20
1 geophysics solid liquid biology oxidation catalysis O C O Ru electron density of adsorbates Al (111) Na Si Cl stress field at semiconductor nano structures 12 nm Present status of ab initio electronic structure calculations: from the earth core to quantum dots to mad cow disease length (m) time (s) electronic regime -15 1 10 -9 -3 10 10 10 10 -9 -6 -3 10 1 mesoscopic regime macroscopic regime Density Functional Theory i talk th s Statistical Mechanics or Thermodynamics This implies: Density functional theory E 0 ({R I }) = Min n(r) E {R} [n] E 0 ({R I }) = Min Ψ |H e |Ψ> Hohenberg and Kohn (1964): can be inverted, i.e., n(r) = n[Ψ] = | δ(rr i ) |Ψ> i Ψ(r 1 , r 2 , . . . , r N, ) = Ψ[n(r)] . The functional The energy of the ground state of a many- electron system :

Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

1

geophysics

solid

liquid

biology

oxidation catalysis

OCORu

electron density of adsorbatesAl (111)

Na Si Cl

stress field atsemiconductornano structures

12 nm

Present status of ab initioelectronic structure calculations:

from the earth core to quantum dots to mad cow disease

length(m)

time (s)electronic

regime

-15 110 -9 -310 10

10

10

-9

-6

-310

1

mesoscopicregime

macroscopicregime

DensityFunctional

Theory

i

talk

ths

Statistical Mechanicsor Thermodynamics

This implies:

Density functional theory

E0 ({RI }) = Minn(r) E{R} [n]

E0 ({RI }) = MinΨ <Ψ|He|Ψ>

Hohenberg and Kohn (1964):

can be inverted, i.e.,

n(r) = n[Ψ] = <Ψ| ∑ δ(r−ri) |Ψ>i

Ψ(r1, r2, . . . , rN,) = Ψ[n(r)] .

The functional

The energy of the ground state of a many-electron system :

Page 2: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

2

Page 3: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

3

This implies:

Density Functional Theory

E0 ({RI }) = Minn(r) E{R} [n]

E0 ({RI }) = MinΨ <Ψ|He|Ψ>

Hohenberg and Kohn (1964):

can be inverted, i.e.,

n(r) = n[Ψ] = <Ψ| ∑ δ(r−ri) |Ψ>i

Ψ(r1, r2, . . . , rN,) = Ψ[n(r)] .

The functional

The energy of the ground state of a many-electron system :

with local-density approximationor generalized gradient approximationAccuracy of geometries is better than0.1 Å. Accuracy of calculated energies (relative) is better than 0.2 eV [for specialcases better than 0.01 eV].

Kohn and Sham (1965):

Methods

• ab initio Molecular Dynamics• ab initio Lattice Gas Hamiltonian• ab initio kinetic Monte Carlo• ab initio Quantum Dynamics

II

• Density functional theory-- ab initio pseudopotentials

( the fhi98md - code ---www.fhi-berlin.mpg.de/th/th.html )

-- FP-LAPW ( the WIEN – code by P. Blaha, K. Schwarz, et al.; M. Petersen et al., CPC 126 (2000) )

-- All-electron, numerical basis set (the DMol3 - code by B. Delley, et al.)

I

Page 4: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

4

The first (convincing) DFT calculations:Stability of crystals and crystal phase transitions

-7.84

-7.86

-7.88

-7.90

-7.92

Tota

l ene

rgy

(Ryd

./ato

m) silicon

0.6 0.7 0.8 0.9 1.0 1.1Volume

diamond

β-tinsee also:V.L. Moruzzi, J.F. Janak,and A. R. WilliamsCalculated Electronic Properties of MetalsPergamon Press (1978)

M. T. Yin and M. L. CohenPRB 26 (1982)

Pressure (GPa)

0400650

2,7002,890

5,150

6,378

Dep

th (k

m)

364 329 136 24 0

innercore

outer core(liquid)

lower mantle

transitionregion

Ab initio melting curve of Fe as function of pressure

D. Alfe, M. J. Gillan, and G. D PriceNATURE 401 (1999)

100 200 300Pressure (GPa)

10

8

6

4

2Tem

pera

ture

(100

0 K)

As gas

surface

GaAs substrate

2 Ga (or In) atoms

5) adsorption of As2 ?6) dissociation of As2 ?7) diffusion of As8) desorption of As9) island nucleation

10) growth

1) deposition of Gaand As

2) adsorption of Ga3) diffusion of Ga4) desorption of Ga

Microscopic processes controlling the growth -- Example: III-V semiconductors

Page 5: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

5

β2 Reconstruction of GaAs (001)(2x4) unit cell

sideview

topview

AsGa

STM Imaging of GaAs(001)

LaBella, Yang, Bullock, Thibado, Kratzer & Scheffler, PRL 83, 2989 (1999).

simulated image:local density of states integrated to 0.3 eV below the valence band maximum

measured filled state imageat Vtip= - 2.1eV

Voltage Dependence of the STM CurrentSTM Simulation

-3.0 eV (high) -2.1 eV (low)

LaBella, Yang, Bullock, Thibado, Kratzer & Scheffler, PRL 83, 2989 (1999).

