Presentation Nloc 2 Siap Font Xde Backgroud

Embed Size (px)

Citation preview

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    1/15

    Nur Liyana Aqmar Binti Kamal Ariffin

    Mohamed Shakimi Bin Hanafi

    Mohamad Azri Bin Ibrahim

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    2/15

    Outlines Introduction

    Objectives

    Brief Theory

    Methodology

    Results and Discussion

    Conclusions

    Acknowledgement

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    3/15

    Introduction

    Magneticmaterial

    hardsoft

    intrinsic extrinsic

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    4/15

    Objectives To examine the magnetic transition from ferromagnetism to

    paramagnetism in soft magnetic material.

    To determine the Curie temperature.

    To learn about the basic principles of magnetic hysteresis

    To learn about the properties of ferromagnetic materials.

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    5/15

    Brief theory

    Types of magnetism:

    Ferromagnetism AntiferromagnetismFerrimagnetism Paramagnetism

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    6/15

    Temperature dependence

    Curie Temperature, Tc

    Ferromagnetism Ferrimagnetism Paramagnetism

    Above a critical temperature called the Curie temperature (TC), ferromagnetic and

    ferrimagnetic materials no longer possess a spontaneous magnetization and become

    PARAMAGNETIC

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    7/15

    Hysteresis loop

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    8/15

    MethodologyChemical Formula0.3NiO+0.7ZnO+Fe2O3Ni0.3Zn0.7Fe2O4

    Sintering at 900oC Magnetic properties

    characterizations

    Curie

    temperatureHysteresis loop

    HP4294A Precision

    Impedance Analyzer Linkjoin MATS 2010SDHysteresisgraph

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    9/15

    Results and discussion

    Curie temperature

    y = -0.4531x + 39.789

    0.0000E+00

    5.0000E+00

    1.0000E+01

    1.5000E+01

    2.0000E+01

    2.5000E+01

    3.0000E+01

    0 20 40 60 80 100 120 140 160

    InitialPermeability

    Temperature (oC)

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    10/15

    Discussion From the graph, the curie temperature was found as 87.8oC.

    This curie temperature represent the changes of magnetism

    behaviour from ferromagnetism to paramagnetism.

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    11/15

    Hysteresis

    -0.02

    -0.015

    -0.01

    -0.005

    0

    0.005

    0.01

    0.015

    0.02

    -1500 -1000 -500 0 500 1000 1500

    B (T)

    H(A/m)

    1

    2

    3

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    12/15

    Discussion When magnetic field applied on the sample reached the

    saturation level, all the direction of magnetic moment are

    parallel to each other.

    When the magnetic field being removed, only partial of the

    magnetic moment direction changes the direction and results in

    having remanance.

    From the graph, magnetic saturation induction, B and

    coercivity field, Hc value of 0.01T and 785.33 A/mrespectively.

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    13/15

    Conclusion Ni0.3Zn0.7Fe2O4 was well characterized using the hysteresis

    graph and curie temperature measurement.

    The magnetism behaviour changes from ferromagnetism to

    paramagnetism at curie temperature of 87.8oC.

    Ni0.3Zn0.7Fe2O4 can be characterised as a soft magnetic

    material with its magnetic saturation induction, B and

    coercivity field, Hc value of 0.01T and 785.33 A/m

    respectively.

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    14/15

    Acknowledgement

  • 7/30/2019 Presentation Nloc 2 Siap Font Xde Backgroud

    15/15

    References T. Tsutaoka, J. Appl. Phys. 93, 2789 ~2003!. A. Dias and V. T. L. Buono, J. Mater. Res. 12, 3278 ~1997!. A. Cabanas and M. Poliakoff, J. Mater. Chem. 11, 1408 ~2001!. Y. Tamura, T. Sasao, M. Abe, and T. Itoh, J. Colloid Interface Sci. 136, 242 ~1990!. A. Dias and R. L. Moreira, Mater. Lett.39, 69 ~1999!. H. J. Song, J. H. Oh, S. C. Choi, and J. C. Lee, Phys. Status Solidi A189, 849 ~2002!. P. C. Fannin, S. W. Charles, and J. L. Dormann, J. Magn. Magn. Mater. 201, 98 ~1999!. P. S. A. Kumar, J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande, and S. K. Date, Mater. Lett.

    27, 293 ~1996!. A. S. Albuquerque, J. D. Ardisson, W. A. A. Macedo, and M. C. M. Alves, J. Appl. Phys. 87,

    4352 ~2000!. J. S. Jiang, L. Gao, X. L. Yang, J. K. Guo, and H. L. Shen, J. Mater. Sci. Lett. 18, 1781 ~1999!. Louh, R., Reynolds III, T. G. and Buchanan, R. C. (2004). Ferrite Ceramics: Ceramis

    Materials (3rd Edition). New York: Marcel Dekker Inc.