeling.

07

Page 221: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

peening: the mechanical working of metals using impactblows.

performance qualification: the demonstration of a welder’sor welding operator’s ability to produce welds meetingprescribed standards.

plug weld: a weld made in a circular, or other geometricallyshaped hole (like a slot weld) in one member of a lap ortee joint, joining that member to the other. The walls ofthe hole may or may not be parallel, and the hole may bepartially or completely filled with weld metal. (A fillet-welded hole or spot weld should not be construed as con-forming to this definition.)

polarity, reverse: the arrangement of direct current arcwelding leads with the work as the negative pole and theelectrode as the positive pole of the welding arc; a synonymfor direct current electrode positive.

polarity, straight: the arrangement of direct current arcwelding leads in which the work is the positive pole andthe electrode is the negative pole of the welding arc; asynonym for direct current electrode negative.

postbraze heat treatment: any heat treatment subsequentto brazing.

postheating: the application of heat to an assembly afterwelding, brazing, soldering, thermal spraying, or thermalcutting.

postweld heat treatment: any heat treatment subsequent towelding.

postweld hydrogen bakeout: holding a completed or par-tially completed weld at elevated temperature below 800°F(425°C) for the purpose of allowing hydrogen diffusionfrom the weld.

powder: see filler metal, powder.

preheat current: an impulse or series of impulses thatoccurs prior to and is separated from the welding current.

preheat maintenance: practice of maintaining the minimumspecified preheat temperature, or some specified highertemperature for some required time interval after weldingor thermal spraying is finished or until post weld heattreatment is initiated.

preheat temperature: the minimum temperature in the weldjoint preparation immediately prior to the welding; or inthe case of multiple pass welds, the minimum temperaturein the section of the previously deposited weld metal,immediately prior to welding.

preheating: the application of heat to the base metal imme-diately before a welding or cutting operation to achieve aspecified minimum preheat temperature.

192

pulsed power welding: any arc welding method in whichthe power is cyclically programmed to pulse so that effec-tive but short duration values of a parameter can be utilized.Such short duration values are significantly different fromthe average value of the parameter. Equivalent terms arepulsed voltage or pulsed current welding. See also pulsedspray welding.

pulsed spray welding: an arc welding process variation inwhich the current is pulsed to utilize the advantages of thespray mode of metal transfer at average currents equal toor less than the globular to spray transition current.

rabbet joint: typical design is indicated in figuresQB-462.1(c), QB-462.4, QB-463.1(c), and QB-463.2(a).

retainer: nonconsumable material, metallic or nonmetallic,which is used to contain or shape molten weld metal. Seealsobacking.

seal weld: any weld designed primarily to provide a specificdegree of tightness against leakage.

seam weld: a continuous weld made between or upon over-lapping members in which coalescence may start and occuron the faying surfaces, or may have proceeded from thesurface of one member. The continuous weld may consistof a single weld bead or a series of overlapping spot welds.See also resistance welding.

short-circuiting transfer (gas metal-arc welding): metaltransfer in which molten metal from a consumable elec-trode is deposited during repeated short circuits. See alsoglobular transfer and spray transfer.

single-welded joint: a joint welded from one side only.

single-welded lap joint: a lap joint in which the overlappededges of the members to be joined are welded along theedge of one member only.

slag inclusion: nonmetallic solid material entrapped inweld metal or between weld metal and base metal.

specimen: see test specimen.

spot weld: a weld made between or upon overlapping mem-bers in which coalescence may start and occur on the fayingsurfaces or may proceed from the outer surface of onemember. The weld cross section (plan view) is approxi-mately circular.

spray-fuse: a thermal spraying technique in which thedeposit is reheated to fuse the particles and form a metallur-gical bond with the substrate.

spray transfer (arc welding): metal transfer in which mol-ten metal from a consumable electrode is propelled axiallyacross the arc in small droplets.

Page 222: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

Standard Welding Procedure Specification (SWPS): awelding procedure specification, published by the Ameri-can Welding Society, that is made available for productionwelding by companies or individuals without further quali-fication, and that may be used in Code applications inaccordance with the restrictions and limitations ofArticle V.

stringer bead: a weld bead formed without appreciableweaving.

surface temper bead reinforcing layer: a subset of temperbead welding in which one or more layers of weld metalare applied on or above the surface layers of a componentand are used to modify the properties of previously depos-ited weld metal or the heat-affected zone. Surface layermay cover a surface or only the perimeter of the weld.

surfacing: the application by welding, brazing, or thermalspraying of a layer(s) of material to a surface to obtaindesired properties or dimensions, as opposed to makinga joint.

tee joint (T): a joint between two members located approxi-mately at right angles to each other in the form of a T.

temper bead welding: a weld bead placed at a specificlocation in or at the surface of a weld for the purpose ofaffecting the metallurgical properties of the heat-affectedzone or previously deposited weld metal. The bead maybe above, flush with, or below the surrounding base metalsurface. If above the base metal surface, the beads maycover all or only part of the weld deposit and may or maynot be removed following welding.

test coupon: a weld or braze assembly for procedure orperformance qualification testing. The coupon may be anyproduct from plate, pipe, tube, etc., and may be a filletweld, overlay, deposited weld metal, etc.

test specimen: a sample of a test coupon for specific test.The specimen may be a bend test, tension test, impact test,chemical analysis, macrotest, etc. A specimen may be acomplete test coupon, for example, in radiographic testingor small diameter pipe tension testing.

thermal cutting (TC): a group of cutting processes thatsevers or removes metal by localized melting, burning, orvaporizing of the workpieces.

throat, actual (of fillet): the shortest distance from the rootof a fillet weld to its face.

throat, effective (of fillet): the minimum distance from thefillet face, minus any convexity, to the weld root. In thecase of fillet welds combined with a groove weld, the weldroot of the groove weld shall be used.

193

throat, theoretical (of fillet): the distance from the begin-ning of the joint root perpendicular to the hypotenuse ofthe largest right triangle that can be inscribed within thecross-section of a fillet weld. This dimension is based onthe assumption that the root opening is equal to zero.

undercut: a groove melted into the base metal adjacent tothe weld toe or weld root and left unfilled by weld metal.

upper transformation temperature: the temperature atwhich transformation of the ferrite to austenite is completedduring heating.

usability: a measure of the relative ease of application ofa filler metal to make a sound weld or braze joint.

weave bead: for a manual or semiautomatic process, a weldbead formed using weaving. See also oscillation.

weaving: a welding technique in which the energy source isoscillated transversely as it progresses along the weld path.

weld: a localized coalescence of metals or nonmetals pro-duced either by heating the materials to the welding temper-ature, with or without the application of pressure, or bythe application of pressure alone and with or without theuse of filler material.

weld, autogenous: a fusion weld made without filler metal.

weld bead: a weld deposit resulting from a pass. See alsostringer bead and weave bead.

weld face: the exposed surface of a weld on the side fromwhich welding was done.

weld interface: the interface between the weld metal andbase metal in a fusion weld.

weld metal: metal in a fusion weld consisting of that portionof the base metal and filler metal melted during welding.

weld reinforcement: weld metal on the face or root of agroove weld in excess of the metal necessary for the speci-fied weld size.

weld size: for equal leg fillet welds: the leg lengths of thelargest isosceles right triangle which can be inscribedwithin the fillet weld cross section.

weld size: for unequal leg fillet welds: the leg lengths ofthe largest right triangle which can be inscribed within thefillet weld cross section.

weld size: groove welds: the depth of chamfering plus anypenetration beyond the chamfering, resulting in the strengthcarrying dimension of the weld.

welder: one who performs manual or semiautomaticwelding.

Page 223: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

welding, arc stud (SW): an arc welding process that usesan arc between a metal stud, or similar part, and the otherworkpiece. The process is used without filler metal, withor without shielding gas or flux, with or without partialshielding from a ceramic or graphite ferrule surroundingthe stud, and with the application of pressure after thefaying surfaces are sufficiently heated.

welding, automatic: welding with equipment which per-forms the welding operation without adjustment of thecontrols by a welding operator. The equipment may ormay not perform the loading and unloading of the work.See also machine welding.

welding, consumable guide electroslag: an electroslagwelding process variation in which filler metal is suppliedby an electrode and its guiding member.

welding, electrogas (EGW): an arc welding process thatuses an arc between a continuous filler metal electrode andthe weld pool, employing approximately vertical weldingprogression with retainers to confine the weld metal. Theprocess is used with or without an externally suppliedshielding gas and without the application of pressure.Shielding for use with solid or metal-cored electrodes isobtained from a gas or gas mixture. Shielding for use withflux-cored electrodes may or may not be obtained from anexternally supplied gas or gas mixture.

welding, electron beam (EBW): a welding process thatproduces coalescence with a concentrated beam composedprimarily of high velocity electrons,impinging on the joint.The process is used without shielding gas and without theapplication of pressure.

welding, electroslag (ESW): a welding process producingcoalescence of metals with molten slag which melts thefiller metal and the surfaces of the work to be welded. Themolten weld pool is shielded by this slag which movesalong the full cross section of the joint as welding prog-resses. The process is initiated by an arc which heats theslag. The arc is then extinguished and the conductive slagis maintained in a molten condition by its resistance toelectric current passing between the electrode and the work.See electroslag welding electrode and consumable guideelectroslag welding.

welding, flux-cored arc (FCAW): a gas metal-arc weldingprocess that uses an arc between a continuous filler metalelectrode and the weld pool. The process is used withshielding gas from a flux contained within the tubularelectrode, with or without additional shielding from anexternally supplied gas, and without the application ofpressure.

welding, friction (FRW): a solid state welding process thatproduces a weld under compressive force contact of work-pieces rotating or moving relative to one another to produce

194

heat and plastically displace material from the faying sur-faces.

welding, friction, inertia and continuous drive: processesand types of friction welding (solid state welding process)wherein coalescence is produced after heating is obtainedfrom mechanically induced sliding motion between rub-bing surfaces held together under pressure. Inertia weldingutilizes all of the kinetic energy stored in a revolving fly-wheel spindle system. Continuous drive friction weldingutilizes the energy provided by a continuous drive sourcesuch as an electric or hydraulic motor.

welding, gas metal-arc (GMAW): an arc welding processthat uses an arc between a continuous filler metal electrodeand the weld pool. The process is used with shielding froman externally supplied gas and without the application ofpressure.

welding, gas metal-arc, pulsed arc (GMAW-P): a variationof the gas metal-arc welding process in which the currentis pulsed. See also pulsed power welding.

welding, gas metal-arc, short-circuiting arc (GMAW-S): avariation of the gas metal-arc welding process in whichthe consumable electrode is deposited during repeated shortcircuits. See also short-circuiting transfer.

welding, gas tungsten-arc (GTAW): an arc welding processwhich produces coalescence of metals by heating themwith an arc between a tungsten (nonconsumable) electrodeand the work. Shielding is obtained from a gas or gasmixture. Pressure may or may not be used and filler metalmay or may not be used. (This process has sometimes beencalled TIG welding, a nonpreferred term.)

welding, gas tungsten-arc, pulsed arc (GTAW-P): a varia-tion of the gas tungsten-arc welding process in which thecurrent is pulsed. See also pulsed power welding.

welding, induction (IW): a welding process that producescoalescence of metals by the heat obtained from resistanceof the workpieces to the flow of induced high frequen-cywelding current with or without the application of pres-sure. The effect of the high-frequency welding current isto concentrate the welding heat at the desired location.

welding, laser beam (LBW): a welding process which pro-duces coalescence of materials with the heat obtained fromthe application of a concentrated coherent light beamimpinging upon the members to be joined.

welding, machine: welding with equipment that has con-trols that are manually adjusted by the welding operatorin response to visual observation of the welding, with thetorch, gun, or electrode holder held by a mechanical device.See also welding, automatic.

Page 224: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

welding, manual: welding wherein the entire welding oper-ation is performed and controlled by hand.

welding, operator: one who operates machine or automaticwelding equipment.

welding, oxyfuel gas (OFW): a group of welding processeswhich produces coalescence by heating materials with anoxyfuel gas flame or flames, with or without the applicationof pressure, and with or without the use of filler metal.

welding, plasma-arc (PAW): an arc welding process whichproduces coalescence of metals by heating them with aconstricted arc between an electrode and the workpiece(transferred arc), or the electrode and the constricting noz-zle (nontransferred arc). Shielding is obtained from thehot, ionized gas issuing from the torch orifice which maybe supplemented by an auxiliary source of shielding gas.Shielding gas may be an inert gas or a mixture of gases.Pressure may or may not be used, and filler metal may ormay not be supplied.

welding, projection (PW): a resistance welding processthat produces coalescence by the heat obtained from theresistance of the flow of welding current. The resultingwelds are localized at predetermined points by projections,embossments, or intersections. The metals to be joined lapover each other.

welding, resistance (RW): a group of welding processesthat produces coalescence of the faying surfaces with theheat obtained from resistance of the workpieces to the flowof the welding current in a circuit of which the workpiecesare a part, and by the application of pressure.

welding, resistance seam (RSEW): a resistance weldingprocess that produces a weld at the faying surfaces ofoverlapped parts progressively along a length of a joint.The weld may be made with overlapping weld nuggets, acontinuous weld nugget, or by forging the joint as it isheated to the welding temperature by resistance to the flowof the welding current.

welding, resistance spot (RSW): a resistance welding pro-cess that produces a weld at the faying surfaces of a jointby the heat obtained from resistance to the flow of weldingcurrent through the workpieces from electrodes that serveto concentrate the welding current and pressure at theweld area.

welding, resistance stud: a resistance welding processwherein coalescence is produced by the heat obtained fromresistance to electric current at the interface between thestud and the workpiece, until the surfaces to be joined areproperly heated, when they are brought together underpressure.

195

welding, semiautomatic arc: arc welding with equipmentwhich controls only the filler metal feed. The advance ofthe welding is manually controlled.

welding, shielded metal-arc (SMAW): an arc welding pro-cess with an arc between a covered electrode and the weldpool. The process is used with shielding from the decompo-sition of the electrode covering, without the application ofpressure, and with filler metal from the electrode.

welding, stud: a general term for the joining of a metalstud or similar part to a workpiece. Welding may be accom-plished by arc, resistance, friction, or other suitable processwith or without external gas shielding.

welding, submerged-arc (SAW): an arc welding processthat uses an arc or arcs between a bare metal electrode orelectrodes and the weld pool. The arc and molten metalare shielded by a blanket of granular flux on the workpieces.The process is used without pressure and with filler metalfrom the electrode and sometimes from a supplementalsource (welding rod, flux, or metal granules).

weldment: an assembly whose constituent parts are joinedby welding, or parts which contain weld metal overlay.

QW/QB-492.1 TYPICAL SINGLE AND MULTIBEADLAYERS

Layers

Cover beads

11 10 9

786 5

342

1

QW/QB-492.2 TYPICAL SINGLE BEAD LAYERS

Cover bead

Layers

123456

7

Page 225: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

ARTICLE VSTANDARD WELDING PROCEDURE SPECIFICATIONS

(SWPSs)

QW-500 GENERAL

The SWPSs listed in Appendix E are acceptable forconstruction in which the requirements of the ASME Boilerand Pressure Vessel Code, Section IX are specified. Anyrequirements of the applicable Construction Code Sectionregarding SWPS take precedence over the requirements ofSection IX. These SWPSs are not permitted for construc-tion where impact testing of the WPS is required by theConstruction Code.

Only SWPSs (including edition) that have been acceptedin Appendix E within the 1998 Edition or any later editionof Section IX may be used in accordance with this Article.Adoption of SWPSs (including edition) shall be in accor-dance with the current edition (see Foreword) and addendaof Section IX.

QW-510 ADOPTION OF SWPSs

Prior to use, the manufacturer or contractor that willbe responsible for and provide operational control overproduction welding shall comply with the following foreach SWPS that it intends to use, except as noted inQW-520.

(a) Enter the name of the manufacturer or contractoron the SWPS.

(b) An employee of that manufacturer or contractorshall sign and date the SWPS.

(c) The applicable Code Section(s) (Section VIII,B31.1, etc.) and/or any other fabrication document (con-tract, specification, etc.) that must be followed during weld-ing shall be listed on the SWPS.

(d) The manufacturer or contractor shall weld and testone groove weld test coupon following that SWPS. Thefollowing information shall be recorded:

(1) the specification, type, and grade of the base metalwelded

(2) groove design(3) initial cleaning method(4) presence or absence of backing

196

(5) The ASME or AWS specification and AWS clas-sification of electrode or filler metal used and manufactur-er’s trade name

(6) size and classification of tungsten electrode forGTAW

(7) size of consumable electrode or filler metal(8) shielding gas and flow rate for GTAW and

GMAW(9) preheat temperature(10) position of the groove weld and, if applicable,

the progression(11) if more than one process or electrode type is

used, the approximate weld metal deposit thickness foreach process or electrode type

(12) maximum interpass temperature(13) post weld heat treatment used, including holding

time and temperature range(14) visual inspection and mechanical testing results(15) the results of radiographic examination when

permitted as an alternative to mechanical testing byQW-304

(e) The coupon shall be visually examined in accor-dance with QW-302.4 and mechanically tested in accor-dance with QW-302.1 or radiographically examined inaccordance with QW-302.2. If visual examination, radio-graphic examination, or any test specimen fails to meetthe required acceptance criteria, the test coupon shall beconsidered as failed and a new test coupon shall be weldedbefore the organization may use the SWPS.

QW-511 Use of Demonstrated SWPSs

Code Sections or fabrication documents that are requiredto be referenced by QW-510(c) may be added or deletedfrom a demonstrated SWPS without further demonstra-tions.

QW-520 USE OF SWPSs WITHOUT DISCRETEDEMONSTRATION

Once an SWPS has been demonstrated, additionalSWPSs that are similar to the SWPS that was demonstrated

Page 226: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

may be used without further demonstration. Such addi-tional SWPSs shall be compared to the SWPS that wasused for the demonstration, and the following limitationsshall not be exceeded:

(a) a change in the welding process.(b) a change in the P- or S-Number.(c) a change from the as-welded condition to the heat-

treated condition. This limitation also applies for SWPSsthat allow use in both conditions (e.g., SWPS B2.1-021allows production welding with or without heat treatment;if the demonstration was performed without heat treatment,production welding with heat treatment is not permitted).Once heat treatment has been demonstrated for any SWPS,this limitation no longer applies.

(d) a change from a gas-shielded flux-cored wire orsolid wire to a self-shielded flux-cored wire or vice versa.

(e) a change from spray, globular, or pulsed transfermode to short-circuiting transfer mode or vice-versa.

(f) a change in the F-Number of the welding electrode.(g) the addition of preheat above ambient temperature.(h) a change from an SWPS that is identified as for

sheet metal to one that is not and vice versa.

QW-530 FORMS

A suggested Form QW-485 for documenting the weldingconditions and test results of the demonstration is providedin Nonmandatory Appendix B.

QW-540 PRODUCTION USE OF SWPSs

As with any WPS, welding that is done following anSWPS shall be done in strict accordance with the SWPS.In addition, the following conditions apply to the use ofSWPSs:

197

(a) The manufacturer or contractor may not deviatefrom the welding conditions specified on the SWPS.

(b) SWPSs may not be supplemented with PQRs orrevised in any manner except for reference to the applicableCode Section or other fabrication documents as providedby QW-511.

(c) Only the welding processes shown on an SWPSshall be used in given production joint. When a multi-process SWPS is selected, the processes shown on theSWPS shall be used in the order and manner specified onthe SWPS.

(d) SWPSs shall not be used in the same productionjoint together with WPSs qualified by the manufacturer orcontractor.

(e) The manufacturer or contractor may supplement anSWPS by attaching additional instructions to provide thewelder with further direction for making production weldsto Code or other requirements. When SWPSs are supple-mented with instructions that address any condition shownon the SWPS, such instructions shall be within the limitsof the SWPS. For example, when an SWPS permits useof several electrode sizes, supplemental instructions maydirect the welder to use only one electrode size out ofthose permitted by the SWPS; however, the supplementalinstructions may not permit the welder to use a size otherthan one or more of those permitted by the SWPS.

(f) SWPSs may not be used until the demonstration ofQW-510 has been satisfactorily welded, tested, and cer-tified.

(g) The identification number of the Supporting Demon-stration shall be noted on each SWPS that it supports priorto using the SWPS.

(h) The certified Supporting Demonstration Recordshall be available for review by Authorized Inspector.

Page 227: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

PART QB BRAZING

ARTICLE XIBRAZING GENERAL REQUIREMENTS

QB-100 GENERAL

Section IX of the ASME Boiler and Pressure VesselCode relates to the qualification of welders, welding opera-tors, brazers, and brazing operators, and the proceduresthat they employ in welding and brazing according to theASME Boiler and Pressure Vessel Code and the ASMEB31 Code for Pressure Piping. It is divided into two parts:Part QW gives requirements for welding and Part QBcontains requirements for brazing.

QB-100.1 The purpose of the Brazing Procedure Speci-fication (BPS) and Procedure Qualification Record (PQR)is to determine that the brazement proposed for construc-tion is capable of providing the required properties for itsintended application. It is presupposed that the brazer orbrazing operator performing the brazing procedure qualifi-cation test is a skilled workman. That is, the brazing proce-dure qualification test establishes the properties of thebrazement, not the skill of the brazer or brazing operator.Briefly, a BPS lists the variables, both essential and nones-sential, and the acceptable ranges of these variables whenusing the BPS. The BPS is intended to provide directionfor the brazer or brazing operator. The PQR lists what wasused in qualifying the BPS and the test results.

QB-100.2 In performance qualification, the basic crite-rion established for brazer qualification is to determine thebrazer’s ability to make a sound brazed joint. The purposeof the performance qualification test for the brazing opera-tor is to determine the operator’s mechanical ability tooperate the brazing equipment.

QB-100.3 Brazing Procedure Specifications (BPS)written and qualified in accordance with the rules of thisSection, and brazers and operators of automatic andmachine brazing equipment also qualified in accordancewith these rules may be used in any construction built tothe requirements of the ASME Boiler and Pressure Vessel

198

Code or the ASME B31 Code for Pressure Piping.However, other Sections of the Code state the conditions

under which Section IX requirements are mandatory, inwhole or in part, and give additional requirements. Thereader is advised to take these provisions into considerationwhen using this Section.

Brazing Procedure Specifications, Procedure Qualifica-tion Records, and Brazer or Brazing Operator PerformanceQualifications made in accordance with the requirementsof the 1962 Edition or any later Edition of Section IX maybe used in any construction built to the ASME Boiler andPressure Vessel Code or the ASME B31 Code for PressurePiping.

Brazing Procedure Specifications, Procedure Qualifica-tion Records, and Brazer or Brazing Operator PerformanceQualifications made in accordance with the requirementsof the Editions of Section IX prior to 1962, in which allof the requirements of the 1962 Edition or later Editionsare met, may also be used.

Brazing Procedure Specifications and Brazer/BrazingOperator Performance Qualification Records meeting theabove requirements do not need to be amended to includeany variables required by later Editions and Addenda.

Qualification of new Brazing Procedure Specificationsor Brazers/Brazing Operators and requalification ofexisting Brazing Procedure Specifications orBrazers/Brazing Operators shall be in accordance with thecurrent Edition (see Foreword) and Addenda of Section IX.

QB-101 Scope

The rules in this Section apply to the preparation ofBrazing Procedure Specifications, and the qualification ofbrazing procedures, brazers, and brazing operators for alltypes of manual and machine brazing processes permittedin this Section. These rules may also be applied, insofar

Page 228: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

as they are applicable, to other manual or machine brazingprocesses, permitted in other Sections.

QB-102 Terms and Definitions

Some of the more common terms relating to brazing aredefined in QW/QB-492. These are in substantial agreementwith the definitions of the American Welding Society givenin its document, A3.0-89, Standard Welding Terms andDefinitions.

Wherever the word pipe is designated, tubes shall alsobe applicable.

QB-103 ResponsibilityQB-103.1 Brazing. Each manufacturer1 or contractor1

is responsible for the brazing done by his organization,and shall conduct the tests required in this Section to qualifythe brazing procedures he uses in the construction of thebrazed assemblies built under this Code and the perform-ance of brazers and brazing operators who apply theseprocedures.

QB-103.2 Records. Each manufacturer or contractorshall maintain a record of the results obtained in brazingprocedure and brazer or brazing operator performance qual-ifications. These records shall be certified by a signatureor other means as described in the manufacturer’s or con-tractor’s Quality Control System and shall be accessibleto the Authorized Inspector. Refer to recommended Formsin Nonmandatory Appendix B.

QB-110 BRAZE ORIENTATION

The orientations of brazes with respect to planes ofreference are classified in accordance with figure QB-461.1into four positions2 (A, B, C, and D in column 1), basedon the basic flow of brazing filler metal through joints.These positions are flat flow, vertical downflow, verticalupflow, and horizontal flow.

The maximum permitted angular deviation from thespecified flow plane is ±45 deg.

QB-120 TEST POSITIONS FOR LAP, BUTT,SCARF, OR RABBET JOINTS

Brazed joints may be made in test coupons oriented inany of the positions in figure QB-461.2 and as describedin the following paragraphs, except that angular deviationfrom the specified horizontal and vertical flow planes in

1 Wherever these words are used in Section IX, they shall includeinstaller or assembler.

2 In the following paragraphs the word position is synonymous withflow position.

199

accordance with column 1 of figure QB-461.2 is permittedduring brazing.

QB-121 Flat-Flow Position

The test coupon joints in position suitable for applyingbrazing filler metal in rod, strip, or other suitable formunder the flat-flow conditions are shown in illustrations (1)through (5) of Line A in figure QB-461.2. The maximumpermitted angular deviation from the specified flow planeis ±15 deg.

QB-122 Vertical-Downflow Position

The test coupon joints in a position suitable for applyingbrazing filler metal in rod, strip, or other suitable formunder the vertical-downflow conditions are shown in illus-trations (1) through (4) of Line B in figure QB-461.2. Thebrazing filler metal flows by capillary action with the aid ofgravity downward into the joint. The maximum permittedangular deviation from the specified flow plane is ±15 deg.

QB-123 Vertical-Upflow Position

The test coupon joints in position suitable for applyingbrazing filler metal in rod, strip, or other suitable formunder the vertical-upflow conditions are shown in illustra-tions (1) through (4) of Line C in figure QB-461.2. Thebrazing filler metal flows by capillary action through thejoint. The maximum permitted angular deviation from thespecified flow plane is ±15 deg.

QB-124 Horizontal-Flow Position

The test coupon joints in a position suitable for applyingbrazing filler metal in rod, strip, or other suitable formunder the horizontal-flow conditions are shown in illustra-tions (1) and (2) of Line D of figure QB-461.2. The brazingfiller metal flows horizontally by capillary action throughthe joint. The maximum permitted angular deviation fromthe specified flow plane is ±15 deg.

QB-140 TYPES AND PURPOSES OF TESTSAND EXAMINATIONS

QB-141 Tests

Tests used in brazing procedure and performance quali-fications are specified in QB-141.1 through QB-141.6.

QB-141.1 Tension Tests. Tension tests, as describedin QB-150, are used to determine the ultimate strength ofbrazed butt, scarf, lap, and rabbet joints.

QB-141.2 Guided-Bend Tests. Guided-bend tests, asdescribed in QB-160, are used to determine the degree of

Page 229: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

soundness and ductility of butt and scarf joints.

QB-141.3 Peel Tests. Peel tests, as described inQB-170, are used to determine the quality of the bond andthe amount of defects in lap joints.

QB-141.4 Sectioning Tests. Sectioning tests, i.e., thesectioning of test coupons, as described in QB-180, areused to determine the soundness of workmanship couponsor test specimens. Sectioning tests are also a substitute forthe peel test when the peel test is impractical to perform,(e.g., when the strength of brazing filler material is equalto or greater than the strength of the base metals).

QB-141.5 Workmanship Coupons. Workmanshipcoupons, as described in QB-182, are used to determinethe soundness of joints other than the standard butt, scarf,lap, and rabbet joints.

QB-141.6 Visual Examination. Visual examination ofbrazed joints is used for estimating the soundness by exter-nal appearance, such as continuity of the brazing fillermetal, size, contour, and wetting of fillet along the jointand, where appropriate, to determine if filler metal flowedthrough the joint from the side of application to the oppo-site side.

QB-150 TENSION TESTS

QB-151 Specimens

Tension test specimens shall conform to one of the typesillustrated in figures QB-462.1(a) through QB-462.1(f), andshall meet the requirements of QB-153.

QB-151.1 Reduced Section — Plate. Reduced-sectionspecimens conforming to the requirements given in figuresQB-462.1(a) and QB-462.1(c) may be used for tensiontests on all thicknesses of plate. The specimens may betested in a support fixture in substantial accordance withfigure QB-462.1(f).

(a) For thicknesses up to and including 1 in. (25 mm),a full thickness specimen shall be used for each requiredtension test.

(b) For plate thicknesses greater than 1 in. (25 mm),full thickness specimens or multiple specimens may beused, provided QB-151.1(c) and QB-151.1(d) are com-plied with.

(c) When multiple specimens are used in lieu of fullthickness specimens, each set shall represent a single ten-sion test of the full plate thickness. Collectively, all of thespecimens required to represent the full thickness of thebrazed joint at one location shall comprise a set.

(d) When multiple specimens are necessary, the entirethickness shall be mechanically cut into a minimum num-ber of approximately equal strips of a size that can betested in the available equipment. Each specimen of the

200

set shall be tested and meet the requirements of QB-153.

QB-151.2 Reduced Section — Pipe. Reduced-sectionspecimens conforming to the requirements given in figureQB-462.1(b) may be used for tension tests on all thick-nesses of pipe or tube having an outside diameter greaterthan 3 in. (75 mm). The specimens may be tested in asupport fixture in substantial accordance with figureQB-462.1(f).

(a) For thicknesses up to and including 1 in. (25 mm),a full thickness specimen shall be used for each requiredtension test.

(b) For pipe thicknesses greater than 1 in. (25 mm), fullthickness specimens or multiple specimens may be used,provided QB-151.2(c) and QB-151.2(d) are complied with.

(c) When multiple specimens are used in lieu of fullthickness specimens, each set shall represent a single ten-sion test of the full pipe thickness. Collectively, all of thespecimens required to represent the full thickness of thebrazed joint at one location shall comprise a set.

(d) When multiple specimens are necessary, the entirethickness shall be mechanically cut into a minimum num-ber of approximately equal strips of a size that can betested in the available equipment. Each specimen of theset shall be tested and meet the requirements of QB-153.

QB-151.3 Full-Section Specimens for Pipe. Tensionspecimens conforming to the dimensions given in figureQB-462.1(e) may be used for testing pipe with an outsidediameter of 3 in. (75 mm) or less.

QB-152 Tension Test Procedure

The tension test specimen shall be ruptured under tensileload. The tensile strength shall be computed by dividingthe ultimate total load by the least cross-sectional area ofthe specimen as measured before the load is applied.

QB-153 Acceptance Criteria — Tension TestsQB-153.1 Tensile Strength. Minimum values for pro-

cedure qualification are provided under the column heading“Minimum Specified Tensile” of table QW/QB-422. Inorder to pass the tension test, the specimen shall have atensile strength that is not less than

(a) the specified minimum tensile strength of the basemetal in the annealed condition; or

(b) the specified minimum tensile strength of the weakerof the two in the annealed condition, if base metals ofdifferent specified minimum tensile strengths are used; or

(c) if the specimen breaks in the base metal outsideof the braze, the test shall be accepted as meeting therequirements, provided the strength is not more than 5%below the minimum specified tensile strength of the basemetal in the annealed condition.

Page 230: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(d) the specified minimum tensile strength is for fullthickness specimens including cladding for AluminumAlclad materials (P-No. 104 and P-No. 105) less than 1⁄2 in.(13 mm). For Aluminum Alclad materials 1⁄2 in. (13 mm)and greater, the specified minimum tensile strength is forboth full thickness specimens that include cladding andspecimens taken from the core.

QB-160 GUIDED-BEND TESTSQB-161 Specimens

Guided-bend test specimens shall be prepared by cuttingthe test plate or pipe to form specimens of approximatelyrectangular cross section. The cut surfaces shall be desig-nated the sides of the specimen. The other two surfacesshall be designated the first and second surfaces. The speci-men thickness and bend radius are shown in figuresQB-466.1, QB-466.2, and QB-466.3. Guided-bend speci-mens are of five types, depending on whether the axis ofthe joint is transverse or parallel to the longitudinal axisof the specimen, and which surface (first or second) is onthe convex (outer) side of the bent specimen. The fivetypes are defined as follows (QB-161.1 through QB-161.6).

QB-161.1 Transverse First Surface Bend. The jointis transverse to the longitudinal axis of the specimen, whichis bent so that the first surface becomes the convex surfaceof the bent specimen. In general, the first surface is definedas that surface from which the brazing filler metal is appliedand is fed by capillary attraction into the joint. Transversefirst surface bend specimens shall conform to the dimen-sions shown in figure QB-462.2(a). For subsize first surfacebends, see QB-161.3.

QB-161.2 Transverse Second Surface Bend. The jointis transverse to the longitudinal axis of the specimen, whichis bent so that the second surface becomes the convexsurface of the bent specimen. In general, the second surfaceis defined as the surface opposite to that from which thebrazing filler metal is placed or fed, but definitely is thesurface opposite to that designated as the first surface,irrespective of how the brazing filler metal is fed. Trans-verse second surface bend specimens shall conform to thedimensions shown in figure QB-462.2(a). For subsize firstsurface bends, see QB-161.3.

QB-161.3 Subsize Transverse Bend. In those caseswhere the wall thickness of the tube or pipe is less than3⁄8 in. (10 mm) and the diameter-to-thickness ratio does notpermit the preparation of full-size rectangular guided-bendspecimens, the 11⁄2 in. (38 mm) wide standard guided-bendspecimen shown in figure QB-462.2(a) may be replacedby three subsize specimens having a width of 3⁄8 in. (10 mm)or 4t, whichever is less.

QB-161.4 Longitudinal-Bend Tests. Longitudinal-bend tests may be used in lieu of the transverse-bend tests

201

for testing braze metal or base metal combinations, whichdiffer markedly in bending properties between

(a) the two base metals; or(b) the braze metal and the base metal.

QB-161.5 Longitudinal First Surface Bend. The jointis parallel to the longitudinal axis of the specimen, whichis bent so that the first surface becomes the convex surfaceof the bent specimen. The definition of first surface is asgiven in QB-161.1. Longitudinal first surface bend speci-mens shall conform to the dimensions given in figureQB-462.2(b).

