27
ST-13 Bioeconomía “ La herramienta para el desarrollo de la economía circular” Sonia Castañón de la Torre APLICACIÓN DE TECNOLOGÍAS INNOVADORAS EN EL DESARROLLO DE UNA BIOREFINERÍA DE MICROALGAS VIABLE Y SOSTENIBLE

Presentación de PowerPoint - Conama 2016/19… · the project aim is the readapting of conventional microalgae cultures to obtain microorganisms with higher productive potential

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • ST-13 Bioeconomía “ La herramienta para el desarrollo de la economía circular”

    Sonia Castañón de la Torre

    APLICACIÓN DE TECNOLOGÍAS INNOVADORAS EN EL DESARROLLO DE UNA BIOREFINERÍA DE

    MICROALGAS VIABLE Y SOSTENIBLE

  • “OVERCOMING THE BARRIERS TO DEVELOPMENT OF CULTURES OF MICROALGAE FOR ENERGY PURPOSES” (Ref: EFA217/11)

    2012-2014

    CONAMA 2016-ST-13 Bioeconomía: “ La herramienta para el desarrollo de la economía circular”

    “NETWORK OF TECHNOLOGICAL CENTRES TO DEVELOP A BIOREFINERY FROM ALGAE” (Ref: EFA037/15)

    2016-2019

    Suarez, S.; Urreta, I.; Izaguirre, J.K. and Castañón, S.

  • BIODIESEL

    IT IS ESTIMATED THAT THE WORLD’S ENERGY CONSUMPTION WILL HAVE GROWN 40% BY 2030. INCREASING ENERGY DEMAND FORECASTS, TOGETHER WITH GEOGRAPHICAL CONSUMPTION REDISTRIBUTION, WILL CONTRIBUTE TO THE FURTHER DEPLETION OF FOSSIL FUELS AND TO PUSH THEIR PRICES UP AS A RESULT OF A HIGHER SUPPLY-DEMAND IMBALANCE. ENERGY DEPENDENCY IN THE EUROPEAN UNION CURRENTLY AMOUNTS TO 53% AND ON THE FACE OF THE STEADY ESCALATION IN ENERGY CONSUMPTION AND ENERGY IMPORTS, THE EU IS LOOKING AT THE CURRENT TRENDS WITH CONCERN.

  • THE IDEAL SOURCE OF BIOENERGY: MICROALGAE

    DO NOT COMPETE WITH FOOD CROPS

    ENVIRONMENTAL BENEFITS AND SUSTAINABILITY: LESS FERTILE SOIL, LOWER DEMAND OF WATER RESOURCES AND HIGH CO2 FIXATION.

    BIOREFINERY-MICROALGAE

    ACCORDING TO THE HIGH GROWTH RATES AND OIL PRODUCTIVITY THAT SOME OF THESE SPECIES SHOW, IT IS ESTIMATED THAT THE AVERAGE BIODIESEL PRODUCTION FROM MICROALGAE COULD REACH TO A 20-TIMES HIGHER VALUE COMPARED TO OTHER OLEAGINOUS SOIL SPECIES (CHISTI, 2007).

    THE MICROALGAE-BASED BIOREFINERY PROGRAMMES STARTED MANY YEARS AGO. IT IS TIME TO MOVE FORWARD IN THE DEVELOPMENT OF INDUSTRIALIZATION PROCESSES FOR MICROALGAE PRODUCTION, SPECIALLY FOR THOSE WITH BIOENERGETIC PURPOSES.

    CROP OIL PRODUCTION (L/Ha/YEAR)

    SOY 450 CAMELINA 580

    SUNFLOWER 950 JATROPHA 1.900

    PALM 6.000 ALGAE 9.000-37.000

    (PIENKOS, 2007)

