Presentation on 802.11ac

  • Upload
    okhtay

  • View
    52

  • Download
    0

Embed Size (px)

DESCRIPTION

IEEE 802.11ac PHY and MAC overviews

Citation preview

  • Gigabit Wireless LAN:

    Enhancements in 802.11ac

    Eldad Perahia, Ph.D., Intel Corporation,

    [email protected]

    Robert Stacey, Apple, [email protected]

    Dec 2012

  • Outline Introduction History

    Usage models

    PAR

    Enhancements

    Channelization

    PHY Waveform design

    Packet structure

    PHY Transmitter flow

    Downlink multi-user MIMO

    Very High Throughput (VHT) waveform Preamble

    MAC Coexistence in wider channels

    Channel access in wider channels

    Dynamic bandwidth operation

    Aggregation

    DL MU-MIMO

    2

  • Early History

    Very High Throughput Study Group (VHTSG)

    Began in May 2007 as a precursor to starting task

    group, in which purpose and scope of task group were

    defined

    Started initially to address Very High Throughput for <

    6 GHz IMT-Advanced operation

    IMT-Advanced objective was dropped

    Focus for < 6 GHz shifted to enhancing 802.11n in 5

    GHz band

  • Wi-Fi Alliance VHT Usage

    Models [6]Category # Usage Model

    1. Wireless Display 1a Desktop Storage & Display

    1b Projection to TV or Projector in Conf Rom

    1c In room Gaming

    1d Streaming from Camcorder to Display

    1e Broadcast TV Field Pick Up

    1f Medical Imaging Surgical Procedure Support

    2. Distribution of HDTV 2a Lightly compressed video streaming around home

    2b Compr. video streaming in a room / t.o. home

    2c Intra Large Vehicle (e.g. airplane) Applications

    2d Wireless Networking for Small Office

    2e Remote medical assistance

    3. Rapid Upload / Download 3a Rapid Sync-n-Go file transfer

    3b Picture by Picture viewing

    3c Airplane docking

    3d Movie Content Download to car

    3e Police / Surveillance Car Upload

    4. Backhaul 4a Multi-Media Mesh backhaul

    4b Point to Point backhaul

    5. Outdoor Campus / Auditorium 5a Video demos / telepresence in Auditorium

    5b Public Safety Mesh

    6. Manufacturing Floor 6a Manufacturing floor automation

    4

  • Compressed Video Streaming

    around a House

    Pre-Conditions:

    User has operational WLAN network which includes a TV with

    wireless capabilities, a DVR with

    wireless capabilities, and an AP

    associated with the WLAN that is

    not in the same room as the game

    machine and TV.

    Application:

    User can display the output of the DVR wirelessly on the TV using a

    video codec like Motion 2000 JPEG

    that compresses video.

    5

  • Rapid Sync-and-Go

    Pre-Conditions:

    User has WLAN connectivity between a PC, PDA, cell phone, a

    camcorder, and a camera.

    Application:

    User can sync movies to/from the camcorder and transfer the picture

    files. An MPEG4 video file of 1

    GByte takes 8 seconds over a

    single hop 1Gbps link. 200 jpeg

    (picture) files of 10 Mbyte takes less

    than 30 seconds over a 1Gbps

    single hop link . Jitter and delay are

    not critical. Instead, the key metric is

    the users time spent to do a transfer. Less than 1 minute is

    acceptable. 1-5 minutes may be

    acceptable. More than 5 minutes is

    not acceptable.

    6

  • Wireless I/O

    Pre-Conditions:

    User has operational WLAN network for Internet access and general data

    networking. The wireless network used

    for storage and display may or may not

    be part of the other operational WLAN

    network.

    E-Net

    E-Net

    Wireless Dock

    Application:

    User can wirelessly display the output of the

    computer to monitor or TV using

    uncompressed video.

    User can wirelessly store data from a

    computer to a harddrive. The data being

    stored transfers at ~1Gbps, jitter is <

    200msec, delay is

  • 802.11ac Project Authorization

    Request (PAR) PAR requires that the amendment support

    single link throughput of at least 500 Mbps

    802.11ac must support multi-station throughput of at least 1 Gbps

    Operation in 2.4 GHz is excluded

    Must have backward compatibility and coexistence with legacy IEEE802.11 devices in the 5 GHz unlicensed band

    8

  • Recent History Task group started Nov 2008

    Task group documents

    Specification Framework

    Functional Requirements & Evaluation Methodology

    Amendment to 11n Channel Model

    Usage Models

    Draft 3.0 approved June 2012, will probably be the version

    used for WFA certification

    Timeline going forward

    Initial Sponsor Ballot: planned for March 2013

    Recirculation Sponsor Ballot: planned for May 2013

    Final Working Group Approval: planned for November 2013

    RevCom & Standards Board Final Approval: planned for February

    2014

    9

  • Different Physical Layers

    802.11, a, b, g, n, ac

    802.11

    802.11b

    802.11a 802.11g 802.11n 802.11ac

    Access Technology

    DSSS DSSS/

    CCK

    OFDM OFDM SDM / OFDM

    MU+SDM / OFDM

    Data Rate(Mbps)

    1, 2 Up to 11

    Up to 54

    Up to 54

    Up to 600

    Up to 6933

    Frequency Band (GHz)

    2.4 2.4 5 2.4 2.4 and 5 5

    Channel Bandwidth (MHz)

    22 22 20 22 20 and 40

    20, 40, 80, 160

    10

  • PHY Data Rate Improvement in

    802.11

    1

    10

    100

    1000

    10000

    dot11 (2.4 GHz)

    11b (2.4 GHz)

    11a (5 GHz )/

    11g (2.4

    GHz)

    11n (2.4/5 GHz)

    11ac; 4ss (5 GHz)

    11ac; 8ss (5 GHz)

    20/25 MHz

    40 MHz

    80 MHz

    160 MHz

    11

  • New Features and Enhancements

    Proposed for IEEE 802.11ac

    Wider bandwidth

    80 MHz channel width

    160 MHz channel width

    Non-contiguous 160 MHz (80 MHz + 80 MHz)

    Modulation, coding, and spatial streams

    256 QAM, rate = 3/4

    256 QAM, rate = 5/6

    Up to 8 streams

    Downlink Multi-User MIMO (DL MU-MIMO)

    Increased aggregate size limits

    Enhancement to coexistence mechanisms

    12

  • Mandatory vs. Optional 802.11n

    PHY Features

    Basic MIMO/SDM

    20 MHz; 64 QAM

    rate 5/6; 56 tones

    1, 2* spatial streams 2*, 3, 4 spatial streams

    40 MHz, 114 tones

    Transmit Beamforming

    Convolutional Code Low Density Parity Check

    Mandatory Optional

    Space Time Block Code

    Guard Interval

    Mixed Format Preamble Green Field Preamble

    Throughput

    Enhancement

    Interoperability

    w/ Legacy

    Robustness

    Enhancement

    *2 spatial streams mandatory for AP only

    13

  • Modifications in 802.11ac to

    802.11n Features STBC

    only for 2x1, 4x2, 6x3, 8x4

    No 3x2 or 4x3 as in 11n

    LDPC

    Added block-interleaving of constellation symbols per stream, per

    OFDM symbol

    Transmit Beamforming

    Only Explicit feedback, no implicit feedback

    Only Compressed-V feedback, no Uncompressed-V, no CSI

    Only NDP sounding, no staggered sounding

    No unequal modulation

    14

  • Mandatory vs. Optional 802.11ac

    PHY Features

    Basic MIMO/SDM

    20, 40, 80 MHz

    1 spatial stream 2 - 8 spatial streams

    160 MHz, 80+80 MHz

    Transmit Beamforming

    Convolutional Code Low Density Parity Check

    Mandatory Optional

    Space Time Block Code

    GI, 256 QAM

    VHT Preamble

    Thro

    ughput E

    nhance

    ment

    Interoperability

    w/ Legacy

    Robustness

    Enhancement

    DL MU-MIMO

    15

  • Channelization for 20/40/80 MHz

    40/80 MHz channelization

    Consists of two adjacent IEEE 20/40 MHz

    channels

    Non-overlapping channelization

    14

    0

    13

    6

    13

    2

    12

    8

    12

    4

    12

    0

    11

    6

    11

    2

    10

    8

    10

    4

    10

    0

    16

    5

    16

    1

    15

    7

    15

    3

    14

    9

    64

    60

    56

    52

    48

    44

    40

    36IEEE channel #

    20 MHz

    40 MHz

    80 MHz

    5170

    MHz

    5330

    MHz

    5490

    MHz

    5710

    MHz

    5735

    MHz

    5835

    MHz

    14

    416

  • Channelization for Contiguous

    160 MHz Apply the same rule as in 40 and 80 MHz channel

    construction

    Consists of two adjacent IEEE 80 MHz channels

    Non-overlapping channelization Not necessary to come up with coexistence rules for partially

    overlapping channels

    14

    0

    13

    6

    13

    2

    12

    8

    12

    4

    12

    0

    11

    6

    11

    2

    10

    8

    10

    4

    10

    0

    16

    5

    16

    1

    15

    7

    15

    3

    14

    9

    64

    60

    56

    52

    48

    44

    40

    36IEEE channel #

    20 MHz

    40 MHz

    80 MHz

    5170

    MHz

    5330

    MHz

    5490

    MHz

    5710

    MHz

    5735

    MHz

    5835

    MHz

    160 MHz

    14

    417

  • Noncontiguous 160 MHz

    (VHT80+80) BSS Any two nonadjacent 80 MHz channels may be used in

    setting up a noncontiguous 160 MHz (VHT80+80) BSS Allows VHT80 STA to associate with the VHT80+80 BSS