QB-161.6 Longitudinal Second Surface Bend. Thejoint is parallel to the longitudinal axis of the specimen,which is bent so that the second surface becomes the con-vex surface of the specimen. The definition of the secondsurface is given in QB-161.2. Longitudinal second surfacebend specimens shall conform to the dimensions given infigure QB-462.2(b).

QB-162 Guided-Bend Test ProcedureQB-162.1 Jigs. Guided-bend specimens shall be bent

in test jigs that are in substantial accordance with QB-466.When using the jigs in accordance with figure QB-466.1or figure QB-466.2, the side of the specimen turned towardthe gap of the jig shall be the first surface for first surfacebend specimens (defined in QB-161.1), and the secondsurface for second surface bend specimens (defined inQB-161.2). The specimen shall be forced into the die byapplying load on the plunger until the curvature of thespecimen is such that a 1⁄8 in. (3 mm) diameter wire cannotbe inserted between the specimen and the die of figureQB-466.1, or the specimen is bottom ejected, if the rollertype of jig (figure QB-466.2) is used.

When using the wrap around jig (figure QB-466.3) theside of the specimen turned toward the roller shall be thefirst surface for first surface bend specimens, and the secondsurface for second surface bend specimens.

QB-163 Acceptance Criteria — Bend Tests

The joint of a transverse-bend specimen shall be com-pletely within the bent portion of the specimen after testing.

The guided-bend specimens shall have no open disconti-nuities exceeding 1⁄8 in. (3 mm), measured in any directionon the convex surface of the specimen after bending.Cracks occurring on the corners of the specimen duringtesting shall not be considered, unless there is definiteevidence that they result from flux inclusions, voids, orother internal discontinuities.

QB-170 PEEL TESTSQB-171 Specimens

The dimensions and preparation of the peel test specimenshall conform to the requirements of figure QB-462.3.

Page 231: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-172 Acceptance Criteria — Peel Test

In order to pass the peel test, the specimens shall showevidence of brazing filler metal along each edge of thejoint. Specimens shall be separated or peeled either byclamping Section A and striking Section B with a suitabletool such that the bending occurs at the fulcrum point (seefigure QB-462.3), or by clamping Section A and Section Bin a machine suitable for separating the sections undertension. The separated faying surfaces of joints shall meetthe following criteria:

(a) The total area of discontinuities (unbrazed areas,flux inclusions, etc.) shall not exceed 25% of the total areaof any individual faying surface.

(b) The sum of the lengths of the discontinuities mea-sured on any one line in the direction of the lap shall notexceed 25% of the lap.

(c) No discontinuity shall extend continuously from oneedge of the joint to the other edge, irrespective of itsdirection.

202

QB-180 SECTIONING TESTS ANDWORKMANSHIP COUPONS

QB-181 Sectioning Test Specimens

The dimensions and configuration of the sectioning testspecimens shall conform to the requirements of figureQB-462.4. Each side of the specimen shall be polished andexamined with at least a four-power magnifying glass.The sum of the length of unbrazed areas on either side,considered individually, shall not exceed 20% of the lengthof the joint overlap.

QB-182 Workmanship Coupons

The dimensions and configuration of the workmanshipcoupon shall conform to the nearest approximation of theactual application. Some typical workmanship coupons areshown in figure QB-462.5. Each side of the specimen shallbe polished and examined with at least a four-power magni-fying glass. The sum of the length of unbrazed areas oneither side, considered individually, shall not exceed 20%of the length of the joint overlap.

Page 232: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

ARTICLE XIIBRAZING PROCEDURE QUALIFICATIONS

QB-200 GENERALQB-200.1 Each manufacturer or contractor shall pre-

pare written Brazing Procedure Specifications, which aredefined as follows.

(a) Brazing Procedure Specification (BPS). A BPS is awritten qualified brazing procedure prepared to providedirection for making production brazes to Code require-ments. The BPS or other documents [see QB-200.1(e)]may be used to provide direction to the brazer or brazingoperator to assure compliance with the Code requirements.

(b) Contents of the BPS. The completed BPS shalldescribe all of the essential and nonessential variables foreach brazing process used in the BPS. These variables arelisted in QB-250 and are defined in Article XIV, Braz-ing Data.

The BPS shall reference the supporting Procedure Quali-fication Record(s) (PQR) described in QB-200.2. The man-ufacturer or contractor may include any other informationin the BPS that may be helpful in making a Code braze.

(c) Changes to the BPS. Changes may be made in thenonessential variables of a BPS to suit production require-ments without requalification provided such changes aredocumented with respect to the essential and nonessentialvariables for each process. This may be by amendment tothe BPS or by use of a new BPS.

Changes in essential variables require requalification ofthe BPS [new or additional PQRs to support the changein essential variable(s)].

(d) Format of the BPS. The information required to bein the BPS may be in any format, written or tabular, to fitthe needs of each manufacturer or contractor, as long asevery essential and nonessential variable outlined inQB-250 is included or referenced.

Form QB-482 (see Nonmandatory Appendix B) has beenprovided as a guide for the BPS. It is only a guide anddoes not list all required data for all brazing processes.

(e) Availability of the BPS. A BPS used for Code pro-duction brazing shall be available for reference and reviewby the Authorized Inspector (AI) at the fabrication site.

QB-200.2 Each manufacturer or contractor shall berequired to prepare a procedure qualification record, whichis defined as follows.

203

(a) Procedure Qualification Record (PQR). A PQR isa record of the brazing data used to braze a test coupon.The PQR is a record of variables recorded during thebrazing of the test coupons. It also contains the test resultsof the tested specimens. Recorded variables normally fallwithin a small range of the actual variables that will beused in production brazing.

(b) Contents of the PQR. The completed PQR shalldocument all essential variables of QB-250 for each braz-ing process used during the brazing of the test coupon.Nonessential or other variables used during the brazing ofthe test coupon may be recorded at the manufacturer’s orcontractor’s option. All variables, if recorded, shall be theactual variables (including ranges) used during the brazingof the test coupon. If variables are not monitored duringbrazing, they shall not be recorded. It is not intended thatthe full range or the extreme of a given range of variablesto be used in production be used during qualification unlessrequired due to a specific essential variable.

The PQR shall be certified accurate by the manufactureror contractor. The manufacturer or contractor may notsubcontract the certification function. This certification isintended to be the manufacturer’s or contractor’s verifica-tion that the information in the PQR is a true record of thevariables that were used during the brazing of the testcoupon and that the resulting tensile, bend, peel, or section(as required) test results are in compliance with Section IX.

(c) Changes to the PQR. Changes to the PQR are notpermitted, except as described below. It is a record ofwhat happened during a particular brazing test. Editorialcorrections or addenda to the PQR are permitted. An exam-ple of an editorial correction is an incorrect P-Number orF-Number that was assigned to a particular base materialor filler metal. An example of an addendum would be achange resulting from a Code change. For example,Section IX may assign a new F-Number to a filler materialor adopt a new filler material under an establishedF-Number. This may permit, depending on the particularconstruction Code requirements, a manufacturer or con-tractor to use other filler metals that fall within that particu-lar F-Number where, prior to the Code revision, themanufacturer or contractor was limited to the particularelectrode classification that was used during qualification.

Page 233: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

Additional information can be incorporated into a PQR ata later date provided the information is substantiated ashaving been part of the original qualification condition bylab record or similar data.

All changes to a PQR require recertification (includingdate) by the manufacturer or contractor.

(d) Format of the PQR. Form QB-483 (see Nonmanda-tory Appendix B) has been provided as a guide for thePQR. The information required to be in the PQR may bein any format, to fit the needs of each manufacturer orcontractor, as long as every essential variable, required byQB-250, is included. Also the type of tests, number oftests, and test results shall be listed in the PQR. Additionalsketches or information may be attached or referenced torecord the required variables.

(e) Availability of the PQR. PQRs used to support BPSsshall be available, upon request, for review by the Author-ized Inspector (AI). The PQR need not be available to thebrazer or brazing operator.

(f) Multiple BPSs With One PQR/Multiple PQRs WithOne BPS. Several BPSs may be prepared from the dataon a single PQR (e.g., a vertical-upflow pipe PQR maysupport BPSs for the vertical-upflow and downflow posi-tions on pipe within all other essential variables). A singleBPS may cover several essential variable changes as longas a supporting PQR exists for each essential variable.

QB-200.3 To reduce the number of brazing procedurequalifications required, P-Numbers are assigned to basemetals dependent on characteristics such as composition,brazability, and mechanical properties, where this can logi-cally be done, and for ferrous and nonferrous metals.

The assignments do not imply that base metals may beindiscriminately substituted for a base metal which wasused in the qualification test without consideration of thecompatibility from the standpoint of metallurgical proper-ties, postbraze heat treatment, design, mechanical proper-ties, and service requirements. For certain materialspermitted by the ASME/ANSI B31 Code for Pressure Pip-ing or by selected Code Cases of the ASME Boiler andPressure Vessel Code, S-Number groupings are assigned.These groupings are similar to the P-Number groupingsof table QW/QB-422. Qualification limits are given inQW-420.2.

QB-200.4 Dissimilar Base Metal Thicknesses. A BPSqualified on test coupons of equal thickness shall be appli-cable for production brazements between dissimilar basemetal thicknesses provided the thickness of both base met-als are within the qualified thickness range permitted byQB-451. A BPS qualified on test coupons of differentthicknesses shall be applicable for production brazementsbetween dissimilar base metal thicknesses provided thethickness of each base metal is within the qualified range

204

of thickness (based on each test coupon thickness) permit-ted by QB-451.

QB-201 Manufacturer’s or Contractor’sResponsibility

Each manufacturer or contractor shall list the parametersapplicable to brazing that he performs in construction ofbrazements built in accordance with this Code. Theseparameters shall be listed in a document known as a Braz-ing Procedure Specification (BPS).

Each manufacturer or contractor shall qualify the BPSby the brazing of test coupons and the testing of specimens(as required in this Code), and the recording of the brazingdata and test results in a document known as a ProcedureQualification Record (PQR). The brazers or brazing opera-tors used to produce brazements to be tested for qualifica-tion of procedures shall be under the full supervision andcontrol of the manufacturer or contractor during the produc-tion of these test brazements. It is not permissible for themanufacturer or contractor to have the brazing of the testbrazements performed by another organization. It is per-missible, however, to subcontract any or all of the workof preparation of test metal for brazing and subsequentwork on preparation of test specimens from the completedbrazement, performance of nondestructive examination,and mechanical tests, provided the manufacturer or con-tractor accepts the responsibility for any such work.

The Code recognizes a manufacturer or contractor asthe organization which has responsible operational controlof the production of the brazements to be made in accor-dance with this Code. If in an organization effective opera-tional control of brazing procedure qualification for twoor more companies of different names exists, the companiesinvolved shall describe in their Quality Controlsystem/Quality Assurance Program, the operational controlof procedure qualifications. In this case separate brazingprocedure qualifications are not required, provided all otherrequirements of Section IX are met.

A BPS may require the support of more than one PQR,while alternatively, one PQR may support a number ofBPSs.

The manufacturer or contractor shall certify that he hasqualified each Brazing Procedure Specification, performedthe procedure qualification test, and documented it withthe necessary Procedure Qualification Record (PQR).

QB-201.1 The Code recognizes that manufacturers orcontractors may maintain effective operational control ofPQRs and BPSs under different ownership than existedduring the original procedure qualification. When a manu-facturer or contractor or part of a manufacturer or contrac-tor is acquired by a new owner(s), the PQRs and BPSsmay be used by the new owner(s) without requalificationprovided all of the following are met:

Page 234: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(a) the new owner(s) takes responsibility for the BPSsand PQRs

(b) the BPSs reflect the name of the new owner(s)(c) the Quality Control System/Quality Assurance Pro-

gram reflects the source of the PQRs as being from theformer manufacturer or contractor

QB-202 Type of Tests Required

QB-202.1 Tests. The type and number of test specimenswhich shall be tested to qualify a brazing procedure aregiven in QB-451, and shall be removed in a manner similarto that shown in QB-463. If any test specimen required byQB-451 fails to meet the applicable acceptance criteria,the test coupon shall be considered as failed.

When it can be determined that the cause of failure isnot related to brazing parameters, another test coupon maybe brazed using identical brazing parameters. Alternatively,if adequate material of the original test coupon exists,additional test specimens may be removed as close aspracticable to the original specimen location to replace thefailed test specimens.

When it has been determined that the test failure wascaused by an essential variable, a new test coupon may bebrazed with appropriate changes to the variable(s) that weredetermined to cause the test failure. If the new test passes,the essential variables shall be documented on the PQR.

When it is determined that the test failure was causedby one or more brazing conditions other than essentialvariables, a new test coupon may be brazed with the appro-priate changes to brazing conditions that were determinedto cause the test failure. If the new test passes, the brazingconditions that were determined to cause the previous testfailure shall be addressed by the manufacturer to assurethat the required properties are achieved in the productionbrazement.

QB-202.2 Base Metals. The procedure qualificationshall encompass the thickness ranges to be used in produc-tion for the base metals to be joined or repaired. The rangeof thickness qualified is given in QB-451.

QB-203 Limits of Qualified Flow Positions forProcedures (See figures QB-461.1 andQB-461.2)

QB-203.1 For plate, qualification in the flat-flow, verti-cal-upflow, or horizontal-flow position shall qualify for thevertical-downflow position. For pipe, qualification in thehorizontal-flow or vertical-upflow position shall qualifyfor the vertical-downflow position.

205

Qualification in pipe shall qualify for plate, but not viceversa. Horizontal-flow in pipe shall also qualify for flat-flow in plate.

QB-203.2 Special Flow Positions. A fabricator whodoes production brazing in a special orientation may makethe tests for procedure qualification in this specific orienta-tion. Such qualifications are valid only for the flow posi-tions actually tested, except that an angular deviation of±15 deg is permitted in the inclination of the braze plane,as defined in figures QB-461.1 and QB-461.2.

QB-203.3 The brazing process must be compatible,and the brazing filler metals, such as defined in the specifi-cations of Section II, Part C, must be suitable for their usein specific flow positions. A brazer or brazing operatormaking and passing the BPS qualification test is therebyqualified for the flow position tested (see QB-301.2).

QB-210 PREPARATION OF TEST COUPONQB-211 Base Metal and Filler Metal

The base metals and filler metals shall be one or moreof those listed in the BPS. The dimensions of the testassembly shall be sufficient to provide the required testspecimens.

The base metals may consist of either plate, pipe, orother product forms. Qualification in pipe also qualifiesfor plate brazing, but not vice versa.

QB-212 Type and Dimension of Joints

The test coupon shall be brazed using a type of jointdesign proposed in the BPS for use in construction.

QB-250 BRAZING VARIABLESQB-251 General

QB-251.1 Types of Variables for Brazing ProcedureSpecification (BPS). Brazing variables (listed for eachbrazing process in tables QB-252 through QB-257) aresubdivided into essential and nonessential variables(QB-401).

QB-251.2 Essential Variables. Essential variables arethose in which a change, as described in the specific vari-ables, is considered to affect the mechanical properties ofthe brazement, and shall require requalification of the BPS.

QB-251.3 Nonessential Variables. Nonessential vari-ables are those in which a change, as described in thespecific variables, may be made in the BPS without requali-fication.

Page 235: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-252TORCH BRAZING (TB)

Paragraph 252.1 Essential Variables 252.2 Nonessential Variables

QB-402 Base Metal QB-402.1 . . .QB-402.3 . . .

QB-403 Brazing Filler Metal QB-403.1 . . .QB-403.2 . . .

QB-406 Brazing Flux, Gas, or QB-406.1 QB-406.3Atmosphere

QB-407 Flow Position QB-407.1 . . .

QB-408 Joint Design QB-408.2 . . .QB-408.4 . . .

QB-409 Postbraze Heat Treatment QB-409.1 . . .QB-409.2 . . .QB-409.3 . . .

QB-410 Technique . . . QB-410.1. . . QB-410.2. . . QB-410.3. . . QB-410.4. . . QB-410.5

QB-253FURNACE BRAZING (FB)

Paragraph 253.1 Essential Variables 253.2 Nonessential Variables

QB-402 Base Metal QB-402.1 . . .QB-402.3 . . .

QB-403 Brazing Filler Metal QB-403.1 . . .QB-403.2 . . .

QB-404 Brazing Temperature QB-404.1 . . .

QB-406 Brazing Flux, Gas, or QB-406.1 . . .Atmosphere QB-406.2 . . .

QB-407 Flow Position QB-407.1 . . .

QB-408 Joint Design QB-408.2 . . .QB-408.4 . . .

QB-409 Postbraze Heat Treatment QB-409.1 . . .QB-409.2 . . .QB-409.3 . . .

QB-410 Technique . . . QB-410.1. . . QB-410.2

206

Page 236: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-254INDUCTION BRAZING (IB)

Paragraph 254.1 Essential Variables 254.2 Nonessential Variables

ParagraphQB-402 Base Metal QB-402.1 . . .QB-402.3 . . .

QB-403 Brazing Filler Metal QB-403.1 . . .QB-403.2 . . .

QB-404 Brazing Temperature QB-404.1 . . .

QB-406 Brazing Flux, Gas, or QB-406.1 . . .Atmosphere

QB-407 Flow Position QB-407.1 . . .

QB-408 Joint Design QB-408.2 . . .QB-408.4 . . .

QB-409 Postbraze Heat Treatment QB-409.1 . . .QB-409.2 . . .

QB-409.3 . . .

QB-410 Technique . . . QB-410.1. . . QB-410.2

QB-255RESISTANCE BRAZING (RB)

Paragraph 255.1 Essential Variables 255.2 Nonessential Variables

QB-402 Base Metal QB-402.1 . . .QB-402.3 . . .

QB-403 Brazing Filler Metal QB-403.1 . . .QB-403.2 . . .

QB-404 Brazing Temperature QB-404.1 . . .

QB-406 Brazing Flux, Gas, or QB-406.1 . . .Atmosphere

QB-407 Flow Position QB-407.1 . . .

QB-408 Joint Design QB-408.2 . . .

QB-408.4 . . .

QB-409 Postbraze Heat Treatment QB-409.1 . . .

QB-409.2 . . .

QB-409.3 . . .

QB-410 Technique . . . QB-410.1. . . QB-410.2

207

Page 237: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-256DIP BRAZING — SALT OR FLUX BATH (DB)

Paragraph 256.1 Essential Variables 256.2 Nonessential Variables

QB-402 Base Metal QB-402.1 . . .QB-402.3 . . .

QB-403 Brazing Filler Metal QB-403.1 . . .QB-403.2 . . .

QB-404 Brazing Temperature QB-404.1 . . .

QB-406 Brazing Flux, Gas, or QB-406.1 . . .Atmosphere

QB-407 Flow Position QB-407.1 . . .

QB-408 Joint Design QB-408.2 . . .QB-408.4 . . .

QB-409 Postbraze Heat Treatment QB-409.1 . . .QB-409.2 . . .QB-409.3 . . .

QB-410 Technique . . . QB-410.1. . . QB-410.2

QB-257DIP BRAZING — MOLTEN METAL BATH (DB)

Paragraph 257.1 Essential Variables 257.2 Nonessential Variables

QB-402 Base Metal QB-402.1 . . .QB-402.3 . . .

QB-403 Brazing Filler Metal QB-403.1 . . .QB-403.2 . . .

QB-404 Brazing Temperature QB-404.1 . . .

QB-406 Brazing Flux, Gas, or QB-406.1 . . .Atmosphere

QB-407 Flow Position QB-407.1 . . .

QB-408 Joint Design QB-408.2 . . .QB-408.4 . . .

QB-409 Postbraze Heat Treatment QB-409.1 . . .QB-409.2 . . .QB-409.3 . . .

QB-410 Technique . . . QB-410.1. . . QB-410.2

208

Page 238: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

ARTICLE XIIIBRAZING PERFORMANCE QUALIFICATIONS

QB-300 GENERALQB-300.1 This Article lists the brazing processes sepa-

rately, with the essential variables which apply to brazerand brazing operator performance qualifications.

The brazer qualification is limited by the essential vari-ables given for each brazing process. These variables arelisted in QB-350, and are defined in Article XIV, BrazingData. The brazing operator qualification is limited by theessential variables given in QB-350 for each brazingprocess.

QB-300.2(a) The basic premises of responsibility in regard to

brazing are contained within QB-103 and QB-301.2. Theseparagraphs require that each manufacturer or contractorshall be responsible for conducting tests to qualify theperformance of brazers and brazing operators in accordancewith one of his qualified Brazing Procedure Specifications,which his organization employs in the construction ofbrazements built in accordance with the Code. The purposeof this requirement is to ensure that the manufacturer orcontractor has determined that his brazers and brazing oper-ators using his procedures are capable of developing theminimum requirements specified for an acceptablebrazement. This responsibility cannot be delegated toanother organization.

(b) The brazers or brazing operators used to producesuch brazements shall be tested under the full supervisionand control of the manufacturer or contractor during theproduction of these test brazements. It is not permissiblefor the manufacturer or contractor to have the brazingperformed by another organization. It is permissible, how-ever, to subcontract any or all of the work of preparationof test materials for brazing, subsequent work on the prepa-ration of test specimens from the completed brazement,and performance of nondestructive examination andmechanical tests, provided the manufacturer or contractoraccepts full responsibility for any such work.

(c) The Code recognizes a manufacturer or contractoras the organization which has responsible operational con-trol of the production of the brazement to be made inaccordance with this Code. If in an organization effectiveoperational control of the brazer performance qualificationfor two or more companies of different names exists, the

209

companies involved must establish, to the satisfaction ofthe ASME Boiler and Pressure Vessel Committee, that thenecessary controls are applied, in which case requalifica-tion of brazers and brazing operators within the companiesof such an organization will not be required, provided allother requirements of Section IX are met.

(d) The Code recognizes that manufacturers or contrac-tors may maintain effective operational control of Brazer/Brazing Operator Performance Qualification (BPQ) rec-ords under different ownership than existed during theoriginal Brazer or Brazing Operator qualification. When amanufacturer or contractor or part of a manufacturer orcontractor is acquired by a new owner(s), the BPQs maybe used by the new owner(s) without requalification, pro-vided all of the following are met:

(1) the new owner(s) takes responsibility for theBPQs

(2) the BPQs reflect the name of the new owner(s)(3) the Quality Control System/Quality Assurance

Program reflects the source of the BPQs as being from theformer manufacturer or contractor

QB-300.3 More than one manufacturer or contractormay simultaneously qualify one or more brazers or brazingoperators. When simultaneous qualifications are con-ducted, each participating organization shall be representedby a responsible employee during brazing of the testcoupons.

The brazing procedure specifications (BPS) that are fol-lowed during simultaneous qualifications shall be com-pared by the participating organizations. The BPSs shallbe identical for all essential variables, except that the flowposition, base metal thickness, and overlap lengths neednot be identical, but they shall be adequate to permit brazingof the test coupons. Alternatively, the participating organi-zations shall agree upon the use of a single BPS, providedeach participating organization has a PQR(s) to supportthe BPS covering the range of variables to be followed inthe performance qualification. When a single BPS is to befollowed, each participating organization shall review andaccept that BPS.

Each participating organization’s representative shallpositively identify each brazer or brazing operator who isbeing tested. Each organizational representative shall also

Page 239: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

verify marking of the test coupon with the brazer’s orbrazing operator’s identification, and marking of the topof the test coupon when the orientation must be known inorder to remove test specimens.

Each organizational representative shall complete andcertify a Record of Brazer or Brazing Operator Qualifica-tion (Form QB-484 or equivalent) for each brazer or braz-ing operator.

When a brazer or brazing operator changes employers,that new participating organization shall verify that thebrazer’s continuity of qualifications has been maintainedas required by QB-322 by previous employers since hisqualification date. If the brazer or brazing operator hashad his qualification withdrawn for specific reasons, theemploying organization shall notify all participating orga-nizations that the brazer’s or brazing operator’s qualifica-tion(s) has been revoked in accordance with QB-322(b).The new organization shall determine that the brazer orbrazing operator can perform satisfactory work in accor-dance with this Section.

When a brazer’s or brazing operator’s qualifications arerenewed in accordance with the provisions of QB-322, eachrenewing organization shall be represented by a responsibleemployee and the testing procedures shall follow the rulesof this paragraph.

QB-301 Tests

QB-301.1 Intent of Tests. The performance qualifica-tion tests are intended to determine the ability of brazersand brazing operators to make sound braze joints.

QB-301.2 Qualification Tests. Each manufacturer orcontractor shall qualify each brazer or brazing operator foreach brazing process to be used in production brazing. Theperformance qualification test shall be brazed in accordancewith one of any of his qualified Brazing Procedure Specifi-cations (BPS).

The brazer or brazing operator who prepares the BPSqualification test coupons is also qualified within the limitsof the performance qualifications, listed in QB-304 forbrazers and in QB-305 for brazing operators. He is qualifiedonly for the positions tested in the procedure qualificationin accordance with QB-407.

The performance test may be terminated at any stage ofthe testing procedure, whenever it becomes apparent to thesupervisor conducting the tests that the brazer or brazingoperator does not have the required skill to produce satis-factory results.

QB-301.3 Identification of Brazers and BrazingOperators. Each qualified brazer and brazing operatorshall be assigned an identifying number, letter, or symbolby the manufacturer or contractor, which shall be used toidentify the work of that brazer or brazing operator.

210

QB-301.4 Record of Tests. The record of Brazer orBrazing Operator Performance Qualification (BPQ) testsshall include the essential variables (QB-350), the typeof tests and the test results, and the ranges qualified inaccordance with QB-452 for each brazer and brazing opera-tor. A suggested form for these records is given in FormQB-484 (see Nonmandatory Appendix B).

QB-302 Type of Test RequiredQB-302.1 Test Specimens. The type and number of

test specimens required shall be in accordance withQB-452, and shall be removed in a manner similar to thatshown in QB-463.

All test specimens shall meet the requirements pre-scribed in QB-170 or QB-180, as applicable. Tests forbrazing operators shall meet the requirements of QB-305.

QB-302.2 Test Coupons in Pipe. For test couponsmade in pipe, specimens shall be removed as shown infigure QB-463.2(c) at approximately 180 deg apart.

QB-302.3 Combination of Base Metal Thicknesses.When joints are brazed between two base metals of differ-ent thicknesses, a performance qualification shall be madefor the applicable combination of thicknesses, even thoughqualification tests have been made for each of the individualbase metals brazed to itself. The range of thickness of eachof the base metals shall be determined individually perQB-452.

QB-303 Limits of Qualified Positions(See figures QB-461.1 and QB-461.2)

QB-303.1 For plate, qualification in the flat-flow, verti-cal-upflow, or horizontal-flow positions shall qualify forthe vertical-downflow position.

QB-303.2 For pipe, qualification in either the hori-zontal-flow or vertical-upflow position shall qualify for thevertical-downflow position.

QB-303.3 Qualification in pipe shall qualify for plate,but not vice versa. Horizontal-flow in pipe shall qualifyfor flat-flow in plate.

QB-303.4 Special Positions. A fabricator who doesproduction brazing in a special orientation may make thetests for performance qualification in this specific orienta-tion. Such qualifications are valid only for the flow posi-tions actually tested, except that an angular deviation of±15 deg is permitted in the inclination of the braze plane,as defined in figures QB-461.1 and QB-461.2.

QB-304 Brazers

Each brazer who brazes under the rules of this Code shallhave passed the tests prescribed in QB-302 for performancequalifications.

Page 240: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

A brazer qualified to braze in accordance with one quali-fied BPS is also qualified to braze in accordance with otherqualified BPSs, using the same brazing process, within thelimits of the essential variables of QB-350.

QB-305 Brazing Operators

The brazing operator who prepares brazing procedurequalification test specimens meeting requirements ofQB-451 is thereby qualified. Alternatively, each brazingoperator who brazes on vessels constructed under the rulesof this Code shall be qualified for each combination ofessential variables under which brazing is performed usingsemiautomatic or automatic processes (such as the resist-ance, induction, or furnace processes) as follows:

(a) A typical joint or workmanship coupon embodyingthe requirements of a qualified brazing procedure shall bebrazed and sectioned. Typical joints are shown in figureQB-462.5.

(b) In order to ensure that the operator can carry outthe provisions of the brazing procedure, the test sectionsrequired in QB-305(a) shall meet the requirements ofQB-452.

QB-310 QUALIFICATION TEST COUPONSQB-310.1 Test Coupons. The test coupons may be

plate, pipe, or other product forms. The dimensions of thetest coupon and length of braze shall be sufficient to providethe required test specimens.

QB-310.2 Braze Joint. The dimensions of the brazejoint at the test coupon used in making qualification testsshall be the same as those in the Brazing Procedure Speci-fication (BPS).

QB-310.3 Base Metals. When a brazer or brazing oper-ator is to be qualified, the test coupon shall be base metalof the P-Number or P-Numbers to be joined in productionbrazing.

QB-320 RETESTS AND RENEWAL OFQUALIFICATION

QB-321 Retests

A brazer or brazing operator who fails to meet therequirements for one or more of the test specimens pre-scribed in QB-452 may be retested under the followingconditions.

QB-321.1 Immediate Retest. When an immediateretest is made, the brazer or brazing operator shall maketwo consecutive test coupons for each position which hehas failed, all of which shall pass the test requirements.

QB-321.2 Further Training. When the brazer or braz-ing operator has had further training or practice, a complete

211

retest shall be made for each position on which he failedto meet the requirements.

QB-322 Renewal of Qualification

Renewal of qualification of a performance qualificationis required

(a) when a brazer or brazing operator has not used thespecific brazing process for a period of 6 months or more, or

(b) when there is a specific reason to question his abilityto make brazes that meet the specification. Renewal ofqualification for a specific brazing process underQB-322(a) may be made with specific brazing process bymaking only one test joint (plate or pipe) with all theessential variables used on any one of the brazer’s or braz-ing operator’s previous qualification test joints. This willreestablish the brazer’s or brazing operator’s qualificationfor all conditions for which he had previously qualifiedwith the specific brazing process.

QB-350 BRAZING VARIABLES FORBRAZERS AND BRAZINGOPERATORS

QB-351 General

A brazer or brazing operator shall be requalified when-ever a change is made in one or more of the essentialvariables for each brazing process, as follows:

(a) Torch Brazing (TB)(b) Furnace Brazing (FB)(c) Induction Brazing (IB)(d) Resistance Brazing (RB)(e) Dip Brazing (DB)

QB-351.1 Essential Variables — Manual, Semiauto-matic, and Machine Brazing

(a) QB-402 Base Metal(1) QB-402.2(2) QB-402.3

(b) QB-403 Brazing Filler Metal(1) QB-403.1(2) QB-403.2

(c) QB-407 Flow Position(1) QB-407.1

(d) QB-408 Joint Design(1) QB-408.1(2) QB-408.3

(e) QB-410 Technique(1) QB-410.5

QB-351.2 Essential Variables — Automatic(a) A change from automatic to machine brazing.(b) A change in brazing process.

Page 241: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

ARTICLE XIVBRAZING DATA

QB-400 VARIABLESQB-401 General

QB-401.1 Each brazing variable described in this Arti-cle is applicable as an essential or nonessential variablefor procedure qualification when referenced in QB-250 foreach specific process. Essential variables for performancequalification are referenced in QB-350 for each specificbrazing process. A change from one brazing process toanother brazing process is an essential variable and requiresrequalification.

QB-402 Base MetalQB-402.1 A change from a base metal listed under one

P-Number in table QW/QB-422 to any of the following:(a) a metal listed under another P-Number(b) any other base metal not listed in table QW/QB-422(c) as permitted in QW-420.2 (for S-Numbers)The brazing of dissimilar metals need not be requalified

if each base metal involved is qualified individually forthe same brazing filler metal, flux, atmosphere, and process.Similarly, the brazing of dissimilar metals qualifies for theindividual base metal brazed to itself and for the samebrazing filler metal, flux, atmosphere, and process, pro-vided the requirements of QB-153.1(a) are met.

QB-402.2 A change from a base metal listed under oneP-Number in table QW/QB-422 to any of the following:

(a) a metal listed under another P-Number(b) any other metal not listed in table QW/QB-422(c) as permitted in QW-420.2 (for S-Numbers)The brazing of dissimilar metals need not be requalified

if each base metal involved is qualified individually forthe same brazing filler metal, flux, atmosphere, and process.Similarly, the brazing of dissimilar metals qualifies for theindividual base metal brazed to itself and for the samebrazing filler metal, flux, atmosphere, and process.

QB-402.3 A change in base metal thickness beyondthe range qualified in QB-451 for procedure qualification,or QB-452 for performance qualification.

QB-403 Brazing Filler MetalQB-403.1 A change from one F-Number in table

QB-432 to any other F-Number, or to any other filler metalnot listed in table QB-432.

212

QB-403.2 A change in filler metal from one productform to another (for example, from preformed ring topaste).

QB-404 Brazing TemperatureQB-404.1 A change in brazing temperature to a value

outside the range specified in the BPS.

QB-406 Brazing Flux, Fuel Gas, or AtmosphereQB-406.1 The addition or deletion of brazing flux or a

change in AWS classification of the flux. Nominal chemicalcomposition or the trade name of the flux may be used asan alternative to the AWS classification.

QB-406.2 A change in the furnace atmosphere fromone basic type to another type. For example

(a) reducing to inert(b) carburizing to decarburizing(c) hydrogen to disassociated ammonia

QB-406.3 A change in the type of fuel gas(es).

QB-407 Flow PositionQB-407.1 The addition of other brazing positions than

those already qualified (see QB-120 through QB-124,QB-203 for procedure, and QB-303 for performance).

(a) If the brazing filler metal is preplaced or facefedfrom outside the joint, then requalification is required inaccordance with the positions defined in figures QB-461.1and QB-461.2 under the conditions of QB-120 throughQB-124.

(b) If the brazing filler metal is preplaced in a joint ina manner that major flow does occur, then requalificationis required in accordance with the positions defined infigures QB-461.1 and QB-461.2 under the conditions ofQB-120 through QB-124.

(c) If the brazing filler metal is preplaced in a joint sothat there is no major flow, then the joint may be brazedin any position without requalification.

QB-408 Joint DesignQB-408.1 A change in the joint type, i.e., from a butt

to a lap or socket, from that qualified. For lap or socket

Page 242: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

joints, an increase in lap length of more than 25% fromthe overlap used on the brazer performance qualificationtest coupon.

QB-408.2 A change in the joint clearances to a valueoutside the range specified in the BPS and as recorded inthe PQR.

QB-408.3 A change in the joint clearances to a valueoutside the range specified in the BPS.

