40
SMR 1826 - 9 Preparatory School to the Winter College on Fibre Optics, Fibre Lasers and Sensors 5 - 9 February 2007 Fiber-Optic Communications Hugo L. Fragnito Optics and Photonics Research Center UNICAMP-IFGW Brazil

Preparatory Schoolindico.ictp.it/event/a06180/session/12/contribution/8/...Single mode fibers Wavelength, µm Loss, dB/km Lower order mode Higher order mode 15 H. Fragnito UNICAMP

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • SMR 1826 - 9

    Preparatory School to the

    Winter College on Fibre Optics, Fibre Lasers and Sensors

    5 - 9 February 2007

    Fiber-Optic Communications

    Hugo L. Fragnito

    Optics and Photonics Research Center UNICAMP-IFGW

    Brazil

  • 1

    Hugo L. Fragnito

    Optics and Photonics Research Center

    UNICAMP-IFGW

    Tel. (xx55-19) 3521-5430

    [email protected]

    FiberFiber--Optic CommunicationsOptic Communications

    2

    FiberFiber--Optic SystemsOptic Systems

    Basics on Optical Communication Systems

    Systems with Optical amplifiers

    DWDWM systems

    System’s components

    System performance

  • 333 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    TopicsTopics

    • Basic system concepts

    • Some system components

    • System performance

    • WDM Systems

    4

    System conceptsSystem concepts

    Elements of transmission systems

    Multiplexing

    Modulation Formats

    Digital Modulation Keying

    TDM standards

    Optically amplified systems

    WDM systems

  • 555 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Elements of a Communication SystemElements of a Communication System

    Tx

    Transmitter

    Transmission LineRx

    Receiver

    Input Output

    Laser +

    modulator

    Optical fiberPhotodiode +

    Filter + clock

    recovery + ...

    666 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    MultiplexingMultiplexing

    Multiplexer

    Channel 1

    Channel N

    Voice, video, or data channels

    Demultiplexer

    Channel 1

    Channel N

    MUX DEMUX

    Tx Rx

    Multiplexing can be in time domain (TDM), frequency domain (FDM),

    Polarization (PDM), Wavelength (WDM), ...

    TDM = Time Division Multiplexing,

    FDM = Frequency Division Multiplexing, …

  • 777 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Digital Modulation FormatsDigital Modulation Formats

    1 0 1 0 1 1 01 0 0 1

    time(bit slot)T = 1/B

    NRZ

    RZ

    Non-Return to Zero

    Return to Zero

    Binary Word

    B/2

    B

    Better for clock recovery

    888 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Spectrum of NRZ pulsesSpectrum of NRZ pulses

    NRZ pulses, 400 ps (2.5 Gb/s)

    Linear scale

    Frequency, GHz

    Sp

    ectr

    al p

    ow

    er

    den

    sit

    y

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    -10 0 105-5

    10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    Frequency, GHz-20 -10 0 10 20

    Log scale

    No Fourier component at f = B (2.5 GHz)

  • 999 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Digital Modulation KeyingDigital Modulation Keying

    ASK - Amplitude Shifting Keying:

    A(t) = 0 or 1

    PSK - Phase Shifting Keying:

    (t) = or

    FSK - Frequency Shifting Keying:

    (t) = or

    Optical field:

    1 0 1 0 1 0 Electrical binary data

    Optical modulated signal

    E(t) = A(t) cos[ (t)t + (t)]

    101010 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    TDM StandardsTDM Standards

    SONET - Synchronous Optical Network

    SDH - Synchronous Digital Hierarchy

    OC = Optical Carrier

    STM = Synchronous Transport Mode

    SONET SDH B(Mb/s) Channels

    OC-1 51.48 672

    OC-3 STM-1 155.52 2,016

    OC-12 STM-4 622.08 8,064

    OC-48 STM-16 2,488.32 32,256

    OC-192 STM-64 9,953.28 129,024

  • 11

    AttenuationAttenuation

    Absorption

    Scattering

    Bending

    121212 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Decibel unitsDecibel units

    System

    Input power Output power

    Pin Pout

    System Transmission: T = Pout/Pin

    TdB = 10 log(Pout/Pin)-10 dB means Pout = Pin /10

    -3 dB means Pout = Pin /2

    -40 dB means Pout = 10-4 Pin

    dBm: Power in dB relative to 1 mW

    PdBm = 10 log (P/mW)-10 dBm means P = 0.1 mW

    3 dBm means P = 2 mW

    40 dBm means P = 10 W

    TdB = Pout - Pin (Pin and Pout in dBm)