    Allows contiguous-only devices to associate with the VHT80+80 BSS as a VHT80 STA

    14

    0

    13

    6

    13

    2

    12

    8

    12

    4

    12

    0

    11

    6

    11

    2

    10

    8

    10

    4

    10

    0

    16

    5

    16

    1

    15

    7

    15

    3

    14

    9

    64

    60

    56

    52

    48

    44

    40

    36IEEE channel #

    20 MHz

    40 MHz

    80 MHz

    5170

    MHz

    5330

    MHz

    5490

    MHz

    5710

    MHz

    5735

    MHz

    5835

    MHz

    Examples of

    VHT80+80 BSS

    Setup

    14

    418

  • 80 MHz Sub-Carrier Design

    14 Null tones: {-128, -123, -1, 0, 1, 123,

    127}

    242 Populated tones: {-122, -2, 2, 122}

    8 Pilot tones: {-103, -75, -39, -11, 11, 39, 75, 103}

    234 Data tones: {Populated tones} {Pilot tones}

    -128 127-122

    -103 -39 -11

    -2 2

    11 39 75

    122OFDM sub carrier number

    103-75

    19

  • PHY Transmitter Flow Overview:

    Single User, 20-80 MHz

    Scrambler same as 11a/n

    BCC encoder / puncturing same as 11a/n

    LDPC fully optional

    Spatial Mapping same as 11n

    Interleaver

    (for BCC)

    Insert GI

    and

    Window

    Analog

    and RF

    CSD

    CSD

    Str

    ea

    m P

    ars

    er

    Constellation

    mapper

    ST

    BC

    Interleaver

    (for BCC)

    Constellation

    mapper

    IDFT

    Sp

    atia

    l M

    ap

    pin

    g

    Insert GI

    and

    Window

    Analog

    and RFIDFT

    Scra

    mb

    ler

    En

    co

    de

    r P

    ars

    er

    append tail (for BCC),

    encoding,

    puncturing (for BCC)

    append tail (for BCC),

    encoding,

    puncturing (for BCC)

    A-MPDUAppend MAC

    padding

    Append PHY Padding:

    0-7 bits

    Prepend Service Field:

    Scrambler seed, Reserved,

    VHT-SIG-B CRC

    20

  • 160 MHz Sub-Carrier Design

    28 Null tones: {-256, -251,-129,-128, -127, -5,-1,0,1 5, 127, 128,129,251, 255}

    484 Populated tones: {-250, -6, 6, 250}

    16 Pilot tones: {+/-231, +/-203, +/-167, +/-139, +/-117, +/-89, +/-53, +/-25}

    468 Data tones: {Populated tones} {Pilot tones}

    -256 -250

    -231 -167 -139

    -130 -126

    -117 -89 -53

    -6

    OFDM sub carrier number

    -25-203

    2556

    25 89 117

    126 130

    139 167 203

    250

    23153

    21

  • PHY Transmitter Flow Overview:

    Single User, 160 MHz contiguous

    Code across 160 MHz, BCC interleaver per 80 MHz

    There may be 1 or more FEC encoders when BCC encoding is used

    When using LDPC, BCC interleavers not used

    When using BCC, the LDPC tone mappers not used

    Interleaver

    CSD

    ST

    BC

    BCC

    Interleaver

    Sp

    ati

    al

    Ma

    pp

    ing

    Constellation

    mapper

    Constellation

    mapper

    PH

    Y P

    ad

    din

    g

    Sc

    ram

    ble

    r

    FE

    C E

    nc

    od

    er

    Insert GI

    and

    Window

    Analog

    and RF

    FE

    C E

    nc

    od

    er

    En

    co

    de

    r P

    ars

    er

    Str

    ea

    m P

    ars

    er

    FE

    C E

    nc

    od

    er

    Se

    gm

    en

    t

    Pa

    rse

    r

    IDFT

    Se

    gm

    en

    t

    Pa

    rse

    r

    LDPC tone

    mapper

    BCC

    Interleaver

    CSD

    ST

    BC

    BCC

    Interleaver

    Sp

    ati

    al

    Ma

    pp

    ing

    Constellation

    mapper

    Constellation

    mapperIDFT

    Insert GI

    and

    Window

    Analog

    and RF

    LDPC tone

    mapper

    LDPC tone

    mappter

    512 pt

    IDFT

    234

    subcarriers

    22

  • PHY Transmitter Flow Overview:

    Single User, 80+80 MHz non-contiguous

    Interleaver

    CSD

    ST

    BC

    BCC

    Interleaver

    Sp

    ati

    al

    Ma

    pp

    ing

    Constellation

    mapper

    Constellation

    mapper

    PH

    Y P

    ad

    din

    g

    Sc

    ram

    ble

    r

    FE

    C E

    nc

    od

    er

    FE

    C E

    nc

    od

    er

    En

    co

    de

    r P

    ars

    er

    Str

    ea

    m P

    ars

    er

    FE

    C E

    nc

    od

    er

    Se

    gm

    en

    t

    Pa

    rse

    r

    Se

    gm

    en

    t

    Pa

    rse

    r

    LDPC tone

    mappter

    BCC

    Interleaver

    CSD

    ST

    BC

    BCC

    Interleaver

    Sp

    ati

    al

    Ma

    pp

    ing

    Constellation

    mapper

    Constellation

    mapper

    LDPC tone

    mappter

    LDPC tone

    mappter

    Insert GI and

    Window

    Analog

    and RFIDFT

    Insert GI and

    Window

    Analog

    and RFIDFT

    Insert GI and

    Window

    Analog

    and RFIDFT

    Insert GI and

    Window

    Analog

    and RFIDFT

    256 pt

    IDFT

    234

    subcarriers

    For 80+80 MHz sub-carrier design, each frequency segment follows the 80 MHz

    format

    23

  • PPDU overview (SU)

    Illustrating 80 MHz bandwidth

    Parallel L-TFs, L-SIG, VHT-SIG-A, VHT-STF represents 20 MHz waveform replicated on each sub-channel

    MAC provides an A-MPDU that fills the frame to the last byte for each user

    L-SIG length and rate indicate PPDU duration (number of symbols)

    PHY Padding (0 7 bits)

    Tail after pad (in 11n, tail before pad)

    L-TFs L-SIG VHT-SIG A

    Service

    Last Symbol

    VHT A-MPDUPHY

    PadTail

    PPDU Duration (# of symbols)

    MAC PadL-TFs L-SIG VHT-SIG A

    L-TFs L-SIG VHT-SIG A

    L-TFs L-SIG VHT-SIG A

    VHT-

    SIG B

    VHT-STF

    VHT-STF

    VHT-STF

    VHT-STF

    VHT-LTFs

    Freq

    24

  • Preamble Overview

    Legacy format the same as 11a/n

    VHT-SIG-A replaces HT-SIG

    VHT-STF and VHT-LTF similar to HT-STF and HT-LTF

    New VHT-SIG-B

    L-STF L-LTFL-

    SIGVHT-SIG-A

    VHT-

    STF

    VHT-

    LTFData

    VHT format PPDU

    VHT-

    LTF

    8s 8s 8s4s 4sVHT-LTFs

    4s per LTF

    VHT-

    SIG-B

    4s

    L-STF L-LTFL-

    SIGHT-SIG

    HT-

    STF

    HT-

    LTFData

    HT mixed format PPDU

    HT-

    LTF

    8s 8s 8s4s 4sHT-LTFs

    4s per LTF

    25

  • L-SIG

    Same number of subcarriers (data

    and pilot) as 11n for 20 MHz and

    40 MHz

    For 80MHz and 160MHz: same

    number of subcarriers and

    positions as 11a/n L-SIG in each

    20 MHz subchannel

    Same rate, length, reserve, parity

    and tail format

    As in 11n, 20 MHz waveform

    replicated in each 20 MHz sub-

    channel for 40, 80, and 160 MHz

    Major difference from 11n:

    Length field in L-SIG used to

    convey number of symbols in

    VHT packet

    No length field in VHT-SIG-A

    See next slides

    26

  • L-SIG

    Length Conveys Number of Symbols (1/2)