QB-408.4 A change in the joint type, e.g., from a buttto a lap or socket, from that qualified. For lap and socketjoints, a decrease in overlap length from that qualified.

QB-409 Postbraze Heat TreatmentQB-409.1 A separate procedure qualification is

required for each of the following conditions:(a) For P-Nos. 101 and 102 materials, the following

postbraze heat treatment conditions apply:(1) no postbraze heat treatment(2) postbraze heat treatment below the lower transfor-

mation temperature(3) postbraze heat treatment above the upper transfor-

mation temperature (e.g., normalizing)(4) postbraze heat treatment above the upper transfor-

mation temperature followed by heat treatment below thelower transformation temperature (e.g., normalizing orquenching followed by tempering)

(5) postbraze heat treatment between the upper andlower transformation temperatures

(b) For all other materials, the following post weld heattreatment conditions apply:

(1) no postbraze heat treatment(2) postbraze heat treatment within a specified tem-

perature range

QB-409.2 A change in the postbraze heat treatment(see QB-409.1) temperature and time range requires a PQR.

The procedure qualification test shall be subjected topostbraze heat treatment essentially equivalent to thatencountered in the fabrication of production brazements,including at least 80% of the aggregate time at tempera-ture(s). The postbraze heat treatment total time(s) at tem-perature(s) may be applied in one heating cycle.

213

QB-409.3 For a procedure qualification test couponreceiving a postbraze heat treatment in which the uppertransformation temperature is exceeded, the maximumqualified thickness for production brazements is 1.1 timesthe thickness of the test coupon.

QB-410 TECHNIQUEQB-410.1 A change in the method of preparing the

base metal, i.e., method of precleaning the joints (for exam-ple, from chemical cleaning to cleaning by abrasive ormechanical means).

QB-410.2 A change in the method of postbraze clean-ing (for example, from chemical cleaning to cleaning bywire brushing or wiping with a wet rag).

QB-410.3 A change in the nature of the flame (forexample, a change from neutral or slightly reducing).

QB-410.4 A change in the brazing tip sizes.

QB-410.5 A change from manual to mechanical torchbrazing and vice versa.

QB-420 P-NUMBERS

(See Part QW, Welding — QW-420)

QB-430 F-NUMBERS

QB-431 General

The following F-Number grouping of brazing filler met-als in table QB-432 is based essentially on their usabilitycharacteristics, which fundamentally determine the abilityof brazers and brazing operators to make satisfactorybrazements with a given filler metal. This grouping is madeto reduce the number of brazing procedure and performancequalifications, where this can logically be done. The group-ing does not imply that filler metals within a group maybe indiscriminately substituted for a filler metal which wasused in the qualification test without consideration of thecompatibility from the standpoint of metallurgical proper-ties, design, mechanical properties, postbraze heat treat-ment, and service requirements.

Page 243: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-432F-NUMBERS

Grouping of Brazing Filler Metals for Procedure and Performance Qualification SFA-5.8

QB F-No. AWS Classification No.

432.1 101 BAg-1BAg-1aBAg-8BAg-8aBAg-22BAg-23BVAg-0BVAg-8BVAg-8bBVAg-30

432.2 102 BAg-2BAg-2aBAg-3BAg-4BAg-5BAg-6BAg-7BAg-9BAg-10BAg-13BAg-13aBAg-18BAg-19BAg-20BAg-21BAg-24BAg-26BAg-27BAg-28BAg-33BAg-34BAg-35BAg-36BAg-37BVAg-6bBVAg-18BVAg-29BVAg-31BVAg-32

432.3 103 BCuP-1BCuP-2BCuP-3BCuP-4BCuP-5BCuP-6BCuP-7

432.4 104 BAlSi-2BAlSi-3BAlSi-4BAlSi-5BAlSi-7BAlSi-9BAlSi-11

432.5 105 BCu-1BVCu-1x

214

Page 244: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-432F-NUMBERS (CONT’D)

Grouping of Brazing Filler Metals for Procedure and Performance Qualification SFA-5.8

QB F-No. AWS Classification No.

BCu-1aBCu-2

432.6 106 RBCuZn-ARBCuZn-BRBCuZn-CRBCuZn-D

432.7 107 BNi-1BNi-1aBNi-2BNi-3BNi-4BNi-5BNi-5aBNi-6BNi-7BNi-8BNi-9BNi-10BNi-11

432.8 108 BAu-1BAu-2BAu-3BAu-4BAu-5BAu-6BVAu-2BVAu-4BVAu-7BVAu-8

432.9 109 BMg-1

432.10 110 BCo-1

432.11 111 BVPd-1

215

Page 245: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-450 SPECIMENSQB-451 Procedure Qualification Specimens

QB-451.1TENSION TESTS AND TRANSVERSE-BEND TESTS — BUTT AND SCARF JOINTS

Range of Thickness of Type and Number of Test Specimens RequiredMaterials Qualified by Test

Plate or Pipe, in. (mm)Thickness T of Test Coupon as Tension First Surface Second SurfaceBrazed, in. (mm) Min. Max. [Note (1)] Bend [Note (2)] Bend [Note (2)]

Less than 1⁄8 (3) 0.5T 2T 2 2 21⁄8 to 3⁄8 (3 to 10), incl. 1⁄16 (1.5) 2T 2 2 2Over 3⁄8 (10) 3⁄16 (5) 2T 2 [Note (3)] 2 2

NOTES:(1) For specimen dimensions, see figure QB-462.1(a) for plate specimens, or figure QB-462.1(b) for pipe specimens. For pipe specimens not

greater than NPS 3 (DN 75), full section testing may be substituted; see figure QB-462.1(e).(2) For specimen dimensions, see figure QB-462.2(a). For specimen removal, see figure QB-463.1(a) for plate coupons, or figure QB-463.1(e)

for pipe coupons.(3) See QB-151 for details on multiple specimens when coupon thicknesses are over 1 in. (25 mm).

QB-451.2TENSION TESTS AND LONGITUDINAL BEND TESTS — BUTT AND SCARF JOINTS

Range of Thickness of Type and Number of Test Specimens RequiredMaterials Qualified by Test

Plate or Pipe, in. (mm)Thickness T of Test Coupon as Tension First Surface Second SurfaceBrazed, in. (mm) Min. Max. [Note (1)] Bend [Note (2)] Bend [Note (2)]

Less than 1⁄8 (3) 0.5T 2T 2 2 21⁄8 to 3⁄8 (3 to 10), incl. 1⁄16 (1.5) 2T 2 2 2Over 3⁄8 (10) 3⁄16 (5) 2T 2 [Note (3)] 2 2

NOTES:(1) For specimen dimensions, see figure QB-462.1(a) for plate specimens, or figure QB-462.1(b) for pipe specimens. For pipe specimens not

greater than NPS 3 (DN 75), full section testing may be substituted; see figure QB-462.1(e).(2) For specimen dimensions, see figures QB-462.2(b) and QB-463.1(b) for specimen removal.(3) See QB-151 for details on multiple specimens when coupon thicknesses are over 1 in. (25 mm).

QB-451.3TENSION TESTS AND PEEL TESTS — LAP JOINTS

Type and Number ofRange of Thickness of Materials Test Specimens Required

Qualified by Test Plate or Pipe, in. (mm)Thickness T of Test Coupon as Tension PeelBrazed, in. (mm) Min. Max. [Note (1)] [Notes (2) and (3)]

Less than 1⁄8 (3) 0.5T 2T 2 21⁄8 to 3⁄8 (3 to 10), incl. 1⁄16 (1.5) 2T 2 2Over 3⁄8 (10) 3⁄16 (5) 2T 2 2

NOTES:

(1) For specimen dimensions, see figure QB-462.1(c). For pipe specimens not greater than NPS 3 (DN 75), full section testing may be substituted;see figure QB-462.1(e).

(2) For peel specimens, see figure QB-462.3 for specimen dimensions, and figure QB-463.1(d) for specimen removal.

(3) Sectioning tests may be substituted for peel tests. For section specimens, see figure QB-462.4 for specimen dimensions, and figure QB-463.1(c)for specimen removal.

216

Page 246: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-451.4TENSION TESTS AND SECTION TESTS — RABBET JOINTS

Range of Thickness ofMaterials Qualified by Type and Number of

Test Plate or Pipe, Test Specimens RequiredThickness T ofin. (mm)Test Coupon as Tension Section

Brazed, in. (mm) Min. Max. [Note (1)] [Note (2)]

Less than 1⁄8 (3) 0.5T 2T 2 21⁄8 to 3⁄8 (3 to 10), incl. 1⁄16 (1.5) 2T 2 2Over 3⁄8 (10) 3⁄16 (5) 2T 2 2

NOTES:(1) For specimen dimensions, see figure QB-462.1(c). For pipe specimens not greater than NPS 3 (DN 75), full section testing may be substituted;

see figure QB-462.1(e).(2) For specimen dimensions, see figures QB-462.4 and QB-463.1(c) for specimen removal.

QB-451.5SECTION TESTS — WORKMANSHIP COUPON JOINTS

Range of Thicknessof Materials Qualified by Type and Number of

Test Plate or Pipe, Test Specimens RequiredThickness T ofin. (mm)Test Coupon as Section,

Brazed, in. (mm) Min. Max. QB-462.5 [Note (1)]

Less than 1⁄8 (3) 0.5T 2T 21⁄8 to 3⁄8 (3 to 10), incl. 1⁄16 (1.5) 2T 2Over 3⁄8 (10) 3⁄16 (5) 2T 2

NOTE:(1) This test in itself does not constitute procedure qualification but must be validated by conductance of tests of butt or lap joints as appropriate.

For joints connecting tension members, such as the stay or partition type in QB-462.5, the validation data may be based upon butt joints; forjoints connecting members in shear, such as saddle or spud joints, the validation data may be based on lap joints.

217

Page 247: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-452 Performance Qualification SpecimensQB-452.1

PEEL OR SECTION TESTS — BUTT, SCARF, LAP, RABBET JOINTS

Range of Thickness of Type and Number ofMaterials Qualified by Test Specimens RequiredThickness T of

Test Plate or Pipe, in. (mm)Test Coupon as Peel, QB-462.3Brazed, in. (mm) Min. Max. [Notes (1), (2), and (3)]

Less than 1⁄8 (3) 0.5T 2T 21⁄8 to 3⁄8 (3 to 10), incl. 1⁄16 (1.5) 2T 2Over 3⁄8 (10) 3⁄16 (5) 2T 2

NOTES:(1) For a joint brazed with a filler metal having a tensile strength equal to or greater than that of the metal being joined, the specimens shall be

sectioned as shown in figure QB-462.4.(2) For specimen dimensions, see figure QB-462.3 for peel test specimens or figure QB-462.4 for section specimens.(3) For specimen removal, see figure QB-463.2(a) for section specimens or figure QB-463.2(b) for peel specimens from plate coupons, or figure

QB-463.2(c) for pipe coupons.

QB-452.2SECTION TESTS — WORKMANSHIP SPECIMEN JOINTS

Range of Thickness of Materials Type and Number ofQualified by Test Plate or Test Specimens RequiredThickness T of Test

Pipe, in. (mm)Coupon as Brazed, Section,in. (mm) Min. Max. QB-462.5

Less than 1⁄8 (3) 0.5T 2T 11⁄8 to 3⁄8 (3 to 10), incl. 1⁄16 (1.5) 2T 1Over 3⁄8 (10) 3⁄16 (5) 2T 1

218

Page 248: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-460 GRAPHICS

QB-461.1 FLOW POSITIONS

L

L

L

L

C

C

C

C

B

A

C

D

(1)

(1)

(1)

(1)

(4)

(4)

(3)

(3)

(3)

(2)

(2)

(2)

(2) (4) (5)

Horizontal Flow

Vertical Upflow

Vertical Downflow

Flat Flow

45 deg

45 deg

Flow

Flow

Flow

Flat Flow

45 deg

45 deg

45 deg

C

C

C

C

C

C

C

C

C

GENERAL NOTES:(a) C p joint clearance(b) L p length of lap or thickness

219

Page 249: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-461.2 TEST FLOW POSITIONS

L

L

L

L

C

C

C

C

B

A

C

D

(1)

(1)

(1)

(1)

(4)

(4)

(3)

(3)

(3)

(2)

(2)

(2)

(2) (4) (5)

Horizontal Flow

Vertical Upflow

Vertical Downflow

Flat Flow

15 deg

15 deg

Flow

Flow

Flow

Flat Flow

15 deg

15 deg

15 deg

C

C

C

C

C

C

C

C

C

GENERAL NOTES:(a) C p joint clearance(b) L p length of lap or thickness

220

Page 250: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-462.1(a) TENSION — REDUCED SECTION FOR BUTT AND SCARF JOINTS — PLATE

10 in. (250 mm) approx. [Note (1)]

2 in. (50 mm) R Edge of joint

This section machined, preferably by milling

1/4 in. (6 mm) 1/4 in. (6 mm)

1/4 in. (6 mm)

3/4 in. (19 mm)

This section machined, preferably by milling

3/4 in. (19 mm)

1/4 in. (6 mm)

1/4 in. (6 mm)

21/4 in. (57 mm) min.

10 in. (250 mm) approx. [Note (1)]

A, min. [Note (2)]

2 in. (50 mm) R

A, min. [Note (2)]

Alternate Pin-Loaded Specimen

2 in. (50 mm) approx. [Note (1)]

0.5 in. (13 mm) diameter

1 in. (25 mm)

NOTES:(1) Length may vary to fit testing machine.(2) A p greater of 1⁄4 in. (6 mm) or 2T

221

Page 251: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-462.1(b) TENSION — REDUCED SECTION FOR BUTT, LAP, AND SCARF JOINTS — PIPE

10 in. (250 mm) approx. [Note (1)]

2 in. (50 mm) R Edge of joint Machine the minimum amount

needed to obtain plane parallel faces over the 3/4 in. (19 mm) wide reduced section

This section machined, preferably by milling

1/4 in. (6 mm) 1/4 in. (6 mm)

1/4 in. (6 mm)

3/4 in. (19 mm)

X[Note (3)]

T

As specified by design

For Lap Joints

T

This section machined, preferably by milling

3/4 in. (19 mm)

1/4 in. (6 mm)

1/4 in. (6 mm)

21/4 in. (57 mm) min.

10 in. (250 mm) approx. [Note (1)]

A, min. [Note (2)]

2 in. (50 mm) R

A, min. [Note (2)]

Alternate Pin-Loaded Specimen

2 in. (50 mm) approx. [Note (1)]

0.5 in. (13 mm) diameter

1 in. (25 mm)

NOTES:(1) Length may vary to fit testing machine.(2) A p greater of 1⁄4 in. (6 mm) or 2T(3) X p test specimen overlap

222

Page 252: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-462.1(c) TENSION — REDUCED SECTION FOR LAP AND RABBET JOINTS — PLATE

This section machined, preferably by milling

X[Note (3)]

TT min.

X X

XX

X

T

T

T

T min.

3/4 in. (19 mm)

1/4 in. (6 mm)

1/4 in. (6 mm)

21/4 in. (57 mm) min.

10 in. (250 mm) approx. [Note (1)]

A, min. [Note (2)]

2 in. (50 mm) R

As specified by design

As specified by design

As specified by design

For Rabbet Joints

Alternate Designs

For Lap Joints

T

T

A, min. [Note (2)]

This section machined, preferably by milling

3/4 in. (19 mm)

1/4 in. (6 mm)

1/4 in. (6 mm)

21/4 in. (57 mm) min.

10 in. (250 mm) approx. [Note (1)]

A, min. [Note (2)]

2 in. (50 mm) R

A, min. [Note (2)]

Alternate Pin-Loaded Specimen

2 in. (50 mm) approx. [Note (1)]

0.5 in. (13 mm) diameter

1 in. (25 mm)

NOTES:(1) Length may vary to fit testing machine.(2) A p greater of 1⁄4 in. (6 mm) or 2T(3) X p test specimen overlap

223

Page 253: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-462.1(e) TENSION — FULL SECTION FOR LAP, SCARF, AND BUTT JOINTS — SMALL DIAMETER PIPE

224

Page 254: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-462.1(f) SUPPORT FIXTURE FOR REDUCED-SECTION TENSION SPECIMENS

Jaws of testing machine

Front View

Restrainer Bars GENERAL NOTE: The restraining fixture is intended to provide a snugfit between the fixture and the contour of the tension specimen. Thefixture shall be tightened, but only to the point where a minimum of0.001 in. (0.03 mm) clearance exists between the sides of the fixtureand the tension specimen.

Side View

33

2

4

4

11

1

Spacers2

Reduced-Section Tension Specimen3

Bolts, Body-Bound4

4 Locknuts5

4 Nuts6

2

65

3

225

Page 255: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-462.2(a) TRANSVERSE FIRST AND SECOND SURFACE BENDS — PLATE AND PIPE

GENERAL NOTE: For the first surface bend specimens,machine from the second surface as necessary until therequired thickness is obtained. For second surface bendspecimens, machine from the first surface as necessaryuntil the required thickness is obtained.

6 in. (150 mm) min.

y

y, in. (mm)T, in. (mm)

All ferrous and nonferrous materials

3/8 (10)>3/8 (>10)

1/16 – 3/8 (1.5–10) T

y

T

T

Plate

yT

y

T

Pipe

11/2 in. (38 mm)

QB-462.2(b) LONGITUDINAL FIRST AND SECOND SURFACE BENDS — PLATE

y, in. (mm)T, in. (mm)

All ferrous and nonferrous materials

3/8 (10)>3/8 (>10)

1/16 – 3/8 (1.5–10) T

6 in. (150 mm) min.T

R

y

y

T

11/2 in. (38 mm)

T

R = 1/8 in. (3 mm) max.

y

y

T

GENERAL NOTE: For the first surface bend specimens,machine from the second surface as necessary until therequired thickness is obtained. For second surface bendspecimens, machine from the first surface as necessaryuntil the required thickness is obtained.

226

Page 256: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-462.3 LAP JOINT PEEL SPECIMEN

GENERAL NOTES: (a) Flange Y may be omitted from Section B when “peeling” is to be accomplished in a

suitable tension machine.(b) Specimen shall be brazed from side marked Z.

NOTE:(1) Length may vary to fit testing machine.

10 in. (250 mm) approx. [Note (1)]

Section A

Approximately, or sufficient for peeling purposesFulcrum point

T

XZ

Y

11/2 in. (38 mm)

Section B

X = 4T min. or as required by design

QB-462.4 LAP JOINT SECTION SPECIMEN (See QB-181)

GENERAL NOTE: Specimen shall be brazed from the side marked Z.

Section A

Discard

Section

Discard

this piece

specimen

this piece

T

XZ

1/3 W

1/3 W

1/3 W

W = 11/2 in. (38 mm)

11/2 in. (38 mm)

Alternate for Rabbet Joint

Section B

X = 4T min. or as required by design

227

Page 257: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-462.5 WORKMANSHIP COUPONS

NOTES:(1) Workmanship coupons shall be 10 in. (250 mm) in length or represent one-half the typical joint, whichever is less.(2) Circular coupons shall be sectioned in half, and one-half shall be used as the test specimen.

228

Page 258: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-463 Order of Removal

QB-463.1(a) PLATES PROCEDURE QUALIFICATION

229

QB-463.1(b) PLATES PROCEDURE QUALIFICATION

Page 259: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-463.1(c) PLATES PROCEDURE QUALIFICATION

NOTES: (1) Required for rabbet joints.(2) The sectioning specimen in this view may be used as an alternate to sectioning the peel test specimens of QB-463.1(d) when the peel test cannot be used. This section test specimen should be approximately 1/2 in. (13 mm) wide.

Discard this piece

specimenReduced section tensile Alternate Lap Joint

[Note (2)]

Rabbet Joint

Alternate Lap Joint

[Note (2)]

Alternate Lap Joint

[Note (2)]

[Note (1)]

specimenReduced section tensile

Sectioning specimen

Sectioning specimen

Discard this piece

230

Page 260: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-463.1(d) PLATES PROCEDURE QUALIFICATION

231

Page 261: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-463.1(e) PIPE — PROCEDURE QUALIFICATION

First surface bend (if required)

First surface bend(if required)

Reduced section tensile

Reduced section tensile

Horizontal plane

Bottom

TopSpecimen location No. 1

Specimen location No. 2

Plane of cutfor half-sectionspecimens

GENERAL NOTES:(a) Figure shown is for coupons over 3 in. (75 mm) O.D. Locations No. 1 and 2 are for:

(1) second surface specimens for butt and scarf joints(2) peel or section specimens for lap joints(3) section specimens for rabbet joints

(b) For coupons 3 in. (75 mm) O.D. and smaller, two coupons shall be brazed and one specimen shall be removed from each coupon. If brazedin the horizontal flow position, the specimen shall be taken at specimen location No. 1. Alternatively, each coupon shall be cut longitudinallyand the specimen shall consist of both sides of one half-section of each coupon.

(c) When coupon is brazed in the horizontal flow position, specimens locations shall be as shown relative to the horizontal plane of the coupon,and for half-section specimens, plane of cut shall be oriented as shown relative to the horizontal plane of the coupon.

(d) When both ends of a coupling are brazed, each end is considered a separate test coupon.

232

Page 262: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-463.2(a) PLATES PERFORMANCE QUALIFICATION

NOTES: (1) Required for rabbet joints.(2) The sectioning specimen in this view may be used as

an alternate to sectioning the peel test specimens ofQB-463.2 (b) when the peel test cannot be used. Thissection test specimen should be approximately 1/2 in.(13 mm) wide.

Alternate Lap Joint

[Note (2)]

Alternate Lap Joint

[Note (2)]

Alternate Lap Joint

[Note (2)]

Rabbet Joint

[Note (1)]

Alternate Scarf Joint

[Note (2)]

Alternate Butt Joint

[Note (2)]

Discard this piece

Sectioning specimen

Discard this piece

Sectioning specimen

Discard this piece

233

Page 263: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-463.2(b) PLATES PERFORMANCE QUALIFICATION

234

Page 264: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-463.2(c) PIPE PERFORMANCE QUALIFICATION

GENERAL NOTES:(a)

(b)

(c)

(d)

For coupons over 3 in. (75 mm) O.D., one specimenshall be removed from each location shown.For coupons 3 in. (75 mm) O.D. and smaller, twocoupons shall be brazed and one specimenshall be removed from each coupon. If brazed inthe horizontal flow position, the specimen shallbe taken at specimen location No. 1. Alternatively,each coupon shall be cut longitudinally and the specimen shall be both sides of one half-section of each coupon.When the coupon is brazed in the horizontal flow position,specimen locations shall be as shown relative to the horizontal plane of the coupon. For half-section specimens, plane of cut shall be oriented as shown relative to the horizontal plane of the coupon.When both ends of a coupling are brazed, each endis considered a separate test coupon.

Top

Bottom

Specimen location No. 1

Specimen location No. 2

Plane of cut for half-section specimens

Horizontal plane

235

Page 265: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-466 Test Jigs

QB-466.1 GUIDED-BEND JIG

As required As required

Tapped hole to suit testing machine

Hardened rollers 11/2 in. (38 mm) diameter may be substituted for jig shoulders

Shoulders hardened and greased

3/4 in. (19 mm)

3/4 in. (19 mm)

3/4 in. R

B R

D RC

A

3/4 in. (19 mm)

71/2 in. (190 mm)9 in. (225 mm)

3/4 in. (19 mm)1/2 in. (13 mm)

11/8 in. (28 mm)

1/8 in. (3 mm)

63 /

4 in

.

(17

0 m

m)

3 in

. min

.

(75

mm

)2

in. m

in.

(

50 m

m)

3/4 in. (19 mm)

11/8 in. (29 mm)

37/8 in. (97 mm)

2 in. (50 mm)

1/4 in. (6 mm)

Yoke

Plunger

(19 mm)

Thickness ofSpecimen, A, B, C, D,in. (mm) in. (mm) in. (mm) in. (mm) in. (mm)

3⁄8 (10) 11⁄2 (38) 3⁄4 (19) 23⁄8 (60) 13⁄16 (30)t 4t 2t 6t + 3.2 3t + 1.6

236

Page 266: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QB-466.2 GUIDED-BEND ROLLER JIG

Notes (1), (2)

Note (3)

Notes (4), (5)C

A

R min.

R min. = 3/4 in. (19 mm)

B = 1/2 A

Thickness of Speci- A, B, C,men, in. (mm) in. (mm) in. (mm) in. (mm)

3⁄8 (10) 11⁄2 (38) 3⁄4 (19) 23⁄8 (60)t 4t 2t 6t + 1⁄8 (3)

GENERAL NOTE: The braze joint in the case of a transverse bendspecimen shall be completely within the bend portion of the specimenafter testing.

NOTES:(1) Either hardened and greased shoulders or hardened rollers free to

rotate shall be used.(2) The shoulders of rollers shall have a minimum bearing surface of

2 in. (50 mm) for placement of the specimen. The rollers shall behigh enough above the bottom of the jig so that the specimens willclear the rollers when the ram is in the low position.

(3) The ram shall be fitted with an appropriate base and provisionmade for attachment to the testing machine, and shall be of asufficiently rigid design to prevent deflection and misalignment whilemaking the bend test. The body of the ram may be less than thedimensions shown in column A.

(4) If desired, either the rollers or the roller supports may be madeadjustable in the horizontal direction so that specimens of t thicknessmay be tested on the same jig.

(5) The roller supports shall be fitted with an appropriate base designedto safeguard against deflection or misalignment and equipped withmeans for maintaining the rollers centered midpoint and alignedwith respect to the ram.

237

QB-466.3 GUIDED-BEND WRAP AROUND JIG

A

T

T + 1/16 in. (1.5 mm) max.

B = 1/2 A

Roller

Thickness of Speci- A, B,men, in. (mm) in. (mm) in. (mm)

3⁄8 (10) 11⁄2 (38) 3⁄4 (19)t 4t 2t

GENERAL NOTES:(a) Dimensions not shown are the option of the designer. The essen-

tial consideration is to have adequate rigidity so that the jigparts will not spring.

(b) The specimen shall be firmly clamped on one end so that there isno sliding of the specimen during the bending operation.

(c) Test specimens shall be removed from the jig when the outer rollhas been removed 180 deg from the starting point.

Page 267: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

MANDATORY APPENDIX ASUBMITTAL OF TECHNICAL INQUIRIES TO THE

BOILER AND PRESSURE VESSEL COMMITTEE

A-100 INTRODUCTION

(a) This Appendix provides guidance to Code users forsubmitting technical inquiries to the Committee. SeeGuideline on the Approval of New Materials Under theASME Boiler and Pressure Vessel Code in Section II, PartsC and D for additional requirements for requests involvingadding new materials to the Code. Technical inquiriesinclude requests for revisions or additions to the Coderules, requests for Code Cases, and requests for Code inter-pretations, as described in the following:

(1) Code Revisions. Code revisions are considered toaccommodate technological developments, address admin-istrative requirements, incorporate Code Cases, or to clarifyCode intent.

(2) Code Cases. Code Cases represent alternatives oradditions to existing Code rules. Code Cases are writtenas a question and reply, and are usually intended to beincorporated into the Code at a later date. When used,Code Cases prescribe mandatory requirements in the samesense as the text of the Code. However, users are cautionedthat not all jurisdictions or owners automatically acceptCode Cases. The most common applications for CodeCases are

(a) to permit early implementation of an approvedCode revision based on an urgent need

(b) to permit the use of a new material for Codeconstruction

(c) to gain experience with new materials or alter-native rules prior to incorporation directly into the Code

(3) Code Interpretations. Code Interpretations pro-vide clarification of the meaning of existing rules in theCode, and are also presented in question and reply format.Interpretations do not introduce new requirements. In caseswhere existing Code text does not fully convey the meaningthat was intended, and revision of the rules is required tosupport an interpretation, an Intent Interpretation will beissued and the Code will be revised.

(b) The Code rules, Code Cases, and Code Interpreta-tions established by the Committee are not to be consideredas approving, recommending, certifying, or endorsing anyproprietary or specific design, or as limiting in any way

238

the freedom of manufacturers, constructors, or owners tochoose any method of design or any form of constructionthat conforms to the Code rules.

(c) Inquiries that do not comply with the provisions ofthis Appendix or that do not provide sufficient informationfor the Committee’s full understanding may result in therequest being returned to the inquirer with no action.

A-200 INQUIRY FORMAT

Submittals to the Committee shall include(a) Purpose. Specify one of the following:

(1) revision of present Code rules(2) new or additional Code rules(3) Code Case(4) Code Interpretation

(b) Background. Provide the information needed for theCommittee’s understanding of the inquiry, being sure toinclude reference to the applicable Code Section, Division,Edition, Addenda, paragraphs, figures, and tables. Prefera-bly, provide a copy of the specific referenced portions ofthe Code.

(c) Presentations. The inquirer may desire or be askedto attend a meeting of the Committee to make a formalpresentation or to answer questions from the Committeemembers with regard to the inquiry. Attendance at a Com-mittee meeting shall be at the expense of the inquirer. Theinquirer’s attendance or lack of attendance at a meetingshall not be a basis for acceptance or rejection of the inquiryby the Committee.

A-300 CODE REVISIONS OR ADDITIONS

Requests for Code revisions or additions shall providethe following:

(a) Proposed Revisions or Additions. For revisions,identify the rules of the Code that require revision andsubmit a copy of the appropriate rules as they appear in theCode, marked up with the proposed revision. For additions,provide the recommended wording referenced to theexisting Code rules.

Page 268: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(b) Statement of Need. Provide a brief explanation ofthe need for the revision or addition.

(c) Background Information. Provide background infor-mation to support the revision or addition, including anydata or changes in technology that form the basis for therequest that will allow the Committee to adequately evalu-ate the proposed revision or addition. Sketches, tables,figures, and graphs should be submitted as appropriate.When applicable, identify any pertinent paragraph in theCode that would be affected by the revision or additionand identify paragraphs in the Code that reference theparagraphs that are to be revised or added.

A-400 CODE CASES

Requests for Code Cases shall provide a Statement ofNeed and Background Information similar to that definedin A-300(b) and A-300(c), respectively, for Code revisionsor additions. The urgency of the Code Case (e.g., projectunderway or imminent, new procedure, etc.) must bedefined and it must be confirmed that the request is inconnection with equipment that will be ASME stamped,with the exception of Section XI applications. The pro-posed Code Case should identify the Code Section andDivision, and be written as a Question and a Reply in thesame format as existing Code Cases. Requests for CodeCases should also indicate the applicable Code Editionsand Addenda to which the proposed Code Case applies.

A-500 CODE INTERPRETATIONS

(a) Requests for Code Interpretations shall provide thefollowing:

(1) Inquiry. Provide a condensed and precise ques-tion, omitting superfluous background information and,when possible, composed in such a way that a “yes” or a“no” Reply, with brief provisos if needed, is acceptable.The question should be technically and editorially correct.

(2) Reply. Provide a proposed Reply that will clearlyand concisely answer the Inquiry question. Preferably, the

239

Reply should be “yes” or “no,” with brief provisos ifneeded.

(3) Background Information. Provide any back-ground information that will assist the Committee in under-standing the proposed Inquiry and Reply.

(b) Requests for Code Interpretations must be limitedto an interpretation of a particular requirement in the Codeor a Code Case. The Committee cannot consider consultingtype requests such as the following:

(1) a review of calculations, design drawings, weld-ing qualifications, or descriptions of equipment or parts todetermine compliance with Code requirements

(2) a request for assistance in performing any Code-prescribed functions relating to, but not limited to, materialselection, designs, calculations, fabrication, inspection,pressure testing, or installation

(3) a request seeking the rationale for Code require-ments

A-600 SUBMITTALS

Submittals to and responses from the Committee shallmeet the following:

(a) Submittal. Inquiries from Code users shall be inEnglish and preferably be submitted in typewritten form.However, legible handwritten inquiries will also be consid-ered. They shall include the name, address, telephone num-ber, fax number, and e-mail address, if available, of theinquirer and be mailed to the following address:

SecretaryASME Boiler and Pressure Vessel CommitteeThree Park AvenueNew York, NY 10016-5990

As an alternative, inquiries may be submitted via e-mailto: [email protected].

(b) Response. The Secretary of the ASME Boiler andPressure Vessel Committee or of the appropriate Subcom-mittee shall acknowledge receipt of each properly preparedinquiry and shall provide a written response to the inquirerupon completion of the requested action by the Code Com-mittee.

Page 269: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

NONMANDATORY APPENDIX BWELDING AND BRAZING FORMS

B-100 FORMS

This Nonmandatory Appendix illustrates sample formatsfor Welding and Brazing Procedure Specifications, Proce-dure Qualification Records, and Performance Qualification.

B-101 Welding

Form QW-482 is a suggested format for Welding Proce-dure Specifications (WPS); Form QW-483 is a suggestedformat for Procedure Qualification Records (PQR). Theseforms are for the shielded metal-arc (SMAW), submerged-arc (SAW), gas metal-arc (GMAW), and gas tungsten-arc(GTAW) welding processes, or a combination of theseprocesses.

Forms for other welding processes may follow the gen-eral format of Forms QW-482 and QW-483, as applicable.

240

Form QW-484 is a suggested format for Welder/Weld-ing Operator/Performance Qualification (WPQ) for grooveor fillet welds.

Form QW-485 is a suggested format for Demonstrationof Standard Welding Procedure Specifications.

B-102 Brazing

Form QB-482 is a suggested format for Brazing Proce-dure Specifications (BPS); Form QB-483 is a suggestedformat for Procedure Qualifications Records (PQR). Theseforms are for torch brazing (TB), furnace brazing (FB),induction brazing (IB), resistance brazing (RB), and dipbrazing (DB) processes.

Forms for other brazing processes may follow the gen-eral format of Forms QB-482 and QB-483, as applicable.

Form QB-484 is a suggested format for Brazer/BrazingOperator/Performance Qualification (BPQ).

Page 270: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(11/06)

Sketches, Production Drawings, Weld Symbols, or Written Description should show the general arrangement of the parts to be welded. Where applicable, the root spacing and the details of weld groove may be specified.

[At the option of the Manufacturer, sketches may be attached to illustrate joint design, weld layers, and bead sequence (e.g., for notch toughness procedures, for multiple process procedures, etc.)]

QW-482 SUGGESTED FORMAT FOR WELDING PROCEDURE SPECIFICATIONS (WPS)

(See QW-200.1, Section IX, ASME Boiler and Pressure Vessel Code)

Company Name

Welding Procedure Specification No.

By

Date Supporting PQR No.(s)

Welding Process(es) Type(s)

Revision No. Date

JOINTS (QW-402) Details

Joint Design

*BASE METALS (QW-403)

P-No.