  • 131313 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    AttenuationAttenuation

    Lo

    ss,

    (dB

    /km

    )

    Wavelength, (µm)

    Optical Power at a distance L: P L PL( ) ( ) /0 10 10

    Loss coefficient: (dB/km)

    0.1

    0.2

    0.4

    0.8

    1.0

    0.8 1.0 1.2 1.4 1.6 1.8

    2

    4

    UV absorption tail

    Rayleigh

    scattering

    = C/ 4

    OH overtones

    1st window

    820 nm

    2nd

    1.3 µm

    3rd

    1.55 µm

    IR absorption

    P L P LdBm dBm( ) ( )0

    141414 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Attenuation of MultiAttenuation of Multi--Mode (MM) and Mode (MM) and

    Single Mode (SM) fibersSingle Mode (SM) fibers

    Multimode (MM) fibers attenuate more than single mode (SM) fibers

    Light in higher order modes travels longer optical paths

    0.8 1.0 1.2 1.4 1.6 1.80.1

    0.2

    0.4

    1

    2

    4

    Multimode fibers

    Single mode fibers

    Wavelength, µm

    Lo

    ss

    , d

    B/k

    m

    Lower order mode

    Higher order mode

  • 151515 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    MacrobendingMacrobending lossloss

    Shedding of power by the effect of bending

    Power

    Loss

    In multimode fibers bending causes mode coupling.

    Higher order modes are scattered out of fiber.

    In single mode fibers, bending losses are

    appreciable for curvature radii < 1 cm.

    Frustrated TIR

    161616 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    MicrobendingMicrobending lossloss

    Scattering loss caused by rugosity of fiber

    Small axial distortions along the fiber axis

    Causes mode mixing and/or loss of optical power

    Can be induced by fiber jacketing, cabling, or environment

    Power Loss

  • DispersionDispersionIntermodal dispersion

    Multimode fibers

    Intramodal dispersion

    Multimode and singlemode

    Dispersion parameterDispersion parameter

    Received pulsesInput pulses

    (different wavelength)

    time

    Single mode fiber,

    length L

    ++

    DL

    1Dispersion parameter [ps/nm/km]

    Measurement of Group Velocity Dispersion (GVD):

    time

    Standard SM fibers at 1550 nm: D = 17 (ps/nm)/km

  • Group Velocity Dispersion (GVD)Group Velocity Dispersion (GVD)

    Dispersion relation - Taylor series expansion

    1: gives group delay

    ( ) ( ) ( ) ( )!0 1 0

    12 2 0

    2 13 3 0

    3

    2: GVD (Group Velocity dispersion)

    Dcd

    nd

    c 22

    2

    0

    2

    2

    2

    3

    02

    3: Third order dispersion coefficient

    4: Fourth order dispersion coefficient

    …..0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

    0.63

    0.64

    0.65

    0.66

    0.67

    0.68

    0.69\\hugo\cursos\F641\dispers.org 18-apr-95

    10 fs pulse spectrum

    Gro

    up v

    elo

    city, v g

    ()/c

    Wavelength, (µm)

    0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.81.43

    1.44

    1.45

    1.46

    1.47

    1.48

    1.49Synthetic fused silica

    (µm)

    Refra

    ctiv

    e in

    de

    x,n(

    )

    1group /1gvv

    Modes propagate as exp(-i z). is the propagation constant

    Modal DispersionModal Dispersion

    time

    1 1 0 1 0 1 1 1 10

    Transmitted Byte

    time

    1 1 0 1 0 1 1 1 10

    Received Byte

    Input pulse Output pulse

    timetime

    MM fiber - step index

    Dispersion limits the transmission capacity of fiber

    Capacity of MM-step-index fibers 20 Mb/s km

  • Dispersion in step index MM fibersDispersion in step index MM fibers

    Normalized frequency, V

    No

    rmalized

    pro

    pag

    ati

    on

    co

    nsta

    nt,

    b

    2

    2

    2

    1

    2

    2

    2

    0 )/(

    nn

    nkb

    33

    5281

    0471

    2342

    13

    6132

    51

    03

    22

    4112

    31

    0221

    01

    11

    0.2

    0.4

    0.6

    0.8

    1.0

    2 4 6 8 10 120

    Cutoff: V = 2.405

    Normalized Propagation Constant

    Relation between the propagation

    constant and frequency is called the

    Dispersion Relation:

    At a given frequency, optical field is a

    superposition of modes, each one with a

    different propagation constant

    Sin

    gle

    mo

    de

    re

    gio

    n2

    2

    2

    10 nnakV

    [k c0 2/ / ]

    Normalized frequency

    Dispersion in graded index MM fibersDispersion in graded index MM fibers

    Input pulse Output pulse

    timetime

    Graded Index MM fiber

    Capacity of MM- graded index fibers 2 Gb/s km

    1 2

    • Mode 1 travels a longer physical path than mode 2, but through

    regions of lower index;

    • The optical path is approximately the same for both modes.

    physical path = dz

    optical path = ndz

  • Dispersion in single mode fibersDispersion in single mode fibers

    Chromatic dispersion: group

    velocity depends on frequency

    Material dispersion:

    refractive indices depend

    on frequency

    Waveguide dispersion:

    boundary conditions

    depend on frequency

    Frequency, V

    Pro

    pag

    ati

    on

    co

    nsta

    nt,

    b

    0.2

    0.4

    0.6

    2.00

    Normalized propagation constant

    for single mode step index fiber

    1.5

    Material dispersionMaterial dispersion

    Refractive indexFIR IR VIS UV

    0

    1

    n( )

    Frequency,

    ( ) ( ) /n c

    Vibrational bands

    Electronic transitions

    Rotational bands

    (gases & liquids)

  • GVD in silicaGVD in silica

    0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

    -1000

    -800

    -600

    -400

    -200

    0

    Anomalous GVD

    region

    Normal GVD

    region

    Gro

    up

    ve

    locity d

    ispe

    rsio

    n, D

    (ps/n

    m/k

    m)

    Wavelength, (µm)

    Synthetic fused silica

    Optical fibers for communications are made of silica

    Transparent materials exhibit a particular 0 where D( 0) = 0.

    In pure silica, 0 = 1.27 µm (Zero Dispersion Wavelength).

    Chromatic dispersionChromatic dispersion

    D = DM + DW

    Group velocity (vg) depends on

    2

    2

    2

    21

    d

    dc

    vd

    dD

    g

    Dispersion parameter:

    DM (Material Dispersion):

    n1 and n2 depend on

    DW (Waveguide Dispersion):

    vg depends on waveguide geometry

    D (total)

    DM

    DW

    0

    0

    D(p

    s/nm

    /km

    )

    -20

    20

    1.2 1.4 1.6

    Zero dispersion wavelength

    (another name for GVD)

  • Dispersion Shifted FibersDispersion Shifted Fibers

    Zero dispersion wavelength ( 0):

    Standard fiber: 0 = 1310 nm

    Dispersion Shifted Fiber: 0 = 1550 nm

    Dispersion slope:

    Dispersion Shifted Fiber (DSF)-10

    0

    20

    D(p

    s/n

    m/k

    m)

    1.3 1.4 1.5

    Wavelength, (µm)

    Standard Fiber (SMF)

    10

    S=

    0.09 p

    s/nm

    2 /km

    S = 0.075 ps/

    nm2/km

    n1

    n2

    n1

    n2

    Standard Fiber (SMF)

    Index profile

    SdD

    d

    Dispersion Shifted Fiber (DSF)

    Fibers for Telecom Fibers for Telecom –– ReviewReview

    Multimode fibersUsed in local area networks (LANs)

    Capacity limited by intermodal dispersion:

    20 Mb/sxkm (step index)

    2 Gb/sxkm (graded index)

    Single Mode FibersUsed for long distance

    25 THz bandwidth in 1.55 µm window

    Capacity limited by chromatic dispersion

    Dispersion (D) can be positive, negative or zero

    D = 0 @ 1.3 µm in standard silica fibers

    Waveguide dispersion can be adjusted by index profile

    Dispersion shifted fiber (DSF): D = 0 @ 1.55 µm

    DSF: combines D = 0 and minimum loss

    … so, is DSF the ideal fiber??