    Similar to 11n, use L-SIG spoof rate of 6 Mbps for 11ac packets

    3 bytes / symbol

    Long GI packet

    4 us / symbol

    Legacy spoof symbols = L-SIG length / 3 bytes per symbol

    VHT payload symbols = Legacy spoof symbols VHT preamble symbols

    VHT Payload

    legacy spoof symbols = L-SIG length / 3 bytes per symbol

    L

    preamble

    VHT

    preamble

    L-SIG spoof rate is fixed at 6 Mbps (3 bytes / symbol)

    20 usec

    VHT payload symbols = legacy spoof symbols VHT preamble symbols

    27

  • L-SIG

    Length Conveys Number of Symbols (2/2)

    Short GI packet

    3.6 us / VHT symbol

    End of frame may not be aligned to a 4 us boundary

    Legacy devices using L-SIG may find the end of the

    packet to occur up to 3.6 usec after the energy on the air

    has disappeared

    VHT Payload

    3.6 * VHT symbols

    Legacy spoof time = 4 usec per symbol * legacy spoof symbols

    Legacy spoof symbols = L-SIG length / 3

    Short GI symbol time= 3.6 usec

    L-SIG symbol time = 4.0 usec

    Remainder

  • L-SIG

    Ambiguous End of Short GI Packets

    L-SIG can only indicate time in units of 4 us

    Two 3.6 us short GI boundaries may map to the same 4 us

    normal GI boundary used by L-SIG

    Addressed with extra short GI bit in VHT-SIG-A

    LSB set to 1 for short GI

    MSB set to 1 for short GI AND Nsym%10 == 9

    3.6

    3.6

    3.6

    3.6 3.63.6

    3.6

    444

    Short GI packet with N symbols

    Short GI packet with N+1 symbols

    L-SIG spoof with M symbols

    29

  • Length & Duration at Tx

    Tx MAC computes the number of

    OFDM symbols and padding,

    which includes

    A-MPDU (L)

    Service

    MAC Padding (to last byte

    boundary)

    PHY Padding (0-7 bits)

    PHY BCC tail (6 bits / encoder)

    TXTIME

    Covers entire PLCP packet

    Short or long GI

    L_LENGTH

    Similar to 11n

    8 service tail ESSYM STBC

    STBC DBPS

    L N N NN m

    m N

    8PAD SYM DBPS service tail ESN N N L N N N

    _ _TXTIME for SGI LEG PREAMBLE L SIG VHT SIG A VHT PREAMBLE

    SYMS SYMVHT SIG B SYM

    SYM

    T T T T

    T NT T

    T

    334

    20TXTIMEL_LENGTH

    30

  • Length & Duration at Rx

    Compute RXTIME from

    L_LENGTH

    Compute Nsym from RXTIME,

    NVHT-LFT , short GI

    Correction factor for SGI

    If SGI bits = 11 and STBC=0,

    then subtract one from N_sym

    If SGI bits = 11 and STBC=1,

    then subtract two from N_sym

    Full Length in Octets

    L_LENGTH 3RXTIME *4 20

    3

    _

    RXTIME

    for SGI floor

    L STF L LTF L SIG VHT SIG A

    VHT STF VHT LTF LTF VHT SIG B

    SYM

    SYMS

    T T T T

    T T N TN

    T

    PSDU_LENGTH floor8

    SYM DBPS service tail ESN N N N N

    31

  • Example of Short GI Correction

    20 MHz, single stream, 64-QAM, r=5/6, GI

    PSDU Length (bytes)

    # of 11ac symbols

    TXTIME (usec) LSIG Length (bytes)

    # of 11ac symbols computed from LSIG without correction

    1232 38 180 117 38

    1233 39 184 120 40

    1264 39 184 120 40

    1265 40 184 120 40

    1297 40 184 120 40

    1298 41 188 123 41

    32

  • VHT-LTF:

    Phase tracking during LTFs

    Carrier frequency offset causes EVM degradation at RX Carrier frequency offset estimation error due to phase noise

    Carrier frequency drift

    11a/n has pilot tones in data symbols to track phase per symbol

    Compensate residual frequency offset error and phase noise

    But no pilot tones in HT-LTF

    No phase tracking during HT-LTF

    11ac supports max. 8 spatial streams (compared to 4 in 11n)

    Much longer VHT-LTF (e.g. 8 VHT-LTF symbols)

    More susceptible to phase rotations

    Simulation results show significant channel estimation performance degradation w/o phase tracking during VHT-LTF

    11ac requires higher channel estimation quality and EVM Higher order MIMO, 256-QAM, DL MU-MIMO

    33

  • VHT-LTF:

    PER Performance with Frequency Drift

    40MHz, NLOS B

    2000 bytes / packet

    Phase noise added at both TX and

    RX (IEEE phase noise model)

    Initial carrier frequency offset

    estimation using L-LTF

    ML MIMO receiver

    Phase tracking always enabled for

    data symbols

    4x4, 4 streams, 64-QAM 5/6

    IPN = -36 dBc

    Freq. drift = 50 Hz/us

    0.0100

    0.1000

    1.0000

    -59 -57 -55 -53 -51 -49

    PE

    R

    RSSI (dBm)

    w/o tracking

    10/771r0, Phase Tracking During VHT-LTF

    34

  • VHT-LTF:

    P-Matrix for Pilot Subcarriers Identical pilot values for all space-time streams

    All tones in VHT-LTF symbols, except pilot tones, are multiplied by the

    PVHTLTF matrix (VHT-LTF mapping matrix) as in 11n

    Pilot tones are multiplied by a row-repetition matrix RVHTLTF instead

    Dimension of RVHTLTF = Dimension of PVHTLTF (NSTS x NLTF)

    All rows in RVHTLTF is the same as the 1st row of PVHTLTF Avoid spectral line

    Allows phase tracking during VHT-LTF w/o MIMO channel

    estimation

    Simple digital solution to mitigate carrier frequency offset and drift

    CSD

    xkVHTLTF

    x

    1,

    k

    VHTLTF nA

    STS

    k NQ

    IFFT

    IFFT

    ,STS

    k

    VHTLTF N nA

    , if is a pilot tone

    , otherwise

    VHTLTFk

    VHTLTF

    VHTLTF

    R kA

    P

    XnmX nm matrix of column and rowin element ,

    35

  • VHT-LTF:

    Receiver Processing for Pilot Subcarriers

    Possible approach

    Estimate channel on pilot tones from first

    VHT-LTF

    Used pilot tones on subsequent VHT-LTFs for

    phase tracking

    Phase tracking during the VHT-LTFs is not

    required

    36

  • VHT-SIG-A Waveform Design

    Two symbols (VHT-SIG-A1 and VHT-SIG-A2)

    Same number of subcarriers (data and pilot) and

    positions as legacy format

    For 80MHz and 160MHz: same number of

    subcarriers and positions and values as legacy in

    each 20 MHz subchannel

    CSD and phase rotations same as legacy

    Extend 80 MHz preamble to 160 MHz preamble

    by simple repetition

    37

  • Auto-detection

    VHT

    11n MF

    11a Data (BPSK 64-QAM)

    4us 4us 4us

    38

  • VHT-SIG-A1 Fields and OrderBit Index

    Field MU bit allocation

    SU bit allocation

    Description

    0-1 BW 3 3 B0-B1: Set to 0 for 20 MHz, 1 for 40 MHz, 2 for 80 MHz, 3 for 160 MHz or 80+80 MHz mode

    2 Reserved

    Reserved for possible expansion of BW field. Set to 1.

    3 STBC 1 1 Set to 1 for STBC, 0 otherwise

    4-9 Group ID

    6 6 Set to all ones indicating:-A single user transmission-A transmission where the group membership has not yet been established-A transmission that needs to bypass a group (e.g. broadcast)For MU: used to identify users

    Integer fields are transmitted in unsigned binary format, LSB first

    39

  • Bit Index

    Field MU bit allocation

    SU bit allocation

    Description

    10-21 NSTS 12 12 For SU: first 3 bits contain stream allocation, set to

    0 for one space time stream, set to 1 for two space time streams, 7 for eight space time streams

    Remaining 9 bits contain partial AID: being the 9 LSB bits of AID. For Broadcast and multicast, these 9 bits are set to 0.

    For MU: 3 bits/user with maximum of 4 users Set to 0 for 0 space time streams Set to 1 for 1 space time stream Set to 2 for 2 space time streams Set to 3 for 3 space time streams Set to 4 for 4 space time streams

    22 No TXOP PS

    1 1 Set to 0 by VHT AP if it allows non-AP VHT STAs in TXOP power save mode to enter Doze state during a

    TXOP.

    Set to 1 otherwise.

    The bit is reserved and set to 1 in VHT PPDUs transmitted

    by a non-AP VHT STA.