Specification Type and Grade

OR

OR

Group No. to P-No. Group No.

to Specification Type and Grade

Chem. Analysis and Mech. Prop.to Chem. Analysis and Mech. Prop.Thickness Range:

Base Metal: Groove FilletOther

*FILLER METALS (QW-404)

*Each base metal-filler metal combination should be recorded individually.

Spec. No. (SFA)

AWS No. (Class)

F-No.

A-No.

Size of Filler Metals

Weld Metal

Thickness Range:

Groove

Fillet

Electrode-Flux (Class)

Flux Trade Name

Consumable Insert

Other

Backing: Yes No

(Refer to both backing and retainers)

(Automatic, Manual, Machine, or Semi-Automatic)

Backing Material (Type)

Metal

Nonmetallic

Nonfusing Metal

Other

241

Page 271: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-482 (Back)

POSITIONS (QW-405)

WPS No. Rev.

Position(s) of Groove

Position(s) of Fillet

PREHEAT (QW-406)

Preheat Temperature, Minimum

ELECTRICAL CHARACTERISTICS (QW-409)

Current AC or DC Polarity

TECHNIQUE (QW-410)

String or Weave Bead

Orifice or Gas Cup Size

Initial and Interpass Cleaning (Brushing, Grinding, etc.)

Method of Back Gouging

WeldLayer(s)

Type/Polarity

AmpRange

VoltRange

TravelSpeedRange

Other(e.g., Remarks, Com-

ments, Hot WireAddition, Technique,

Torch Angle, etc.)Process Class

Filler Metal Current

Diameter

Oscillation

Contact Tube to Work Distance

Multiple or Single Pass (Per Side)

Multiple or Single Electrodes

Travel Speed (Range)

Peening

Other

Tungsten Electrode Size and Type

Amps (Range) Volts (Range)

Interpass Temperature, MaximimPreheat Maintenance(Continuous or special heating, where applicable, should be recorded)

Welding Progression: Up

POSTWELD HEAT TREATMENT (QW-407)

GAS (QW-408)Percent Composition

Gas(es)

(Pure Tungsten, 2% Thoriated, etc.)

Mode of Metal Transfer for GMAW

Electrode Wire Feed Speed Range

(Spray Arc, Short Circuiting Arc, etc.)

(Mixture) Flow Rate

Temperature Range

Time Range

Shielding

Trailing

Backing

Down

(11/06)

(Amps and volts range should be recorded for each electrode size, position, and thickness, etc. This information may be listed in a tabular form similar to that shown below.)

242

Page 272: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-483 SUGGESTED FORMAT FOR PROCEDURE QUALIFICATION RECORDS (PQR)

(See QW-200.2, Section IX, ASME Boiler and Pressure Vessel Code)

Record Actual Conditions Used to Weld Test Coupon

Company Name

JOINTS (QW-402)

Groove Design of Test Coupon(For combination qualifications, the deposited weld metal thickness shall be recorded for each filler metal or process used.)

Procedure Qualification Record No. DateWPS No.Welding Process(es)

Material Spec.BASE METALS (QW-403)

Type or GradeP-No. to P-No.

TemperaturePOSTWELD HEAT TREATMENT (QW-407)

GAS (QW-408)

TimeOther

CurrentELECTRICAL CHARACTERISTICS (QW-409)

PolarityAmps. VoltsTungsten Electrode SizeOther

Travel SpeedTECHNIQUE (QW-410)

String or Weave BeadOscillationMultipass or Single Pass (Per Side)Single or Multiple ElectrodesOther

Thickness of Test Coupon

SFA SpecificationFILLER METALS (QW-404)

AWS ClassificationFiller Metal F-No.Weld Metal Analysis A-No.

Position of GroovePOSITION (QW-405)

Weld Progression (Uphill, Downhill)Other

Preheat TemperaturePREHEAT (QW-406)

Interpass TemperatureOther

Size of Filler MetalOther

Weld Metal Thickness

Diameter of Test CouponOther

Types (Manual, Automatic, Semi-Automatic)

Shielding

Gas(es) (Mixture)Percent Composition

Flow Rate

TrailingBacking

11/06

243

Page 273: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

QW-483 (Back)

Tensile Test (QW-150)

Other Tests

Fillet-Weld Test (QW-180)

Toughness Tests (QW-170)

Guided-Bend Tests (QW-160)

PQR No.

Comments

SpecimenNo. Width Thickness Area

UltimateTotal Load,

lb

UltimateUnit Stress,

psi

Result

Impact Values

% Shear Mils Drop Weight Break (Y/N)ft-lbTest

TemperatureSpecimen

SizeSpecimen

No.Notch

Location

Type and Figure No.

Type ofFailure and

Location

Result — Satisfactory: Yes No NoPenetration into Parent Metal: Yes

Macro — Results

Type of Test

Deposit Analysis

Other

Welder’s Name

Date(Detail of record of tests are illustrative only and may be modified to conform to the type and number of tests required by the Code.)

By

Manufacturer

Tests Conducted by

Clock No. Stamp No.

Laboratory Test No.We certify that the statements in this record are correct and that the test welds were prepared, welded, and tested in accordance with therequirements of Section IX of the ASME BOILER AND PRESSURE VESSEL CODE.

11/06

244

Page 274: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(11/06)

QW-484A SUGGESTED FORMAT A FOR WELDER PERFORMANCE QUALIFICATIONS (WPQ)

(See QW-301, Section IX, ASME Boiler and Pressure Vessel Code)

Welder’s name Identification no.

Test Description

Testing Conditions and Qualification Limits

RESULTS

Actual ValuesWelding Variables (QW-350)

Identification of WPS followed

Specification of base metal(s)

Welding process(es)

Test coupon Production weld

Thickness

Alternative radiographic examination results (QW-191)

Fillet weld — fracture test (QW-180) Length and percent of defects

Macro examination (QW-184) Fillet size (in.) Concavity/convexity (in.)�

Other tests

Film or specimens evaluated by Company

Mechanical tests conducted by Laboratory test no.

Welding supervised by

We certify that the statements in this record are correct and that the test coupons were prepared, welded, and tested in accordance with the

requirements of Section IX of the ASME BOILER AND PRESSURE VESSEL CODE.

Date By

Organization

Range Qualified

Type (ie; manual, semi-automatic) used

Backing (metal, weld metal, double-welded, etc.)

Plate Pipe (enter diameter if pipe or tube)

Base metal P- or S-Number to P- or S-Number

Filler metal or electrode specification(s) (SFA) (info. only)

Filler metal or electrode classification(s) (info. only)

FIller metal F-Number(s)

Consumable insert (GTAW or PAW)

Filler type (solid/metal or flux cored/powder) (GTAW or PAW)

Deposit thickness for each process

Process 1

Process 2

3 layers minimum Yes

3 layers minimum

Position qualified (2G, 6G, 3F, etc.)

Vertical progression (uphill or downhill)

Type of fuel gas (OFW)

Inert gas backing (GTAW, PAW, GMAW)

Transfer mode (sprey/globular or pulse to short circuit-GMAW)

GTAW current type/polarity (AC, DCEP, DCEN)

Type Result

Bend test Longitudinal root and face [QW-462.3(b)] Side (QW-462.2)Transverse root and face [QW-462.3(a)]

Pipe bend specimen, corrosion-resistant overlay [QW-462.5(c)] Plate bend specimen, corrosion-resistant overlay [QW-462.5(d)]Macro test for fusion [QW-462.5(b)] Macro test for fusion [QW-462.5(e)]

NoYes No

Visual examination of completed weld (QW-302.4)

Type Result Type Result

245

Page 275: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(11/06)

QW-484B SUGGESTED FORMAT B FOR WELDING OPERATOR PERFORMANCE QUALIFICATIONS (WOPQ)

(See QW-301, Section IX, ASME Boiler and Pressure Vessel Code)

Welding operator’s name Identification no.

Test Description (Information Only)

Testing Conditions and Qualification Limits When Using Automatic Welding Equipment

Welding Variables (QW-361.1) Actual Values Range Qualified

Testing Conditions and Qualification Limits When Using Machine Welding Equipment

Welding Variables (QW-361.2) Actual Values Range Qualified

RESULTS

Identification of WPS followed

Specification of base metal(s)

Welding process

Test coupon Production weld

ThicknessBase metal P- or S-Number to P- or S-Number Position (2G, 6G, 3F, etc.)

Filler metal (SFA) specification Filler metal or electrode classification

Alternative radiographic examination results (QW-191)

Fillet weld — fracture test (QW-180) Length and percent of defects

Macro examination (QW-184) Fillet size (in.) Concavity/convexity (in.)�

Other tests

Film or specimens evaluated by Company

Mechanical tests conducted by Laboratory test no.

Welding supervised by

We certify that the statements in this record are correct and that the test coupons were prepared, welded, and tested in accordance with the

requirements of Section IX of the ASME BOILER AND PRESSURE VESSEL CODE.

Date By

Organization

FIller metal (EBW or LBW)

Type of welding (automatic)

Type of laser for LBW (CO2 to YAG, etc.)

Continuous drive or inertia welding (FW)Vacuum or out of vacuum (EBW)

Welding process

Direct or remote visual control

Type of welding (machine)

Automatic arc voltage control (GTAW)

Automatic joint trackingPosition qualified (2G, 6G, 3F, etc.)

Consumable inserts (GTAW or PAW)

Backing (metal, weld metal, etc.)Single or multiple passes per side

Type Result

Bend test Longitudinal root and face [QW-462.3(b)] Side (QW-462.2)Transverse root and face [QW-462.3(a)]

Pipe bend specimen, corrosion-resistant overlay [QW-462.5(c)] Plate bend specimen, corrosion-resistant overlay [QW-462.5(d)]Macro test for fusion [QW-462.5(b)] Macro test for fusion [QW-462.5(e)]

Plate Pipe (enter diameter, if pipe or tube)

Visual examination of completed weld (QW-302.4)

Type Result Type Result

246

Page 276: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

(03/07)

QW-485 SUGGESTED FORMAT FOR DEMONSTRATION OF STANDARD WELDING

PROCEDURE SPECIFICATIONS (SWPS)

(See Article V)

Specification, Type, and Grade of Base Metal(s)

to Specification, Type, and Grade of Base Metal(s)

Base Metal P- or S-Number to Base Metal P- or S-Number Thickness

Welding Process(es) used

Plate Pipe (Enter Diameter of Pipe or Tube)

Groove Type (Single V, Double V, Single U, etc.)

Initial Cleaning Method

Backing (Metal, Weld Metal, Backwelded, etc.)

Filler Metal (SFA) Specification

Filler Metal or Electrode Classification

Filler Metal or Electrode Trade Name

Tungsten Electrode Type and Size for GTAW

Consumable Insert Class and Size for GTAW or PAW

Shielding Gas Composition and Flow Rate for GTAW, PAW, GMAW

Preheat Temperature (�F or �C)

Position (1G, 2G, etc.) of Weld

Progression (Uphill or Downhill)

Interpass Cleaning Method

Measured Interpass Temperature (�F or �C)

Approximate Deposit Thickness for Each Filler Metal or Electrode Type (in.)

Current Type/Polarity (AC, DCEP, DECN)

Postweld Heat Treatment Time and Temperature

Identification of Standard Welding Procedure Specification Demonstrated

Visual Examination of Completed Weld Date of Test

Bend Test Transverse Root and Face [QW-462.3(a)] Side [QW-462.2]

Alternative Radiographic Examination Results

Specimens Evaluated By

Welding Supervised By

Welder's Name Stamp No.

We certify that the statements in this record are correct and that the weld described above was prepared, welded, and tested in accordance with

the requirements of Section IX of the ASME BOILER AND PRESSURE VESSEL CODE.

Manufacturer or Contractor

By Date Demonstration Number

Title

Title

Company

Company

Demonstration Welding Conditions

Type Result Type Result Type Result

247

Page 277: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

07QB-482 SUGGESTED FORMAT FOR A BRAZING PROCEDURE SPECIFICATION (BPS)

(See QB-200.1, Section IX, ASME Boiler and Pressure Vessel Code)

Company Name

P/S-Number Specification Numberto P/S-Number AWS Classification

Other

Maximum

Temperature Range

Positions PermittedFlow Direction

Initial Cleaning

Flux Application

Torch Tip Sizes

Postbraze Cleaning

Inspection

Time Range

Minimum

Base Metal Thickness

F-NumberFiller Metal Product Form

Flux (AWS Class, Composition, or Trade Name)Fuel GasFurnace TemperatureAtmosphere TypeOther

Joint Design:

Overlap:

Type

Minimum

Joint Clearance

Maximum

BPS Number Revision Date Issued

Supporting PQRs

Brazing Process(es) Type(s)

Joint Design (QB-408)

Base Metal (QB-402) Brazing Filler Metal (QB-403)

Brazing Temperature (QB-404)

Brazing Flux, Fuel Gas, or Atmosphere (QB-406)Postbraze Heat Treatment (QB-409)

Flow Position (QB-407)

Technique (QB-410) and Other Information

(02/07)

By

(Automatic, Manual, Machine, orSemi-Automatic)

Brazing Temperature Range

Nature of Flame (Oxidizing, Neutral, Reducing)

248

Page 278: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

07QB-483 SUGGESTED FORMAT FOR A BRAZING PROCEDURE QUALIFICATION RECORD (PQR)

(See QB-200.2, Section IX, ASME Boiler and Pressure Vessel Code)

Record of Actual Conditions Used to Braze Test Coupon

Company Name

BPS Followed During Brazing of Test Coupon PQR No.

Brazing Process(es) Used Date Coupon Was Brazed

Base Metal Specification to Base Metal Specification

P- or S-Number to P- or S-Number

Plate or Pipe/TubeBase Metal Thickness

Joint Type

Filler Metal Specification: AWS Classification F-No. Filler Metal Product Form

Nature of Flame (Oxidizing, Neutral, Reducing)

Flux (AWS Class., Compostion, Trade Name, or None) Atmosphere Type

Overlap Joint Clearance

Position

Fuel Gas Furnace Temperature

Temperature Time

Cleaning Prior to BrazingPostbraze Cleaning

Other

Tensile Tests (QB-150)

(05/07)

SpecimenWidth/

Diameter Thickness Area Ultimate Load UTS (psi or MPa) Failure Location

Bend Tests (QB-160)

Type TypeResults Results

Peel Tests (QB-170) or Section Tests (QB-180)

Type TypeResults Results

Other Tests

Brazer’s/Brazing Operator’s Name ID No.

Brazing of Test Coupon Supervised by

Test Specimens Evaluated by Company

Manufacturer

Certified by Date

Laboratory Test Number

We hereby certify that the statements in this record are correct and that the test coupons were prepared, brazed, and tested in accordance with the requirements of Section IX of the ASME BOILER AND PRESSURE VESSEL CODE.

Base Metal (QB-402)

to Base Metal Thickness

Brazing Filler Metal (QB-403)

Joint Design (QB-408)

Brazing Temperature (QB-404)

Brazing Temperature Range

Brazing Flux, Fuel Gas, or Atmosphere (QB-406)

Other

Flow Position (QB-407)

Flow Direction

Postbraze Heat Treatment (QB-409)

Technique (QB-410)

249

Page 279: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

07QB-484 SUGGESTED FORMAT FOR A BRAZER/BRAZING OPERATOR PERFORMANCE

QUALIFICATION (BPQ)

(See QB-301, Section IX, ASME Boiler and Pressure Vessel Code)

Brazer’s/Brazing Operator’s Name

Identification of BPS Followed During Brazing of Test Coupon

Specification of First Test Coupon Base Metal

Specification of Second Test Coupon Base Metal

Brazing Process(es)

Type of Brazing (Manual, Semi-Automatic, Automatic,

Machine)

Torch Brazing: Manual or Mechanical

Base Metal P- or S-Number to P- or S-Number

Plate Pipe (enter diameter if pipe or tube)

Base Metal Thickness

to Base Metal Thickness

Joint Type (Butt, Lap, Scarf, Socket, etc.)

If Lap or Socket, Overlap Length

Joint Clearance

Filler Metal (SFA) Specification(s) (info. only)

Filler Metal Classification(s) (info. only)

Filler Metal/F-Number

Filler Metal Product Form

Brazing Flow Positions

We certify that the statements in this record are correct and that the test coupons were prepared, brazed, and tested in accordance with the

requirements of Section IX of the ASME BOILER AND PRESSURE VESSEL CODE.

Manufacturer

Certified by

Mechanical Tests Conducted by

Specimens Evaluated by

Lab Test No.

Company

Company

Identification No.

Testing Conditions and Ranges Qualified

Actual Values Range QualifiedBrazing Variables (QB-350)

Testing and Results

Visual Examination of Completed Joint (QB-141.6)

Mechanical Test Peel (QB-462.3) Section (QB-462.4) Tension (QB-462.1)

Date of Test

Position Result Position Result Position Result

(03/07)

Date

Transverse Bends [QB-462.2(a)] Longitudinal Bends [QB-462.2(b)]

250

Page 280: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

NONMANDATORY APPENDIX DP-NUMBER LISTING

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys

1 1 SA-36 . . .1 1 SA-53 Type E, Gr. A1 1 SA-53 Type E, Gr. B1 1 SA-53 Type F1 1 SA-53 Type S, Gr. A1 1 SA-53 Type S, Gr. B

1 1 SA-106 A1 1 SA-106 B1 1 SA-134 . . .1 1 SA-135 A1 1 SA-135 B

1 1 SA-178 A1 1 SA-178 C1 1 SA-179 . . .1 1 SA-181 Cl. 601 1 SA-192 . . .

1 1 SA-210 A-11 1 SA-214 . . .1 1 SA-216 WCA1 1 SA-234 WPB1 1 SA-266 11 1 SA-283 A

1 1 SA-283 B1 1 SA-283 C1 1 SA-283 D1 1 SA-285 A1 1 SA-285 B

1 1 SA-285 C1 1 SA-333 11 1 SA-333 61 1 SA-334 11 1 SA-334 6

1 1 SA-350 LF11 1 SA-352 LCA1 1 SA-352 LCB1 1 SA-369 FPA1 1 SA-369 FPB

1 1 SA-372 A1 1 SA-414 A1 1 SA-414 B1 1 SA-414 C1 1 SA-414 D

1 1 SA-414 E1 1 SA-420 WPL6

251

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)1 1 SA-513 10081 1 SA-513 10101 1 SA-513 1015

1 1 SA-515 601 1 SA-515 651 1 SA-516 551 1 SA-516 601 1 SA-516 65

1 1 SA-524 I1 1 SA-524 II1 1 SA-556 A21 1 SA-556 B21 1 SA-557 A2

1 1 SA-557 B21 1 SA-562 . . .1 1 SA-587 . . .1 1 SA-660 WCA1 1 SA-662 A

1 1 SA-662 B1 1 SA-671 CA551 1 SA-671 CB601 1 SA-671 CB651 1 SA-671 CC60

1 1 SA-671 CC651 1 SA-671 CE551 1 SA-671 CE601 1 SA-672 A451 1 SA-672 A50

1 1 SA-672 A551 1 SA-672 B551 1 SA-672 B601 1 SA-672 B651 1 SA-672 C55

1 1 SA-672 C601 1 SA-672 C651 1 SA-672 E551 1 SA-672 E601 1 SA-675 45

1 1 SA-675 501 1 SA-675 551 1 SA-675 601 1 SA-675 651 1 SA-695 Type B, Gr. 35

1 1 SA-696 B

07

Page 281: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)1 1 SA-727 . . .1 1 SA-765 I1 1 SA-836 . . .1 1 SA-1008 CS Type A1 1 SA-1008 CS Type B

1 1 SA/AS 1548 7-4301 1 SA/AS 1548 7-4601 1 SA/CSA G40.21 Gr. 38W1 1 SA/CSA G40.21 Gr. 44W1 1 SA/EN 10028-2 P295GH1 1 SA/EN 10028-3 P275NH

1 2 SA-105 . . .1 2 SA-106 C1 2 SA-178 D1 2 SA-181 Cl. 701 2 SA-210 C

1 2 SA-216 WCB1 2 SA-216 WCC1 2 SA-234 WPC1 2 SA-266 21 2 SA-266 3

1 2 SA-266 41 2 SA-299 . . .1 2 SA-350 LF21 2 SA-352 LCC1 2 SA-372 B

1 2 SA-414 F1 2 SA-414 G1 2 SA-455 . . .1 2 SA-487 Gr. 16, Cl. A1 2 SA-508 1

1 2 SA-508 1A1 2 SA-515 701 2 SA-516 701 2 SA-537 Cl. 11 2 SA-541 1

1 2 SA-541 1A1 2 SA-556 C21 2 SA-557 C21 2 SA-660 WCB1 2 SA-660 WCC

1 2 SA-662 C1 2 SA-671 CB701 2 SA-671 CC701 2 SA-671 CD701 2 SA-671 CK75

1 2 SA-672 B701 2 SA-672 C701 2 SA-672 D701 2 SA-672 N751 2 SA-675 70

1 2 SA-691 CMS-751 2 SA-691 CMSH-701 2 SA-695 Type B, Gr. 401 2 SA-696 C

252

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)1 2 SA-737 B

1 2 SA-738 A1 2 SA-765 II1 2 SA/AS 1548 5-4901 2 SA/AS 1548 7-4901 2 SA/JIS G3118 SGV480

1 3 SA-333 101 3 SA-537 Cl. 21 3 SA-537 Cl. 31 3 SA-671 CD801 3 SA-672 D80

1 3 SA-691 CMSH-801 3 SA-737 C1 3 SA-738 B1 3 SA-738 C1 3 SA-765 IV1 3 SA-812 65

1 4 SA-724 A1 4 SA-724 B1 4 SA-724 C1 4 SA-812 80

3 1 SA-204 A3 1 SA-209 T13 1 SA-209 T1a3 1 SA-209 T1b3 1 SA-213 T2

3 1 SA-217 WC13 1 SA-234 WP13 1 SA-250 T13 1 SA-250 T1a3 1 SA-250 T1b

3 1 SA-250 T23 1 SA-335 P13 1 SA-335 P23 1 SA-335 P153 1 SA-352 LC1

3 1 SA-369 FP13 1 SA-369 FP23 1 SA-387 Gr. 2, Cl. 13 1 SA-426 CP13 1 SA-426 CP2

3 1 SA-426 CP153 1 SA-672 L653 1 SA-691 1⁄2CR3 1 SA-691 CM-65

3 2 SA-182 F13 2 SA-182 F23 2 SA-204 B3 2 SA-204 C3 2 SA-302 A

3 2 SA-336 F13 2 SA-387 Gr. 2, Cl. 23 2 SA-672 H753 2 SA-672 L703 2 SA-672 L75

Page 282: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)3 2 SA-691 1⁄2CR, Cl. 23 2 SA-691 CM-703 2 SA-691 CM-75

3 3 SA-302 B3 3 SA-302 C3 3 SA-302 D3 3 SA-487 Gr. 2, Cl. A3 3 SA-487 Gr. 2, Cl. B

3 3 SA-487 Gr. 4, Cl. A3 3 SA-508 2, Cl. 13 3 SA-508 2, Cl. 23 3 SA-508 3, Cl. 13 3 SA-508 3, Cl. 2

3 3 SA-508 4N, Cl. 33 3 SA-533 Type A, Cl. 13 3 SA-533 Type A, Cl. 23 3 SA-533 Type B, Cl. 13 3 SA-533 Type B, Cl. 2

3 3 SA-533 Type C, Cl. 13 3 SA-533 Type C, Cl. 23 3 SA-533 Type D, Cl. 13 3 SA-533 Type D, Cl. 23 3 SA-541 2, Cl. 1

3 3 SA-541 2, Cl. 23 3 SA-541 3, Cl. 13 3 SA-541 3, Cl. 23 3 SA-543 B Cl. 33 3 SA-543 C Cl. 3

3 3 SA-672 H803 3 SA-672 J803 3 SA-672 J90

4 1 SA-182 F11, Cl. 14 1 SA-182 F11, Cl. 24 1 SA-182 F11, Cl. 34 1 SA-182 F12, Cl. 14 1 SA-182 F12, Cl. 2

4 1 SA-202 A4 1 SA-202 B4 1 SA-213 T114 1 SA-213 T124 1 SA-217 WC4

4 1 SA-217 WC54 1 SA-217 WC64 1 SA-234 WP11, Cl. 14 1 SA-234 WP12, Cl. 14 1 SA-250 T114 1 SA-250 T12

4 1 SA-335 P114 1 SA-335 P124 1 SA-336 F11, Cl. 24 1 SA-336 F11, Cl. 34 1 SA-336 F11, Cl. 1

4 1 SA-336 F124 1 SA-369 FP114 1 SA-369 FP12

253

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)4 1 SA-387 11, Cl. 14 1 SA-387 11, Cl. 2

4 1 SA-387 12, Cl. 14 1 SA-387 12, Cl. 24 1 SA-426 CP114 1 SA-426 CP124 1 SA-541 11, Cl. 4

4 1 SA-691 1CR4 1 SA-691 11⁄4 CR4 1 SA-739 B114 2 SA-333 44 2 SA-423 14 2 SA-423 2

5A 1 SA-182 F215A 1 SA-182 F22, Cl. 15A 1 SA-182 F22, Cl. 35A 1 SA-213 T215A 1 SA-213 T22

5A 1 SA-217 WC95A 1 SA-234 WP22, Cl. 15A 1 SA-250 T225A 1 SA-335 P215A 1 SA-335 P22

5A 1 SA-336 F21, Cl. 35A 1 SA-336 F21, Cl. 15A 1 SA-336 F22, Cl. 35A 1 SA-336 F22, Cl. 15A 1 SA-369 FP21

5A 1 SA-369 FP225A 1 SA-387 21, Cl. 15A 1 SA-387 21, Cl. 25A 1 SA-387 22, Cl. 15A 1 SA-387 22, Cl. 2

5A 1 SA-426 CP215A 1 SA-426 CP225A 1 SA-691 21⁄4CR5A 1 SA-691 3CR5A 1 SA-739 B22

5B 1 SA-182 F55B 1 SA-182 F5a5B 1 SA-182 F95B 1 SA-213 T55B 1 SA-213 T5b

5B 1 SA-213 T5c5B 1 SA-213 T95B 1 SA-217 C55B 1 SA-217 C125B 1 SA-234 WP5

5B 1 SA-234 WP95B 1 SA-335 P55B 1 SA-335 P5b5B 1 SA-335 P5c5B 1 SA-335 P9

5B 1 SA-336 F55B 1 SA-336 F5A

Page 283: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)5B 1 SA-336 F95B 1 SA-369 FP55B 1 SA-369 FP9

5B 1 SA-387 5, Cl. 15B 1 SA-387 5, Cl. 25B 1 SA-426 CP55B 1 SA-426 CP5b5B 1 SA-426 CP95B 1 SA-691 5CR

5B 2 SA-182 F915B 2 SA-213 T915B 2 SA-234 WP915B 2 SA-335 P915B 2 SA-336 F915B 2 SA-369 FP915B 2 SA-387 Gr. 91, Cl. 2

5C 1 SA-182 F3V5C 1 SA-182 F3VCb5C 1 SA-182 F22V5C 1 SA-336 F3V5C 1 SA-336 F3VCb5C 1 SA-336 F22V5C 1 SA-487 Gr. 8 Cl. A

5C 1 SA-508 3V5C 1 SA-508 3VCb5C 1 SA-508 22, Cl. 35C 1 SA-541 3V5C 1 SA-541 3VCb5C 1 SA-541 22V5C 1 SA-541 22, Cl. 3

5C 1 SA-542 A, Cl. 45C 1 SA-542 A, Cl. 4a5C 1 SA-542 B, Cl. 45C 1 SA-542 B, Cl. 4a5C 1 SA-542 C, Cl. 4

5C 1 SA-542 C, Cl. 4a5C 1 SA-542 D, Cl. 4a5C 1 SA-542 E, Cl. 4a5C 1 SA-832 21V5C 1 SA-832 22V5C 1 SA-832 23V

5C 3 SA-542 A, Cl. 35C 3 SA-542 B, Cl. 35C 3 SA-542 C, Cl. 3

5C 4 SA-487 Gr. 8 Cl. B5C 4 SA-487 Gr. 8 Cl. C5C 4 SA-541 22, Cl. 45C 4 SA-542 A, Cl. 15C 4 SA-542 B, Cl. 15C 4 SA-542 C, Cl. 1

5C 5 SA-541 22, Cl. 55C 5 SA-542 A, Cl. 25C 5 SA-542 B, Cl. 25C 5 SA-542 C, Cl. 2

6 1 SA-182 F6a, Cl. 1

254

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)6 1 SA-240 4106 1 SA-268 TP4106 1 SA-479 4036 1 SA-479 410

6 2 SA-182 F4296 2 SA-240 4296 2 SA-268 TP429

6 3 SA-182 F6a, Cl. 26 3 SA-182 F6b6 3 SA-217 CA156 3 SA-336 F66 3 SA-426 CPCA15

6 3 SA-487 CA15 Cl. B6 3 SA-487 CA15 Cl. C6 3 SA-487 CA15 Cl. D6 3 SA-487 CA15M Cl. A

6 4 SA-182 F6NM6 4 SA-240 S415006 4 SA-268 S415006 4 SA-352 CA6NM6 4 SA-479 414

6 4 SA-479 S415006 4 SA-487 CA6NM Cl. A6 4 SA-487 CA6NM Cl. B6 4 SA-731 S415006 4 SA-815 S41500

7 1 SA-240 Type 4057 1 SA-240 Type 4097 1 SA-240 Type 410S7 1 SA-268 S408007 1 SA-268 TP405

7 1 SA-268 TP4097 1 SA-268 TP430Ti7 1 SA-479 405

7 2 SA-182 F4307 2 SA-240 S444007 2 SA-240 Type 4307 2 SA-240 Type 4397 2 SA-268 18Cr–2Mo

7 2 SA-268 TP4307 2 SA-268 TP4397 2 SA-479 4307 2 SA-479 4397 2 SA-479 S44400

7 2 SA-731 18Cr-2Mo7 2 SA-731 TP4397 2 SA-803 TP439

8 1 SA-182 S306008 1 SA-182 F3048 1 SA-182 F304H8 1 SA-182 F304L8 1 SA-182 F304LN8 1 SA-182 F304N

8 1 SA-182 F316

Page 284: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)8 1 SA-182 F316H8 1 SA-182 F316L8 1 SA-182 F316LN8 1 SA-182 F316

8 1 SA-182 F3178 1 SA-182 F317L8 1 SA-182 F3218 1 SA-182 F321H8 1 SA-182 F347

8 1 SA-182 F347H8 1 SA-182 F3488 1 SA-182 F348H8 1 SA-213 TP3048 1 SA-213 TP304H

8 1 SA-213 TP304L8 1 SA-213 TP304LN8 1 SA-213 TP304N8 1 SA-213 S306008 1 SA-213 S30601

8 1 SA-213 S326158 1 SA-213 TP3168 1 SA-213 TP316H8 1 SA-213 TP316L8 1 SA-213 TP316LN8 1 SA-213 TP316N

8 1 SA-213 TP3218 1 SA-213 TP321H8 1 SA-213 TP3478 1 SA-213 TP347H8 1 SA-213 TP347HFG

8 1 SA-213 TP3488 1 SA-213 TP348H8 1 SA-213 XM-158 1 SA-240 S305008 1 SA-240 S30600

8 1 SA-240 S306018 1 SA-240 S317538 1 SA-240 S326158 1 SA-240 Type 3018 1 SA-240 Type 302

8 1 SA-240 Type 3048 1 SA-240 Type 304H8 1 SA-240 Type 304L8 1 SA-240 Type 304LN8 1 SA-240 Type 304N

8 1 SA-240 Type 3168 1 SA-240 Type 316Cb8 1 SA-240 Type 316H8 1 SA-240 Type 316L8 1 SA-240 Type 316LN

8 1 SA-240 Type 316N8 1 SA-240 Type 316Ti8 1 SA-240 Type 3178 1 SA-240 Type 317L8 1 SA-240 Type 321

255

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)8 1 SA-240 Type 321H8 1 SA-240 Type 3478 1 SA-240 Type 347H8 1 SA-240 Type 3488 1 SA-240 Type 348H

8 1 SA-240 Type XM-158 1 SA-240 Type XM-218 1 SA-249 TP3048 1 SA-249 TP304H8 1 SA-249 TP304L

8 1 SA-249 TP304LN8 1 SA-249 TP304N8 1 SA-249 TP3168 1 SA-249 TP316H8 1 SA-249 TP316L

8 1 SA-249 TP316LN8 1 SA-249 TP316N8 1 SA-249 TP3178 1 SA-249 TP317L8 1 SA-249 TP321

8 1 SA-249 TP321H8 1 SA-249 TP3478 1 SA-249 TP347H8 1 SA-249 TP3488 1 SA-249 TP348H8 1 SA-249 TP XM-15

8 1 SA-312 S306008 1 SA-312 S306018 1 SA-312 S326158 1 SA-312 TP3048 1 SA-312 TP304H

8 1 SA-312 TP304L8 1 SA-312 TP304LN8 1 SA-312 TP304N8 1 SA-312 TP3168 1 SA-312 TP316H

8 1 SA-312 TP316L8 1 SA-312 TP316LN8 1 SA-312 TP316N8 1 SA-312 TP3178 1 SA-312 TP317L

8 1 SA-312 TP3218 1 SA-312 TP321H8 1 SA-312 TP3478 1 SA-312 TP347H8 1 SA-312 TP348

8 1 SA-312 TP348H8 1 SA-312 TP XM-158 1 SA-351 CF38 1 SA-351 CF3A

8 1 SA-351 CF3M8 1 SA-351 CF88 1 SA-351 CF8A8 1 SA-351 CF8C8 1 SA-351 CF8M

Page 285: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)8 1 SA-351 CF108 1 SA-351 CF10M8 1 SA-351 CG8M8 1 SA-358 3048 1 SA-358 304H