  • BIODEPURATION

    o Fossil CO2 up-take o Wastewater treatment o Bioremediation/biodepuration

    NUTRACEUTICALS

    o Body-care products o Carotenoids o Omega-3

    CHEMICALS

    o Pigments o Chemical building blocks o Reactants

    BIOFUELS

    o Biodiesel o Biogas o Bioethanol o Biohydrogen

    FOOD and FEED

    o Proteins o Starch o PUFAs o Antioxidants o Pre-biotic effects o Additives AGRICULTURE

    o Biofertilizer o Bioestimulant o Bioelicitor

    MICROALGAE CAN BE VALORIZED IN SEVERAL SECTORS AND MARKETS

  • ECONOMIC SUSTAINABILITY-----MAIN BOTTLENECK TO OVERCOME

    MARKET VOLUMEN vs. MARKET REVENUES

    NUTRA

    FOOD

    FEED

    AGRICULTURE

    BIOPOLYMERS

    BIOFUELS

    NUTRA

    FOOD

    FEED

    AGRICULTURE

    BIOPOLYMERS

    BIOFUELS

    ECONOMIC DRIVING FORCE

    NECESSARY TO BE CONSIDERED (BIOREFINERY)

    MARKET SIZE

    MARK

    ET E

    CONO

    MIC

    REVE

    NUE

    PRODUCTION COSTS RELATIVE MARKET BENEFITS

  • ENERGREEN “OVERCOMING THE BARRIERS TO DEVELOPMENT OF CULTURES OF MICROALGAE FOR ENERGY PURPOSES”

    BIODIESEL CO2 ENZIMES METANIZATION METABOLOMICS

    CULTURE AND PRODUCTION

  • THE PROJECT AIM IS THE READAPTING OF CONVENTIONAL MICROALGAE CULTURES TO OBTAIN MICROORGANISMS WITH HIGHER PRODUCTIVE POTENTIAL (OIL) AND SUITABLE FOR PRODUCING BIODIESEL IN A MORE COST EFFECTIVE AND ENVIRONMENTALLY SUSTAINABLE WAY. ……from cultivation to processing into biodiesel including the exploitation of waste material obtained from oil extraction, as biomolecules or biogas. THE DEVELOPMENT OF MICROALGAE FARMING STRATEGIES TO OBTAIN ALGAE BIOMASS RICH IN LIPIDS

    THE EVALUATION OF ALTERNATIVE OIL EXTRACTION AND PROCESSING SYSTEMS

    The research of the potential of CO2 bio-fixation by microalgae from industrial gases with high CO2 content

    The evaluation of micro-algae and related extraction wastes used as raw material for the production of BIOGAS, anaerobic digestion and as a potential source of molecules of interest for other sectors

  • CHALLENGE: LIPID PRODUCTIVITY INCREASE IN CULTURES…………..means a reduction in the production costs WE NEED STRAIN SELECTION FOR HIGH OIL CONTENT, SUITABLE FATTY ACID PROFILE FOR BIODIESEL CONVERSION, HIGH GROWTH RATE AND AN ECONOMICALLY PROFITABLE CULTURE SYSTEM DUE TO THE LOW ECONOMIC VALUE OF BIODIESEL (YEH & CHANG, 2011).

    CHLORELLA: EASY CULTURE AND HIGH GROWTH RATE Standard conditions: 20% LIPIDS and 3% FAMES in dry weight

    SCENEDESMUS: HIGH GROWTH RATE, TOLERANT TO ENVIRONMENTAL CHANGES, RESISTANT TO CONTAMINATION WITH OTHER SPECIES Standard conditions: 25% LIPIDS and 10% FAMES in dry weight

  • BIOMASS COMPOSITION INCLUDES PROTEINS, CARBOHYDRATES, LIPIDS AND FIBRE IN VARABLE PROPORTIONS, MAKING IT A VERSATILE RAW MATERIAL

    NUTRITIONAL AND ENVIRONMENTAL FACTORS APPLIED IN CULTURE CAN MODIFY

    DRAMATICALLY THE BIOMASS COMPOSITION AND HENCE, ITS ENERGY VALUE

    Light Nutritional restriction CO2 Balance N:P:Fe

    TAGs productivity Biomass composition Growth + =

    “development of a culture strategy that allows improving the energy quality of

    microalgae biomass as biodiesel source”

  • 0

    2

    4

    6

    8

    10

    12

    14

    48 72 96 120 144 168

    Time (Hours)

    TAG

    s (%

    DW

    )

    N-starved

    N-replete

    0

    2

    4

    6

    0 48 96 144 192

    Bio

    mas

    s (g

    PSL-

    1 ) Serie1Serie1

    N-replete N-limited

    0

    3

    6

    9

    12

    0 48 96 144 192Time (H)