    23 Reserved 1 1 Set to 1

    Total 24 24

    40

  • VHT-SIG-A2 Fields and OrderBit Index

    Field MU bit allocation

    SU bit allocation

    Description

    0-1 Short GI 2 2 B0 set to 1 for short GIB1 set to 1 for short GI AND Nsym%10 == 9

    2-3 Coding 2 2 B2:SU: set to 0 for BCC or 1 for LDPCMU: if the NSTS field for user 1 is non-zero, then B2 indicates the coding used for user 1; set to 0 for BCC and 1 for LDPC. If the NSTS field for user 1 is set to 0, then this field is reserved and set to 1.

    B3: set to 1 if LDPC PPDU encoding process (or at least one LPDC users PPDU encoding process) results in an extra OFDM symbol (or symbols). Set to 0 otherwise.

    Integer fields are transmitted in unsigned binary format, LSB first

    41

  • Bit Index

    Field MU bit allocation

    SU bit allocation

    Description

    4-7 MCS 0 4 For SU:MCS indexFor MU:B4: Indicates coding for user 2 if the NSTS field for user 2 is non-zero: set to 0 for BCC, 1 for LDPC. If NSTS for user 2 is set to 0, then reserved and set to 1.B5: Indicates coding for user 3 if the NSTS field for user 2 is non-zero: set to 0 for BCC, 1 for LDPC. If NSTS for user 3 is set to 0, then reserved and set to 1.B6: Indicates coding for user 4 if the NSTS field for user 2 is non-zero: set to 0 for BCC, 1 for LDPC. If NSTS for user 4 is set to 0, then reserved and set to 1.B7 is reserved and set to 1

    8 SU-Beamformed

    0 1 Set to 1 when packet is a SU-beamformed packet, 0 otherwise

    For MU: reserved and set to 1

    42

  • Bit Index Field MU bit allocation

    SU bit allocation

    Description

    9 Reserved 6 1 Set to 1

    10-17 CRC 8 8 CRC calculated as in 11n Section 20.3.9.4.4 with C7 in B10

    18-23 Tail 6 6 All zeros

    Total 24 24

    43

  • MCS Exclusions For the TGac Tx data flow, the number of data bits per

    OFDM symbol (N_dbps) and number of coded bits per

    OFDM symbol (N_cbps) must be an integer value for each

    BCC encoder

    also true for 11a and 11n, but this was always the case for all rates

    and MCSs

    New conditions in TGac lead to fractional N_dbps and

    N_cbps per encoder:

    80 MHz with 234 data subcarriers

    256-QAM

    More than two encoders

    Even thought MSC exclusions do not apply to LDPC, for

    simplicity same MCSs for LDPC

    44

  • 20 MHz MCSs

    1 & 2 SS

    1 SS, MCS 9 excluded due to BCC fractional bit issue

    2 SS, MCS 9 excluded due to BCC fractional bit issue

    1 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 6.5 7.2

    1 QPSK 1/2 1 13.0 14.4

    2 QPSK 3/4 1 19.5 21.7

    3 16-QAM 1/2 1 26.0 28.9

    4 16-QAM 3/4 1 39.0 43.3

    5 64-QAM 2/3 1 52.0 57.8

    6 64-QAM 3/4 1 58.5 65.0

    7 64-QAM 5/6 1 65.0 72.2

    8 256-QAM 3/4 1 78.0 86.7

    9

    2 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 13.0 14.4

    1 QPSK 1/2 1 26.0 28.9

    2 QPSK 3/4 1 39.0 43.3

    3 16-QAM 1/2 1 52.0 57.8

    4 16-QAM 3/4 1 78.0 86.7

    5 64-QAM 2/3 1 104.0 115.6

    6 64-QAM 3/4 1 117.0 130.0

    7 64-QAM 5/6 1 130.0 144.4

    8 256-QAM 3/4 1 156.0 173.3

    9

    45

  • 20 MHz MCSs

    3 & 4 SS3 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 19.5 21.7

    1 QPSK 1/2 1 39.0 43.3

    2 QPSK 3/4 1 58.5 65.0

    3 16-QAM 1/2 1 78.0 86.7

    4 16-QAM 3/4 1 117.0 130.0

    5 64-QAM 2/3 1 156.0 173.3

    6 64-QAM 3/4 1 175.5 195.0

    7 64-QAM 5/6 1 195.0 216.7

    8 256-QAM 3/4 1 234.0 260.0

    9 256-QAM 5/6 1 260.0 288.9

    4 SS, MCS 9 excluded due to BCC fractional bit issue

    4 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 26.0 28.9

    1 QPSK 1/2 1 52.0 57.8

    2 QPSK 3/4 1 78.0 86.7

    3 16-QAM 1/2 1 104.0 115.6

    4 16-QAM 3/4 1 156.0 173.3

    5 64-QAM 2/3 1 208.0 231.1

    6 64-QAM 3/4 1 234.0 260.0

    7 64-QAM 5/6 1 260.0 288.9

    8 256-QAM 3/4 1 312.0 346.7

    9

    46

  • 20 MHz MCSs

    5 & 6 SS5 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 32.5 36.1

    1 QPSK 1/2 1 65.0 72.2

    2 QPSK 3/4 1 97.5 108.3

    3 16-QAM 1/2 1 130.0 144.4

    4 16-QAM 3/4 1 195.0 216.7

    5 64-QAM 2/3 1 260.0 288.9

    6 64-QAM 3/4 1 292.5 325.0

    7 64-QAM 5/6 1 325.0 361.1

    8 256-QAM 3/4 1 390.0 433.3

    9

    6 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 39.0 43.3

    1 QPSK 1/2 1 78.0 86.7

    2 QPSK 3/4 1 117.0 130.0

    3 16-QAM 1/2 1 156.0 173.3

    4 16-QAM 3/4 1 234.0 260.0

    5 64-QAM 2/3 1 312.0 346.7

    6 64-QAM 3/4 1 351.0 390.0

    7 64-QAM 5/6 1 390.0 433.3

    8 256-QAM 3/4 1 468.0 520.0

    9 256-QAM 5/6 1 520.0 577.8

    5 SS, MCS 9 excluded due to BCC fractional bit issue

    47

  • 20 MHz MCSs

    7 & 8 SS

    7 SS

    MC

    S

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI400ns GI

    0 BPSK 1/2 1 45.5 50.6

    1 QPSK 1/2 1 91.0 101.1

    2 QPSK 3/4 1 136.5 151.7

    3 16-QAM 1/2 1 182.0 202.2

    4 16-QAM 3/4 1 273.0 303.3

    5 64-QAM 2/3 1 364.0 404.4

    6 64-QAM 3/4 1 409.5 455.0

    7 64-QAM 5/6 1 455.0 505.6

    8 256-QAM 3/4 2 546.0 606.7

    9

    8 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 52.0 57.8

    1 QPSK 1/2 1 104.0 115.6

    2 QPSK 3/4 1 156.0 173.3

    3 16-QAM 1/2 1 208.0 231.1

    4 16-QAM 3/4 1 312.0 346.7

    5 64-QAM 2/3 1 416.0 462.2

    6 64-QAM 3/4 1 468.0 520.0

    7 64-QAM 5/6 1 520.0 577.8

    8 256-QAM 3/4 2 624.0 693.3

    9

    7 SS, MCS 9 excluded due to BCC fractional bit issue

    8 SS, MCS 9 excluded due to BCC fractional bit issue

    48

  • 40 MHz MCSs

    1 & 2 SS1 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 13.5 15.0

    1 QPSK 1/2 1 27.0 30.0

    2 QPSK 3/4 1 40.5 45.0

    3 16-QAM 1/2 1 54.0 60.0

    4 16-QAM 3/4 1 81.0 90.0

    5 64-QAM 2/3 1 108.0 120.0

    6 64-QAM 3/4 1 121.5 135.0

    7 64-QAM 5/6 1 135.0 150.0

    8 256-QAM 3/4 1 162.0 180.0

    9 256-QAM 5/6 1 180.0 200.0

    2 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 27.0 30.0

    1 QPSK 1/2 1 54.0 60.0

    2 QPSK 3/4 1 81.0 90.0

    3 16-QAM 1/2 1 108.0 120.0

    4 16-QAM 3/4 1 162.0 180.0

    5 64-QAM 2/3 1 216.0 240.0

    6 64-QAM 3/4 1 243.0 270.0

    7 64-QAM 5/6 1 270.0 300.0

    8 256-QAM 3/4 1 324.0 360.0

    9 256-QAM 5/6 1 360.0 400.0

    49

  • 40 MHz MCSs

    3 & 4 SS3 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 40.5 45.0

    1 QPSK 1/2 1 81.0 90.0

    2 QPSK 3/4 1 121.5 135.0

    3 16-QAM 1/2 1 162.0 180.0

    4 16-QAM 3/4 1 243.0 270.0

    5 64-QAM 2/3 1 324.0 360.0

    6 64-QAM 3/4 1 364.5 405.0

    7 64-QAM 5/6 1 405.0 450.0

    8 256-QAM 3/4 1 486.0 540.0

    9 256-QAM 5/6 1 540.0 600.0

    4 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 54.0 60.0

    1 QPSK 1/2 1 108.0 120.0

    2 QPSK 3/4 1 162.0 180.0

    3 16-QAM 1/2 1 216.0 240.0

    4 16-QAM 3/4 1 324.0 360.0

    5 64-QAM 2/3 1 432.0 480.0

    6 64-QAM 3/4 1 486.0 540.0

    7 64-QAM 5/6 1 540.0 600.0

    8 256-QAM 3/4 2 648.0 720.0

    9 256-QAM 5/6 2 720.0 800.0

    50

  • 40 MHz MCSs

    5 & 6 SS5 SS

    MCS

    Index

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI400ns GI

    0 BPSK 1/2 1 67.5 75.0

    1 QPSK 1/2 1 135.0 150.0

    2 QPSK 3/4 1 202.5 225.0

    3 16-QAM 1/2 1 270.0 300.0

    4 16-QAM 3/4 1 405.0 450.0

    5 64-QAM 2/3 1 540.0 600.0

    6 64-QAM 3/4 2 607.5 675.0

    7 64-QAM 5/6 2 675.0 750.0

    8 256-QAM 3/4 2 810.0 900.0

    9 256-QAM 5/6 2 900.0 1000.0

    6 SS

    MC

    S

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 81.0 90.0

    1 QPSK 1/2 1 162.0 180.0

    2 QPSK 3/4 1 243.0 270.0

    3 16-QAM 1/2 1 324.0 360.0

    4 16-QAM 3/4 1 486.0 540.0

    5 64-QAM 2/3 2 648.0 720.0

    6 64-QAM 3/4 2 729.0 810.0

    7 64-QAM 5/6 2 810.0 900.0

    8 256-QAM 3/4 2 972.0 1080.0

    9 256-QAM 5/6 2 1080.0 1200.0

    51

  • 40 MHz MCSs

    7 & 8 SS8 SS

    MCS

    Inde

    x

    Modulatio

    nR

    N

    ES

    Data rate (Mb/s)