8 1 SA-358 304L8 1 SA-358 304LN8 1 SA-358 304N8 1 SA-358 3168 1 SA-358 316H

8 1 SA-358 316L8 1 SA-358 316LN8 1 SA-358 316N8 1 SA-358 3218 1 SA-358 347

8 1 SA-358 3488 1 SA-376 16-8-2H8 1 SA-376 TP3048 1 SA-376 TP304H8 1 SA-376 TP304LN

8 1 SA-376 TP304N8 1 SA-376 TP3168 1 SA-376 TP316H8 1 SA-376 TP316LN8 1 SA-376 TP316N

8 1 SA-376 TP3218 1 SA-376 TP321H8 1 SA-376 TP3478 1 SA-376 TP347H8 1 SA-376 TP348

8 1 SA-376 16-8-2H8 1 SA-403 WP3048 1 SA-403 WP304H8 1 SA-403 WP304L8 1 SA-403 WP304LN

8 1 SA-403 WP304N8 1 SA-403 WP3168 1 SA-403 WP316H8 1 SA-403 WP316L8 1 SA-403 WP316LN8 1 SA-403 WP316N

8 1 SA-403 WP3178 1 SA-403 WP317L8 1 SA-403 WP3218 1 SA-403 WP321H8 1 SA-403 WP347

8 1 SA-403 WP347H8 1 SA-403 WP3488 1 SA-403 WP348H8 1 SA-409 TP3048 1 SA-409 TP304L8 1 SA-409 TP316

8 1 SA-409 TP316L8 1 SA-409 TP3178 1 SA-409 TP321

256

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)8 1 SA-409 TP3478 1 SA-409 TP348

8 1 SA-451 CPF38 1 SA-451 CPF3A8 1 SA-451 CPF3M8 1 SA-451 CPF88 1 SA-451 CPF8A8 1 SA-451 CPF8C8 1 SA-451 CPF8M

8 1 SA-479 3028 1 SA-479 3048 1 SA-479 304H8 1 SA-479 304L8 1 SA-479 304LN

8 1 SA-479 304N8 1 SA-479 3168 1 SA-479 316Cb8 1 SA-479 316H8 1 SA-479 316L

8 1 SA-479 316LN8 1 SA-479 316N8 1 SA-479 316Ti8 1 SA-479 3218 1 SA-479 321H

8 1 SA-479 3478 1 SA-479 347H8 1 SA-479 3488 1 SA-479 348H8 1 SA-479 S30600

8 1 SA-479 S306018 1 SA-479 S326158 1 SA-666 3028 1 SA-666 3048 1 SA-666 304L

8 1 SA-666 304LN8 1 SA-666 304N8 1 SA-666 3168 1 SA-666 316L8 1 SA-666 316N

8 1 SA-688 TP3048 1 SA-688 TP304L8 1 SA-688 TP304LN8 1 SA-688 TP304N

8 1 SA-688 TP3168 1 SA-688 TP316L8 1 SA-688 TP316LN8 1 SA-688 TP316N8 1 SA-813 TP304

8 1 SA-813 TP304H8 1 SA-813 TP304L8 1 SA-813 TP304LN8 1 SA-813 TP304N8 1 SA-813 TP316

8 1 SA-813 TP316H8 1 SA-813 TP316L

Page 286: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)8 1 SA-813 TP316LN8 1 SA-813 TP316N8 1 SA-813 TP317

8 1 SA-813 TP317L8 1 SA-813 TP3218 1 SA-813 TP321H8 1 SA-813 TP3478 1 SA-813 TP347H

8 1 SA-813 TP3488 1 SA-813 TP348H8 1 SA-813 TPXM-158 1 SA-814 TP3048 1 SA-814 TP304H

8 1 SA-814 TP304L8 1 SA-814 TP304LN8 1 SA-814 TP304N8 1 SA-814 TP3168 1 SA-814 TP316H

8 1 SA-814 TP316L8 1 SA-814 TP316LN8 1 SA-814 TP316N8 1 SA-814 TP3178 1 SA-814 TP317L

8 1 SA-814 TP3218 1 SA-814 TP321H8 1 SA-814 TP3478 1 SA-814 TP347H8 1 SA-814 TP348

8 1 SA-814 TP348H8 1 SA-814 TPXM-158 1 SA-965 F3048 1 SA-965 F304H8 1 SA-965 F304L

8 1 SA-965 F304LN8 1 SA-965 F304N8 1 SA-965 F3168 1 SA-965 F316H8 1 SA-965 F316L

8 1 SA-965 F316LN8 1 SA-965 F316N8 1 SA-965 F3218 1 SA-965 F321H8 1 SA-965 F347

8 1 SA-965 F347H8 1 SA-965 F3488 1 SA-965 F348H

8 2 SA-182 F108 2 SA-182 F458 2 SA-182 F3108 2 SA-182 F310MoLN

8 2 SA-213 S308158 2 SA-213 TP309Cb8 2 SA-213 TP309H8 2 SA-213 TP309S

257

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)8 2 SA-213 TP310Cb8 2 SA-213 TP310S8 2 SA-213 TP309HCb8 2 SA-213 TP310H8 2 SA-213 TP310MoLN

8 2 SA-213 TP310HCb8 2 SA-240 S308158 2 SA-240 Type 309Cb8 2 SA-240 Type 309H8 2 SA-240 Type 309HCb

8 2 SA-240 Type 309S8 2 SA-240 Type 310Cb8 2 SA-240 Type 310HCb8 2 SA-240 Type 310MoLN8 2 SA-240 Type 310S

8 2 SA-249 S308158 2 SA-249 TP309Cb8 2 SA-249 TP309H8 2 SA-249 TP309HCb8 2 SA-249 TP309S

8 2 SA-249 TP310Cb8 2 SA-249 TP310H8 2 SA-249 TP310S8 2 SA-249 TP310MoLN8 2 SA-312 S30815

8 2 SA-312 TP309Cb8 2 SA-312 TP309H8 2 SA-312 TP309HCb8 2 SA-312 TP309S8 2 SA-312 TP310Cb

8 2 SA-312 TP310H8 2 SA-312 TP310HCb8 2 SA-312 TP310S8 2 SA-312 TP310MoLN

8 2 SA-351 CH88 2 SA-351 CH208 2 SA-351 CK208 2 SA-358 3098 2 SA-358 309Cb

8 2 SA-358 309S8 2 SA-358 310Cb8 2 SA-358 310S8 2 SA-358 S308158 2 SA-403 WP309

8 2 SA-403 WP310S8 2 SA-409 S308158 2 SA-409 TP309Cb8 2 SA-409 TP309S8 2 SA-409 TP310Cb

8 2 SA-409 TP310S8 2 SA-451 CPH88 2 SA-451 CPH208 2 SA-451 CPK208 2 SA-479 309Cb

8 2 SA-479 309S

Page 287: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)8 2 SA-479 310Cb8 2 SA-479 310S8 2 SA-479 S308158 2 SA-813 S30815

8 2 SA-813 TP309Cb8 2 SA-813 TP309S8 2 SA-813 TP310Cb8 2 SA-813 TP310S8 2 SA-814 S30815

8 2 SA-814 TP309Cb8 2 SA-814 TP309S8 2 SA-814 TP310Cb8 2 SA-814 TP310S8 2 SA-965 F310

8 3 SA-182 FXM-118 3 SA-182 FXM-198 3 SA-213 TP2018 3 SA-213 TP2028 3 SA-213 XM-19

8 3 SA-240 S201008 3 SA-240 S218008 3 SA-240 S201008 3 SA-240 S201538 3 SA-240 Type 202

8 3 SA-240 S204008 3 SA-240 Type XM-178 3 SA-240 Type XM-188 3 SA-240 Type XM-198 3 SA-240 Type XM-29

8 3 SA-249 TP2018 3 SA-249 TP2028 3 SA-249 TPXM-198 3 SA-249 TPXM-298 3 SA-312 TPXM-11

8 3 SA-312 TPXM-198 3 SA-312 TPXM-298 3 SA-351 CG6MMN

8 3 SA-358 XM-198 3 SA-358 XM-298 3 SA-403 WPXM-198 3 SA-479 S218008 3 SA-479 XM-11

8 3 SA-479 XM-178 3 SA-479 XM-188 3 SA-479 XM-198 3 SA-479 XM-298 3 SA-666 201

8 3 SA-666 XM-118 3 SA-688 XM-298 3 SA-813 TPXM-118 3 SA-813 TPXM-198 3 SA-813 TPXM-29

8 3 SA-814 TPXM-118 3 SA-814 TPXM-198 3 SA-814 TPXM-29

258

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)8 3 SA-965 FXM-118 3 SA-965 FXM-19

8 4 SA-182 F448 4 SA-213 S317258 4 SA-213 S317268 4 SA-240 S312548 4 SA-240 S31725

8 4 SA-240 S317268 4 SA-249 S312548 4 SA-249 S317258 4 SA-249 S317268 4 SA-312 S31254

8 4 SA-312 S317258 4 SA-312 S317268 4 SA-351 J932548 4 SA-358 S31254

8 4 SA-358 S317258 4 SA-358 S317268 4 SA-376 S317258 4 SA-376 S317268 4 SA-403 S31254

8 4 SA-409 S312548 4 SA-409 S317258 4 SA-409 S317268 4 SA-479 S312548 4 SA-479 S31725

8 4 SA-479 S317268 4 SA-813 S312548 4 SA-814 S312548 4 SA-965 F46

9A 1 SA-182 FR9A 1 SA-203 A9A 1 SA-203 B9A 1 SA-234 WPR9A 1 SA-333 7

9A 1 SA-333 99A 1 SA-334 79A 1 SA-334 99A 1 SA-350 LF5, Cl. 19A 1 SA-350 LF5, Cl. 2

9A 1 SA-350 LF99A 1 SA-352 LC29A 1 SA-420 WPL9

9B 1 SA-203 D9B 1 SA-203 E9B 1 SA-203 F9B 1 SA-333 39B 1 SA-334 3

9B 1 SA-350 LF3, Cl. 29B 1 SA-352 LC39B 1 SA-420 WPL39B 1 SA-765 III

9C 1 SA-352 LC4

Page 288: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)10A 1 SA-225 C10A 1 SA-225 D10A 1 SA-487 Gr. 1, Cl. A10A 1 SA-487 Gr. 1, Cl. B

10B 1 SA-213 T17

10C 1 SA-612 . . .

10H 1 SA-182 F5310H 1 SA-182 F5010H 1 SA-182 F5110H 1 SA-182 F54

10H 1 SA-240 S3120010H 1 SA-240 S3126010H 1 SA-240 S3180310H 1 SA-240 S3255010H 1 SA-240 S32750

10H 1 SA-240 S3290610H 1 SA-240 S3295010H 1 SA-240 Type 32910H 1 SA-479 S3255010H 1 SA-479 S31803

10H 1 SA-789 S3120010H 1 SA-789 S3126010H 1 SA-789 S3150010H 1 SA-789 S3180310H 1 SA-789 S32304

10H 1 SA-789 S3255010H 1 SA-789 S3275010H 1 SA-789 S3290010H 1 SA-789 S3290610H 1 SA-789 S3295010H 1 SA-789 S39274

10H 1 SA-790 S3120010H 1 SA-790 S3126010H 1 SA-790 S3150010H 1 SA-790 S3180310H 1 SA-790 S32304

10H 1 SA-790 S3255010H 1 SA-790 S3275010H 1 SA-790 S3290010H 1 SA-790 S2390610H 1 SA-790 S3295010H 1 SA-790 S39274

10H 1 SA-815 S3180310H 1 SA-995 2A10H 1 SA-995 1B

10I 1 SA-182 FXM-27Cb10I 1 SA-240 S4463510I 1 SA-240 Type XM-2710I 1 SA-240 Type XM-3310I 1 SA-268 25-4-4

10I 1 SA-268 TP446-110I 1 SA-268 TP446-210I 1 SA-268 TPXM-2710I 1 SA-268 TPXM-33

259

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)10I 1 SA-336 FXM-27Cb

10I 1 SA-479 XM-2710I 1 SA-731 TPXM-2710I 1 SA-731 TPXM-33

10J 1 SA-240 S4470010J 1 SA-268 S4470010J 1 SA-268 S4473510J 1 SA-479 S4470010J 1 SA-731 S44700

10K 1 SA-240 S4466010K 1 SA-240 S4480010K 1 SA-268 S4466010K 1 SA-268 S4480010K 1 SA-479 S44800

10K 1 SA-731 S4466010K 1 SA-731 S4480010K 1 SA-803 S44660

11A 1 SA-333 811A 1 SA-334 811A 1 SA-353 . . .11A 1 SA-420 WPL811A 1 SA-522 Type I

11A 1 SA-522 Type II11A 1 SA-553 Type I11A 1 SA-553 Type II

11A 2 SA-645 . . .

11A 3 SA-487 Gr. 4, Cl. B11A 3 SA-487 Gr. 4, Cl. E

11A 4 SA-533 Type A, Cl. 311A 4 SA-533 Type B, Cl. 311A 4 SA-533 Type C, Cl. 311A 4 SA-533 Type D, Cl. 311A 4 SA-672 J100

11A 5 SA-352 LC2-111A 5 SA-508 4N, Cl. 111A 5 SA-508 5, Cl. 111A 5 SA-543 B Cl. 111A 5 SA-543 C Cl. 1

11B 1 SA-517 A11B 1 SA-592 A

11B 2 SA-517 E11B 2 SA-592 E

11B 3 SA-517 F11B 3 SA-592 F

11B 4 SA-517 B

11B 6 SA-517 J

11B 8 SA-517 P

11B 10 SA-508 4N, Cl. 211B 10 SA-508 5, Cl. 2

Page 289: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Steel and Steel Alloys (CONT’D)11B 10 SA-543 B Cl. 211B 10 SA-543 C Cl. 2

Aluminum and Aluminum-Base Alloys

21 . . . SB-209 A9106021 . . . SB-209 A9110021 . . . SB-209 A9300321 . . . SB-210 A9106021 . . . SB-210 A93003

21 . . . SB-221 A9106021 . . . SB-221 A9110021 . . . SB-221 A9300321 . . . SB-234 A9106021 . . . SB-234 A93003

21 . . . SB-241 A9106021 . . . SB-241 A9110021 . . . SB-241 A9300321 . . . SB-247 A93003

22 . . . SB-209 A9300422 . . . SB-209 A9505222 . . . SB-209 A9515422 . . . SB-209 A9525422 . . . SB-209 A95454

22 . . . SB-209 A9565222 . . . SB-210 A9505222 . . . SB-210 A9515422 . . . SB-221 A9515422 . . . SB-221 A95454

22 . . . SB-234 A9505222 . . . SB-234 A9545422 . . . SB-241 A9505222 . . . SB-241 A95454

23 . . . SB-209 A9606123 . . . SB-210 A9606123 . . . SB-210 A9606323 . . . SB-211 A9606123 . . . SB-221 A96061

23 . . . SB-221 A9606323 . . . SB-234 A9606123 . . . SB-241 A9606123 . . . SB-241 A9606323 . . . SB-247 A96061

23 . . . SB-308 A9606125 . . . SB-209 A9508325 . . . SB-209 A9508625 . . . SB-209 A9545625 . . . SB-221 A95083

25 . . . SB-221 A9545625 . . . SB-241 A9508325 . . . SB-241 A9508625 . . . SB-241 A9545625 . . . SB-247 A95083

260

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Aluminum and Aluminum-Base Alloys (CONT’D)25 . . . SB-928 A9508325 . . . SB-928 A9508625 . . . SB-928 A95456

Copper and Copper-Base Alloys

31 . . . SB-42 C1020031 . . . SB-42 C1200031 . . . SB-42 C1220031 . . . SB-75 C1020031 . . . SB-75 C12000

31 . . . SB-75 C1220031 . . . SB-75 C1420031 . . . SB-111 C1020031 . . . SB-111 C1200031 . . . SB-111 C12200

31 . . . SB-111 C1420031 . . . SB-111 C1920031 . . . SB-152 C1020031 . . . SB-152 C10400

31 . . . SB-152 C1050031 . . . SB-152 C1070031 . . . SB-152 C1100031 . . . SB-152 C1220031 . . . SB-152 C1230031 . . . SB-152 C12500

31 . . . SB-152 C1420031 . . . SB-187 C1020031 . . . SB-187 C1100031 . . . SB-359 C1020031 . . . SB-359 C1200031 . . . SB-359 C1220031 . . . SB-359 C14200

31 . . . SB-359 C1920031 . . . SB-395 C1020031 . . . SB-395 C1200031 . . . SB-395 C1220031 . . . SB-395 C14200

31 . . . SB-395 C1920031 . . . SB-543 C1220031 . . . SB-543 C19400

32 . . . SB-43 C2300032 . . . SB-111 C2300032 . . . SB-111 C2800032 . . . SB-111 C4430032 . . . SB-111 C44400

32 . . . SB-111 C4450032 . . . SB-111 C6870032 . . . SB-135 C2300032 . . . SB-171 C3650032 . . . SB-171 C4430032 . . . SB-171 C4440032 . . . SB-171 C44500

32 . . . SB-171 C4640032 . . . SB-171 C4650032 . . . SB-359 C23000

Page 290: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Copper and Copper-Base Alloys (CONT’D)32 . . . SB-359 C4430032 . . . SB-359 C4440032 . . . SB-359 C4450032 . . . SB-359 C6870032 . . . SB-395 C23000

32 . . . SB-395 C4430032 . . . SB-395 C4440032 . . . SB-395 C4450032 . . . SB-395 C6870032 . . . SB-543 C23000

32 . . . SB-543 C4430032 . . . SB-543 C4440032 . . . SB-543 C4450032 . . . SB-543 C68700

33 . . . SB-96 C6550033 . . . SB-98 C6510033 . . . SB-98 C6550033 . . . SB-98 C6610033 . . . SB-315 C65500

34 . . . SB-111 C7040034 . . . SB-111 C7060034 . . . SB-111 C7100034 . . . SB-111 C7150034 . . . SB-111 C71640

34 . . . SB-111 C7220034 . . . SB-151 C7060034 . . . SB-171 C7060034 . . . SB-171 C7150034 . . . SB-359 C70400

34 . . . SB-359 C7060034 . . . SB-359 C7100034 . . . SB-359 C7150034 . . . SB-369 C9620034 . . . SB-395 C70600

34 . . . SB-395 C7100034 . . . SB-395 C7150034 . . . SB-466 C7060034 . . . SB-466 C7100034 . . . SB-466 C71500

34 . . . SB-467 C7060034 . . . SB-467 C7150034 . . . SB-543 C7040034 . . . SB-543 C7060034 . . . SB-543 C71500

34 . . . SB-543 C71640

35 . . . SB-111 C6080035 . . . SB-148 C9520035 . . . SB-148 C9540035 . . . SB-150 C6140035 . . . SB-150 C62300

35 . . . SB-150 C6300035 . . . SB-150 C6420035 . . . SB-169 C6140035 . . . SB-171 C6140035 . . . SB-171 C63000

261

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Copper and Copper-Base Alloys (CONT’D)35 . . . SB-271 C9520035 . . . SB-271 C9540035 . . . SB-359 C6080035 . . . SB-395 C6080035 . . . SB-505 C95200

Nickel and Nickel-Base Alloys

41 . . . SB-160 N0220041 . . . SB-160 N0220141 . . . SB-161 N0220041 . . . SB-161 N0220141 . . . SB-162 N02200

41 . . . SB-162 N0220141 . . . SB-163 N0220041 . . . SB-163 N0220141 . . . SB-366 N0220041 . . . SB-366 N02201

42 . . . SB-127 N0440042 . . . SB-163 N0440042 . . . SB-164 N0440042 . . . SB-164 N0440542 . . . SB-165 NO440042 . . . SB-366 N0440042 . . . SB-564 N04400

43 . . . SB-163 N0660043 . . . SB-163 N0660143 . . . SB-163 N0669043 . . . SB-166 N0660043 . . . SB-166 N0660143 . . . SB-166 N0661743 . . . SB-166 N06690

43 . . . SB-167 N0660043 . . . SB-167 N0660143 . . . SB-167 N0661743 . . . SB-167 N06690

43 . . . SB-168 N0660043 . . . SB-168 N0660143 . . . SB-168 N0661743 . . . SB-168 N06690

43 . . . SB-366 N0600243 . . . SB-366 N0602243 . . . SB-366 N0605943 . . . SB-366 N0620043 . . . SB-366 N0623043 . . . SB-366 N06455

43 . . . SB-366 N0660043 . . . SB-366 N0662543 . . . SB-366 N1027643 . . . SB-435 N0600243 . . . SB-435 N06230

43 . . . SB-443 N0662543 . . . SB-444 N0662543 . . . SB-446 N06625

43 . . . SB-462 N0602243 . . . SB-462 N06200

Page 291: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Nickel and Nickel-Base Alloys (CONT’D)43 . . . SB-462 N0668643 . . . SB-462 N10276

43 . . . SA-494 N2602243 . . . SB-516 N0660043 . . . SB-517 N06600

43 . . . SB-564 N0602243 . . . SB-564 N0605943 . . . SB-564 N0620043 . . . SB-564 N0623043 . . . SB-564 N06600

43 . . . SB-564 N0661743 . . . SB-564 N0662543 . . . SB-564 N0668643 . . . SB-564 N0669043 . . . SB-564 N10276

43 . . . SB-572 N0600243 . . . SB-572 N06230

43 . . . SB-574 N0602243 . . . SB-574 N0605943 . . . SB-574 N0620043 . . . SB-574 N0645543 . . . SB-574 N0668643 . . . SB-574 N10276

43 . . . SB-575 N0602243 . . . SB-575 N0605943 . . . SB-575 N0620043 . . . SB-575 N0645543 . . . SB-575 N0668643 . . . SB-575 N10276

43 . . . SB-619 N0600243 . . . SB-619 N0602243 . . . SB-619 N0605943 . . . SB-619 N06200

43 . . . SB-619 N0623043 . . . SB-619 N0645543 . . . SB-619 N0668643 . . . SB-619 N10276

43 . . . SB-622 N0600243 . . . SB-622 N0602243 . . . SB-622 N0605943 . . . SB-622 N06200

43 . . . SB-622 N0623043 . . . SB-622 N0645543 . . . SB-622 N0668643 . . . SB-622 N10276

43 . . . SB-626 N0600243 . . . SB-626 N0602243 . . . SB-626 N0605943 . . . SB-626 N0620043 . . . SB-626 N06230

43 . . . SB-626 N0645543 . . . SB-626 N0668643 . . . SB-626 N1027643 . . . SB-704 N06625

262

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Nickel and Nickel-Base Alloys (CONT’D)43 . . . SB-705 N06625

44 . . . SB-333 N1000144 . . . SB-333 N1062944 . . . SB-333 N1066544 . . . SB-333 N10675

44 . . . SB-335 N1000144 . . . SB-335 N1062944 . . . SB-335 N1066544 . . . SB-335 N10675

44 . . . SB-366 N1000144 . . . SB-366 N1000344 . . . SB-366 N1024244 . . . SB-366 N1062944 . . . SB-366 N1066544 . . . SB-366 N10675

44 . . . SB-434 N1000344 . . . SB-434 N10242

44 . . . SB-462 N0605944 . . . SB-462 N1062944 . . . SB-462 N1066544 . . . SB-462 N10675

44 . . . SB-564 N1024244 . . . SB-564 N1062944 . . . SB-564 N10675

44 . . . SB-573 N1000344 . . . SB-573 N10242

44 . . . SB-619 N1000144 . . . SB-619 N1024244 . . . SB-619 N1062944 . . . SB-619 N1066544 . . . SB-619 N10675

44 . . . SB-622 N1000144 . . . SB-622 N1024244 . . . SB-622 N1062944 . . . SB-622 N1066544 . . . SB-622 N10675

44 . . . SB-626 N1000144 . . . SB-626 N1024244 . . . SB-626 N1062944 . . . SB-626 N1066544 . . . SB-626 N10675

45 . . . SA-213 S3127745 . . . SA-240 S3127745 . . . SA-249 S3127745 . . . SA-312 S3127745 . . . SA-479 S31277

45 . . . SB-163 N0812045 . . . SB-163 N0880045 . . . SB-163 N0880145 . . . SB-163 N0881045 . . . SB-163 N0881145 . . . SB-163 N08825

45 . . . SA-351 CN3MN

Page 292: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Nickel and Nickel-Base Alloys (CONT’D)45 . . . SA-351 N0800745 . . . SA-351 N08151

45 . . . SB-366 N0600745 . . . SB-366 N0603045 . . . SB-366 N0698545 . . . SB-366 N0802045 . . . SB-366 N0803145 . . . SB-366 N08120

45 . . . SB-366 N0836745 . . . SB-366 N0880045 . . . SB-366 N0882545 . . . SB-366 N0892545 . . . SB-366 R2003345 . . . SB-366 R30556

45 . . . SB-407 N0812045 . . . SB-407 N0880045 . . . SB-407 N0880145 . . . SB-407 N0881045 . . . SB-407 N08811

45 . . . SB-408 N0812045 . . . SB-408 N0880045 . . . SB-408 N0881045 . . . SB-408 N08811

45 . . . SB-409 N0812045 . . . SB-409 N0880045 . . . SB-409 N0881045 . . . SB-409 N08811

45 . . . SB-423 N0882545 . . . SB-424 N0882545 . . . SB-425 N0882545 . . . SB-435 R30556

45 . . . SB-462 N0603045 . . . SB-462 N0802045 . . . SB-462 N0803145 . . . SB-462 N0836745 . . . SB-462 R20033

45 . . . SB-463 N0802045 . . . SB-463 N0802445 . . . SB-463 N08026

45 . . . SB-464 N0802045 . . . SB-464 N0802445 . . . SB-464 N08026

45 . . . SB-468 N0802045 . . . SB-468 N0802445 . . . SB-468 N08026

45 . . . SB-473 N0802045 . . . SB-514 N0812045 . . . SB-514 N0880045 . . . SB-514 N08810

45 . . . SB-515 N0812045 . . . SB-515 N0880045 . . . SB-515 N0881045 . . . SB-515 N08811

263

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Nickel and Nickel-Base Alloys (CONT’D)45 . . . SB-564 N0803145 . . . SB-564 N0812045 . . . SB-564 N0836745 . . . SB-564 N08800

45 . . . SB-564 N0881045 . . . SB-564 N0881145 . . . SB-564 N0882545 . . . SB-564 R20033

45 . . . SB-572 R3055645 . . . SB-581 N0600745 . . . SB-581 N0603045 . . . SB-581 N0697545 . . . SB-581 N0698545 . . . SB-581 N08031

45 . . . SB-582 N0600745 . . . SB-582 N0603045 . . . SB-582 N0697545 . . . SB-582 N0698545 . . . SB-599 N08700

45 . . . SB-619 N0600745 . . . SB-619 N0603045 . . . SB-619 N0697545 . . . SB-619 N06985

45 . . . SB-619 N0803145 . . . SB-619 N0832045 . . . SB-619 R2003345 . . . SB-619 R30556

45 . . . SB-620 N0832045 . . . SB-621 N08320

45 . . . SB-622 N0600745 . . . SB-622 N0603045 . . . SB-622 N0697545 . . . SB-622 N06985

45 . . . SB-622 N0803145 . . . SB-622 N0832045 . . . SB-622 R2003345 . . . SB-622 R30556

45 . . . SB-625 N0803145 . . . SB-625 N0890445 . . . SB-625 N0892545 . . . SB-625 R20033

45 . . . SB-626 N0600745 . . . SB-626 N0603045 . . . SB-626 N0697545 . . . SB-626 N06985

45 . . . SB-626 N0803145 . . . SB-626 N0832045 . . . SB-626 R2003345 . . . SB-626 R30556

45 . . . SB-649 N0890445 . . . SB-649 N0892545 . . . SB-649 R2003345 . . . SB-668 N08028

Page 293: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Nickel and Nickel-Base Alloys (CONT’D)45 . . . SB-672 N0870045 . . . SB-673 N0890445 . . . SB-673 N0892545 . . . SB-674 N0890445 . . . SB-674 N08925

45 . . . SB-675 N0836745 . . . SB-676 N0836745 . . . SB-677 N0890445 . . . SB-677 N0892545 . . . SB-688 N08367

45 . . . SB-690 N0836745 . . . SB-691 N0836745 . . . SB-704 N0882545 . . . SB-705 N0882545 . . . SB-709 N0802845 . . . SB-729 N08020

46 . . . SB-166 N0604546 . . . SB-167 N0604546 . . . SB-168 N06045

46 . . . SB-366 N0604546 . . . SB-366 N0833046 . . . SB-366 N12160

46 . . . SB-435 N1216046 . . . SB-462 N0604546 . . . SB-511 N0833046 . . . SB-516 N0604546 . . . SB-517 N06045

46 . . . SB-535 N0833046 . . . SB-536 N0833046 . . . SB-564 N0604546 . . . SB-564 N1216046 . . . SB-572 N12160

46 . . . SB-619 N1216046 . . . SB-622 N1216046 . . . SB-626 N1216046 . . . SB-710 N08330

49 . . . SB-815 R3123349 . . . SB-818 R31233

Titanium and Titanium-Base Alloys

51 . . . SB-265 R5025051 . . . SB-265 R5040051 . . . SB-265 R5225051 . . . SB-265 R5225251 . . . SB-265 R52254

51 . . . SB-265 R5240051 . . . SB-265 R5240251 . . . SB-265 R52404

51 . . . SB-338 R5025051 . . . SB-338 R5040051 . . . SB-338 R5240051 . . . SB-338 R5240251 . . . SB-338 R52404

51 . . . SB-348 R50250

264

P- Grp. Type, Grade, orNo. No. Spec. No. UNS No.

Titanium and Titanium-Base Alloys (CONT’D)51 . . . SB-348 R5040051 . . . SB-348 R5040251 . . . SB-348 R5240051 . . . SB-348 R52404

51 . . . SB-363 R5025051 . . . SB-363 R5040051 . . . SB-363 R5240051 . . . SB-363 R5240451 . . . SB-367 R50400

51 . . . SB-381 R5025051 . . . SB-381 R5040051 . . . SB-381 R5040251 . . . SB-381 R5240051 . . . SB-381 R52404

51 . . . SB-861 R5025051 . . . SB-861 R5040051 . . . SB-861 R5240051 . . . SB-861 R52404

51 . . . SB-862 R5025051 . . . SB-862 R5040051 . . . SB-862 R5240051 . . . SB-862 R52404

52 . . . SB-265 R5055052 . . . SB-265 R5340052 . . . SB-338 R5055052 . . . SB-338 R53400

52 . . . SB-348 R5055052 . . . SB-348 R5340052 . . . SB-363 R5055052 . . . SB-363 R5340052 . . . SB-367 R5055052 SB-381 R50550

. . .52 . . . SB-381 R5340052 . . . SB-861 R5055052 . . . SB-861 R5340052 . . . SB-862 R5055052 . . . SB-862 R53400

53 . . . SB-265 R5632053 . . . SB-338 R5632053 . . . SB-348 R5632053 . . . SB-363 R5632053 . . . SB-381 R5632053 . . . SB-861 R5632053 . . . SB-862 R56320

Zirconium and Zirconium-Base Alloys

61 . . . SB-493 R6070261 . . . SB-523 R6070261 . . . SB-550 R6070261 . . . SB-551 R6070261 . . . SB-658 R60702

62 . . . SB-493 R6070562 . . . SB-523 R6070562 . . . SB-550 R6070562 . . . SB-551 R6070562 . . . SB-658 R60705

Page 294: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

MANDATORY APPENDIX EPERMITTED SWPSs

The following Standard Welding Procedure Specifications may be used under the conditions given in Article V.