    Neu

    tral

    Lip

    id (%

    PS

    )

    N ( + )

    48 h 96 h 144 h

    196 h

    0

    5

    10

    15

    20

    25

    30

    48 72 96 120 144 168

    Time (Hours)

    (LIP

    %D

    W)

    N-starved

    N-replete

    THE LIMITATION OF NITROGEN AVAILABILITY CAUSES RESERVE LIPIDS STORAGE IN TAGs

    NITROGEN STARVATION

    Gráfico4

    00

    2424

    4848

    7272

    9696

    120120

    144144

    168168

    Time (H)

    Biomass (gPSL-1)

    0.1462417991

    0.1423546589

    0.5784823088

    0.5434980469

    1.1882892791

    1.2725738557

    1.6990215784

    1.8028366643

    2.3780386059

    2.2403295536

    3.0781978839

    2.5561833972

    4.3834237172

    2.6645018772

    5.1312715689

    2.74

    Hoja1

    SCNEDESMUS

    LPN 6mMdesvMSCdesv

    Duración de N en medio (Horas)48240

    Tiempo cultivo (Horas)264240

    D (gPSL-1)4.1 ± 0.50.5

    Lip (%PS)37 ± 0.10.131.8 ± 4.54.5

    FAMES (%)30 ± 0.80.89.6 ± 11

    P (mgPSL-1d-1)3754146745

    P (mgFAMES L-1d-1)1131244.84.3

    LPN 6mMMSC

    Lipidos Totales3121.7

    FAMEs29.69.7

    Otos Lip1.412

    Carbohidratos37.427.1

    Proteinas15.546.4

    Cenizas1.22.9

    No determinados14.91.9

    85.198.1

    CHLORELLA

    Nitrogen (-)Nitrogen( +)

    Duración de N en medio (Horas)48168

    Tiempo cultivo (Horas)168168

    D (gPSL-1)2.80.15.10.1

    Lip (%PS)22.5 ± 0.20.216.9 ± 0.50.5

    FAMES (%)18.57

    P (mgPSL-1d-1)395.66.4712.112.0

    P (mgFAMES L-1d-1)73.2649.912

    LimitadosNo Limitados

    Lipidos Totales24.316.316.332.82

    FAMEs187.000.68

    Lipidos Polares6.39.3

    Carbohidratos45.429.829.774.55

    Proteinas19.845.645.636.13

    Cenizas10.68.38.271.40

    No determinados

    100100.00

    Hoja1

    416.4338852386

    4511.9579474679

    Scenedesmus

    Chlorella

    PB (mgL-1d-1)

    Hoja2

    126

    4.312

    Scenedesmus

    Chlorella

    PFAMES (mgL-1d-1)

    Hoja3

    0.1

    0.1

    Final Biomass (gDW L-1)

    00

    2424

    4848

    7272

    9696

    120120

    144144

    168168

    Tieme (H)

    Neutral Lipid (%PS)

    3.2

    4.6

    1.9189495837

    4.5989085209

    3.2909514167

    4.4324236361

    3.2813566376

    6.4330768288

    3.356762773

    8.6500659339

    3.8750044476

    9.3238331877

    3.4699936348

    11.3695169323

    00

    2424

    4848

    7272

    9696

    120120

    144144

    168168

    Time (H)

    Biomass (gPSL-1)

    0.1462417991

    0.1423546589

    0.5784823088

    0.5434980469

    1.1882892791

    1.2725738557

    1.6990215784

    1.8028366643

    2.3780386059

    2.2403295536

    3.0781978839

    2.5561833972

    4.3834237172

    2.6645018772

    5.1312715689

    2.74

    Gráfico3

    00

    2424

    4848

    7272

    9696

    120120

    144144

    168168

    Time (H)

    Neutral Lipid (%PS)