    800ns GI 400ns GI

    0 BPSK 1/2 1 108.0 120.0

    1 QPSK 1/2 1 216.0 240.0

    2 QPSK 3/4 1 324.0 360.0

    3 16-QAM 1/2 1 432.0 480.0

    4 16-QAM 3/4 2 648.0 720.0

    5 64-QAM 2/3 2 864.0 960.0

    6 64-QAM 3/4 2 972.0 1080.0

    7 64-QAM 5/6 2 1080.0 1200.0

    8 256-QAM 3/4 3 1296.0 1440.0

    9 256-QAM 5/6 3 1440.0 1600.0

    7 SS

    MCS

    Index

    Modulatio

    nR

    NE

    S

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 94.5 105.0

    1 QPSK 1/2 1 189.0 210.0

    2 QPSK 3/4 1 283.5 315.0

    3 16-QAM 1/2 1 378.0 420.0

    4 16-QAM 3/4 2 567.0 630.0

    5 64-QAM 2/3 2 756.0 840.0

    6 64-QAM 3/4 2 850.5 945.0

    7 64-QAM 5/6 2 945.0 1050.0

    8 256-QAM 3/4 3 1134.0 1260.0

    9 256-QAM 5/6 3 1260.0 1400.0

    52

  • 80 MHz MCSs

    1 & 2 SS1 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 29.3 32.5

    1 QPSK 1/2 1 58.5 65.0

    2 QPSK 3/4 1 87.8 97.5

    3 16-QAM 1/2 1 117.0 130.0

    4 16-QAM 3/4 1 175.5 195.0

    5 64-QAM 2/3 1 234.0 260.0

    6 64-QAM 3/4 1 263.3 292.5

    7 64-QAM 5/6 1 292.5 325.0

    8 256-QAM 3/4 1 351.0 390.0

    9 256-QAM 5/6 1 390.0 433.3

    2 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 58.5 65.0

    1 QPSK 1/2 1 117.0 130.0

    2 QPSK 3/4 1 175.5 195.0

    3 16-QAM 1/2 1 234.0 260.0

    4 16-QAM 3/4 1 351.0 390.0

    5 64-QAM 2/3 1 468.0 520.0

    6 64-QAM 3/4 1 526.5 585.0

    7 64-QAM 5/6 2 585.0 650.0

    8 256-QAM 3/4 2 702.0 780.0

    9 256-QAM 5/6 2 780.0 866.7

    53

  • 80 MHz BCC MCSs

    3 & 4 SS

    3SS, MCS 6 excluded due to BCC fractional bit issue

    3 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 87.8 97.5

    1 QPSK 1/2 1 175.5 195.0

    2 QPSK 3/4 1 263.3 292.5

    3 16-QAM 1/2 1 351.0 390.0

    4 16-QAM 3/4 1 526.5 585.0

    5 64-QAM 2/3 2 702.0 780.0

    6

    7 64-QAM 5/6 2 877.5 975.0

    8 256-QAM 3/4 2 1053.0 1170.0

    9 256-QAM 5/6 3 1170.0 1300.0

    4 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1 117.0 130.0

    1 QPSK 1/2 1 234.0 260.0

    2 QPSK 3/4 1 351.0 390.0

    3 16-QAM 1/2 1 468.0 520.0

    4 16-QAM 3/4 2 702.0 780.0

    5 64-QAM 2/3 2 936.0 1040.0

    6 64-QAM 3/4 2 1053.0 1170.0

    7 64-QAM 5/6 3 1170.0 1300.0

    8 256-QAM 3/4 3 1404.0 1560.0

    9 256-QAM 5/6 3 1560.0 1733.3

    54

  • 80 MHz BCC MCSs

    5 & 6 SS5 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 146.3 162.5

    1 QPSK 1/2 1 292.5 325.0

    2 QPSK 3/4 1 438.8 487.5

    3 16-QAM 1/2 2 585.0 650.0

    4 16-QAM 3/4 2 877.5 975.0

    5 64-QAM 2/3 3 1170.0 1300.0

    6 64-QAM 3/4 3 1316.3 1462.5

    7 64-QAM 5/6 3 1462.5 1625.0

    8 256-QAM 3/4 4 1755.0 1950.0

    9 256-QAM 5/6 4 1950.0 2166.7

    6 SS

    MCS

    Index

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 175.5 195.0

    1 QPSK 1/2 1 351.0 390.0

    2 QPSK 3/4 1 526.5 585.0

    3 16-QAM 1/2 2 702.0 780.0

    4 16-QAM 3/4 2 1053.0 1170.0

    5 64-QAM 2/3 3 1404.0 1560.0

    6 64-QAM 3/4 3 1579.5 1755.0

    7 64-QAM 5/6 4 1755.0 1950.0

    8 256-QAM 3/4 4 2106.0 2340.0

    9

    6SS, MCS 9 excluded due to BCC fractional bit issue

    55

  • 80 MHz BCC MCSs

    7 & 8 SS

    7 SS, MCS 6 excluded due to BCC fractional bit issue

    7 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1 204.8 227.5

    1 QPSK 1 409.5 455.0

    2 QPSK 3/4 3 614.3 682.5

    3 16-QAM 2 819.0 910.0

    4 16-QAM 3/4 3 1228.5 1365.0

    5 64-QAM 2/3 4 1638.0 1820.0

    6

    7 64-QAM 5/6 6 2047.5 2275.0

    8 256-QAM 3/4 6 2457.0 2730.0

    9 256-QAM 5/6 6 2730 3033.3

    8 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 234.0 260.0

    1 QPSK 1/2 1 468.0 520.0

    2 QPSK 3/4 2 702.0 780.0

    3 16-QAM 1/2 2 936.0 1040.0

    4 16-QAM 3/4 3 1404.0 1560.0

    5 64-QAM 2/3 4 1872.0 2080.0

    6 64-QAM 3/4 4 2106.0 2340.0

    7 64-QAM 5/6 6 2340.0 2600.0

    8 256-QAM 3/4 6 2808.0 3120.0

    9 256-QAM 5/6 6 3120.0 3466.7

    56

  • 160 MHz MCSs

    1 & 2 SS1 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 58.5 65.0

    1 QPSK 1/2 1 117.0 130.0

    2 QPSK 3/4 1 175.5 195.0

    3 16-QAM 1/2 1 234.0 260.0

    4 16-QAM 3/4 1 351.0 390.0

    5 64-QAM 2/3 1 468.0 520.0

    6 64-QAM 3/4 1 526.5 585.0

    7 64-QAM 5/6 2 585.0 650.0

    8 256-QAM 3/4 2 702.0 780.0

    9 256-QAM 5/6 2 780.0 866.7

    2 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 117.0 130.0

    1 QPSK 1/2 1 234.0 260.0

    2 QPSK 3/4 1 351.0 390.0

    3 16-QAM 1/2 1 468.0 520.0

    4 16-QAM 3/4 2 702.0 780.0

    5 64-QAM 2/3 2 936.0 1040.0

    6 64-QAM 3/4 2 1053.0 1170.0

    7 64-QAM 5/6 3 1170.0 1300.0

    8 256-QAM 3/4 3 1404.0 1560.0

    9 256-QAM 5/6 3 1560.0 1733.3

    57

  • 160 MHz BCC MCSs

    3 & 4 SS3 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 175.5 195.0

    1 QPSK 1/2 1 351.0 390.0

    2 QPSK 3/4 1 526.5 585.0

    3 16-QAM 1/2 2 702.0 780.0

    4 16-QAM 3/4 2 1053.0 1170.0

    5 64-QAM 2/3 3 1404.0 1560.0

    6 64-QAM 3/4 3 1579.5 1755.0

    7 64-QAM 5/6 4 1755.0 1950.0

    8 256-QAM 3/4 4 2106.0 2340.0

    9

    4 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 234.0 260.0

    1 QPSK 1/2 1 468.0 520.0

    2 QPSK 3/4 2 702.0 780.0

    3 16-QAM 1/2 2 936.0 1040.0

    4 16-QAM 3/4 3 1404.0 1560.0

    5 64-QAM 2/3 4 1872.0 2080.0

    6 64-QAM 3/4 4 2106.0 2340.0

    7 64-QAM 5/6 6 2340.0 2600.0

    8 256-QAM 3/4 6 2808.0 3120.0

    9 256-QAM 5/6 6 3120.0 3466.7

    3 SS, MCS 9 excluded due to BCC fractional bit issue

    58

  • 160 MHz MCSs

    5 & 6 SS6 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 351.0 390.0

    1 QPSK 1/2 2 702.0 780.0

    2 QPSK 3/4 2 1053.0 1170.0

    3 16-QAM 1/2 3 1404.0 1560.0

    4 16-QAM 3/4 4 2106.0 2340.0

    5 64-QAM 2/3 6 2808.0 3120.0

    6 64-QAM 3/4 6 3159.0 3510.0

    7 64-QAM 5/6 8 3510.0 3900.0

    8 256-QAM 3/4 8 4212.0 4680.0

    9 256-QAM 5/6 9 4680.0 5200.0

    5 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 292.5 325.0

    1 QPSK 1/2 2 585.0 650.0

    2 QPSK 3/4 2 877.5 975.0

    3 16-QAM 1/2 3 1170.0 1300.0

    4 16-QAM 3/4 4 1755.0 1950.0

    5 64-QAM 2/3 5 2340.0 2600.0

    6 64-QAM 3/4 5 2632.5 2925.0

    7 64-QAM 5/6 6 2925.0 3250.0

    8 256-QAM 3/4 8 3510.0 3900.0

    9 256-QAM 5/6 8 3900.0 4333.3

    59

  • 160 MHz MCSs

    7 & 8 SS7 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 409.5 455.0

    1 QPSK 1/2 2 819.0 910.0

    2 QPSK 3/4 3 1228.5 1365.0

    3 16-QAM 1/2 4 1638.0 1820.0

    4 16-QAM 3/4 6 2457.0 2730.0

    5 64-QAM 2/3 7 3276.0 3640.0

    6 64-QAM 3/4 7 3685.5 4095.0

    7 64-QAM 5/6 9 4095.0 4550.0

    8 256-QAM 3/4 12 4914.0 5460.0

    9 256-QAM 5/6 12 5460.0 6066.7

    8 SS

    MCS

    Inde

    x

    Modulatio

    nR NES

    Data rate (Mb/s)

    800ns

    GI

    400ns

    GI

    0 BPSK 1/2 1 468.0 520.0

    1 QPSK 1/2 2 936.0 1040.0

    2 QPSK 3/4 3 1404.0 1560.0

    3 16-QAM 1/2 4 1872.0 2080.0

    4 16-QAM 3/4 6 2808.0 3120.0

    5 64-QAM 2/3 8 3744.0 4160.0

    6 64-QAM 3/4 8 4212.0 4680.0

    7 64-QAM 5/6 9 4680.0 5200.0

    8 256-QAM 3/4 12 5616.0 6240.0

    9 256-QAM 5/6 12 6240.0 6933.3

    60

  • VHT-SIG-B:

    Bit encoding Single stream Data field OFDM symbol format per user w/ BPSK, R=1/2 modulation

    In 20 MHz mode, 26 bits are available

    For 40/80/160 MHz, repeat bits including tail bits

    No frequency repetition of 20 MHz sub-channels into other sub-channels

    Provides easy way for receiver to get processing gain by averaging repeated soft values at the decoder

    input

    For higher BWs, additional bits are available due to extra tones

    In 40 MHz, we get 27 bits

    In 80/160 MHz, we get 29 bits

    20 bits6 tail

    bits

    21 bits6 tail

    bits21 bits

    6 tail

    bits

    23 bits6 tail

    bits23 bits

    6 tail

    bits23 bits

    6 tail

    bits23 bits

    6 tail

    bits

    23 bits6 tail

    bits

    1 Pad

    bit

    23 bits6 tail

    bits23 bits

    6 tail

    bits23 bits

    6 tail

    bits

    1 Pad

    bit23 bits

    6 tail

    bits23 bits

    6 tail

    bits23 bits

    6 tail

    bits23 bits

    6 tail

    bits

    1 Pad

    bit

    20 MHz

    40 MHz

    80 MHz

    160 MHz

    80+80 MHz

    Repeated

    Repeated

    Repeated

    Repeated

    61

  • VHT-SIG-B:

    Bit Allocation

    VHT-SIGB Allocation (20/40/80 MHz):

    * Additional bits to accommodate large packet sizes in 5.46ms (max packet duration in LSIG)

    160 MHz repeats the 80 MHz VHT-SIG-B twice in frequency

    SIGB Fields MU Bit allocation SU Bit allocation

    20 MHz 40 MHz 80 MHz 20 MHz 40 MHz 80 MHz

    Length (in units of 4 octets) 16 17* 19* 17 19 21

    MCS 4 4 4 - - -

    RSVD 0 0 0 3 2 2

    Tail 6 6 6 6 6 6

    Total # bits 26 27 29 26 27 29

    62

  • VHT-SIG-B:

    Length

    Length in VHT-SIG-B is provided to indicate useful data

    in PSDU, which allows receivers to shut-off PHY

    processing after receiving useful data thereby saving some

    power

    L-TFs L-SIG

    VHT A-MPDU

    VHT-SIG A

    PHY

    PadTailService

    Last Symbol

    VHT A-MPDU

    VHT A-MPDU

    Service

    Service

    PHY

    PadTail

    PHY

    PadTail

    PPDU Duration (# of symbols)

    A-MPDU

    subframe 1

    A-MPDU

    subframe 2

    Null

    subframe

    Null

    subframe

    A-MPDU

    subframe n

    Last byte

    boundary

    Less than

    8-bitMPDU

    Length = 0

    MPDU

    Length = 0

    Final

    MAC

    Pad

    0-3

    octets

    VHT-TFsVHT-

    SIG B

    Dword

    MAC

    Pad

    0-3

    octets

    User

    VHT-SIGB Length

    63

  • VHT-SIG-B:

    CRC in SERVICE Field Transmitter shall include VHT-SIG-B CRC in SERVICE field

    Transmitter shall compute 8-bit CRC based on SIG B "not including

    tail" and insert 8-bit CRC in 8 MSBs of the SERVICE field

    Transmitter will not include scrambler seed in computation of CRC bits

    CRC defined in 802.11n-2009 section 20.3.9.4.4. C7 of the CRC is

    mapped to B8 of the SERVICE field, C6 to B7, , C0 to B15

    The resulting SERVICE field and PSDU shall be scrambled, as in 11n

    CRC achieves protection of the scrambler init field

    Any error in the scrambler init field will result in a corrupted CRC field

    after descrambling

    Check of the CRC field against the contents of SIG-B will then fail

    20 bits in 20MHz

    *21 (40MHz) / 23(80MHz) bits

    Tail

    (6bit)

    Scrambler

    Seed (7bit)

    Rsvd

    (1bit)

    CRC

    (8bit)

    VHT-SIG-B Service Field

    64

  • VHT-SIG-B:

    Requirements for Single User

    Tx

    Required to compute and populate DWORD

    length, tail, and reserved bits

    Required to compute and populate VHT-SIG-B

    CRC in SERVICE field

    Rx

    Optional to process VHT-SIG-B

    65

  • PHY Transmitter Flow:

    256 QAM Normalization factor

    00001000 00011000 00111000 00101000 01101000 01111000 01011000 01001000 11001000 11011000 11111000 11101000 10101000 10111000 10011000 10001000

    00001001 00011001 00111001 00101001 01101001 01111001 01011001 01001001 11001001 11011001 11111001 11101001 10101001 10111001 10011001 10001001

    00001011 00011011 00111011 00101011 01101011 01111011 01011011 01001011 11001011 11011011 11111011 11101011 10101011 10111011 10011011 10001011