Page 6: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

6

EA1 = -1.9 eVETS = -1.5 eV

EA2 = -1.5 eVETS = -1.3 eV

Total Energy of a Diffusing Ga Atomat GaAs (001)

topview

¯

EA3 = -2.1 eVETS = -1.3 eV

EA1 = -1.9 eVdimers intact

dimers broken

[110]

[110]

A. Kley,P. Ruggerone, and M.S., PRL 79 (1997)

Unusually stable site for Ga adatominside the trench-site As-dimer

Height of Ga (Å)

0.0-0.5

-1.0

-1.5

-2.0

-2.5Bin

ding

Ene

rgy

(eV

)

3.0 2.0 1.0 0.0 -1.0

A. Kley,P. Ruggerone,M.S.,PRL 79 (1997)

P. Kratzer & M. S.,to be published

Ga

As

Transition State Theory

Page 7: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

7

Theory of the kinetics of growth

1) Analysis of all possibly relevant processes

2) Calculate the rates of all important processes

Γ(i) = Γ0(i) exp (−∆E(i) / kBT )

3) Statistical approach to describe- deposition- diffusion- nucleation- growth

kinetic Monte Carlo method

Go over all atomsand determine all processes which arepossible. Get :Γ(i) = Γ0

(i)

∗exp (−∆E(i) / kBT )[ If a novel configura-

tion occurs: interruptand do DFT. ]

get two random numbersr1, r2 from [0,1[

calculate R = ∑Γ(i) andfind process "k" :

k k-1 ∑ Γ(i) ≥ r1 R ≥ ∑ Γ(i)

i=1 i=1

Do process "k", i.e.,move one atom

adjust the clock:t → t - ln(r2) / R

start

Flowchart of kinetic Monte Carlo Simulation

unsuccessful processes are avoided

Graphical sketch of thestatistics of the processthat will be chosen in thekMC approach. Each barcorresponds to a certain atom. The color refers tothe type of process, and the thickness to the rate.

Sketch of the kMC Approach

position of the

arrow isdecidedby a random number

R

0

for example: yellow: Ga diffusion in the trench;light blue: Ga diffusion perpendicular to trench;green: Ga enters an As dimer;dark blue: Ga diffusion parallel to steps; red: As2 adsorption into the intermediate.

Page 8: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

8

Adsorption, diffusion, island nucleation,and growth of GaAs

P. Kratzer & M. S., PRL 88, 036102 (2002)

topview

sideview

GaAs

1/60 of the full simulation cellAs2 pressure ≈ 1.33 x 10-8 bar Ga deposition rate = 0.1 ML/sT = 700 K

Island density

As2 pressure = 1.33 x 10-8 bar

Ga deposition rate= 0.1 ML/s

Log10 of island density doesnot increase linearly with 1/T : Unusual increase ofisland density with increasing T (for T > 800 K).

1.1 1.3 1.5 1.7 1000 / T (K-1)

1x105

5x104

3x104

2x104

1x104

5x103lsla

ndD

ensi

ty (µ

m-2

) 880K 700K 600K 550K

P. Kratzer & M. S., PRL 88, 036102 (2002)

500 K

550 K600 K700 K

4x104

3x104

2x104

1x104

0Isla

nd D

ensi

ty (µ

m-2

)

0 0.5 1.0 1.5Time (s)

Motivation:Single-electron transistor

LEDs andlaser diodes

hν hν hν

Self-Assembly of Nano-Scale Structures at Semiconductor Surfaces

Page 9: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

9

For InAs/GaAs the SK model describesonly a part of the full picture

e.g.InAs onGaAs

Stranski-Krastanow morphologyas one way to reduce misfit strain energy

Ene

rgy

(eV

)

total energy

surfaces

elastic energy

edges

facets

Volume (106 Å3)