    3.2

    4.6

    1.9189495837

    4.5989085209

    3.2909514167

    4.4324236361

    3.2813566376

    6.4330768288

    3.356762773

    8.6500659339

    3.8750044476

    9.3238331877

    3.4699936348

    11.3695169323

    Hoja1

    SCNEDESMUS

    LPN 6mMdesvMSCdesv

    Duración de N en medio (Horas)48240

    Tiempo cultivo (Horas)264240

    D (gPSL-1)4.1 ± 0.50.5

    Lip (%PS)37 ± 0.10.131.8 ± 4.54.5

    FAMES (%)30 ± 0.80.89.6 ± 11

    P (mgPSL-1d-1)3754146745

    P (mgFAMES L-1d-1)1131244.84.3

    LPN 6mMMSC

    Lipidos Totales3121.7

    FAMEs29.69.7

    Otos Lip1.412

    Carbohidratos37.427.1

    Proteinas15.546.4

    Cenizas1.22.9

    No determinados14.91.9

    85.198.1

    CHLORELLA

    Nitrogen (-)Nitrogen( +)

    Duración de N en medio (Horas)48168

    Tiempo cultivo (Horas)168168

    D (gPSL-1)2.80.15.10.1

    Lip (%PS)22.5 ± 0.20.216.9 ± 0.50.5

    FAMES (%)18.57

    P (mgPSL-1d-1)395.66.4712.112.0

    P (mgFAMES L-1d-1)73.2649.912

    LimitadosNo Limitados

    Lipidos Totales24.316.316.332.82

    FAMEs187.000.68

    Lipidos Polares6.39.3

    Carbohidratos45.429.829.774.55

    Proteinas19.845.645.636.13

    Cenizas10.68.38.271.40

    No determinados

    100100.00

    Hoja1

    416.4338852386

    4511.9579474679

    Scenedesmus

    Chlorella

    PB (mgL-1d-1)

    Hoja2

    126

    4.312

    Scenedesmus

    Chlorella

    PFAMES (mgL-1d-1)

    Hoja3

    0.1

    0.1

    Final Biomass (gDW L-1)

    00

    2424

    4848

    7272

    9696

    120120

    144144

    168168

    Tieme (H)

    Neutral Lipid (%PS)

    3.2

    4.6

    1.9189495837

    4.5989085209

    3.2909514167

    4.4324236361

    3.2813566376

    6.4330768288

    3.356762773

    8.6500659339

    3.8750044476

    9.3238331877

    3.4699936348

    11.3695169323

    00

    2424

    4848

    7272

    9696

    120120

    144144

    168168

    Time (H)

    Biomass (gPSL-1)

    0.1462417991

    0.1423546589

    0.5784823088

    0.5434980469

    1.1882892791

    1.2725738557

    1.6990215784

    1.8028366643

    2.3780386059

    2.2403295536

    3.0781978839

    2.5561833972

    4.3834237172

    2.6645018772

    5.1312715689

    2.74

  • 0

    200

    400

    600

    800

    Limitados No Limitados

    PB (m

    gL-1

    d-1)

    ScenedesmusChlorella

    0

    50

    100

    150

    Limitados No Limitados

    PFA

    ME

    S (m

    gL-1

    d-1)

    ScenedesmusChlorella

    ADVANCES IN THE CULTURE TECHNOLOGY ARE KEY FACTORS TO ACHIEVE COSTS REDUCTION AND IMPROVE PROFITABILITY FOR THE WHOLE VALUE CHAIN OF MICROALGAE CULTURE

    THE PROGRESSIVE NITROGEN LIMITATION IMPROVES FAME CONTENT INCREASING PRODUCTIVITY REGARDLESS OF THE DROP IN BIOMASS

    PRODUCTION

    Gráfico1

    LimitadosLimitados416.4338852386

    No LimitadosNo Limitados4511.9579474679

    Scenedesmus

    Chlorella

    PB (mgL-1d-1)