    Optical nonlinearities are very large in DSF - See next lectures

  • 29

    Some system componentsSome system components

    Fiber Couplers

    Fiber Connectors

    Fiber Cables

    Fiber pigtailed devices

    Lasers

    Detectors

    Modulators

    Integrated optics: Mux

    Amplifiers

    303030 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Optical CouplersOptical Couplers

    Mode coupling

    through evanescent

    field

    3

    4

    Input 1

    Planar waveguide device

    Fiber device

    Fuse and stretch

    fibers

  • 313131 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Fiber connectorsFiber connectors

    • Various Types

    • FC/PC, SC, LC, SMA, ST

    • Polishing quality

    • SPC (Super), UPC (Ultra)

    PC = Physical Contact

    Insertion loss 0.2 dB

    Back reflection –20 dB

    APC = Angled Physical Contact

    Insertion loss 0.2 dB

    Back reflection –40 dB8°

    Fiber

    Alumina ferrule

    323232 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Optical cables for the labOptical cables for the lab

    Simplex

    2mm

    Duplex

    Duplex connectors

    DSC

    ESCON

    Patch cords

  • 333333 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    CablesCables

    343434 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    CollimatorCollimator

    Fiber pigtail Grin lens Collimated light

    Miniature bulk optics (polarizer, isolator, filter, …anything)

  • 353535 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    MEMSMEMS

    • Micro-Electro-Mechanical Systems

    – Optical Switching

    – Optical Cross Connect (OXC)

    E. Kruglick, WDM, March 2001

    363636 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    MEMS (2)MEMS (2)

    • Polarization RotatorsChuan Pu, Tellium, February 2001

    • Variable reflectivityGain slope compensation of amplifiers

    K.W. Goossen, Lucent, October 2000

  • 37

    Lasers for transmissionLasers for transmission

    Semiconductor Diode Laser

    Fabry-Perot Laser

    DFB

    383838 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    p-type

    Low gap

    semiconductor

    n-type

    current

    0.3 mm 0.2

    mm

    0.1 mm

    cooler

    Laser diodeLaser diode

    Fabry-Perot (FP) laser cavity

  • 393939 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Cavity modesCavity modes

    Cavity modes = c/2nL

    L

    Fabry-Perot lasers ~ 30 modes (2-10 nm linewidth) Mode jumping – Mode partition noise

    DFB: Distributed Feedback laser

    DBR: Distributed Bragg Reflector

    DFB and DBR lasers: ~ 50 MHz linewidth

    404040 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Spontaneous emission spectrumSpontaneous emission spectrum

    Po

    wert

    (arb

    itra

    ry u

    nit

    s)

    1

    0

    0.5

    0.90 0.95 1.00 1.05

    Energy (eV)

    Wavelength (nm)

    1350 1300 1250 1200

    InGaAsP

    T = 280 K

    Emission spectrum of LEDs

    (Light Emission Diode)

    ASE or noise spectrum of Lasers

    (Amplified Spontaneous Emission)

  • 414141 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Modulation bandwidth and chirpModulation bandwidth and chirp

    BW limited by

    • carrier diffusion

    • RC of wiring, contacts, packaging

    • Relaxation oscillations

    Instantaneous frequency varies (chirp)

    • Dependence of refractive index on

    injection current (changes effective

    length of optical cavity)

    • Positive chirp

    Direct Modulation

    42

    PhotodiodesPhotodiodes

  • 434343 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    PhotodiodesPhotodiodes

    p-n junction

    p-i-n

    APD avalanche photodiode

    p-type n-type

    p+ i p n+

    i (intrinsic)p n

    absorption gain(10X)

    + (reverse bias)-

    444444 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Materials for PhotodiodesMaterials for Photodiodes

    First communications

    window (830 nm)

    Second window

    (1300 nm)

    Third window

    (1550 nm)

    G.P. Agrawal, Fiber-Optic Communication Systems, Wiley, New York (1997)

  • 454545 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Photodiode CharacteristicsPhotodiode Characteristics

    3040250VVbBias (APD)

    10200500-MGain (APD)

    61050VVbBias (p-i-n)

    403050GHzfBandwidth

    2010020pstrRise time

    1-2050-5001-10nAIdDark current

    655085%Quantum eff.