    00001010 00011010 00111010 00101010 01101010 01111010 01011010 01001010 11001010 11011010 11111010 11101010 10101010 10111010 10011010 10001010

    00001110 00011110 00111110 00101110 01101110 01111110 01011110 01001110 11001110 11011110 11111110 11101110 10101110 10111110 10011110 10001110

    00001111 00011111 00111111 00101111 01101111 01111111 01011111 01001111 11001111 11011111 11111111 11101111 10101111 10111111 10011111 10001111

    00001101 00011101 00111101 00101101 01101101 01111101 01011101 01001101 11001101 11011101 11111101 11101101 10101101 10111101 10011101 10001101

    00001100 00011100 00111100 00101100 01101100 01111100 01011100 01001100 11001100 11011100 11111100 11101100 10101100 10111100 10011100 10001100

    00000100 00010100 00110100 00100100 01100100 01110100 01010100 01000100 11000100 11010100 11110100 11100100 10100100 10110100 10010100 10000100

    00000101 00010101 00110101 00100101 01100101 01110101 01010101 01000101 11000101 11010101 11110101 11100101 10100101 10110101 10010101 10000101

    00000111 00010111 00110111 00100111 01100111 01110111 01010111 01000111 11000111 11010111 11110111 11100111 10100111 10110111 10010111 10000111

    00000110 00010110 00110110 00100110 01100110 01110110 01010110 01000110 11000110 11010110 11110110 11100110 10100110 10110110 10010110 10000110

    00000010 00010010 00110010 00100010 01100010 01110010 01010010 01000010 11000010 11010010 11110010 11100010 10100010 10110010 10010010 10000010

    00000011 00010011 00110011 00100011 01100011 01110011 01010011 01000011 11000011 11010011 11110011 11100011 10100011 10110011 10010011 10000011

    00000001 00010001 00110001 00100001 01100001 01110001 01010001 01000001 11000001 11010001 11110001 11100001 10100001 10110001 10010001 10000001

    00000000 00010000 00110000 00100000 01100000 01110000 01010000 01000000 11000000 11010000 11110000 11100000 10100000 10110000 10010000 10000000

    1701MODK

    66

  • MAC

    67

  • Coexistence in Wider Channels

    With 11n it is relatively easy to handle overlapping networks:

    Easy to avoid overlap by choosing different channel

    Choose primary channel that matches neighbor if overlap unavoidable

    With 11ac it becomes much harder

    More channels used means greater probability of co-channel operation

    Harder to choose primary channel common to all overlapping networks

    Channels:36, 40

    Channel:36

    Channels:36, 40, 44, 48

    Channels:36, 40

    Channels:44, 48

    802.11n 802.11ac

    68

  • Enhancements to Coexistence

    Mechanisms

    802.11ac extends the medium access protocol developed in

    11n to wider channels

    802.11ac improves co-channel operation with the

    following:

    Enhanced secondary channel CCA

    Improved dynamic channel width operation

    Operating Mode Notification frame

    69

  • Channel access in wider channels

    Basic 11n channel access mechanism is extended to wider bandwidth

    Random backoff (AIFS+CW) is based on primary channel activity

    Secondary channels must be sensed idle PIFS before transmission

    If some of the subchannels are busy, a narrower transmission is permitted

    A transmission always includes primary channel

    Note that mid-packet signal detect is needed on secondary channel since

    packet may start while primary channel transmission is in progress

    Secondary channels

    Primary channel AIFS CW

    80 MHz PPDUPIFS

    PIFS

    PIFS40 MHz PPDU

    40 MHz PPDU

    AIFS CWPIFS

    40 MHz PPDU

    40 MHz PPDU 40 MHz PPDU

    Secondary channels

    Primary channel

    70

  • Enhanced CCA

    802.11n 802.11ac

    Primary

    channel

    Valid signal: -82 dBm

    Energy detect: -62 dBm

    Valid signal: -82 dBm

    Energy detect: -62 dBm

    Secondary

    channel

    Energy detect only:

    -62 dBm

    Valid signal: -72dBm

    Energy detect: -62 dBm

    Detecting a valid signal in secondary channel is harder than in primary

    channel

    Because the STA always transmits in the primary channel, it only needs to

    detect start of packet in primary channel

    Because a secondary transmission may begin while a primary channel

    transmission is in progress, a STA must be able to detect signal in middle

    of a packet on secondary channel

    71

  • Improved Dynamic Channel Width Operation

    E.g. STA1 receives interference from STA2, but transmission

    is not detected by AP1

    BW signaling is added to RTS and CTS frames

    AP1 sends RTS with BW of intended transmission

    STA1 sends CTS response with BW of clear channels

    AP1 only sends data on clear channels

    AP1:36,40,44,48

    AP2:44,48

    InterferenceBA

    BA

    RTS

    RTS

    RTS

    RTS

    CTS

    CTS

    Interference

    Data

    Data

    STA2STA1

    72

  • Operating Mode Notification Frame

    If the interference in the previous example is strong or

    frequent, then STA1 can send a Operating Mode

    Notification frame

    Operating Mode Notification frame tells AP that the STA

    is changing the BW on which it operates

    E.g. 80 MHz 40 MHz

    AP will then only send data frames occupying the reduced

    BW

    Operating Mode Notification frame can also be used to

    reduce the number of spatial streams that a STA can receive

    (enhancement of 11ns SM power save mechanism)

    73

  • Aggregation in 11n

    802.11n added two forms of

    aggregation:

    A-MSDU

    Performed at the top of the MAC

    Easily done in software

    Limited by max A-MSDU size

    (approx 8kB)

    A-MPDU

    Performed at the bottom of the MAC

    Done in hardware

    Limited by PPDU length field of 64kB

    Most 11n implementations only did A-

    MPDU

    Doing both A-MSDU and A-

    MPDU, while permitted, had little

    benefit

    MSDU MSDU MSDUMAC

    Header FCS

    A-MSDU

    A-M

    PD

    UD

    elim

    iter

    MPDU

    A-M

    PD

    UD

    elim

    iter

    MPDU

    A-M

    PD

    UD

    elim

    iter

    MPDU

    A-MPDU

    74

  • Aggregation in 11ac

    With 11ac, both A-MSDU and A-MPDU aggregation are required to achieve good efficiency at higher data rates

    Also, in 11ac all packets required to be A-MPDU PHY no longer conveys the number of octets in the packet, just number

    of OFDM symbols

    MPDU only contains duration, not length

    Delimiter in A-MPDU contains MPDU length

    MSDU MSDU

    MSDU MSDU MSDUMAC

    Header FCS

    A-M

    PD

    UD

    elim

    iter

    MPDU

    A-M

    PD

    UD

    elim

    iter

    MPDU

    MSDU

    A-M

    PD

    UD

    elim

    iter

    MPDU

    MSDUs typically 1500B in size

    A-MSDU

    A-MSDU encapsulated in MPDU(length limit increased to 11,454B)

    Aggregated to form A-MSDU

    MPDUs aggregated to form A-MPDU(length limit increased to 1MB,BA window limit of 64 remains

    unchanged)

    75

  • Aggregation in 11ac

    A-MPDU only vs A-MSDU+A-MPDU

    Throughput simulation, 1 and 2 spatial streams, 160 MHz

    0.00%

    10.00%

    20.00%

    30.00%

    40.00%

    50.00%

    60.00%

    70.00%

    80.00%

    0

    200

    400

    600

    800

    1,000

    1,200

    1,400

    0 500 1,000 1,500

    MA

    C E

    ffic

    ien

    cy

    Thro

    ugh

    pu

    t (M

    bp

    s)

    PHY Data Rate (Mbps)

    Throughput with 10% PER

    11,414B A-MSDU Limit

    7,935B A-MSDU Limit

    3,839B A-MSDU Limit

    No A-MSDU

    11,414B A-MSDU Limit

    7,935B A-MSDU Limit

    3,839B A-MSDU Limit

    No A-MSDUWithout A-MSDU,only reach 660 Mbps

    With A-MSDU,reach 1.16 Gbps

    At 11n rates, no benefit from

    A-MSDU+A-MPDU

    76

  • Downlink Multi User MIMO

    (DL MU-MIMO) In 11n MIMO, the access point

    transmits multiple data streams to a

    single station at a time

    In 11ac DL MU-MIMO, the access

    point simultaneously transmits data

    streams to multiple stations

    Example:

    Access point with 6 antenna

    One hand-held client device with

    one antenna (STA1)

    One laptop client device (STA2)

    with two antennas

    One TV set top box client device

    with two antennas (STA3)

    Access point simultaneously

    transmits one stream to STA1, two

    streams to STA2, and two streams

    to STA3

    STA1STA2

    STA3

    77

  • PHY Transmitter Flow Overview:

    Multi User

    ......

    Sp

    ati

    al

    Ma

    pp

    ing

    Insert GI

    and

    Window

    Analog

    and RFIDFT

    Insert GI

    and

    Window

    Analog

    and RFIDFT

    Insert GI

    and

    Window

    Analog

    and RFIDFT

    ...