    375

    395.5767865946

    467

    712.1471099722

    Hoja1

    SCNEDESMUS

    LPN 6mMdesvMSCdesv

    Duración de N en medio (Horas)48240

    Tiempo cultivo (Horas)264240

    D (gPSL-1)4.1 ± 0.50.5

    Lip (%PS)37 ± 0.10.131.8 ± 4.54.5

    FAMES (%)30 ± 0.80.89.6 ± 11

    P (mgPSL-1d-1)3754146745

    P (mgFAMES L-1d-1)1131244.84.3

    LPN 6mMMSC

    FAMEs29.69.7

    Lipidos Totales3121.7

    Carbohidratos37.427.1

    Proteinas15.546.4

    Cenizas1.22.9

    No determinados14.91.9

    85.198.1

    CHLORELLA

    LimitadosNo Limitados

    Duración de N en medio (Horas)48168

    Tiempo cultivo (Horas)168168

    D (gPSL-1)2.8 ± 0.10.15.1 ± 0.10.1

    Lip (%PS)22.5 ± 0.20.216.9 ± 0.50.5

    FAMES (%)18.57

    P (mgPSL-1d-1)395.66.4712.112.0

    P (mgFAMES L-1d-1)73.2649.912

    LimitadosNo Limitados

    FAMEs187.000.68

    Lipidos Totales24.316.316.332.82

    Carbohidratos45.429.829.774.55

    Proteinas19.845.645.636.13

    Cenizas10.68.38.271.40

    No determinados

    Hoja1

    416.4338852386

    4511.9579474679

    Scenedesmus

    Chlorella

    PB (mgL-1d-1)

    Hoja2

    126

    4.312

    Scenedesmus

    Chlorella

    PFAMES (mgL-1d-1)

    Hoja3

    Gráfico2

    LimitadosLimitados126

    No LimitadosNo Limitados4.312

    Scenedesmus

    Chlorella

    PFAMES (mgL-1d-1)

    113

    73.18170552

    44.8

    49.8502976981

    Hoja1

    SCNEDESMUS

    LPN 6mMdesvMSCdesv

    Duración de N en medio (Horas)48240

    Tiempo cultivo (Horas)264240

    D (gPSL-1)4.1 ± 0.50.5

    Lip (%PS)37 ± 0.10.131.8 ± 4.54.5

    FAMES (%)30 ± 0.80.89.6 ± 11

    P (mgPSL-1d-1)3754146745

    P (mgFAMES L-1d-1)1131244.84.3

    LPN 6mMMSC

    FAMEs29.69.7

    Lipidos Totales3121.7

    Carbohidratos37.427.1

    Proteinas15.546.4

    Cenizas1.22.9

    No determinados14.91.9

    85.198.1

    CHLORELLA

    LimitadosNo Limitados

    Duración de N en medio (Horas)48168

    Tiempo cultivo (Horas)168168

    D (gPSL-1)2.8 ± 0.10.15.1 ± 0.10.1

    Lip (%PS)22.5 ± 0.20.216.9 ± 0.50.5

    FAMES (%)18.57

    P (mgPSL-1d-1)395.66.4712.112.0

    P (mgFAMES L-1d-1)73.2649.912

    LimitadosNo Limitados

    FAMEs187.000.68

    Lipidos Totales24.316.316.332.82

    Carbohidratos45.429.829.774.55

    Proteinas19.845.645.636.13

    Cenizas10.68.38.271.40

    No determinados

    Hoja1

    416.4338852386

    4511.9579474679

    Scenedesmus

    Chlorella

    PB (mgL-1d-1)

    Hoja2

    126

    4.312

    Scenedesmus

    Chlorella

    PFAMES (mgL-1d-1)

    Hoja3

  • Nitrogen Available

    Chlorella vulgaris Scenedesmus sp.