Number of atoms

L. Wang, P. Kratzer, and M.S.,PRL 82(1999)

Equilibrium shape of quantum dots

As2 gas

surface

GaAs substrate

surface energy: g0 A0 = Etotal - NGa mGa

- NIn mIn - NAs mAs

surface stress:t0 = g0 + ( ∂ g / ∂ ε ) ε=0

Stoichiometry and structure of the surface depend on the environment

(atomic chemical potentials)

Page 10: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

10

As poor As rich

Sung-Hoon Lee, W. Moritz, & M.S., PRL 85, 3890 (2000)

Surface energies of clean GaAs (001)

12 nm

Stress tensor at strainedInAs islands on GaAs

12 nm

N. Moll, M.S., and E. Pehlke,PRB 58, 4566 (1998)

12 nm

InP quantum dots on GaP(001)

InP islands on GaInPgrown by MOVPE Samuelson et al. (1996)

50 nm

4,000 atoms 15,000 atoms 30,000 atomsQ. Liu, E. Pehlke, N. Moll, and M.S.,PRB 60 (1999)

Page 11: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

11

Oxidation catalysis, e.g.:

CO + ½ O2 CO2

A "simple", prototypical surface chemical reaction

At UHV condi-tions Ru is leastactive for CO oxidation. Athigh-pressure conditions it is best.

CO2 formationat Ru supportedcatalysts andRu single crystals.

CO

2Fo

rmat

ion

(TO

F)

1/T x 103 (K−1)

Oxygen adsorption on Ru(0001)

UHV

C. Stampfl and M. Scheffler, PRB 54, 2868 (1996)

O(1x1)

3O(2x2)

High pressure

O(2x1)

O(2x2)

fcc

hcp

Page 12: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

12

Temperature programmeddesorption (TPD)

1) Prepare the adsorbate layer, coverage Θinit at temperature Tinit

2) Change T with time, e.g. T = Tinit +α tand measure ∆Θ (t)

typically α = 0.1 - 10 K/s

Lattice-Gas Hamiltonian

Problem: Often important adatom-adatom distances are too big to be tractable directly by DFT (this also refers to disorder)

(pairs) (trios) ∆E =

12

Vj∑

i∑ (2)(dij )σ iσ j +

13

V (3)(dij ,dik ,d jk )σ iσ jσ k +Kk∑

j∑

i∑

∆E Total Interaction Energy

sn (n=i,j,k) Site Occupancy

dn,m (n,m=i,j,k) Distance

V(2) Pair Interaction

V(3) Trio Interaction

Distances up to 30-th nearest neighbor

Temperature programmed desorption spectra: O/Ru(0001)

Heating rate: 6 K/s

Theory Experiment

temperature (K)Stampfl et al.,PRL 83 (1999)

O2

-des

orpt

ion

rate

(ML/

s)

O2

-des

orpt

ion

rate

(arb

.u.)

Page 13: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

13

M. Scheffler and C. Stampfl, in Handbook of Surface Science (2000)

Transition Metals as Oxidation Catalysts ?

H. Over et al., Science 287, 1474 (2000)

Oxides-!

Catalytic activity ofRu(0001) is due to

RuO2(110) domains, that form in the

reactive environment

Influence of the environment on surface structure and stoichiometry

γ surface = γ (T, p) = Etotal - NO µO - NRu µRu

O2 gas

surface

RuO2 substrate

µRu + 2 µO = µRuO2

Only one independent variable:

µΟ (T, p) =

= ½ µΟ2 (T, p0) + ½ kT ln(p/p0)

C.M. Weinert and M. S., Mater. Sci. Forum 10-12, 25 (1986)K. Reuter and M.S., PRB 65, 035406 (2002)

Page 14: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

14

high pressure termination

RuO2(110) surface terminations

K. Reuter et al., PRB 65 (2001)

Obridge Rucus

p CO

(atm

)

pO (atm)2

1

10-5

105

10-10

10-20

1

10-15

10-5

105

10-40 10-3010-20 10-10 1

10-10 1 1010

300K

600K

0.0-0.5-1.0-1.5

0.0

-0.5

-1.0

-1.5

-2.0 OObrbr/ / --

µO (eV)

µ CO

(eV

)

COCObrbr/CO/COcuscus

OObrbr/O/Ocuscus

OObrbr/CO/COcuscus

bridge sitescus sites

oxygenCO

RuO2 (110) stability regions in (T, p) space

O on Ag(111)

W.X. Li, C. Stampfl, and M.S., Phys. Rev. Lett. 90, 256102 (2003); and PRB in print.