Specification Designation

Carbon Steel

Shielded Metal Arc Welding

Standard Welding Procedure Specification for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 B2.1-1-016-94or 2), 1⁄8 through 11⁄2 inch Thick, E7018, As-Welded or PWHT Condition

Standard Welding Procedure Specification for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 B2.1-1-017-94or 2), 1⁄8 through 11⁄2 inch Thick, E6010, As-Welded or PWHT Condition

Standard Welding Procedure Specification for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 B2.1-1-022-94or 2), 1⁄8 through 11⁄2 inch Thick, E6010 (Vertical Uphill) Followed by E7018, As-Welded or PWHT Condition

Standard Welding Procedure Specification for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 B2.1-1-026-94or 2), 1⁄8 through 11⁄2 inch Thick, E6010 (Vertical Downhill) Followed by E7018, As-Welded or PWHT Condition

Combination GTAW and SMAW

Standard Welding Procedure Specification for Gas Tungsten Arc Welding Followed by Shielded Metal Arc Welding B2.1-1-021-94of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), 1⁄8 through 11⁄2 inch Thick, ER70S-2 and E7018, As-Welded orPWHT Condition

Flux Cored Arc Welding

Standard Welding Procedure Specification (WPS) for CO2 Shielded Flux Cored Arc Welding of Carbon Steel (M-1/ B2.1-1-019-94P-1/S-1, Group 1 or 2), 1⁄8 through 11⁄2 inch Thick, E70T-1 and E71T-1, As-Welded Condition

Standard Welding Procedure Specification (WPS) for 75% Ar/25% CO2 Shielded Flux Cored Arc Welding of Car- B2.1-1-020-94bon Steel (M-1/P-1/S-1, Group 1 or 2), 1⁄8 through 11⁄2 inch Thick, E70T-1 and E71T-1, As-Welded or PWHTCondition

Carbon Steel — Primarily Pipe Applications

Shielded Metal Arc Welding

Standard Welding Procedure Specification (WPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, B2.1-1-201-96Group 1 or 2), 1⁄8 through 3⁄4 inch Thick, E6010 (Vertical Uphill) Followed by E7018 (Vertical Uphill), As-Welded Condition, Primarily Pipe Applications

Standard Welding Procedure Specification (WPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, B2.1-1-202-96Group 1 or 2), 1⁄8 through 3⁄4 inch Thick, E6010 (Vertical Downhill) Followed by E7018 (Vertical Uphill), As-Welded Condition, Primarily Pipe Applications

Standard Welding Procedure Specification (WPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, B2.1-1-203-96Group 1 or 2), 1⁄8 through 3⁄4 inch Thick, E6010 (Vertical Uphill), As-Welded Condition, Primarily Pipe Applica-tions

Standard Welding Procedure Specification (WPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, B2.1-1-204-96Group 1 or 2), 1⁄8 through 3⁄4 inch Thick, E6010 (Vertical Downhill Root with the Balance Vertical Uphill), As-Welded Condition, Primarily Pipe Applications

Standard Welding Procedure Specification (WPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, B2.1-1-205-96Group 1 or 2), 1⁄8 through 11⁄2 inch Thick, E6010 (Vertical Uphill) Followed by E7018 (Vertical Uphill), As-Welded or PWHT Condition, Primarily Pipe Applications

Standard Welding Procedure Specification (WPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, B2.1-1-206-96Group 1 or 2), 1⁄8 through 11⁄2 inch Thick, E6010 (Vertical Downhill) Followed by E7018 (Vertical Uphill), As-Welded or PWHT Condition, Primarily Pipe Applications

265

07

Page 295: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

Specification Designation

Carbon Steel — Primarily Pipe Applications (CONT’D)

Shielded Metal Arc Welding (CONT’D)Standard Welding Procedure Specification (WPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, B2.1-1-208-96

Group 1 or 2), 1⁄8 through 11⁄2 inch Thick, E7018, As-Welded or PWHT Condition, Primarily Pipe Applications

Gas Tungsten Arc Welding

Standard Welding Procedure Specification (WPS) for Gas Tungsten Arc Welding of Carbon Steel (M-1/P-1/S-1, B2.1-1-207-96Group 1 or 2), 1⁄8 through 11⁄2 inch Thick, ER70S-2, As-Welded or PWHT Condition, Primarily Pipe Applications

Standard Welding Procedure Specification (WPS) for Gas Tungsten Arc Welding with Consumable Insert Root of B2.1-1-210:Carbon Steel (M-1/P-1/S-1, Group 1 or 2), 1⁄8 through 11⁄2 inch Thick, INMs-1 and ER70S-2, As-Welded or 2001PWHT Condition, Primarily Pipe Applications

Flux Cored Arc Welding

Standard Welding Procedure Specification (SWPS) for Argon plus 25% Carbon Dioxide Shielded Flux Cored Arc B2.1-1-234:Welding of Carbon Steel (M-1/P-1/S-1, Groups 1 and 2), 1⁄8 through 11⁄2 inch Thick, E7XT-X, As-Welded or 2006PWHT Condition, Primarily Pipe Applications

Gas Metal Arc Welding — Spray Transfer

Standard Welding Procedure Specification (SWPS) for Argon plus 2% Oxygen Shielded Gas Metal Arc Welding B2.1-1-235:(Spray Transfer Mode) of Carbon Steel (M-1/P-1/S-1, Groups 1 and 2), 1⁄8 through 11⁄2 inch Thick, E70S-3, Flat 2006Position Only, As-Welded or PWHT Condition, Primarily Pipe Applications

Combination GTAW and SMAW

Standard Welding Procedure Specification (WPS) for Gas Tungsten Arc Welding Followed by Shielded Metal Arc B2.1-1-209-96Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), 1⁄8 through 11⁄2 inch Thick, ER70S-2 and E7018, As-Welded or PWHT Condition, Primarily Pipe Applications

Standard Welding Procedure Specification (WPS) for Gas Tungsten Arc Welding with Consumable Insert Root fol- B2.1-1-211:lowed by Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), 1⁄8 through 11⁄2 inch Thick, 2001INMs-1, ER70S-2, and E7018, As-Welded or PWHT Condition, Primarily Pipe Applications

Austenitic Stainless Steel Plate and Pipe

Shielded Metal Arc Welding

Standard Welding Procedure Specification for Shielded Metal Arc Welding of Austenitic Stainless Steel B2.1-1-023-94(M-8/P-8/S-8, Group 1), 1⁄8 through 11⁄2 inch Thick, As-Welded Condition

Gas Tungsten Arc Welding

Standard Welding Procedure Specification (WPS) for Gas Tungsten Arc Welding of Austenitic Stainless Steel B2.1-8-024:(M-8/P-8/S-8, Group 1), 1⁄16 through 11⁄2 inch Thick, ER3XX, As-Welded Condition, Primarily Plate and Struc- 2001tural Applications

Combination GTAW and SMAW

Standard Welding Procedure Specification (WPS) for Gas Tungsten Arc Welding Followed by Shielded Metal Arc B2.1-8-025:Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), 1⁄8 through 11⁄2 inch Thick, ER3XX and 3XX-XX, 2001As-Welded Condition, Primarily Plate and Structural Applications

Austenitic Stainless Steel Primarily Pipe Applications

Shielded Metal Arc Welding

Standard Welding Procedure Specification (WPS) for Shielded Metal Arc Welding of Austenitic Stainless Steel B2.1-8-213-97(M-8/P-8/S-8, Group 1), 1⁄8 through 11⁄2 inch Thick, E3XX-XX, As-Welded Condition, Primarily Pipe Applications

Gas Tungsten Arc Welding

Standard Welding Procedure Specification (WPS) for Gas Tungsten Arc Welding of Austenitic Stainless Steel B2.1-8-212:(M-8/P-8/S-8, Group 1), 1⁄16 through 11⁄2 inch Thick, ER3XX, As-Welded Condition, Primarily Pipe Applications 2001

Standard Welding Procedure Specification (WPS) for Gas Tungsten Arc Welding with Consumable Insert of Austen- B2.1-8-215:itic Stainless Steel (M-8/P-8/S-8, Group 1), 1⁄8 through 11⁄2 inch Thick, IN3XX and ER3XX, As-Welded Condi- 2001tion, Primarily Pipe Applications

266

Page 296: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

Specification Designation

Austenitic Stainless Steel Primarily Pipe Applications (CONT’D)

Combination GTAW and SMAW

Standard Welding Procedure Specification (WPS) for Gas Tungsten Arc Welding Followed by Shielded Metal Arc B2.1-8-214:Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), 1⁄8 through 11⁄2 inch Thick, ER3XX and E3XX-XX, 2001As-Welded Condition, Primarily Pipe Applications

Standard Welding Procedure Specification (WPS) for Gas Tungsten Arc Welding with Consumable Insert Root fol- B2.1-8-216:lowed by Shielded Metal Arc Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), 1⁄8 through 11⁄2 inch 2001Thick, IN3XX, ER3XXX, and E3XX-XX, As-Welded Condition, Primarily Pipe Applications

Carbon Steel to Austenitic Stainless Steel

Gas Tungsten Arc Welding

Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding of Carbon Steel to Austenitic B2.1-1/8-Stainless Steel (M-1/P-1/S-1, Groups 1 and 2 Welded to M-8/P-8/S-8, Group 1), 1⁄16 through 11⁄2 inch Thick, 227: 2002ER309(L), As-Welded Condition, Primarily Pipe Applications

Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert Root of B2.1-1/8-Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1, Gruops 1 and 2 Welded to M-8/P-8/S-8, Group 1), 1⁄16 230: 2002through 11⁄2 inch Thick, IN309 and R309(L), As-Welded Condition, Primarily Pipe Applications

Shielded Metal Arc Welding

Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel to Austenitic B2.1-1/8-Stainless Steel (M-1/P-1/S-1, Groups 1 and 2 Welded to M-8/P-8/S-8, Group 1), 1⁄8 through 11⁄2 inch Thick, 228: 2002E309(L)-15, -16, or -17, As-Welded Condition, Primarily Pipe Applications

Combination GTAW and SMAW

Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding Followed by Shielded Metal Arc B2.1-1/8-Welding of Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1 Groups 1 and 2 Welded to M-8/P-8/S-8, 229: 2002Group 1), 1⁄8 through 11⁄2 inch Thick, ER309(L) and E309(L)-15, -16, or -17, As-Welded Condition, PrimarilyPipe Applications

Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert Root, B2.1-1/8-Followed by Shielded Metal Arc Welding of Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1 Groups 1 231: 2002and 2 Welded to M-8/P-8/S-8, Group 1) 1⁄8 through 11⁄2 inch Thick, IN309, ER309(L), and E309(L)-15, -16,-17, As-Welded Condition, Primarily Pipe Applications

267

Page 297: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

MANDATORY APPENDIX FSTANDARD UNITS FOR USE IN EQUATIONS

TABLE F-100STANDARD UNITS FOR USE IN EQUATIONS

Quantity U.S. Customary Units SI Units

Linear dimensions (e.g., length, height, thickness, radius, diameter) inches (in.) millimeters (mm)Area square inches (in.2) square millimeters (mm2)Volume cubic inches (in.3) cubic millimeters (mm3)Section modulus cubic inches (in.3) cubic millimeters (mm3)Moment of inertia of section inches4 (in.4) millimeters4 (mm4)Mass (weight) pounds mass (lbm) kilograms (kg)Force (load) pounds force (lbf) newtons (N)Bending moment inch-pounds (in.-lb) newton-millimeters (N·mm)Pressure, stress, stress intensity, and modulus of elasticity pounds per square inch (psi) megapascals (MPa)Energy (e.g., Charpy impact values) foot-pounds (ft-lb) joules (J)Temperature degrees Fahrenheit (°F) degrees Celsius (°C)Absolute temperature Rankine (R) kelvin (K)Fracture toughness ksi square root inches (ksi�in.) MPa square root meters (MPa�m)Angle degrees or radians degrees or radiansBoiler capacity Btu/hr watts (W)

268

Page 298: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

NONMANDATORY APPENDIX G

GUIDANCE FOR THE USE OF U.S. CUSTOMARY ANDSI UNITS IN THE ASME BOILER AND PRESSURE

VESSEL CODE

G-100 USE OF UNITS IN EQUATIONS

The equations in this Nonmandatory Appendix are suit-able for use with either the U.S. Customary or the SIunits provided in Mandatory Appendix F, or with the unitsprovided in the nomenclature associated with that equation.It is the responsibility of the individual and organizationperforming the calculations to ensure that appropriate unitsare used. Either U.S. Customary or SI units may be usedas a consistent set. When necessary to convert from onesystem of units to another, the units shall be converted toat least three significant figures for use in calculations andother aspects of construction.

G-200 GUIDELINES USED TO DEVELOPSI EQUIVALENTS

The following guidelines were used to develop SI equiv-alents:

(a) SI units are placed in parentheses after the U.S.Customary units in the text.

(b) In general, separate SI tables are provided if interpo-lation is expected. The table designation (e.g., table num-ber) is the same for both the U.S. Customary and SI tables,with the addition of suffix “M” to the designator for theSI table, if a separate table is provided. In the text, refer-ences to a table use only the primary table number (i.e.,without the “M”). For some small tables, where interpola-tion is not required, SI units are placed in parentheses afterthe U.S. Customary unit.

(c) Separate SI versions of graphical information(charts) are provided, except that if both axes are dimen-sionless, a single figure (chart) is used.

(d) In most cases, conversions of units in the text weredone using hard SI conversion practices, with some softconversions on a case-by-case basis, as appropriate. Thiswas implemented by rounding the SI values to the numberof significant figures of implied precision in the existing

269

U.S. Customary units. For example, 3,000 psi has animplied precision of one significant figure. Therefore, theconversion to SI units would typically be to 20 000 kPa.This is a difference of about 3% from the “exact” or softconversion of 20 684.27 kPa. However, the precision ofthe conversion was determined by the Committee on acase-by-case basis. More significant digits were includedin the SI equivalent if there was any question. The valuesof allowable stress in Section II, Part D generally includethree significant figures.

(e) Minimum thickness and radius values that areexpressed in fractions of an inch were generally convertedaccording to the following table:

ProposedFraction, in. SI Conversion, mm Difference, %

1⁄32 0.8 −0.83⁄64 1.2 −0.81⁄16 1.5 5.53⁄32 2.5 −5.01⁄8 3 5.55⁄32 4 −0.83⁄16 5 −5.07⁄32 5.5 1.01⁄4 6 5.55⁄16 8 −0.83⁄8 10 −5.07⁄16 11 1.01⁄2 13 −2.49⁄16 14 2.05⁄8 16 −0.8

11⁄16 17 2.63⁄4 19 0.37⁄8 22 1.01 25 1.6

(f) For nominal sizes that are in even increments ofinches, even multiples of 25 mm were generally used.Intermediate values were interpolated rather than con-verting and rounding to the nearest mm. See examples inthe following table. [Note that this table does not apply tonominal pipe sizes (NPS), which are covered below.]

Page 299: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

Size, in. Size, mm

1 2511⁄8 2911⁄4 3211⁄2 382 50

21⁄4 5721⁄2 643 75

31⁄2 894 100

41⁄2 1145 1256 1508 20012 30018 45020 50024 60036 90040 1 00054 1 35060 1 50072 1 800

Size or Length, ft Size or Length, m

3 15 1.5

200 60

(g) For nominal pipe sizes, the following relationshipswere used:

U.S. U.S.Customary Customary

Practice SI Practice Practice SI Practice

NPS 1⁄8 DN 6 NPS 20 DN 500NPS 1⁄4 DN 8 NPS 22 DN 550NPS 3⁄8 DN 10 NPS 24 DN 600NPS 1⁄2 DN 15 NPS 26 DN 650NPS 3⁄4 DN 20 NPS 28 DN 700NPS 1 DN 25 NPS 30 DN 750NPS 11⁄4 DN 32 NPS 32 DN 800NPS 11⁄2 DN 40 NPS 34 DN 850NPS 2 DN 50 NPS 36 DN 900NPS 21⁄2 DN 65 NPS 38 DN 950NPS 3 DN 80 NPS 40 DN 1000NPS 31⁄2 DN 90 NPS 42 DN 1050NPS 4 DN 100 NPS 44 DN 1100NPS 5 DN 125 NPS 46 DN 1150NPS 6 DN 150 NPS 48 DN 1200NPS 8 DN 200 NPS 50 DN 1250NPS 10 DN 250 NPS 52 DN 1300NPS 12 DN 300 NPS 54 DN 1350NPS 14 DN 350 NPS 56 DN 1400NPS 16 DN 400 NPS 58 DN 1450NPS 18 DN 450 NPS 60 DN 1500

(h) Areas in square inches (in.2) were converted tosquare mm (mm2) and areas in square feet (ft2) were con-verted to square meters (m2). See examples in the follow-ing table:

270

Area (U.S. Customary) Area (SI)

1 in.2 650 mm2

6 in.2 4 000 mm2

10 in.2 6 500 mm2

5 ft2 0.5 m2

(i) Volumes in cubic inches (in.3) were converted tocubic mm (mm3) and volumes in cubic feet (ft3) wereconverted to cubic meters (m3). See examples in the follow-ing table:

Volume (U.S. Customary) Volume (SI)

1 in.3 16 000 mm3

6 in.3 100 000 mm3

10 in.3 160 000 mm3

5 ft3 0.14 m3

(j) Although the pressure should always be in MPa forcalculations, there are cases where other units are used inthe text. For example, kPa is used for small pressures.Also, rounding was to one significant figure (two at themost) in most cases. See examples in the following table.(Note that 14.7 psi converts to 101 kPa, while 15 psiconverts to 100 kPa. While this may seem at first glanceto be an anomaly, it is consistent with the rounding phi-losophy.)

Pressure (U.S. Customary) Pressure (SI)

0.5 psi 3 kPa2 psi 15 kPa3 psi 20 kPa10 psi 70 kPa

14.7 psi 101 kPa15 psi 100 kPa30 psi 200 kPa50 psi 350 kPa

100 psi 700 kPa150 psi 1 MPa200 psi 1.5 MPa250 psi 1.7 MPa300 psi 2 MPa350 psi 2.5 MPa400 psi 3 MPa500 psi 3.5 MPa600 psi 4 MPa

1,200 psi 8 MPa1,500 psi 10 MPa

(k) Material properties that are expressed in psi or ksi(e.g., allowable stress, yield and tensile strength, elasticmodulus) were generally converted to MPa to three sig-nificant figures. See example in the following table:

Strength (U.S. Customary) Strength (SI)

95,000 psi 655 MPa

(l) In most cases, temperatures (e.g., for PWHT) wererounded to the nearest 5°C. Depending on the impliedprecision of the temperature, some were rounded to thenearest 1°C or 10°C or even 25°C. Temperatures colderthan 0°F (negative values) were generally rounded to the

Page 300: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

nearest 1°C. The examples in the table below were createdby rounding to the nearest 5°C, with one exception:

Temperature, °F Temperature, °C

70 20100 38120 50150 65200 95250 120300 150350 175400 205450 230500 260550 290600 315650 345700 370750 400800 425850 455900 480925 495950 510

1,000 5401,050 5651,100 5951,150 6201,200 6501,250 6751,800 9801,900 1 0402,000 1 0952,050 1 120

G-300 SOFT CONVERSION FACTORS

The following table of “soft” conversion factors is pro-vided for convenience. Multiply the U.S. Customary value

271

by the factor given to obtain the SI value. Similarly, dividethe SI value by the factor given to obtain the U.S. Custom-ary value. In most cases it is appropriate to round theanswer to three significant figures.

U.S.Customary SI Factor Notes

in. mm 25.4 . . .ft m 0.3048 . . .in.2 mm2 645.16 . . .ft2 m2 0.09290304 . . .in.3 mm3 16,387.064 . . .ft3 m3 0.02831685 . . .U.S. gal m3 0.003785412 . . .U.S. gal liters 3.785412 . . .psi MPa 0.0068948 Used exclusively in

(N/mm2) equationspsi kPa 6.894757 Used only in text

and for nameplatepsi bar 0.06894757 . . .ft-lb J 1.355818 . . .°F °C 5⁄9 � (°F − 32) Not for temperature

difference°F °C 5⁄9 For temperature

differences onlyR K 5⁄9 Absolute temperaturelbm kg 0.4535924 . . .lbf N 4.448222 . . .in.-lb N·mm 112.98484 Use exclusively in

equationsft-lb N·m 1.3558181 Use only in textksi�in. MPa�m 1.0988434 . . .Btu/hr W 0.2930711 Use for boiler rating

and heat transferlb/ft3 kg/m3 16.018463 . . .

Page 301: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

INDEX

PART QW

A-Numbers (listing), QW-442Acceptance criteria

tension tests, QW-153bend tests, QW-163notch toughness, QW-171.2, QW-172.2bend and hammer tests, QW-192.2torque test, QW-192.3

Addenda (issuance of), QW-100.3requalification of procedures, QW-100.3

Aluminum alloys, QW/QB-422Austenitic stainless steels, QW/QB-422AWS (reference to), QW-102

Backing (pertaining to performance qualification), QW-303.2,QW-303.3, QW-310.2, QW-310.3

Part IV — data, QW-402.2, QW-402.3, QW-402.4,QW-402.5, QW-402.7

definition, QW-492Backing gas, QW-408.5, QW-408.8Base metals (definition), QW-492

corrosion-resistance overlay cladding (pertaining toprocedure qualification), QW-214.1

groove and fillet welds (pertaining to procedurequalification), QW-202.2, QW-211

stud welding, QW-202.3variable, QW-403

Carbon steels, QW/QB-422Combination of welding processes or procedures pertaining to

performance qualification, QW-306Consumable inserts, QW-404.22Copper (copper-base alloys), QW/QB-422Corrosion-resistant overlay cladding (pertaining to procedure

qualification), QW-381pertaining to performance qualification, QW-381

Definitions, QW-102, QW-490Description of Section IX, QW-100Dimensions

of welding groove with backing for performancequalification, QW-310.2

of welding groove without backing for performancequalification, QW-310.3

272

of tension test specimen, QW-462.1of bend test specimen, QW-462.2of test jigs, QW-466of groove welds for procedure qualification, QW-212

Drawings (see Graphics)

Electrical characteristics, QW-409Electrogas welding (definition), QW-492

variables for procedure qualifications, QW-259Electron beaming (pertaining to procedure qualification),

QW-215definition, QW-492variables for procedure qualification, QW-260variables for performance qualification, QW-362

Electroslag welding (definition), QW-492variables for procedure qualification, QW-258

Essential variables (performance), QW-401.2procedure, QW-251.2, QW-401.1

Etching, QW-470

Filler metals (pertaining to procedure qualification), QW-211,QW-404

Fillet-weld tests, QW-180Flat position (definition), QW-121.1, QW-122.1, QW-131.1,

QW-132.1Flux, QW-404.9F-Numbers (listing), QW-430Forms (suggested), Appendix BFracture tests, QW-182Full-section specimens, QW-151.4

Gas, QW-408Gas tungsten-arc welding (definition), QW-492

variables for procedure qualification, QW-256variables for performance qualification, QW-356

Gas welding (definition), QW-492variables for procedure qualification, QW-256variables for performance qualification, QW-356

Graphics, QW-460test positions, QW-461

groove welds in plate, QW-461.3groove welds in pipe, QW-451.4fillet welds in plate, QW-461.5fillet welds in pipe, QW-461.6stud welds, QW-461.7

Page 302: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

test specimens, QW-462tension — reduced section — plate, QW-462.1(a)tension — reduced section — pipe, QW-462.1(b)tension — reduced section — pipe alternate, QW-462.1(c)tension — reduced section — turned specimen,

QW-462.1(d)tension — full section — small diameter pipe,

QW-462.1(e)side bend, QW-462.2face and root bends transverse, QW-462.3(a)face and root bends longitudinal, QW-462.3(b)fillet welds — procedure, QW-462.4(a)fillet welds — performance, QW-462.4(b)fillet welds in pipe — performance, QW-462.4(c)fillet welds in pipe — procedure, QW-462.4(d)corrosion-resistant overlay, QW-462.5composite test plates, QW-462.6spot welds, QW-462.8–QW-462.11

order of removal, QW-463plates — procedure qualification, QW-463.1(a)plates — procedure qualification alternate, QW-463.1(b)plates — procedure qualification longitudinal,

QW-463.1(c)pipe — procedure qualification, QW-463.1(d)pipe — procedure qualification alternate, QW-463.1(e)pipe — notch toughness specimen location, QW-463.1(f)plate — procedure qualification, QW-463.2(a)plate — procedure qualification alternate, QW-463.2(b)plate — procedure qualification longitudinal,

QW-463.2(c)pipe — performance qualification, QW-463.2(d)pipe — performance qualification alternate, QW-463.2(e)pipe — performance qualification 10 in. diameter,

QW-463.2(f)pipe — performance qualification 6 in. or 8 in. diameter,

QW-463.2(g)pipe — performance qualification fillet weld,

QW-463.2(h)test jigs, QW-466

guided-bend, QW-466.1guided-bend roller jig, QW-466.2guided-bend wrap-around, QW-466.3stud weld bend jig, QW-466.4torque testing arrangement, QW-466.5tensile test for studs, QW-466.6

typical test joints, QW-469butt joint, QW-469.1alternative butt joint, QW-469.2

Groove welds (pertaining to performance qualification),QW-303.1

with backing, QW-310.2without backing, QW-310.3

Guided-bend jig, QW-466.1Guided-bend roller jig, QW-466.2

273

Guided-bend test (see Tests)Guided-bend wrap-around jig, QW-466.3

Hard-facing overlay (pertaining to procedure qualification),QW-216

Horizontal position, QW-121.2, QW-122.2, QW-131.2,QW-132.2

Identification of welders and welding operators, QW-301.3

Joints, QW-402

Limits of qualified positionsprocedures, QW-203performance, QW-303, QW-461.9

Longitudinal-bend tests, QW-161.5–QW-161.7

Macro-examination, QW-183, QW-184Mechanical tests, QW-141, QW-202.1, QW-302.1Multiple positions, QW-122.3, QW-122.4, QW-132.4

Nickel and nickel-base alloys, QW/QB-422Nonessential variables, QW-251.3Notch-toughness test, QW-170

Order of removal, QW-463Orientation of welds, QW-110, QW-461.1Overhead position, QW-121.4, QW-131.4, QW-132.3

Performance qualification, QW-300Performance qualification specimens, QW-452Performance variables, QW-405Pipe, test welds in, QW-302.3Pipe positions, QW-132Plasma-arc welding

variables for procedure, QW-257variables for performance, QW-357

Plate and pipe performance, QW-303.1–QW-303.4Plate and pipe procedure, QW-211P-Numbers, QW-200.3, QW/QB-422, Appendix DPositions of welds

plate and pipe groove weldsdescriptions, QW-120–QW-123sketches and graphics, QW-460–QW-461

plate and pipe fillet weldsdescriptions, QW-130–QW-132sketches and graphics, QW-460–QW-461

limits of qualified positionsfor procedures, QW-203for performance, QW-303

Postweld heat treatment, QW-407

Page 303: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

PQR, QW-201.2Preheat, QW-406Procedure qualification, QW-200Procedure qualification record, QW-201, QW-483Procedure qualification specimens, QW-451Processes, combination of, QW-200.4, QW-306Processes, special, QW-251.4

Radiography, QW-142, QW-143, QW-191acceptance criteria, QW-191.2for performance qualification, QW-302.2, QW-304retests and renewal of qualification, QW-320

Records, QW-103.2Record of welder or welding operator qualification tests,

QW-301.4, QW-484Reduced-section specimens, QW-151.1, QW-151.2Renewal of qualification, QW-322Requalification, QW-350Responsibility of records, QW-103.2Responsibility of welding, QW-103.1, QW-201Retests, QW-321

Scope of Section IX, QW-101Shielding gas, QW-408.1, QW-408.2, QW-408.3, QW-408.4,

QW-408.6Shielded metal-arc welding

variables for procedure, QW-253variables, QW-353

Sketches (see Graphics)S-Numbers, QW-420.2Specimens, QW-450Stud-weld bend jig, QW-466.4Stud welding

performance qualification specimens, QW-193positions, QW-123.1, QW-461.6, QW-461.7, QW-461.8procedure qualification specimens, QW-192variables for procedure, QW-261variables for performance, QW-361

Submerged-arc weldingvariables for procedure, QW-254variables for performance, QW-354

Supplementary essential variables, QW-251.2, QW-401.3

TablesWelding variables, QW-415, QW-416P-Numbers, QW/QB-422F-Numbers, QW-432A-Numbers, QW-442Procedure qualification specimens, QW-451Performance qualification specimens, QW-452Performance qualification limitations, QW-461.9

Technique, QW-410Tension test, QW-150

274

Terms and definitions, QW-102, QW-492Test assemblies, QW-301.1

Test jigs, QW-466

Test joints, QW-469.1, QW-469.2

Tests

acceptance criteria

bend and hammer, QW-192.2

fracture tests, QW-182

guided bend, QW-163

macro-examination, QW-183, QW-184, QW-192.4

notch-toughness tests

Charpy V-notch, QW-171.2

drop weight, QW-172.2

radiography, QW-191.2.2

tension, QW-153

torque test, QW-192.3

description and procedure

fillet weld, QW-180

guided bend, QW-160

notch toughness, QW-170

Charpy V-notch, QW-171

drop weight, QW-172

radiographic, QW-191

stud weld, QW-192

tension, QW-150, QW-152

tensile strength, QW-153.1

for performance qualification, QW-100.2, QW-301

mechanical tests, QW-302.1

qualification tests, QW-301.2

for procedure qualification, QW-100.1, QW-202

mechanical tests, QW-202.1

test-joint preparation, QW-210

test positions for groove welds, QW-120

test positions for fillet welds, QW-130

test positions for stud welds, QW-123

types and purposes

fillet weld, QW-141.3

guided bend, QW-141.2, QW-160, QW-162, QW-451,QW-452, QW-462

mechanical, QW-141

notch toughness, QW-141.4

drop weight, QW-172.1

radiographic, QW-142, QW-143

special examination for welders, QW-142

stud weld, QW-141.5

tension, QW-141.1, QW-451, QW-462

visual, QW-302.4

Thickness, QW-310.1, QW-351, QW-451, QW-452

Titanium, QW/QB-422

Torque testing for stud welds, QW-466.5

Transverse bend tests, QW-161.1–QW-161.4

Turned specimens, QW-151.3

Page 304: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

Variables, QW-250, QW-350base metals, QW-403electrical characteristics, QW-409electrogas welding (EGW), QW-259electron beam welding (EBW), QW-260electroslag welding (ESW), QW-258, QW-258.1filler metals, QW-404for welding operator, QW-360gas, QW-408gas metal-arc welding (GMAW) (MIG), QW-255,

QW-255.1, QW-355gas tungsten-arc welding (GTAW) (TIG), QW-256,

QW-256.1, QW-356general, QW-251, QW-351, QW-401joints, QW-402oxyfuel gas welding (OFW), QW-252, QW-252.1, QW-352performance essential variable table, QW-416plasma-arc welding (PAW), QW-257, QW-257.1, QW-359positions, QW-405postweld heat treatment (PWHT), QW-407preheat, QW-406procedure essential variable table, QW-415shielded metal-arc welding (SMAW) (STICK), QW-253,

QW-253.1, QW-353stud welding, QW-261, QW-361submerged-arc welding (SAW), QW-254, QW-254.1,

QW-354technique, QW-410

Vertical position, QW-121.3, QW-131.3Welders and welding operators, QW-304, QW-305Welding Procedure

Specification, QW-200.1(a), QW-482WPS qualification tests, QW-202.2

PART QB

Acceptance criteriatension test, QB-153bend tests, QB-163peel test, QB-172

Addenda (issuance of), QB-100.3requalification of procedures, QB-100.3

AWS, QB-102

Base metal, QB-211Base metal — variables, QB-402BPS, QB-482Brazers, QB-304Brazing operators, QB-305

Definitions, QB-102, QB-490

F-Numbers, QB-430

275

Filler flow position, QB-121Filler metal — variable, QB-403Flow direction — variables, QB-407Flow positions, QB-461Flux and atmospheres (variables), QB-406Forms, Appendix B

Graphics, QB-460Guided bend test, QB-141.2, QB-160

Horizontal flow position, QB-124

Jigs, QB-162.1Jigs — graphics, QB-466Joint design — variables, QB-408Joints, QB-210, QB-310

Longitudinal-bend test, QB-161.3, QB-161.4

Manufacturer’s responsibility, QB-201

Order of removal — graphics, QB-463Orientation, QB-110, QB-461

P-Numbers, QB-420Peel test, QB-141.3, QB-170Performance qualifications, Article XIII, QB-100.2Performance qualification tests, QB-301.1Position, QB-120Position — graphics, QB-460PQR, QB-201.2, QB-483Preparation of test joints, QB-210Procedure qualifications, Article XII, QB-100.1

Records, QB-103.2, QB-301.4Reduced section, QB-151.1, QB-151.2, QB-151.3Renewal of qualification, QB-322Responsibility, QB-103, QB-201

Scope, QB-101Sectioning test, QB-141.4, QB-181Shear test, QB-141.1Specimens

tension test, QB-151guided-bend test, QB-161peel test, QB-171sectioning test, QB-181workmanship sample, QB-182for procedure qualification, QB-451for performance qualification, QB-452

Page 305: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

2007 SECTION IX

graphics, QB-462, QB-463

Temperature — variable, QB-404Tension test, QB-141.1, QB-150Test, QB-141

for procedure qualification, QB-202.1, QB-451for performance qualification, QB-2-2.1, QB-451positions, QB-120

flat-flow positions, QB-121horizontal-flow positions, QB-124

vertical-downflow, QB-122vertical-upflow, QB-123

Transverse bend tests, QB-161.1, QB-161.2

Variablesbase metal, QB-402brazing filler metal, QB-403brazing flux, fuel gas or atmosphere, QB-406brazing process, QB-405brazing temperature, QB-404data, QB-400flow position, QB-407joint design, QB-408

Vertical downfall position, QB-122Vertical uphill position, QB-123

Workmanship samples, QB-141.5

276

Page 306: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

ASME Boiler and Pressure Vessel CodeSECTION IX

INTERPRETATIONSVolume 57

Interpretations of the Code are distributed annually in July with the issuance of the edition andsubsequent addenda. Interpretations posted in January at www.cstools.asme.org/interpretations areincluded in the July distribution. Interpretations of Section III, Divisions 1 and 2, are part of the updateservice to Section III, Subsection NCA.

Interpretations Volumes 54 through 56 were included with the update service to the 2004 Edition ofthe Code; Volume 57 is the first Interpretations volume to be included with the update service to the2007 Edition.

Section Vol. 57 Vol. 58 Vol. 59

I 7/07II-A 7/07II-B . . .II-C . . .II-D (Customary) 7 /07II-D (Metric) . . .III-NCA 7/07III-3 7/07IV 7/07V 7/07VI . . .VII . . .VIII-1 7/07VIII-2 7/07VIII-3 7/07IX 7/07X . . .XI 7 /07XII . . .

Page 307: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

Copyright © 2007THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

All rights reserved

Page 308: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — INTERPRETATIONS VOL. 57

INTERPRETATIONSVOLUME 57 — SECTION IX

Replies to Technical InquiriesJanuary 1, 2006 Through December 31, 2006

FOREWORD

General Information

This publication includes all written interpretations issued between the indicated dates by the ASME Staffon behalf of the ASME Boiler and Pressure Vessel Committee in response to inquiries concerning interpreta-tions of the ASME Boiler and Pressure Vessel Code. A contents is also included which lists subjects specificto the interpretations covered in the individual volume.

These interpretations are taken verbatim from the original letters, except for a few typographical andeditorial corrections made for the purpose of improved clarity. In some instances, a review of the interpretationrevealed a need for corrections of a technical nature. In these cases, a revised interpretation is presentedbearing the original interpretation number with the suffix R and the original file number with an asterisk.Following these revised interpretations, new interpretations and revisions to them issued during the indicateddates are assigned interpretation numbers in chronological order. Interpretations applying to more than oneCode Section appear with the interpretations for each affected Section.

ASME procedures provide for reconsideration of these interpretations when or if additional informationis available which the inquirer believes might affect the interpretation. Further, persons aggrieved by aninterpretation may appeal to the cognizant ASME committee or subcommittee. As stated in the Statementof Policy in the Code documents, ASME does not “approve,” “certify,” “rate,” or “endorse” any item,construction, proprietary device, or activity.

An interpretation applies either to the Edition and Addenda in effect on the date of issuance of theinterpretation or the Edition and Addenda stated in the interpretation. Subsequent revisions to the Code maysupersede the interpretation.

For detailed instructions on preparation of technical inquiries to the ASME Boiler and Pressure VesselCommittee, refer to Appendix A.

Subject and Numerical Indexes

Subject and numerical indexes have been prepared to assist the user in locating interpretations by subjectmatter or by location in the Code. They cover interpretations issued from Volume 12 up to and includingthe present volume, and will be updated with each volume.

475

Page 309: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — INTERPRETATIONS VOL. 57

SECTION IX

Subject Interpretation File No.

QW-201, Manufacturer’s or Contractor’s Responsibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX-04-26 BC05-1196

QW-405.2, Welding Position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX-04-28 BC06-323

QW-407.1(b), Postweld Heat Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX-04-29 BC06-462

Units of Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX-04-27 BC05-1215

476

Page 310: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — INTERPRETATIONS VOL. 57

Interpretation: IX-04-26

Subject: QW-201, Manufacturer’s or Contractor’s Responsibility

Date Issued: February 22, 2006

File: BC05-1196

Background: Two independent companies, A and B, form a Limited Liability Partnership (LLP) to performwork requiring ASME Section I Code Stamp. The LLP has obtained valid ASME Certificates of Authorization.Each company also has valid, existing ASME Certificates of Authorization. The organization’s effectiveoperational control of welding procedure qualification is described in each of the partner’s Quality ControlSystem Manuals and the LLP’s Quality Control System Manual.

The welding procedure qualification tests and production welding are under the full supervision and controlof the same individual representing both the LLP and company A.

Question: May the LLP use PQR’s qualified by company A after the formation of the LLP?

Reply: Yes.