    Ashes FAMEs

    Polar Lipids

    Carbohydrates

    Proteins

    Proteins

    Carbohydrates

    Other Lipids

    FAMEs Ashes

    Not determined

    NITROGEN LIMITATION LED TO AN INCREASE IN FAMES AND CARBOHYDRATES. RISING OF BOTH COMPOUNDS REPRESENTS AN

    IMPROVEMENT IN THE ENERGY VALUE OF THE BIOMASS

    Proteins

    Carbohydrates

    Polar Lipids

    FAMEs Ashes Ashes

    Not determinaded

    Proteins

    FAMEs

    Other Lipids

    Carbohydrates

    Nitrogen Limitation

    EFFECT OF CULTURE FACTORS IN THE BIOMASS COMPOSITION

  • % FAMEs C.vulgaris 16-19 11-13 9 - 13

    % FAMEs Scenedesmus 30 22 10

    LABORATORY GREENHOUSE PILOT-PLANT

    BIODIESEL produced with 99%DE FAMES 90% FAMES 80% FAMES

    14-16% HUMIDITY 99 % HUMIDITY

    •PHOSPHOLIPIDS 20-40 % •GLUCOLIPIDS 10-20 % •TRIGLYCERIDES 30-50 %

    •PHOSPHOLIPIDS 1-2 % •GLUCOLIPIDS 0 % •TRIGLYCERIDES 98-99

  • DECANTATION FLOCCULATION FILTRATION CENTRIFUGATION** DRYING* LIOFILIZATION *

    HEXANE. NOT VERY EFFECTIVE. NEEDS DRYING

    CLO/ METHANOL. EFFECTIVE/ TOXIC. NEEDS DRYING

    SAPONIFICATION WITH ETHANOL AND HEXANE. NO NEED FOR DRYING

    SUBCRITICAL WATER EXTRACTION: VERY LOW VALUES

    EXTRACTION OF 80-95 % OF LIPIDS THAT CAN BE TRANSFORMED INTO BIODIESEL

    BIOMASS ( 3-5 g/l)

    1st STAGE: CONCENTRATION 2nd STAGE: EXTRACTION: SOLVENTS

    CHALLENGE: IMPROVE THE OIL EXTRACTION SYSTEM …………..avoiding biomass drying, using non-toxic solvents

  • SELECTION OF SUITABLE STRAINS ESTABLISHMENT OF INDOOR CULTURE CONDITIONS THAT ALLOW GOOD

    PRODUCTIVITY LEVELS (Fames>30% of Dry Weight) HIGH EXTRACTION YIELDS (85-95%) FROM FRESH BIOMASS BIOGAS AS A COPRODUCT: ENERGY ENRICHED BIOMASS

    LIMITATION: OUTDOOR CULTURE CONDITIONS MAINTENANCE TO ACHIEVE

    SUITABLE PRODUCTIVITY LEVELS

    THE HETEROTROPHIC CULTURE SYSTEM WILL BE ABLE TO SOLVE THE PROBLEM OF LOW PRODUCTIVITY AND THE

    OPERATIONAL LIMITATIONS DURING THE SCALE-UP

    LIMITATIONS: COST OF CULTURE MEDIA USE OF CARBON SOURCES DESTINATED FOR FOOD

    PARAMETERS CONTROL DURING THE SCALE-UP

    THEORETICAL DATA

  • Promote the use of microalgae as renewable energy source through the improvement of their economic viability and the sustainability of the process under the basic premise of “zero residues” How? Proposing an scheme based on the circular economy, where the generated

    wastes are used as nutrient source in the same culture process By diversifying the added value products that are obtained in the

    Chemical, Energy, and Agriculture and Livestock industries. Creating a Dynamic Map that will allow the cross-border cooperation and the

    complementarity between economic activities

  • Specific Actions

  • negative environmental impacts raw material waste greenhouse gas emissions large investments poorly efficient processes Low value added products are generated;

    difficult management

    composting biogas Landfill sites

    URBAN SOLID WASTE 450 kg person-1 year-1

    50% organic waste

    PROTEIN/Aminoacids

    MONOSACCHARIDES

  • USW1 SOYBEAN WASTE RAPESEED

    WASTE SUNFLOWER

    WASTE MICROALGAE

    WASTE

    PROTEIN % HYDROLYSIS 76 83,5 73 78 65 [AA] (mg/mL) Supernatant 19 124 149 144 92

    CARBOHIDRATES % HYDROLYSIS - 92 92 87 96

    [glucose] (mg/mL) Supernatant - 79 90 72 63

    PROTEIN Aminoacids

    WASTE 1

    MONOSACCHARIDES

    MEDIA CULTURE

    BIOMASS CHARACTERIZATION

    PROTEIN HYDROLYSIS 50 ºC; pH: 7

    FILTERING

    120 ºC, 5-20 min

    CARBOHYDRATE HYDROLYSIS 50 ºC; pH: 7

    FILTERING WASTE 2

    1 Urban Solid Waste

  • Table 1. Hydrolysates chemical composition.