(4x4)

oxide: Ag2O

Page 15: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

15

"Divide-and-conquer" strategy todetermine the reaction dynamics

Three independent steps1) Determine potential energy

surface (PES) by DFT calculations (GGA for xc)

2) Analytical or numericalrepresentation of this PES

3) Dynamicsa) Solve time-dependent

or time-independentSchrödinger equation

b) solve Newton'sequation of motion

A. Gross and M.S., PRB 57 (1998)PES for H2 -- Pd(100)dH-H (Å)dH-H (Å)

Z (Å

)

Dissociative adsorption of H2

Stic

king

prop

abili

ty

Ei (eV)

A. Eichleret al., PRB 59(1999)

Temperature (K)

Oscillations reflect the threshold,e.g., exit conditions of reflected beams

Page 16: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

16

Molecular Dynamics Snapshots of H2 Pd(100)

A. Grossand M.S.,

PRB 57,(1998)

Steering effect: aligning the incoming molecule(at low energies; here: Ei = 0.01 eV)

A. Gross and M.S., PRB 57 (1998)

No steering at higher energies; here: Ei = 0.12 eV

Surface core level shifts (SCLS or ESCA)

Important tool for surface analysis (identification ofatoms, electronic structure, nature of bonding).

Often surface core-level shifts are interpretedas an initial-state effect.

Page 17: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

17

Dimerization and dimer buckling at Si(001)

truncated bulk geometry

formation of dimers

dimer buckling

alternating buckling

favored by DFT(slabs)

favored by MCSCF (clusters)

Buckling at the clean Si(001) surface is sensitive to electron correlation

and electron-lattice coupling

HOMO ofsymmetric dimer

HOMO ofbuckled dimer

Whichconfiguration

is the ground state ?

"A negative U system" ?

For this system: screening at the surface is better than in the bulk

E. Pehlke and M.S., PRL 71, 2338 (1993).

Theorydashed: initial-state effect only

bars: including alsofinal-state screening(by total-energy differences or tran-sition-state theory)

Si 2p SCLS for Si(001) p(2x2)

-1.0 0.0 1.0kinetic energy (eV)

bulk down atomup atom

experiment

theory

Two peaks = clear proof for the buckling

Page 18: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

18

Photochemistry: Phonon- versus electron-mediated surface reactions: Laser-induceddesorption and oxidation of CO on Ru(0001)

desorption: phonon mediated

oxidation: hot electronmediated

Femtosecond photooxidation of CO on Ru

M. Bonn et al., SCIENCE 285 (1999)

increasing theelectronic tem-perature leads toa weakening ofthe O-Ru bond

O on Ru(0001)

M. Bonn et al., SCIENCE 285 (1999)

E − EF (eV)

DFT calculations at finite temperature

O - Ru distance (Å)Free

Ene

rgy

(eV

)∆

DO

S f

or O

/Ru

(arb

. un.

)

unoccupied anti-bonding orbital above EF

Tel = 6000 K Tel = 300 K

bonding anti-bonding

Page 19: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

19

Stability of the α-helix R O

H N C C OH

H H

Carboxyl-gruppeα-Helix

secondarystructure

β-Faltblattβ sheetα helix

structure of proteins (peptide chains):

C

H

N C

H

C

H

H N C OHN C

O

H

C

H

N C

O

H

C

R1

H

R2 R4R3 O

H

peptidebond

aminogroup

carboxylgroup

NC

O

H

NC

O

H

NC

O

H

NC

O

H

... C

H

Rn

Folding of the peptide chain

peptide chain in the bovine prion protein

atomic structure secondary and tertiarystructure

http://www.rcsb.org/ -- pdb-id: 1QM0

Enthalpy of formation of a hydrogen Bond

N C

O

H

C N C

O

H

C

H

N C

O

H

C

H

C

R

H

...

H

R

R

...

R

N C

O

H

Enthalpy of formation: ∆HN = EσN − Eσ

N-1 − µpeptide

poly alanine ( = methyl group = CH3 )sheet (extended structure) as "reservoir"

α-helix:"back bone" costs : ∆HN

bb ≈ 6.5 kcal/mol for all N H-bond gain : ∆HN

H-bond = − 2.7 kcal/mol for N = 4= − 9.5 kcal/mol for N = ∞

hydrogen bond is strongly cooperative

R

J. Ireta et al., J. Phys. Chem. B, in print.

Page 20: Present status of ab initio electronic structure calculationsth.fhi-berlin.mpg.de/th/Meetings/FHImd2003/Dtalks/FHI-WS...1 geophysics solid liquid biology oxidation catalysis O C O

20

Electronic Structure Theory(Density Functional Theory QMC)

Dynamics of the Nucleialong this PES

Statistical Mechanics

Thermal EquilibriumStructures

Real World

Potential Energy Surface