    0.80.60.5A/WRResponsivity

    1000-1700800-1800400-1100nmwavelength

    InGaAsGeSiunitsymbolparameter

    464646 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    WDM MultiplexersWDM Multiplexers

    AWG: Arrayed Waveguide Grating

    Free Space Grating MUX

    GratingLensFibers

  • 474747 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    AWGAWG

    AWG: Arrayed Waveguide Grating

    48

    ModulatorsModulators

  • 494949 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    ElectroElectro--Optic SwitchOptic Switch

    Control Voltage

    Pin

    Pout = Pin (1+cos )/2

    V

    d

    r = EO - coefficient

    V V/

    n rn V d12

    3( / )

    Refractive index change:

    Vd

    rn3Switching voltage:Switching voltage:

    Nonlinear crystal

    505050 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    V

    0

    Waveguide ElectroWaveguide Electro--Optic SwitchOptic Switch

    • Mach-Zehnder

    • Switching voltage: 5 - 8 V

    • Integrated optics

    • Fiber pigtail

    LiNbO3

    Waveguide (Ti in-diffused)

  • 515151 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Electroabsorption modulatorElectroabsorption modulator

    Franz-Keldysh effect

    50 GHz, 2V

    Energy gap of

    semiconductors depends

    on applied electric field

    Effect is enhanced in

    Multiple Quantum Wells

    Integrated with laser in

    the same chip

    G.P. Agrawal, Fiber-Optic Communication Systems, Wiley, New York (1997)

    525252 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Direct versus External ModulationDirect versus External Modulation

    Broad spectral source

    Bandwidth limited pulses:

    B = 2.5 Gb/s D = 0.34 ps/km

    B = 10 Gb/s D = 1.4 ps/km

    B = 40 Gb/s D = 5.5 ps/km

    Transform limited pulses

    t LD

    Fabry-Perot Laser:= 2 nm D = 34 ps/km

    DFB Laser: ( = 20 MHz) = 0.16 pm D = 0.003 ps/km

    But frequency chirp at 2.5 Gb/s

    modulation is ~ 20 GHz:= 0.17 nm D = 2.7 ps/km

    External modulationDirect modulation

    Examples: D = 17 ps/nm/km; = 1550 nm

    I(t)

    laser

    V(t)

    laser

    modulator

  • 53

    Optical AmplifiersOptical Amplifiers

    545454 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    ErEr+3+3 energy levelsenergy levels

    • Pump:

    980 nm or 1.48 µm

    pump power > 5 mW

    • Emission:

    1.52 - 1.57 µm

    long living upper state (10 ms)

    gain 30 dB

    Absorption (dB/m)

    4F9/2

    0.0

    0.5

    1.0

    1.5

    2.0

    1542

    988

    810

    659

    = 10 ms

    En

    erg

    y (

    eV

    )

    0 2 4 6 8

    (nm)

    4I9/2

    4I11/2

    4I13/2

    4I15/2

    = 10 µs

    1.45 1.50 1.55 1.60

    absorption

    emission

    (µm)

  • 555555 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Gain Saturation and Noise of EDFAGain Saturation and Noise of EDFA

    • Signal to Noise Ratio (SNR) degradation

    Due to Amplified Spontaneous Emission (ASE)

    • Noise Figure: NF = SNRin/SNRout > 3 dB

    1500 1520 1540 1560 1580-50

    -40

    -30

    -20

    -10

    0

    PASE

    Pout + PASE =

    GPin + PASE

    Po

    we

    r (d

    Bm

    )

    Wavelength (nm)

    -20 -10 0 10 200

    10

    20

    30

    40

    Pump Power 10 mW

    30 mW

    Gain

    (d

    B)

    Output Signal Power (dBm)

    20 mW

    565656 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    SOASOA

    Semiconductor Optical Amplifier

    Laser diode with antireflection coating

    Fast response (recombination time) ~ ns

    Very sensitive to light polarization

    (PDG: polarization dependent gain)

    Wide bandwidth

    Operation in 1300 nm or 1500 nm windows

  • 575757 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    PDG compensation in PDG compensation in SOAsSOAs

    G.P. Agrawal, Fiber-Optic Communication Systems, Wiley, New York (1997)

    585858 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Thulium Doped Fiber AmplifiersThulium Doped Fiber Amplifiers

    1440-1480 nm normal

    1480-1510 nm gain shifted

    Special host glass

    M. Islam and M. Nietubyct.WDM, March 2001

    A. Aozasa et. al., OFC´2001, PD1, March 2001

  • 595959 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Optical AmplifiersOptical Amplifiers