    Algae Rapessed Total N (%) 0.99 0.89 Free Amino N (%) 5.50 5.44 Protein (%) 0.7 5.56 Carbon (%) 12.60 6.68 Phosphorus (%) 0.23 0.17 Potassium (%) 0.11 0.98

    Hydrolysate Composition

    Table 2. Culture media composition

    Composition 100 ml Erlenmeyer

    5 L Fermentor

    Nitrogen (g/L)*

    Total N 0.2 0.3

    Glucose (g/L) 10 30-40 Sea salts (g/L) 10 5 * N is provided by hydrolysates AH and RH or by Yeast Extract

  • Figure 1. Biomass productivity and lipid content in a 4-days culture experiment. (A). Biomass productivity was enhanced by using hydrolysates compared with yeast extract (control). (B). Lipid content in biomass was also enhaced, specially for the DHA-producing microalga S.limacinum.

  • Figure 1. Biomass productivity and lipid content in a 4-days culture experiment. (A). Biomass productivity was enhanced by using hydrolysates compared with yeast extract (control). (B). Lipid content in biomass was also enhaced, specially for the DHA-producing microalga S.limacinum.

    Chlorella protothecoides

  • C. Protothecoides Rapeseed

    FATTY ACIDS % %

    Mirystic (C14:0) 0,87 tr.

    Pentadecanoic (C15:0) 0,19 -

    Palmitic (C16:0) 13,18 5

    Palmitoleic (C16:1) 0,28 0,3

    C16:2 ?? 0,03 -

    Margaroleic (C17:1) 0,18 -

    Stearic (C18:0) 3,00 2,2

    Oleic (C18:1)n-9 63,09 57

    Linoleic (C18:2)n6 13,90 20,5

    Linolenic (C18:3)n3 1,90 9

    Arachidic (C20:0) 0,31

    4,4 GadoleicC-20-1 0,09

    c-22-5 n-6 0,56

    c-22-6 n3 2,42

    100,00

    ADEQUATE PROFILE FOR BIODIESEL

  • SELECTION OF SUITABLE STRAINS (Chlorella protothecoides) ESTABLISHMENT OF CULTURES CONDITIONS THAT ALLOW

    GOOD PRODUCTIVITY LEVELS (Fames>50% of Dry Weight)). SCALE UP

    HIGH EXTRACTION YIELDS (85-95%) FROM FRESH BIOMASS CIRCULAR ECONOMY: REUSE OF AGROFOOD WASTES

    (SUSTAINABILITY) AND RESIDUAL BIOMASS (“CRADEL TO CRADEL”, PREMISE OF “ZERO RESIDUES”)

    ADDED VALUE PRODUCTS

    POSSIBLE INDUSTRIALIZATION PROCESSES?? LIFE CYCLE ASSESSMENT

  • Ashes FAMEs

    Polar Lipids

    Carbohydrates

    Proteins

    Proteins

    Carbohydrates

    Polar Lipids

    FAMEs Ashes

    Biomass 200 Kg DW 9,5% Protein; 1,5% N

    3 Kg N 1,5 Kg N

    EXTRACTION 40,5% Oil

    81 Kg

    Residue 120 kg DW 15,73% Protein; 2,51% N---- 3 Kg N

    60 % hydrolysis

    HYDROLYSIS Remaing

    solids

    Hydrolysate 1,8 Kg N

    (+ Glc soluble)

    Chlorella protothecoides

    Nitrogen Limitation

    Nitrogen Available

  • The project has been 65% cofinanced by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra programme (POCTEFA 2014-2020). POCTEFA

    aims to reinforce the economic and social integration of the French–Spanish–Andorran border. Its support is focused on developing economic, social and environmental cross-border activities

    through joint strategies favouring sustainable territorial development.

    Número de diapositiva 1Número de diapositiva 2Número de diapositiva 3Número de diapositiva 4Número de diapositiva 5Número de diapositiva 6Número de diapositiva 7Número de diapositiva 8Número de diapositiva 9Número de diapositiva 10Número de diapositiva 11Número de diapositiva 12Número de diapositiva 13Número de diapositiva 14Número de diapositiva 15Número de diapositiva 16Número de diapositiva 17Número de diapositiva 18Número de diapositiva 19Número de diapositiva 20Número de diapositiva 21Número de diapositiva 22Número de diapositiva 23Número de diapositiva 24Número de diapositiva 25Número de diapositiva 26Número de diapositiva 27