Interpretation: IX-04-27

Subject: Units of Measurement

Date Issued: February 22, 2006

File: BC05-1215

Question (1): Is it acceptable to maintain welder performance qualification records in SI units, with aconversion table as part of the welding manual to ensure that qualification limits are not exceeded?

Reply (1): Yes. Code Case 2523 provides information about when such conversions are required and therequirements for performing such conversions.

Question (2): Is it acceptable to maintain welding procedure specifications that are dual dimensioned withSI units primary and U.S. Customary units in parentheses, with a conversion table as part of the weldingmanual to ensure that qualification limits are not exceeded?

Reply (2): Yes. Code Case 2523 provides information about when such conversions are required and therequirements for performing such conversions.

477

Page 311: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — INTERPRETATIONS VOL. 57

Interpretation: IX-04-28

Subject: QW-405.2, Welding Position

Date Issued: June 21, 2006

File: BC06-323

Question (1): If a Stud Welding Procedure Qualification is performed in the 4S position, does the sameprocedure qualification qualify for the 1S position?

Reply (1): No.

Question (2): If a Stud Welding Procedure Qualification is performed in the 4S and 2S positions, doesthe same procedure qualification also qualify for all positions?

Reply (2): No.

Interpretation: IX-04-29

Subject: QW-407.1(b), Postweld Heat Treatment

Date Issued: June 21, 2006

File: BC06-462

Question: Does QW-407.1(b)(2) address the temperature ranges for stress relieving, stabilizing, and/orsolution annealing heat treatments?

Reply: No, QW-407.1(b)(2) addresses PWHT within a specified temperature range. Section IX requiresthe temperature range to be specified on the WPS and the PQR supporting the WPS be within the specifiedPWHT temperature range (see the fourth paragraph of the Introduction).

478

Page 312: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

NUMERICAL INDEX

PageLocation Interpretation File No. No.

Appendix C IX-92-98 BC94-236 327

Code Case 2141 IX-92-82 BC93-434 317

Code Case 2142-1 IX-01-16 BC01-338 433

Code Case 2143-1 IX-01-16 BC01-338 433

Q-11, 1971 Edition IX-83-02 BC81-704 6

Q-11(b)(3), 1971 IX-83-41 BC82-796 28Edition, Winter 1973Addenda

Q-11(5), 1971 Edition, IX-83-40 BC82-794 27Winter 1973Addenda

Section II, Part C IX-89-97 BC90-873 250

IX-92-27 BC91-471 273

IX-92-61 BC92-422 304

IX-92-94 BC93-754 326

IX-92-99 BC93-762, 327

BC93-769

IX-01-25 BC01-815 441

IX-01-29 BC02-2692 445

IX-01-38 BC03-274 452

Part QB

. . . IX-86-73 BC86-332 159

QB-121 IX-92-86 BC93-655 318

QB-123 IX-92-86 BC93-655 318

QB-141.4 IX-83-76 BC83-248 44

IX-98-01 BC97-304 383

QB-172 IX-89-74 BC90-429 234

QB-181 IX-83-76 BC83-248 44

QB-200.4 IX-89-103 BC91-096 253

QB-201.3 IX-86-21 BC86-058 126

QB-203.1 IX-86-02 BC85-292 113

IX-01-34 BC02-3541 451

QB-303.3 IX-01-34 BC02-3541 451

QB-402.1 IX-92-74 BC93-474 313

IX-92-93 BC93-752 325

QB-402.2 IX-83-136 BC84-398 87

QB-402.3 IX-83-49 BC82-871 33

QB-406.1 IX-83-118 BC84-183 78

QB-406.3 IX-83-118 BC84-183 78

QB-408.1 IX-01-34 BC02-3541 451

QB-408.2 IX-86-11 BC85-420 116

(a)

PageLocation Interpretation File No. No.

Part QB (Cont’d)QB-408.2 (Cont’d)

IX-86-22 BC85-531 126QB-408.4 IX-01-34 BC02-3541 451QB-415 IX-92-83 BC93-527 317QB-451.3 IX-04-06 BC03-1664 459QB-451.3 [Note (1)] IX-98-01 BC97-304 383QB-452.1 [Note (1)] IX-83-76 BC83-248 44QB-461 IX-86-02 BC85-292 113QB-462.1(a) IX-89-49 BC89-372 218QB-462.1(b) IX-89-49 BC89-372 218QB-462.1(c) IX-89-81 BC90-537 237QB-462.1(e) IX-04-06 BC03-1664 459QB-463 IX-83-76 BC83-248 44QB-466.3 IX-86-38 BC86-298 140QB-482 IX-89-93 BC90-783 249QB-484 IX-89-93 BC90-783 249

Part QWQW-100.1 IX-83-17 BC82-422 13

IX-89-03 BC88-166A 182QW-100.3 IX-83-99 BC83-472 63

IX-92-86 BC93-658 318IX-01-22 BC01-679 440IX-01-26 BC01-826 441IX-04-10 BC04-601 464

QW-103 IX-92-09 BC91-260 265IX-92-80 BC93-584 316IX-92-81 BC92-306 316

QW-103.1 IX-92-16 BC91-314 268QW-103.2 IX-92-55 BC92-307 295QW-144 IX-01-10 BC01-073 428QW-150 IX-83-110 BC83-692 69QW-151 IX-83-38 BC82-771 26

IX-92-19 BC91-390 269IX-92-37 BC92-097 282

QW-151.1 IX-89-25 BC89-099 197IX-89-83 BC90-532 243IX-89-90 BC90-532 247IX-92-79 BC93-583 315

QW-151.1(d) IX-83-119 BC84-253 79IX-01-21 BC01-035 439

QW-151.2 IX-83-120 BC83-474 79QW-151.2(d) IX-83-95 BC83-301 61QW-151.3 IX-92-29 BC91-473 279

IX-92-63 BC92-452 304IX-04-01 BC02-3586 457IX-04-25 BC05-1404 474

QW-153.1 IX-89-04 BC88-167 182

Page 313: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-153.1 (Cont’d)

IX-95-06 BC94-542 336IX-01-18 BC01-772 435

QW-153.1(d) IX-95-09 BC94-570 344QW-160 IX-83-156 BC84-697 98

IX-92-10 BC91-261 265IX-95-15 BC95-094 346

QW-162.1 IX-83-115 BC83-279 77IX-86-37 BC86-297 139

QW-163 IX-83-60 BC82-749 38IX-83-120 BC83-474 79IX-86-42 BC86-331 141IX-86-61 BC86-515 153

QW-180 IX-92-11 BC91-263 266QW-181.1 IX-86-40 BC86-329 141QW-183 IX-92-24 BC91-280 272QW-184 IX-92-24 BC91-280 272

IX-04-21 BC05-528 473QW-191 IX-83-52 BC83-001 34

IX-83-142 BC84-548 89IX-83-157 BC84-700 98IX-83-174 BC84-557 107

QW-191.2.2 IX-86-62 BC86-517 153QW-191.2.2(b)(1) IX-83-173 BC85-013 106QW-191.2.2(b)(3) IX-83-173 BC85-013 106QW-194 IX-01-03 BC00-519 420

IX-01-10 BC01-073 428QW-194.1 IX-86-18 BC85-585 125QW-195 IX-92-13 BC91-278 267QW-200 IX-86-42 BC86-331 141

IX-89-17 BC88-473 193IX-92-38 BC91-630 283

QW-200.1 IX-83-03 BC82-056 7IX-89-03 BC88-166A 182IX-92-30 BC91-587 279IX-98-13 BC98-239 396

QW-200.1(b) IX-89-85 BC90-671 244IX-95-01 BC94-104 333

QW-200.1(c) IX-83-54 BC83-042 35IX-83-111 BC84-001 70

QW-200.2 IX-83-03 BC82-056 7IX-83-72 BC83-269 43IX-86-70 BC87-089 157IX-86-87 BC87-490A 175IX-92-78 BC93-561 318IX-98-04 BC97-481 384IX-01-05 BC00-654 420IX-04-10 BC04-601 464IX-04-14 BC04-1592 466

QW-200.2(b) IX-83-164 BC85-023 103IX-92-16 BC91-314 268IX-92-25 BC91-415 272

QW-200.2(c) IX-83-171 BC85-132 105QW-200.2(f) IX-86-06 BC85-328 115

IX-04-05 BC03-1583 458QW-200.3 IX-83-115 BC83-279 77

IX-89-37 BC89-358 212

(b)

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-200.3 (Cont’d)

IX-89-66 BC90-281 226QW-200.4 IX-83-80 BC83-388 50

IX-83-83 BC83-394 53IX-86-06 BC85-328 115IX-86-08 BC85-134 116IX-86-23 BC85-553 127IX-86-33 BC86-262 138IX-92-77 BC93-518 314IX-95-10 BC94-662 344IX-01-24 BC01-814 440IX-04-08 BC03-1770 464

QW-200.4(a) IX-86-01 BC85-036 113IX-92-42 BC92-011 291IX-92-97 BC94-167 327

QW-200.4(a)(2) IX-89-43 BC89-365 215QW-200.4(b) IX-92-75 BC93-490 313

IX-01-21 BC01-035 439IX-01-32 BC02-3449 447IX-04-18 BC05-25 472

QW-201 IX-83-03 BC82-056 7IX-83-12 BC82-341 11IX-83-25 BC81-160 16IX-83-39 BC83-792 26IX-83-68 BC83-040 41IX-83-151 BC84-620 96IX-86-49 BC86-367 144IX-89-73 BC90-319 234IX-92-07 BC91-156 264IX-92-66 BC93-377 305IX-92-67 BC93-391 306IX-92-80 BC93-584 316IX-92-81 BC92-306 316IX-92-92 BC93-678 325IX-95-25 BC95-252 359IX-95-26 BC95-303 359IX-95-27 BC95-482 360IX-95-29 BC95-302 360IX-95-40 BC93-431, 376

BC95-222IX-98-02 BC97-309 383IX-01-02 BC00-553 419IX-01-40 BC03-740 453IX-04-26 BC05-1196 477

QW-201.1 IX-98-18 BC99-025 403IX-01-40 BC03-740 453

QW-202 IX-92-17 BC91-315 268QW-202.2 IX-83-103 BC83-237 65

IX-86-74 BC87-134 165IX-92-11 BC91-263 266

QW-202.2(b) IX-95-03 BC94-235 334IX-01-17 BC01-615 434

QW-202.2(c) IX-89-87 BC90-745 245IX-89-100 BC90-663 252IX-89-100R BC90-663* 261

QW-202.3 IX-83-93 BC83-531 56IX-83-114 BC84-070 71

Page 314: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-202.3 (Cont’d)

IX-83-160 BC84-219 100IX-86-56 BC86-429 146IX-89-12 BC88-401 187IX-95-34 BC96-060 368

QW-202.3(b) IX-01-17 BC01-615 434QW-202.4 IX-83-123 BC84-092 80

IX-86-36 BC86-280 139IX-86-43 BC86-337 142IX-86-89 BC88-089 176IX-92-11 BC91-263 266IX-95-12 BC95-027 345IX-01-23 BC01-789 440IX-04-11 BC04-599 465

QW-202.4(b) IX-98-20R BC99-539* 426

IX-01-19 BC01-811 435

QW-203 IX-95-13 BC94-035 345

QW-204 IX-89-67 BC90-335 226

QW-211 IX-83-15 BC82-388 13

IX-89-105 BC91-119 254

IX-04-23 BC05-784 474

QW-214 IX-86-71 BC87-090 157

IX-92-06 BC91-054 264

IX-92-60 BC92-421 303

IX-95-34 BC96-060 368

QW-214.1 IX-83-48 BC82-870 32

QW-214.3 IX-89-77 BC90-492 236

IX-92-54 BC92-305 295

QW-216 IX-89-29 BC89-178 204

IX-92-03 BC90-523 262

IX-95-34 BC96-060 368

QW-216.1 IX-89-32 BC89-287 205

QW-216.2(d) IX-89-39 BC89-361 213

IX-89-77 BC90-492 236

QW-218 IX-89-31 BC89-178 204

IX-92-20 BC91-396 270

QW-250 IX-89-11 BC88-399 186

IX-89-85 BC90-671 244

QW-251.2 IX-83-79 BC83-358 50

QW-251.4 IX-92-44 BC92-168 291

QW-253 IX-92-57 BC92-354 296

QW-254 IX-83-27 BC82-713 17

QW-255 IX-95-16 BC95-095 346

QW-256 IX-86-26 BC86-059 129

IX-92-57 BC92-354 296

IX-04-17 BC05-24 471

QW-258.1 IX-04-02 BC03-1029 457

QW-280 IX-89-92 BC90-681 248

IX-92-44 BC92-168, 291

BC90-691

QW-281.2(b) IX-89-70 BC90-430 227

QW-281.2(c) IX-86-59 BC86-458 152

QW-281.2(e) IX-83-129 BC84-251 84

QW-281.5(a) IX-89-44 BC89-366 215

QW-282 IX-83-125 BC84-151 81

(c)

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-282 (Cont’d)

IX-89-54 BC89-367 220QW-282.4(h) IX-89-59 BC90-250 222QW-282.6(m) IX-83-09 BC82-279 10QW-283 IX-89-22 BC89-094 195

IX-01-33 BC02-3896 447QW-284 IX-95-42 BC97-044 377QW-300 IX-83-21 BC82-499 15

IX-86-25 BC86-018 128IX-89-48 BC89-360 217IX-92-91 BC93-755 324IX-92-95 BC94-008 326IX-95-20 BC95-302 352IX-95-36 BC96-314 369IX-98-11 BC98-133 395IX-98-14 BC98-447 397

QW-300.1 IX-86-05 BC85-306 114IX-86-24 BC86-001 128IX-86-25 BC86-018 128IX-95-35 BC96-287 368

QW-300.2 IX-83-133 BC84-370 86IX-83-151 BC84-620 96IX-86-64 BC86-395 154IX-89-10 BC88-398 186IX-92-25 BC91-415 272IX-95-32 BC95-302 367IX-01-08 BC01-030 427IX-01-15 BC01-641 433

QW-300.3 IX-92-39 BC92-121 283IX-95-14 BC95-040 345IX-95-19 BC95-221 352

QW-301 IX-83-103 BC83-237 65IX-86-69 BC87-088 156IX-89-79 BC90-531 237IX-92-17 BC91-315 268IX-92-23 BC90-494 271

QW-301.1 IX-83-153 BC84-664 97QW-301.2 IX-83-31 BC82-395 19

IX-83-149 BC84-558 95QW-301.4 IX-83-32 BC82-598 19

IX-83-163 BC85-022 102IX-86-13 BC85-507 118IX-86-90 BC88-091 176IX-89-30 BC89-177 204IX-01-36 BC02-4198 452

QW-302.2 IX-86-34 BC86-265 138IX-86-79 BC87-140 167

QW-302.3 IX-89-64 BC90-297 225QW-302.4 IX-92-71 BC93-365 312

IX-95-17 BC95-035 351QW-303 IX-89-98 BC91-003 251

IX-92-15 BC91-293 267QW-303.1 IX-83-98 BC83-450 63

IX-83-155 BC84-692 98IX-86-74 BC87-134 165

QW-303.2 IX-92-45 BC92-238 292QW-303.3 IX-92-46 BC92-265 292QW-304 IX-83-19 BC82-440 14

Page 315: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-304 (Cont’d)

IX-83-57 BC83-079 37IX-83-91 BC83-528 56IX-83-108 BC83-639 68IX-86-85 BC87-492 174IX-95-39 BC96-331 375

QW-304.1 IX-83-128 BC84-226 83IX-01-04 BC00-653 420

QW-305 IX-89-108 BC91-157 256QW-306 IX-83-83 BC83-394 53

IX-83-107 BC83-550 67IX-86-23 BC85-553 127IX-92-26 BC91-470 273IX-92-59 BC92-206 303IX-92-68 BC92-011A 306

QW-310 IX-92-31 BC91-613 280QW-310.1 IX-86-35 BC86-266 139

IX-04-07 BC03-1686 459QW-310.2 IX-89-89 BC90-769 246

IX-04-23 BC05-784 474QW-310.4 IX-83-42 BC83-803 28QW-310.5(c) IX-83-70 BC83-270 42

IX-83-101 BC83-529 64QW-311 IX-83-121 BC84-134 80

(New QW-381) IX-83-132 BC84-366 85IX-83-162 BC84-663 102IX-86-27 BC86-061 129

QW-311(a) IX-83-101 BC83-529 64QW-312(a) IX-83-134 BC84-396 86QW-320 IX-86-24 BC86-001 128QW-321 IX-83-13 BC82-346 12QW-321.2(a) IX-86-79 BC87-140 167QW-321.3 IX-92-73 BC93-468 313QW-322 IX-83-58 BC83-086 37

IX-83-113 BC84-055 71IX-83-117 BC84-133 78IX-83-124 BC84-149 81IX-83-128 BC84-226 83IX-83-154 BC84-689 97IX-83-166 BC85-030 104IX-83-167 BC85-031 104IX-83-170 BC85-091 105IX-86-07 BC85-560 115IX-86-19 BC85-587 129IX-86-50 BC86-389 144IX-89-38 BC89-359 213IX-89-54 BC89-367 220IX-89-63 BC90-254 224IX-92-12 BC91-264 266IX-92-22 BC91-425 271IX-92-64 BC92-464 305IX-95-38 BC96-132 375IX-01-21 BC01-035 439

QW-322(a) IX-83-150 BC84-617 96IX-83-159 BC84-690 99IX-83-164 BC85-023 103IX-86-52 BC86-394 145

(d)

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-322(a) (Cont’d)

IX-86-81 BC87-242 173

IX-86-82 BC87-252 173

IX-89-27 BC89-100 203

IX-89-38 BC89-359 213

IX-89-54 BC89-367 220

QW-322.1 IX-04-21 BC05-528 473

QW-322.1(b) IX-95-19 BC95-221 352

QW-322.2 IX-92-47 BC92-266 292

IX-04-13 BC04-1457 466

QW-322.2(a) IX-01-12 BC01-201 430

QW-350 IX-86-51 BC86-390 145

IX-95-30 BC96-073 361

QW-351 IX-83-55 BC83-059 36

IX-83-77 BC83-253 49

IX-83-143 BC84-581 89

IX-89-02 BC88-090 181

IX-92-32 BC91-631 280

QW-355 IX-86-12 BC85-482 117

IX-86-46 BC86-219 143

QW-356 IX-79-52R BC79-046* 49

IX-83-116 BC84-054 77

IX-86-68 BC87-039 156

IX-92-01 BC90-501 285

IX-89-51 BC90-038 219

IX-01-09 BC01-032 428

QW-360 IX-86-68 BC87-039 156

QW-361.2 IX-95-31 BC96-141 361

IX-98-14 BC98-447 397

QW-364 IX-92-58 BC92-357 296

QW-380 IX-89-71 BC90-039 233

IX-89-92 BC90-681, 248

BC90-691

QW-381 IX-86-27 BC86-061 129

IX-86-58 BC86-457 152

IX-86-66 BC87-036 155

IX-86-71 BC87-090 157

IX-92-72 BC93-392 312

IX-98-14 BC98-447 397

QW-382 IX-92-02 BC90-518 262

IX-92-04 BC90-530 263

QW-383 IX-86-32 BC86-222 138

IX-89-101 BC91-085 252

QW-400 IX-83-82 BC83-303 52

QW-401.3 IX-01-39 BC03-469 453

IX-04-04 BC03-1246 458

QW-401.15 IX-89-28 BC89-174 203

QW-402 IX-89-53 BC90-045 219

QW-402.3 IX-86-54 BC86-400 146

QW-402.4 IX-89-28 BC89-174 203

QW-402.5 IX-86-54 BC86-400 146

QW-402.6 IX-83-04 BC82-098 8

QW-402.10 IX-83-04 BC82-098 8

IX-83-71 BC83-230 43

Page 316: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-402.10 (Cont’d)

IX-89-42 BC89-364 215QW-402.11 IX-86-80 BC87-253 167QW-402.12 IX-98-06 BC98-009 389QW-402.14 IX-98-06 BC98-009 389QW-403 IX-83-20 BC82-496 14

IX-83-116 BC84-054 77QW-403.1 IX-83-45 BC82-385 30

IX-89-14 BC88-403 187IX-95-24 BC95-194 359

QW-403.5 IX-83-92 BC83-530 56IX-83-135 BC84-397 87IX-86-15 BC85-532 123IX-86-75 BC87-136 165IX-86-78 BC87-139 166IX-89-23 BC89-096 196IX-89-26 BC89-103 197IX-89-75 BC90-443 235IX-89-78 BC90-515 236IX-92-70 BC92-450 311IX-92-70R BC00-470 425IX-95-21 BC95-318 353IX-01-30 BC02-2693 446IX-04-16 BC04-1418 471

QW-403.6 IX-83-148 BC84-417 95IX-89-07 BC88-171 184IX-89-86 BC90-734 245IX-89-96 BC90-872 250IX-92-50 BC92-217 293IX-92-87 BC93-151 323IX-04-04 BC03-1246 458IX-04-15 BC04-1595 467

QW-403.8 IX-83-97 BC83-444 62IX-83-127 BC84-224 83

QW-403.9 IX-83-152 BC84-648 96IX-04-09 BC04-065 464

QW-403.10 IX-95-28 BC96-002 360IX-95-33 BC96-001 367IX-01-01 BC00-514 419

QW-403.11 IX-83-11 BC82-300 11IX-83-35 BC82-599 25IX-83-56 BC83-078 36IX-86-75 BC87-136 165IX-89-75 BC90-443 235IX-89-84 BC90-664 244IX-89-88 BC90-768 246

QW-403.12 IX-89-61 BC90-252 223QW-403.16 IX-89-20 BC88-478 194

IX-89-82 BC90-531 243IX-89-91 BC90-680 247

QW-403.18 IX-83-106 BC83-630 67IX-83-137 BC84-399 87IX-86-41 BC86-330 141

QW-404 IX-83-37 BC82-770 26IX-86-03 BC85-293 114IX-86-65 BC87-031A 155IX-86-76 BC87-137 166

(e)

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-404 (Cont’d)

IX-89-105 BC91-119 254IX-98-19 BC99-409 409

QW-404.4 IX-83-10 BC82-299 10IX-83-87 BC83-340 54

QW-404.5 IX-83-176 BC85-088 107IX-83-140R BC84-250* 137IX-86-57 BC86-263 151IX-86-84 BC87-491 174IX-89-34 BC89-172 211IX-89-55 BC89-371 220IX-89-58 BC90-249 221

QW-404.9 IX-83-46 BC82-751 31IX-83-59 BC82-614 37IX-83-61 BC82-831 39IX-83-84 BC83-398 53IX-83-96 BC83-442 62IX-83-169 BC85-089 105IX-95-37 BC96-315 369

QW-404.12 IX-92-21 BC91-397 270QW-404.13 IX-83-06 BC82-245 9

IX-83-47 BC82-790 32IX-83-97 BC83-444 62IX-83-100 BC83-563 63

QW-404.14 IX-83-89 BC83-402 55IX-89-68 BC90-349 227

QW-404.15 IX-89-47 BC89-370 217QW-404.22 IX-83-22 BC82-516 15

IX-89-91 BC90-680 247QW-404.25 IX-89-80 BC90-536 237QW-404.26 IX-89-80 BC90-536 237QW-404.28 IX-83-100 BC83-563 63

IX-89-61 BC90-252 223QW-404.30 IX-89-20 BC88-478 194

IX-89-24 BC89-097 196QW-404.31 IX-89-56 BC90-036 221QW-404.32 IX-83-112 BC84-038 70

IX-01-01 BC00-514 419QW-404.33 IX-01-37 BC03-263 452QW-404.36 IX-04-19 BC05-26 472QW-405.1 IX-89-20 BC88-478 194

IX-89-24 BC89-097 196QW-405.2 IX-83-50 BC82-872 33

IX-04-28 BC06-323 478QW-405.3 IX-83-177 BC85-092 108

IX-86-86 BC87-494 175IX-92-01 BC90-501 285IX-98-15 BC98-448 397

QW-406.1 IX-83-161 BC84-618 101IX-83-165 BC85-024 103

QW-406.2 IX-83-161 BC84-618 101QW-406.3 IX-92-57 BC92-354 296QW-407 IX-83-130 BC84-252 84

IX-86-04 BC85-304 114IX-86-20 BC86-010 125IX-86-76 BC87-137 166

QW-407.1 IX-83-29 BC82-763 18

Page 317: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-407.1 (Cont’d)

IX-83-30 BC82-243 18IX-98-10 BC97-306, 395

BC97-308IX-01-20 BC01-813 435IX-04-03 BC03-1212 458IX-04-20 BC05-293 472

QW-407.1(b) IX-81-31R BC82-097* 5IX-86-47 BC86-223 143IX-04-29 BC06-462 478

QW-407.2 IX-83-29 BC82-763 18IX-83-86 BC83-294 54IX-83-145 BC84-584 90IX-92-84 BC93-586 318IX-04-15 BC04-1595 467

QW-407.4 IX-83-11 BC82-300 11IX-83-35 BC82-599 25IX-86-23 BC85-553 127IX-92-33 BC91-614 280IX-01-17 BC01-615 434IX-04-22 BC04-1301 473

QW-408 IX-89-16 BC88-405 188IX-95-11 BC95-002 344

QW-408.2 IX-92-62 BC92-425 304IX-95-16 BC95-095 346

QW-408.3 IX-86-67 BC87-038 155QW-408.8 IX-83-168 BC85-059 104QW-408.9 IX-83-146 BC84-619 90

IX-86-67 BC87-038 155QW-409 IX-83-26 BC82-182 17QW-409.1 IX-83-33 BC82-617 19

IX-83-175 BC85-038 107IX-92-40 BC92-110 284IX-92-69 BC92-228, 306

BC92-353IX-92-87 BC93-151 323IX-92-88 BC93-593 323IX-04-12 BC04-1013 466IX-04-14 BC04-1592 466

QW-409.4 IX-01-28 BC02-2691 445QW-409.8 IX-89-19 BC88-476 194

IX-89-36 BC89-357 212IX-92-88 BC93-593 323IX-95-18 BC95-220 351IX-04-17 BC05-24 471

QW-410.7 IX-86-55 BC86-426 146QW-410.9 IX-86-60 BC86-514A 152QW-410.15 IX-86-44 BC86-365 142

IX-86-63 BC86-520 154QW-410.25 IX-83-69 BC82-233 42QW-410.26 IX-86-26 BC86-059 129QW-410.38 IX-04-02 BC03-1029 457QW-410.42 IX-98-07 BC98-009 390QW-410.51 IX-01-06R BC98-240* 426QW-415 IX-89-79 BC90-531 237

IX-89-82 BC90-531 243QW-416 IX-86-72 BC87-091 158

(f)

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-416 (Cont’d)

IX-86-86 BC87-494 175QW-420.2 IX-95-07 BC94-522 343

IX-01-07 BC01-029 427QW-422 IX-83-34 BC82-514 25

IX-83-131 BC84-365 85IX-86-88 BC88-041 176IX-89-14 BC88-403 187IX-89-36 BC89-357 212IX-89-88 BC90-768 246IX-92-08 BC91-257 265IX-92-18 BC91-389 297IX-95-05 BC94-365 336

QW-423 IX-86-17 BC85-554 124IX-89-15 BC88-404 183IX-92-18 BC91-389 297IX-01-31 BC02-2694 446

QW-423.1 IX-89-58 BC90-249 221IX-92-65 BC93-148 305

QW-424 IX-89-05 BC88-168 188IX-89-26 BC89-103 197IX-89-41 BC89-363 214IX-89-75 BC90-443 235IX-89-88 BC90-768 246IX-95-22 BC95-251 353

QW-424.1 IX-89-58 BC90-249 221QW-432 IX-83-24 BC82-588 16

IX-80-52R BC80-435* 49IX-92-99 BC93-762, 327

BC93-769IX-98-08 BC98-131 390

QW-442 IX-89-46 BC89-369 216QW-450 IX-83-14 BC82-302 12QW-450 vs QW-461 IX-83-78 BC83-300 50QW-451 IX-83-01 BC81-702 5

IX-83-05 BC82-237 8IX-83-08 BC82-265 10IX-83-36 BC82-757 25IX-83-64 BC83-222 40IX-83-104 BC83-349 66IX-83-105 BC83-471 66IX-83-141 BC84-434 89IX-83-177 BC85-092 108IX-86-31 BC86-101 137IX-89-07 BC88-171 184IX-89-62 BC90-253 224IX-89-83 BC90-532 243

IX-89-99 BC91-022 251

IX-92-19 BC91-390 269

IX-92-34 BC91-586 281

IX-92-37 BC92-097 282

IX-92-68 BC92-011A 306

IX-98-03 BC97-479 383

IX-98-12 BC98-237, 396

BC98-238

IX-04-04 BC03-1246 458

Page 318: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-451 (Cont’d)

IX-04-05 BC03-1583 458QW-451.1 IX-83-18 BC82-423 14

IX-83-43 BC82-822 29IX-83-81 BC83-395 51IX-83-88 BC83-396 54IX-83-94 BC83-284 61IX-83-102 BC83-551 65IX-83-122 BC83-645 80IX-86-36 BC86-280 139IX-86-48 BC86-281 143IX-89-18 BC88-474 193IX-89-107 BC91-124 255IX-01-35 BC02-4075 451IX-04-11 BC04-599 465

QW-451.3 IX-86-40 BC86-329 141IX-92-51 BC92-276 294IX-92-56 BC92-308 295IX-04-25 BC05-1404 474

QW-452 IX-83-07 BC82-246 9IX-83-16 BC82-396 13IX-83-67 BC83-123 41IX-83-104 BC83-349 66IX-86-30 BC86-104 131IX-86-39 BC86-299 140IX-89-02 BC88-090 181

QW-452.1 IX-83-66 BC83-058 41IX-83-88 BC83-396 54IX-83-90 BC83-407 55IX-89-06 BC88-169 183IX-89-21 BC89-031 195IX-89-52 BC90-044 219IX-89-64 BC90-297 225IX-89-95 BC90-869 250IX-89-107 BC91-124 255IX-92-35 BC91-277 281IX-92-36 BC91-616 282IX-92-53 BC92-254 294IX-92-59 BC92-206 303IX-92-89 BC93-653 324IX-01-27 BC02-111 441

QW-452.3 IX-83-22 BC82-516 15IX-83-23 BC82-530 15IX-83-66 BC83-058 41IX-83-158 BC84-368 99IX-86-29 BC86-103 130IX-89-09 BC88-397 185IX-89-69 BC90-401 227

IX-89-94 BC90-785 249

IX-89-104 BC91-097 253

IX-89-106 BC91-120 254

IX-92-59 BC92-206 303

IX-92-89 BC93-653 324

IX-95-04 BC94-296 335

IX-04-07 BC03-1686 459

QW-452.4 IX-92-45 BC92-238 292

(g)

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-452.4 (Cont’d)

IX-92-51 BC92-276 294QW-452.6 IX-89-57 BC90-040 221QW-453 IX-92-05 BC90-632 263

IX-92-72 BC93-392 312IX-95-23 BC95-428 353IX-95-41 BC97-028 376IX-98-05 BC98-009 389IX-98-17 BC98-055 403

QW-461.1(a) IX-83-65 BC83-225 40QW-461.9 IX-83-28 BC82-748 18

IX-83-44 BC82-838 29IX-83-53 BC83-002 35IX-83-134 BC84-396 86IX-86-29 BC86-103 130IX-89-98 BC91-003 251IX-92-15 BC91-293 267IX-92-41 BC92-035 284IX-92-46 BC92-265 292IX-92-72 BC93-392 312IX-92-90 BC93-753 324IX-04-07 BC03-1686 459IX-04-24 BC05-1195 474

QW-462 IX-86-09 BC85-200 116IX-89-102 BC91-086 253IX-92-76 BC93-515 312IX-95-02 BC94-181 333

QW-462.1 IX-83-110 BC83-692 69IX-92-29 BC91-473 279IX-98-09 BC97-302 395

QW-462.1(a) IX-86-45 BC86-366 142IX-89-25 BC89-099 197

QW-462.1(d) IX-83-139 BC83-629 88IX-89-89 BC90-769 246

QW-462.1(e) IX-83-95 BC83-301 61QW-462.3(a) IX-83-144 BC84-583 90

IX-89-72 BC90-042 233QW-462.3(b) IX-83-144 BC84-583 90QW-462.4 IX-92-51 BC92-276 294QW-462.4(a) IX-95-08 BC94-543 343QW-462.4(b) IX-89-45 BC89-368 216QW-462.5 IX-92-05 BC90-632 263

IX-92-52 BC92-252 294QW-462.5(a) IX-98-16 BC98-453 398QW-463.1(b) IX-83-15 BC82-388 13QW-463.2(g) IX-83-75 BC83-149 44QW-466 IX-83-51 BC83-881 34

IX-92-48 BC92-267 293IX-92-49 BC92-268 293IX-95-15 BC95-094 346

QW-466.1 IX-83-73 BC82-866 43IX-83-74 BC82-867 44IX-83-115 BC83-279 77IX-89-37 BC89-358 212

QW-466.3 IX-83-109 BC83-689 68IX-86-37 BC86-297 139

QW-482 IX-86-14 BC85-483 123

Page 319: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-482 (Cont’d)

IX-89-01 BC88-042 181QW-483 IX-86-14 BC85-483 123

IX-86-70 BC87-089 157QW-484 IX-83-53 BC83-002 35QW-492 IX-86-16 BC85-533 124

IX-89-62 BC90-253 224

(h)

PageLocation Interpretation File No. No.

Part QW (Cont’d)QW-492 (Cont’d)

IX-92-43 BC92-100 291

IX-98-15 BC98-448 397

QW-500 IX-01-14 BC01-332 433

QW-510 IX-01-11 BC01-089 429

QW-540 IX-01-11 BC01-089 429

Page 320: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

SUBJECT INDEX

PageSubject Interpretation File No. No.