    PH

    Y P

    ad

    din

    g

    Sc

    ram

    ble

    r BC

    C

    En

    co

    de

    r

    CSD

    Str

    ea

    m P

    ars

    er

    Constellation

    mapper

    ST

    BC

    Constellation

    mapper

    ...

    User Nu (Using BCC)

    BCC

    Interleaver

    BCC

    Interleaver

    En

    co

    de

    r P

    ars

    er

    BC

    C

    En

    co

    de

    r

    CSD

    ...

    PH

    Y P

    ad

    din

    g

    Sc

    ram

    ble

    r

    LD

    PC

    En

    co

    de

    r

    CSDStr

    ea

    m P

    ars

    er

    Constellation

    mapper

    ST

    BC

    Constellation

    mapper

    LDPC

    tone

    mapper

    LDPC

    tone

    mapper

    ...

    User 1 (Using LDPC)

    ...

    78

  • DL MU-MIMO Parameters

    Maximum number of users in a

    transmission is 4

    Maximum number of spatial streams per

    user is 4

    Maximum total number of spatial streams

    (summed over users) is 8

    79

  • PPDU overview (MU)

    Illustrating parallel transmissions to multiple users

    Parallel VHT-SIG-B, Service, VHT A-MPDU represents directional transmission to each users

    MAC provides an A-MPDU that fills the frame to the last byte for each user

    Same preamble structure is used for both SU and MU VHT frames

    Require that A-MPDU always be used with both SU and MU VHT frames

    Aggregation bit in VHT-SIG is then not needed

    Tail: 6 bits per BCC encoder for each user

    ReservedMPDU

    length = 0CRC

    Delimiter

    SignatureEOF

    Octets:

    MPDU Delimiter

    4

    When RX MAC detects

    the EOF padding

    delimiter, it can inform RX

    PHY to stop receiving

    VHT A-MPDUPHY

    PadTail

    Last Symbol

    VHT A-MPDU

    VHT A-MPDU

    PHY

    PadTail

    PHY

    PadTail

    PPDU Duration (# of symbols)

    A-MPDU

    subframe 1

    A-MPDU

    subframe 2

    Null

    subframe

    (EOF)

    Null

    subframe

    (EOF)

    A-MPDU

    subframe n

    Last byte

    boundary

    Less than

    8-bitMPDU

    Length = 0

    MPDU

    Length = 0

    Final

    MAC

    Pad

    0-3

    octets

    Dword

    MAC

    Pad

    MAC Pad

    MAC Pad

    0-3

    octets

    Service

    Service

    Service

    VHT-

    SIG BVHT-

    SIG BVHT-

    SIG B

    L-TFs L-SIG VHT-SIG A

    VHT-

    STFVHT-

    STFVHT-

    STF

    VHT-LTF

    VHT-LTF

    VHT-LTF

    User

    80

  • MU Ack Protocol

    Ack protocol is unchanged from 802.11n

    MU PPDU may solicit a response from only one STA

    Remaining STAs are polled for response

    Note: Not to scale; BAR-BA is of much shorter

    duration that MU PPDU

    RA=STA 1, implicit block ack request

    RA=STA 2, block ack

    RA=STA 3, block ack

    BA

    BA

    BARRA=STA 2AP

    STA 1

    STA 2

    STA 3

    BARRA=STA 3

    BA

    81

  • Group ID concept

    GroupID

    NstsIndex

    0 -

    1 -

    2 0

    63 1

    Space-time streams 0, 1

    Space-time streams 2, 3

    Space-time stream 4

    Group ID

    Nsts Table

    2 2 0 2 1

    STA 1

    GroupID

    NstsIndex

    0 0

    1 1

    2 2

    63 3

    STA 3

    GroupID

    NstsIndex

    0 1

    1 2

    2 3

    63 -

    STA 4

    GroupID

    NstsIndex

    0 -

    1 0

    2 1

    63 2

    STA 2

    VHT-SIG-A

    To STA 1

    To STA 3

    To STA 4

    Per STA lookup tables

    1. AP transmits MU MIMO PPDU to a group of STAs identified by Group ID

    2. STAs use Group ID to index local table to identify its Nsts Index 3. Nsts Index determines

    which space-time streams the STA demodulates

    82

  • Sounding and Feedback Protocol

    1. Sounding feedback sequence starts with AP sending an NDP Announcement frame

    followed by an NDP

    NDP Announcement identifies the first responder after the NDP and may identify other STAs

    which will be polled subsequently

    2. STA identified as first by the NDP Announcement sends VHT Compressed Beamforming

    report frame SIFS time after the NDP

    3. AP polls all remaining STAs using the Beamforming Report Poll frame

    Note that in the SU case, the sequence is simply NDP Announcement-NDP-VHT Compressed Beamforming report frame

    83

  • Acronyms (1/4)

    A-MPDU - aggregate MAC protocol data unit

    A-MSDU aggregate MAC service data unit

    ACK - acknowledgment

    AID - association identifier

    AIFS - arbitration interframe space

    A-MPDU - aggregate MAC protocol data unit

    AP access point

    BA - Block Acknowledgment

    BAR - Block Acknowledgment request

    BB baseband

    BCC - binary convolutional code

    BF - beamforming

    BPSK - binary phase shift keying

    BW bandwidth

    CCA - clear channel assessment

    CCK - complementary code keying

    CRC - cyclic redundancy code

    CSD - cyclic shift diversity

    CSI - channel state information

    CSMA/CA - carrier sense multiple access with

    collision avoidance

    CTS - clear to send

    CW - contention window

    DL - downlink

    DSSS - direct sequence spread spectrum

    84

  • Acronyms (2/4)

    FFT - Fast Fourier Transform

    FEC - forward error correction

    FEM front-end module

    GI guard interval

    HT high throughput

    IBSS independent basic service set

    ID - identification

    Infra-BSS infrastructure basic service set

    IMT-Advanced - International Mobile

    Telecommunications - Advanced

    ISM - industrial, scientific, and medical

    LDPC - low-density parity check

    L-SIG legacy signal field

    L-TF, LTF legacy training field

    MAC - medium access control

    MCS modulation, coding scheme

    MF mixed format

    MIB - management information base

    MIMO - multiple input, multiple output

    MPDU - MAC protocol data unit

    MSDU - MAC service data unit

    MU multi user

    NDP - null data packet

    NDPA NDP announcement

    85

  • Acronyms (3/4)

    OFDM - orthogonal frequency division

    multiplexing

    PAR - Project Authorization Request

    PAPR - Peak-to-Average Power Ratio

    PHY - physical layer

    PIFS - point (coordination function) interframe space

    PLCP - physical layer convergence procedure

    PPDU - PLCP protocol data unit

    PS power save

    PSDU - PLCP service data unit

    QAM - quadrature amplitude modulation

    QPSK - quadrature phase shift keying

    RFIC radio frequency integrated circuit

    RX receive or receiver

    RTS - request to send

    SC single carrier

    SDM spatial division multiplexing

    SIFS - short interframe space

    SIG signal field

    SNR signal to noise ratio

    STA station

    STBC - space-time block coding

    STF short training field

    SU single user

    TG task group

    TX transmit or transmitter

    TXOP - transmission opportunity

    86

  • Acronyms (4/4)

    VHT very high throughput

    WG working group

    WLAN wireless local area networking

    87

  • References1. Perahia, Eldad, and Stacey, Robert, Next Generation Wireless LANs: Throughput,

    Robustness, and Reliability in 802.11n, Cambridge University Press, 2008

    2. Kim, Youhan, Channelization for 11ac, 11-10/1064r2,

    https://mentor.ieee.org/802.11/dcn/10/11-10-1064-02-00ac-channelization-for-11ac.ppt

    3. Stacey, Robert, Specification Framework for TGac, 11-09/992r21,

    https://mentor.ieee.org/802.11/dcn/09/11-09-0992-21-00ac-proposed-specification-

    framework-for-tgac.doc

    4. Merlin, Simone, Protocol for SU and MU Sounding Feedback, 11-10/1091,

    https://mentor.ieee.org/802.11/dcn/10/11-10-1091-00-00ac-protocol-for-su-and-mu-sounding-

    feedback.pptx

    5. Merlin, Simone, ACK protocol and backoff procedure for MU-MIMO, 11-10/1092,

    https://mentor.ieee.org/802.11/dcn/10/11-10-1092-00-00ac-ack-protocol-and-backoff-

    procedure-for-mu-mimo.pptx

    6. P802.11ac Draft 4.0

    7. Myles, Andrew, and de Vegt, Rolf, Wi-Fi Alliance (WFA) VHT Study Group Usage

    Models, 11-07/2988r4, https://mentor.ieee.org/802.11/dcn/07/11-07-2988-04-0000-liaison-

    from-wi-fi-alliance-to-802-11-regarding-wfa-vht-study-group-consolidation-of-usage-

    models.ppt

    88