Base MetalsP-Number substitution IX-83-20 BC82-496 14

IX-83-56 BC83-078 36IX-83-96 BC83-442 62IX-86-17 BC85-554 124IX-86-18 BC85-585 125IX-89-29 BC89-176 204IX-89-61 BC90-252 223IX-89-75 BC90-443 235IX-95-21 BC95-318 353IX-95-22 BC95-251 353IX-95-24 BC95-194 359

P-Number reassignment IX-01-22 BC01-679 440qualifying for notch toughness IX-83-92 BC83-530 54

IX-86-48 BC86-281 143IX-89-75 BC90-443 235IX-89-84 BC90-664 244IX-89-96 BC90-872 250IX-92-70 BC92-450 311IX-92-70R BC00-470 425IX-92-87 BC93-151 323

qualifying for test specimens IX-89-37 BC89-358 212IX-89-88 BC90-768 246IX-01-30 BC02-2693 446

thickness IX-01-01 BC00-514 419IX-01-19 BC01-811 435IX-04-09 BC04-065 464IX-04-11 BC04-599 465

use of as filler metal IX-83-87 BC83-340 56

Brazing Base MetalsP-Number substitution IX-92-74 BC93-474 313

Brazing Performance Qualificationlimits of qualified positions IX-01-34 BC02-3541 451

Brazing Procedure Qualificationby Part QW welding IX-92-83 BC93-527 317

qualificationelectrode classification IX-95-13 BC94-035 345for attaching small penetrations IX-86-73 BC86-332 159joint design IX-01-34 BC02-3541 451qualification by proof test IX-86-53 BC86-399 145S-Number substitution IX-92-93 BC93-752 325

Brazing Procedure Specificationcombination of thicknesses IX-89-104 BC91-097 253qualification of hard-facing IX-92-83 BC93-527 317

(i)

PageSubject Interpretation File No. No.

Brazing Procedure Specification (Cont’d)recording information on BPS IX-89-93 BC90-783 249recording information on the IX-89-94 BC90-785 249

Brazer or Brazing OperatorQualification Test

requalification of IX-86-22 BC85-531 126

Brazing Test Specimensbutt and scarf joints IX-89-49 BC89-372 218positions IX-92-85 BC93-655 318tension tests IX-04-06 BC03-1664 459

Certificationof the PQR IX-83-03 BC82-056 7of the WPS IX-83-03 BC82-056 7

Consumable Insertsaddition /deletion IX-89-91 BC90-680 247performance qualification IX-83-06 BC82-245 9

IX-83-22 BC82-516 15qualifying viewing windows IX-83-104 BC83-349 66

Cover Passremelting of IX-83-89 BC83-402 55

Diameters, Pipeperformance qualification IX-83-55 BC83-059 29ranges listed on the WPS IX-83-44 BC82-838 36

IX-89-82 BC90-531 243

Dustamount in powdered filler metal IX-83-09 BC82-279 10

Edition of Code IX-01-13 BC01-570 430the use of the referenced edition IX-01-26 BC01-826 441

of the Code

Essential Variables (see Variables)

Filler Materials (see also SFA Specifications)change in electrode IX-83-84 BC83-303 53

classificationIX-89-61 BC90-252 223IX-92-21 BC91-397 270IX-98-19 BC99-409 409

change in wire classification IX-83-84 BC83-398 53IX-83-169 BC85-089 105IX-95-37 BC96-315 369IX-98-19 BC99-409 409

Page 321: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageSubject Interpretation File No. No.

Filler Materials (see also SFA Specifications) (Cont’d)chemical analysis of weld IX-86-57 BC86-263 151

depositelectrode spacing IX-86-44 BC86-365 142flux-cored consumable IX-89-105 BC91-119 254nonferrous IX-83-176 BC85-088 107qualifying as a welded buildup IX-83-114 BC84-070 71recrushed slag IX-04-19 BC05-26 472supplementary powder, addition, IX-89-80 BC90-536 237

deletion or increasewithout SFA specification IX-86-03 BC85-293 114

Fluxactive /neutral IX-86-16 BC85-533 124

F-Numberschange in IX-83-10 BC82-299 10

IX-89-28 BC89-174 203classification IX-89-46 BC89-369 216

IX-92-99 BC93-762 327BC93-769 327

classification of martensitic IX-83-24 BC82-588 16materials

use of electrodes to conform F- IX-89-29 BC89-176 204No

IX-01-16 BC01-338 433

Interpass Temperatureslisting of on the WPS IX-83-41 BC82-796 28

IX-83-161 BC84-618 101qualification of IX-83-41 BC82-796 28

IX-83-129 BC84-251 84

Machine Weldingdefinition of IX-92-43 BC92-100 291

Multiprocess Weldsqualified thickness range for IX-83-14 BC83-302 12

performance qualificationIX-89-35 BC89-307 211

qualified thickness range for IX-83-83 BC83-394 53procedure qualification

IX-95-33 BC96-001 367required test specimens for IX-83-01 BC81-702 5

procedure qualificationroot pass without backing IX-89-01 BC88-042 181with notch-toughness IX-83-33 BC82-617 19

requirements

Nonessential Variables (see also Variables)addressing IX-98-13 BC98-239 396ranges for IX-83-04 BC82-098 8

Normalized Materialsqualified by non-normalized IX-83-86 BC83-294 54

materials

Nozzle Joint Designbase metal thickness IX-86-31 BC86-101 137

(j)

PageSubject Interpretation File No. No.

Operational Controlchange in company name IX-83-25 BC81-160 16contractor’s associations IX-83-68 BC83-040 41of welding procedures IX-83-03 BC82-056 7

IX-83-151 BC84-620 96IX-86-64 BC86-395 154

organizations not involved in IX-83-39 BC82-792 26Code applications

Peel Test, Brazingacceptance criteria IX-89-74 BC90-429 234

IX-98-01 BC97-304 383

Performance QualificationA-number substitution IX-86-84 BC87-491 174

IX-89-29 BC89-176 204IX-92-18 BC91-389 297

alternate base materials for IX-92-18 BC91-389 297welder qualification

IX-92-65 BC93-148 305IX-01-31 BC02-2694 446

applied lining or clad plate IX-89-101 BC91-085 252by several contractors IX-86-25 BC86-018 128

simultaneouslyIX-86-81 BC87-242 173IX-95-32 BC95-302 367

change in angle groove IX-86-69 BC87-088 156change in vertical welding IX-92-01 BC90-501 285combination of welding IX-92-01 BC90-501 285

processesIX-92-26 BC91-470 273

consumable inserts IX-83-06 BC82-245 9IX-83-22 BC82-516 15

corrosion-resistant weld metal IV-86-32 BC86-222 138overlay

IX-86-58 BC86-457 152IX-86-66 BC87-036 155IX-89-79 BC90-531 237IX-89-71 BC90-039 233IX-92-72 BC93-392 312IX-95-23 BC95-428 353IX-95-30 BC96-073 361IX-98-14 BC98-447 397

diameter limitation IX-89-09 BC88-397 185IX-89-69 BC90-401 227IX-89-98 BC91-003 251IX-89-104 BC91-097 253IX-89-106 BC91-120 254IX-92-15 BC91-263 267IX-92-41 BC92-035 284IX-92-90 BC93-753 324IX-95-04 BC94-296 335

editorial correction to WPQ IX-92-96 BC93-755 326effective operational control of IX-89-10 BC88-398 186

IX-95-20 BC95-302 352IX-95-32 BC95-302 367

electrodes IX-95-30 BC96-073 361employer’s responsibility IX-01-15 BC01-641 433

Page 322: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageSubject Interpretation File No. No.

Performance Qualification (Cont’d)fillet welds IX-83-04 BC82-098 8

IX-83-103 BC83-237 65IX-86-28 BC86-062 130IX-92-45 BC92-238 292

fillet welds qualified by groove IX-83-16 BC82-396 13welds

IX-83-98 BC84-450 63IX-86-74 BC87-134 165IX-89-31 BC89-178 204IX-89-87 BC90-745 245

F-Number qualification IX-79-52R BC79-046* 49IX-80-52R BC80-435* 49IX-98-08 BC98-131 390

further training IX-83-13 BC82-346 12groove welds IX-83-16 BC82-396 13

IX-89-20 BC88-478 194IX-89-89 BC90-769 246IX-89-94 BC90-785 249IX-95-04 BC94-296 335IX-04-23 BC05-784 474

hard facing weld metal overlay IX-92-02 BC90-518 262IX-95-23 BC95-428 353

machine welding IX-95-31 BC96-141 361macro examination IX-92-24 BC91-280 272maintenance of IX-86-82 BC87-252 173manual /machine welding IX-86-68 BC87-039 156

substitutionIX-89-38 BC89-359 213

manual/semiautomatic welding IX-95-36 BC96-314 369substitution

multiprocess IX-83-14 BC82-302 12IX-83-107 BC83-550 67IX-86-13 BC85-507 118IX-86-23 BC85-553 127IX-86-39 BC86-299 140

operator variables IX-83-163 BC85-022 102IX-86-05 BC85-306 114

partial-penetration groove welds IX-83-155 BC84-692 98P-Number substitutions IX-83-40 BC82-794 27

IX-83-42 BC82-803 28IX-83-63 BC83-122 40IX-83-70 BC83-270 42IX-83-116 BC84-054 77IX-83-137 BC84-399 87IX-86-17 BC85-554 124IX-86-18 BC85-585 125IX-86-41 BC86-330 141IX-86-51 BC86-390 145IX-86-72 BC87-091 158IX-89-15 BC88-404 188IX-89-33 BC89-175 205

position IX-83-28 BC82-748 18IX-83-108 BC83-639 68IX-83-162 BC84-663 102IX-83-170 BC85-091 105IX-83-177 BC85-092 108IX-86-29 BC86-103 130

(k)

PageSubject Interpretation File No. No.

Performance Qualification (Cont’d)position (Cont’d)

IX-86-30 BC86-104 131IX-86-35 BC86-266 139IX-89-24 BC89-097 196IX-89-40 BC89-362 214IX-89-98 BC91-003 251IX-92-15 BC91-263 267IX-92-41 BC92-035 284IX-92-46 BC92-265 292IX-92-90 BC93-753 324IX-04-24 BC05-1195 474

process substitution IX-86-46 BC86-219 143qualification with and without IX-92-96 BC94-102 326

backingIX-01-09 BC01-032 428

questioning of ability IX-86-24 BC86-001 128records IX-95-38 BC96-132 375

IX-01-36 BC02-4198 452recording information on WPQ IX-86-13 BC85-507 118

IX-86-72 BC87-091 158IX-89-30 BC89-177 204IX-89-47 BC89-370 217

renewal of IX-83-154 BC84-689 97IX-83-159 BC84-690 99IX-83-164 BC85-023 103IX-83-166 BC85-030 104IX-83-167 BC85-031 104IX-86-07 BC85-560 115IX-86-19 BC85-587 125IX-86-50 BC86-389 144IX-86-52 BC86-394 145IX-89-32 BC89-100 203IX-92-12 BC91-264 266IX-92-22 BC91-425 271IX-92-47 BC92-266 292IX-92-64 BC92-464 305IX-01-21 BC01-035 439IX-04-13 BC04-1457 466

requalification after failure IX-92-56 BC92-308 295requalification after failure and IX-92-73 BC93-468 313

further trainingrequalification for friction weld IX-92-58 BC92-357 296

operatorrequalifying for Addenda IX-83-112 BC84-038 70

changesresponsibility of IX-83-21 BC82-499 15

IX-83-100 BC83-563 63IX-83-101 BC83-529 64IX-83-106 BC83-630 67IX-83-113 BC83-055 71IX-83-117 BC84-133 78IX-83-121 BC84-134 80IX-83-124 BC84-149 81IX-83-128 BC84-226 83IX-83-131 BC84-365 85IX-83-132 BC84-366 85IX-83-133 BC84-370 86

Page 323: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageSubject Interpretation File No. No.

Performance Qualification (Cont’d)responsibility of (Cont’d)

IX-83-134 BC84-396 86IX-92-25 BC91-415 272IX-98-14 BC98-447 397

revoking of qualification IX-95-19 BC95-221 352IX-04-21 BC05-528 473

simultaneous qualification of IX-92-39 BC92-121 283welders

IX-95-14 BC95-040 345special process IX-89-92 BC90-681, 248

BC90-691strip electrodes IX-95-30 BC96-073 361test coupon qualification IX-92-31 BC91-613 280test specimen movement IX-86-77 BC87-138 166thickness limitation IX-83-90 BC83-407 55

IX-83-158 BC84-368 99IX-89-02 BC88-090 181IX-89-24 BC89-097 196IX-89-32 BC89-287 205IX-89-64 BC90-297 225IX-89-83 BC90-532 243IX-89-95 BC90-869 250IX-89-96 BC90-872 250IX-92-36 BC91-616 282IX-92-35 BC91-277 281IX-92-32 BC91-631 280IX-92-51 BC92-276 294IX-92-59 BC92-206 303IX-95-23 BC95-428 353IX-95-28 BC96-002 360IX-98-05 BC98-009 389IX-98-17 BC98-055 403

type of tests required IX-92-17 BC91-315 268IX-92-23 BC90-494 270

units of measurement IX-04-27 BC05-1215 477using radiography IX-83-19 BC82-440 14

IX-83-52 BC83-001 34IX-83-57 BC83-079 36IX-83-91 BC83-528 56IX-83-142 BC84-548 89IX-83-173 BC85-013 106IX-83-174 BC84-557 107IX-86-34 BC86-265 138IX-86-79 BC87-140 167IX-86-85 BC87-492 174IX-89-21 BC89-031 195

ultrasonic examination IX-95-35 BC96-287 368visual examination IX-92-71 BC93-365 312

IX-95-17 BC95-035 351IX-01-03 BC00-519 420

visual inspection IX-89-50 BC90-035 218welder /operator IX-89-48 BC89-360 217

IX-89-51 BC90-038 219IX-89-57 BC90-040 221IX-89-63 BC90-254 224IX-89-108 BC91-157 256IX-95-39 BC96-331 375

(l)

PageSubject Interpretation File No. No.

Performance Qualification (Cont’d)welder /operator (Cont’d)

IX-98-11 BC98-133 395IX-98-14 BC98-447 397

welder /operator identification IX-83-138 NI84-058 88welding of joint by more than IX-89-06 BC88-169 183

one welderwhen welding PQR coupon IX-83-31 BC82-395 19

IX-86-90 BC88-091 176IX-89-48 BC89-360 217

with a tube end gun IX-83-67 BC83-123 41with /without backing IX-83-168 BC85-059 104

IX-86-23 BC85-553 127plasma arc welding IX-89-40 BC89-362 214

P-Numberschemical analysis /mechanical IX-86-88 BC88-041 176

properties ofclassification of IX-83-156 BC84-697 98

IX-92-08 BC91-257 265IX-95-05 BC94-365 336

welding of non-pressure IX-89-05 BC88-168 183retaining attachments

Positions, Brazingqualification of flow positions IX-86-02 BC85-292 113

Positions, Weldingfillet welds in vertical-up IX-83-82 BC83-303 52

progressionlisting on the WPS IX-83-44 BC82-830 29qualification of 2G position IX-83-75 BC83-149 44qualification of 6G position IX-04-07 BC03-1686 459recording welder qualification IX-83-53 BC83-002 35

forstud welding IX-04-28 BC06-323 478vertical-up progression IX-83-50 BC82-872 33

IX-86-86 BC87-494 175

Postweld Heat Treatmentaddition of IX-86-47 BC86-223 143change in soaking time IX-83-130 BC84-252 84change in base metal thickness IX-92-33 BC91-614 280

IX-04-15 BC04-1595 467limit on maximum time IX-83-145 BC84-584 90P8 material IX-04-03 BC03-1212 458reporting results IX-98-10 BC97-306, 395

BC97-308temperature ranges IX-81-30R BC82-097* 5

IX-83-30 BC82-243 18IX-04-29 BC06-462 478

transformation temperatures IX-83-11 BC82-300 11IX-86-23 BC85-553 127IX-86-76 BC87-137 166IX-01-20 BC01-813 435

versus post heating IX-83-29 BC82-763 18IX-86-20 BC86-010 125

when lower critical temperature IX-83-35 BC82-599 25has been exceeded

Page 324: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageSubject Interpretation File No. No.

Preheat Temperaturemaintenance of IX-83-82 BC83-303 52

IX-83-161 BC84-618 101

Procedure Qualificationacceptance criteria IX-01-18 BC01-772 435equipment IX-95-42 BC97-044 377essential variables IX-89-54 BC89-367 220

IX-89-59 BC90-250 222IX-01-06 BC98-240 421

impact testing IX-89-23 BC89-096 196joints IX-98-06 BC98-009 389limits of qualified positions for IX-95-13 BC94-035 345

proceduresliquid penetrant examination IX-92-13 BC91-278 267

IX-95-23 BC95-428 353nonessential variables IX-98-13 BC98-239 396

IX-01-05 BC00-654 420partial penetration groove welds IX-89-62 BC90-253 224

IX-95-03 BC94-235 334root pass IX-01-32 BC02-3449 447seal welds IX-98-15 BC98-448 397subcontracting IX-92-78 BC93-561 315substrate deposit IX-95-34 BC96-060 368tension tests IX-95-09 BC94-570 344thickness limits IX-01-35 BC02-4075 451variables IX-89-79 BC90-531 237

IX-92-40 BC92-110 284weld repair and buildup tests IX-95-03 BC94-235 334welds with buttering IX-01-33 BC02-3896 447

Procedure Qualification Recordadditions /corrections to IX-83-171 BC85-132 105applied lining IX-92-20 BC91-396 270certification of IX-83-03 BC82-056 7combining PQRs IX-83-47 BC82-790 32

IX-86-15 BC85-532 123IX-89-40 BC89-362 214IX-92-42 BC92-011 291IX-92-59 BC92-206 303IX-92-68 BC92-011A 306IX-92-95 BC94-008 326IX-04-18 BC05-25 472

corrosion-resistant weld metal IX-89-77 BC90-492 233overlay, chemical analysis

IX-89-71 BC90-039 236IX-92-05 BC90-632 263IX-92-06 BC91-054 264IX-92-28 BC91-472 273IX-92-52 BC92-252 294IX-92-54 BC92-305 295IX-95-41 BC97-028 376IX-98-16 BC98-453 398

dissimilar base metal IX-92-11 BC91-263 266thicknesses

IX-04-16 BC04-1418 471IX-95-12 BC92-011B, 306

BC92-228BC95-027 345

(m)

PageSubject Interpretation File No. No.

Procedure Qualification Record (Cont’d)dissimilar base metal thicknesses (Cont’d)

IX-98-20R BC99-539* 426IX-01-23 BC01-789 440IX-04-11 BC04-599 465

electrical characteristics IX-92-88 BC93-593 325IX-01-28 BC02-2691 445IX-04-12 BC04-1013 466IX-04-14 BC04-1592 466

groove and fillet welds IX-92-11 BC91-263 266IX-92-37 BC92-097 282IX-92-34 BC91-586 281IX-95-28 BC96-002 360

hardfacing overlay, examination IX-89-77 BC90-492 236IX-92-03 BC90-523 262IX-92-04 BC90-530 263IX-95-23 BC95-428 353IX-95-34 BC96-060 368IX-98-16 BC98-453 398

information on IX-86-70 BC87-089 157IX-89-16 BC88-405 188

listing of backing IX-86-33 BC82-262 138listing of preheat temperature IX-83-165 BC85-024 103listing of shielding gas purity IX-95-11 BC95-002 344macro examination IX-92-24 BC91-280 272manufacturer’s or contractor’s IX-89-73 BC90-319 234

responsibilityIX-92-07 BC91-156 264IX-92-09 BC91-260 265IX-92-16 BC91-314 268IX-92-25 BC91-415 272IX-92-66 BC93-377 305IX-92-67 BC93-391 306IX-92-80 BC92-584 316IX-92-81 BC92-306 316IX-92-92 BC93-678 325IX-95-25 BC95-252 359IX-95-26 BC95-303 359IX-95-27 BC95-482 360IX-95-29 BC95-302 360IX-95-40 BC93-431, 376

BC95-222IX-98-18 BC99-025 403IX-04-26 BC05-1196 477

meeting requirements of older IX-83-99 BC83-472 63editions

IX-83-148 BC84-417 95IX-92-86 BC93-658 318

notch toughness testing IX-86-75 BC87-136 165IX-86-78 BC87-139 166IX-92-50 BC92-217 293IX-04-04 BC03-1246 458

oscillation IX-98-07 BC98-009 390P-Number reassignment IX-01-22 BC01-679 440recording test results IX-83-26 BC82-182 12

IX-83-139 BC83-629 88IX-83-172 BC85-135 106IX-83-175 BC85-038 107

Page 325: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageSubject Interpretation File No. No.

Procedure Qualification Record (Cont’d)requalifying IX-89-56 BC90-036 221

IX-89-58 BC90-249 221IX-92-62 BC92-425 304IX-92-97 BC94-167 327

revising WPSs IX-92-57 BC92-354 296special process IX-89-92 BC90-681, 248

BC90-691IX-92-44 BC92-168 291

supporting WPSs IX-92-84 BC93-586 318IX-95-21 BC95-318 353IX-95-22 BC95-251 353IX-98-04 BC97-481 384IX-01-17 BC01-615 434IX-04-10 BC04-601 464

thickness limits and test IX-92-19 BC91-390 269specimens

IX-92-53 BC92-254 294IX-92-89 BC93-653 324IX-95-23 BC95-428 353IX-98-03 BC97-479 383IX-98-05 BC98-009 389IX-98-07 BC98-009 390IX-98-17 BC98-055 403IX-01-01 BC00-514 419IX-04-11 BC04-599 465

types of test required IX-92-17 BC91-315 268visual examination IX-01-10 BC01-073 428

Processdefinition of IX-83-58 BC83-086 37performance qualification IX-83-69 BC83-233 42variables for IX-86-12 BC85-482 117

Production Weldsliquid penetrant examination IX-92-13 BC91-278 267

Qualified Thickness Rangeperformance

for different positions IX-83-23 BC82-530 15IX-86-30 BC86-104 131

for dissimilar base metal IX-83-123 BC84-092 80thicknesses

IX-89-37 BC89-358 212

IX-01-23 BC01-789 440

for hardfacing overlay IX-92-05 BC90-632 263

IX-98-05 BC98-009 389

for pipe IX-83-66 BC83-058 41

IX-86-29 BC86-103 130

for weld overlays IX-83-101 BC83-529 64

IX-86-27 BC86-061 129

weld reinforcement IX-83-07 BC82-246 9

IX-83-143 BC84-581 89

procedure

changes in later editions IX-83-88 BC83-396 54

effect of PWHT IX-83-11 BC82-300 11

IX-04-22 BC04-1301 473

(n)

PageSubject Interpretation File No. No.

Qualified Thickness Range (Cont’d)procedure (Cont’d)

for brazed laps IX-83-49 BC82-871 33IX-86-21 BC86-058 126

for cladding IX-83-48 BC82-870 32IX-98-16 BC98-453 398

for double-bevel groove IX-83-90 BC83-407 55welds

for dissimilar base metal IX-86-89 BC88-089 176thickness

for groove welds IX-89-100 BC90-663 252IX-89-100R BC90-663* 261IX-98-03 BC97-479 383

for hardfacing overlay IX-92-05 BC90-632 263IX-98-05 BC98-009 389IX-98-16 BC98-453 398

for multiprocess procedures IX-83-83 BC83-394 53IX-83-126 BC84-221 82

for notch toughness IX-89-86 BC90-734 245for weld repair IX-83-93 BC83-531 56

IX-83-126 BC84-221 82IX-83-141 BC84-434 89IX-86-28 BC86-062 130

impact testing IX-83-81 BC83-395 51limitation when using IX-83-18 BC82-423 14

GMAW-SIX-95-33 BC96-001 367IX-95-28 BC96-002 360

limitations for combined IX-83-80 BC83-388 50procedures

IX-95-33 BC96-001 367limitations of QW-451 IX-83-102 BC83-551 65

IX-83-152 BC84-648 96IX-86-36 BC86-280 139IX-89-83 BC90-532 243

minimum for weld metal IX-83-81 BC83-395 51IX-89-39 BC89-361 213

ranges qualified by PQR IX-83-36 BC82-757 25IX-83-64 BC83-222 40IX-89-11 BC88-399 186IX-01-12 BC01-201 430

thickness for determining IX-83-05 BC82-237 8weld reinforcement

IX-83-08 BC82-265 10thickness used to determine IX-83-94 BC83-284 61

rangeIX-86-43 BC86-337 142IX-89-18 BC88-474 193IX-01-27 BC02-111 441IX-04-09 BC04-065 464

Records (see also Procedure Qualification Record)maintenance of performance IX-83-32 BC82-598 19

qualificationIX-92-55 BC92-307 295IX-01-08 BC01-030 427

Root Gapqualification of IX-83-71 BC83-230 43

Page 326: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageSubject Interpretation File No. No.

Root Gap (Cont’d)use of term IX-83-04 BC82-098 8SFA SpecificationsAWS classification change IX-83-147 BC84-249 95change of designations in a IX-83-59 BC82-614 37

classificationchange of electrode IX-83-61 BC82-831 39

classificationIX-89-13 BC88-402 187IX-92-21 BC91-397 270

change in SFA specification IX-01-37 BC03-263 452filler metal classification

chemistry deviation IX-89-08 BC88-172 185classification listed in AWS IX-92-94 BC93-754 326

specificationelectrode characteristics IX-04-17 BC05-24 471electrode classification IX-89-76 BC90-466 235

IX-95-13 BC94-035 345electrode spacing IX-86-63 BC86-520 154heat treatment conditions IX-83-46 BC82-751 31marking of packages IX-01-29 BC02-2692 445mechanical tests IX-89-97 BC90-873 251use of IX-83-27 BC82-713 17

IX-01-25 BC01-815 441IX-01-38 BC03-274 452

use of different electrode brands IX-86-65 BC87-031A 155IX-01-38 BC03-274 452

use of powdered filler metal IX-92-61 BC92-422 304

Shielding Gasesprocedure qualification using IX-83-02 BC81-704 6

IX-92-62 BC92-425 304purity IX-95-11 BC95-002 344

SI Unitsuse of IX-83-85 BC83-003 53

S-Numbersqualification IX-92-98 BC94-236 327

IX-95-07 BC94-522 343

Standard Welding Procedure Specifications (SWPSs)use of IX-01-11 BC01-089 429

IX-01-14 BC01-332 433

Supplementary Essential Variables (see also Variables)qualifying changes in IX-83-79 BC83-358 50

IX-83-122 BC83-645 80IX-83-135 BC84-397 87

use of IX-01-39 BC03-469 453

Test Specimensacceptance criteria for bend IX-83-60 BC82-749 38

specimensIX-83-115 BC83-279 77IX-86-61 BC86-515 153IX-89-52 BC90-044 219IX-95-15 BC95-094 346

(o)

PageSubject Interpretation File No. No.

Test Specimens (Cont’d)acceptance criteria for section IX-83-76 BC83-248 44

testIX-83-120 BC83-474 79

bending of IX-83-51 BC82-881 34brazing joint clearance IX-86-11 BC85-420 117calibration of testing machines IX-83-109 BC83-689 68cold straightening of IX-83-60 BC82-749 38corrosion-resistant overlay IX-92-05 BC90-632 263

IX-92-60 BC92-421 303determining coupon thickness IX-83-77 BC83-253 49

IX-83-78 BC83-300 50IX-83-143 BC84-581 89

dimensions recorded on PQR IX-83-26 BC82-182 17IX-83-144 BC84-583 90

face and root bends, transverse IX-89-72 BC90-042 233IX-04-05 BC03-1583 458

failure of IX-83-153 BC84-664 97IX-86-09 BC85-200 116

fillet welds IX-95-08 BC94-543 343for multiprocess welds IX-83-43 BC82-822 29for impact testing for IX-01-24 BC01-814 440

multiprocess weldsfor peel or section tests IX-83-76 BC83-248 44grinding of overlay specimens IX-83-60 BC82-749 38guided-bend tests IX-92-10 BC91-261 265

IX-95-15 BC95-094 346IX-98-12 BC98-237, 396

BC98-238longitudinal bend IX-89-107 BC91-124 255mandrel size IX-83-74 BC82-867 44

IX-86-71 BC87-090 157method of restraint IX-86-37 BC86-297 139

IX-86-38 BC86-298 140

minimum weld metal deposit IX-92-68 BC92-011 306thickness

nondestructive testing of IX-86-83 BC87-489A 174

number of tension test IX-92-37 BC92-097 282specimens

partial penetration IX-89-99 BC91-022 251

product form IX-86-40 BC86-329 141

IX-89-07 BC88-171 184

qualification of IX-89-45 BC89-368 216

IX-92-29 BC91-473 279

reduced section IX-83-65 BC83-225 40

IX-89-25 BC89-099 197

IX-89-90 BC90-532 247

IX-92-76 BC93-515 314

IX-92-79 BC93-583 315

IX-01-21 BC01-035 439

removal IX-83-15 BC82-388 13

IX-83-119 BC84-253 79

IX-92-79 BC93-583 315

roll planishing IX-86-26 BC86-059 129

size of specimen required IX-83-38 BC82-771 26

IX-83-73 BC82-866 43

IX-86-45 BC86-366 142

Page 327: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageSubject Interpretation File No. No.

Test Specimens (Cont’d)tension, full section for small IX-89-103 BC91-096 253

diameter pipetension, reduced section for lap IX-89-81 BC90-537 237

and rabbet joints, platetension test IX-04-01 BC02-3586 457

IX-04-25 BC05-1404 474tension test results IX-92-14 BC91-279 267

IX-92-63 BC92-452 304IX-95-06 BC94-542 336IX-95-09 BC94-570 344IX-98-09 BC97-302 395

test jig dimensions for bend IX-92-48 BC92-267 293tests

IX-92-49 BC92-268 293tolerances IX-95-02 BC94-181 333transverse bend IX-89-107 BC91-124 255using radiography IX-83-157 BC84-700 98

IX-86-62 BC86-517 153IX-01-04 BC00-653 420

visual requirements IX-83-149 BC84-558 95IX-01-04 BC00-653 420

Unlisted Materials (Non-Code Material)A-Number classification IX-83-140R BC84-250* 137

IX-89-46 BC89-369 216IX-89-55 BC89-371 220

P-Numbers for IX-83-34 BC82-514 25IX-83-62 NI83-004 39

IX-83-115 BC83-279 77

IX-83-131 BC84-365 85

identifying welding electrodes IX-89-65 BC90-289 225in cartons

qualification of IX-83-45 BC82-385 30

IX-83-136 BC84-398 87

IX-95-21 BC95-318 353

IX-95-22 BC95-251 353

SAW flux/wire combinations IX-83-46 BC82-751 31

use of filler metals IX-83-25 BC81-160 16

IX-86-76 BC87-137 166

Variableschanges to the WPS IX-83-54 BC83-042 35

IX-89-70 BC90-430 227

flexible welding back-up tape IX-86-80 BC87-253 167

listing on the WPS IX-83-03 BC82-056 7

IX-86-14 BC85-483 126

IX-89-82 BC90-531 243

IX-89-85 BC90-671 244

ranges demonstrated on the IX-83-40 BC82-794 27PQR

recording on the PQR IX-83-26 BC82-182 17

Welder Qualification (see Performance Qualification Testing)

Welding Operator Qualification (see Performance QualificationTesting)

(p)

PageSubject Interpretation File No. No.

Welding Procedure Specificationbase metal thickness IX-04-09 BC04-65 464certification IX-83-03 BC82-056 7

IX-89-43 BC89-365 215changes in IX-83-37 BC82-770 26

IX-83-118 BC84-183 78IX-83-125 BC84-151 81IX-83-150 BC84-617 96IX-86-67 BC87-038 155IX-92-30 BC91-587 279

combination of processes IX-83-164 BC85-023 103IX-86-01 BC85-036 113IX-86-06 BC85-328 115IX-86-23 BC85-553 127IX-86-56 BC86-429 146IX-86-60 BC86-514A 152IX-86-87 BC87-490A 175IX-89-26 BC89-103 197IX-89-67 BC90-335 226IX-95-10 BC94-662 344IX-04-08 BC03-1770 464

combining of IX-86-08 BC85-134 116IX-92-75 BC93-490 313IX-92-77 BC93-518 314

electrical characteristics IX-95-18 BC95-220 351for corrosion-resistant weld IX-86-59 BC86-458 152

metal overlayIX-89-12 BC88-401 187IX-95-41 BC97-028 376

for weld repair /buildup IX-83-160 BC84-219 100information recorded on IX-83-127 BC84-224 83

IX-86-04 BC85-304 114IX-86-10 BC85-307 117IX-86-14 BC85-483 123IX-86-54 BC86-400 146IX-89-03 BC88-166A 182IX-89-16 BC88-405 188IX-89-19 BC88-476 194IX-95-11 BC95-002 344

manufacturer’s and contractor’s IX-89-73 BC90-319 234responsibility

IX-92-07 BC91-156 264IX-92-80 BC93-584 316IX-92-81 BC92-306 316IX-95-25 BC95-252 359IX-95-26 BC95-303 359IX-95-27 BC95-482 360IX-95-29 BC95-302 360IX-95-40 BC93-431, 376

BC95-222IX-01-02 BC00-553 419IX-98-02 BC97-309 383IX-01-40 BC03-740 453

meeting requirements of older IX-92-86 BC93-158 318editions

multiple layers IX-04-02 BC03-1029 457P-Number IX-89-36 BC89-357 212

IX-89-58 BC90-249 221

Page 328: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND

SECTION IX — CUMULATIVE INDEX — INTERPRETATIONS VOLS. 12–57

PageSubject Interpretation File No. No.

Welding Procedure Specification (Cont’d)qualification IX-89-04 BC88-167 182

IX-89-35 BC89-307 211IX-89-66 BC90-281 226IX-95-01 BC94-104 333

requalification of IX-89-14 BC88-403 187IX-89-42 BC89-364 215IX-89-17 BC88-473 193IX-89-41 BC89-363 214IX-89-54 BC89-367 220IX-92-38 BC91-630 283IX-95-04 BC94-296 335IX-95-16 BC95-095 346IX-04-20 BC05-293 472

short circuiting mode IX-95-28 BC96-002 360

(q)

PageSubject Interpretation File No. No.

Welding Procedure Specification (Cont’d)short circuiting mode (Cont’d)

IX-95-33 BC96-001 367supplied to welder IX-83-17 BC82-422 13support of IX-83-146 BC84-619 90

IX-86-42 BC86-331 141IX-86-55 BC86-426 146IX-89-26 BC89-103 197IX-89-68 BC90-349 227

units of measurement IX-04-27 BC05-1215 477use for an unassigned material IX-89-41 BC89-363 214

IX-01-07 BC01-029 427use of at job sites IX-83-12 BC82-341 11use of by subcontractor IX-86-49 BC86-367 144weld joint IX-89-53 BC90-045 219

IX-95-01 BC94-104 333

Page 329: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND
Page 330: Pressure Vessel Code - wes.irwes.ir/files/8017236ASME 2007-SEC IX.pdf · 2007 ASME Boiler & Pressure Vessel Code 2007 Edition July 1, 2007 IX QUALIFICATION STANDARD FOR WELDING AND