    EDFA (1500-1620 nm) Erbium

    TDFA (1440-1510 nm) Thulium

    SOA (60 nm bandwidth)

    Semiconductor Optical Amplifier

    Raman Amplifiers (40 nm bandwidth;

    choice of spectral region)

    1520 1540 1560 1580 1600 1620 16400

    10

    20

    30

    40

    Gain

    (dB

    )

    Wavelength (nm)

    C-band

    L-band

    EDFAs

    90 nm

    Limited by Nature to ~ 100 nmPhysics: Quantum energy levels

    Chemistry: Special materials

    Ram

    an

    Gain

    , d

    B

    Signal Wavelength, nm

    1460 1500 1540 1580 16200

    5

    10

    15

    20

    Raman Gain

    606060 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    ComponentsComponents REVIEWREVIEW

    • Lasers and photodiodes

    – Linewidth depends on laser type: • Fabry-Perot: 2-8 nm (1 THz)

    • DFB: 50 MHz (0.00005 nm)

    – Modulation bandwidth to 20 GHz but chirp may be a problem

    – Avalanche photodiodes provide gain

    – p-i-n photodiodes respond to 50 GHz

    • integrated, waveguide devices (ex. AWG MUX)

    – Compact, highly stable devices

    • High speed modulators:• electro-optic (Lithium Niobate)

    • electroabsorption (Semiconductor)

    • Optical Amplifiers:• EDFA: 35 nm bandwidth, NF = 4-6 dB, = 10 ms

    • L-band EDFA: 1560-1610 nm

    • SOAs: Compact and inexpensive, but polarization dependent and = ns

    • Raman: 40-100 nm bandwidth, we can choose the gain region

    • Other Rare earths: Thulium (S-band), Praseodymium (1300 nm band),…

  • 61

    System performanceSystem performance

    Power Budget

    Detection

    BER and Q factor

    Eye diagram

    626262 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Power budgetPower budget

    PRX = PTX – L – Nsplices splice – System margin

    (dB units)

    Average splicing

    insertion loss

    2 – 5 dB

    (aging)

    What about noise?

    System design

    Dispersion

    Keep pulse duration < 1.25 T ( T = 1/B = “bit slot”)

    DLB < 0.25

    Attenuation and dispersion can be compensated with

    optical amplifiers and dispersion compensators

  • 636363 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Optical Field NoiseOptical Field Noise

    Optical communications region

    ( = 1.3 - 1.6 µm)

    h (vacuum field noise)At optical telecom

    frequencies:

    quantum fluctuations of

    vacuum field >> thermal

    noise (even at 1273 ºC)

    In practice, thermal

    noise of electronic part

    of receiver dominates

    Microwaves region

    No

    ise p

    ow

    er

    den

    sit

    y (

    W/H

    z)

    wavelength, (µm)

    1 10 100 1000 104 10510-36

    10-33

    10-30

    10-27

    10-24

    10-21

    10-18

    Thermal Noise

    (Bose-Einstein statistics)

    T = 1 K

    T = 300 K

    T = 1000 K

    2

    1

    h

    eh kT/

    646464 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    PhotodetectionPhotodetection noisenoise

    Shot noise

    Total current dTS iiiPheI )/(1

    Responsivity (A/W)

    P = optical power (W)

    feIiSS 122 2

    Thermal noise fFR

    kTN

    L

    T

    42

    RL

    Noise figure of electrical amplifier

    Low pass filter (cut-off = 70% B)

    G = 1

    ST

    Dark current

    f

    In practice…

    Thermal noise

    Shot noise

    Signal photocurrent

  • 656565 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    BERBER

    Probability

    Sig

    na

    l c

    urr

    en

    t

    time

    I1

    I0

    IDP(1/0)

    P(0/1)

    Bit Error Rate

    1

    0

    BER = p(1) P(0/1) + p(0) P(1/0)

    Q parameter

    QI ID1

    1

    ID = decision threshold optimumII I

    D1 1 0 0

    1 0

    QI I1 0

    1 0

    Q ~ Signal/Noise

    666666 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    BER for Gaussian random processesBER for Gaussian random processes

    IF fluctuations around I1 and I0 follow Gaussian distributions

    AND (optimum) decision threshold II I

    D1 1 0 0

    1 0

    QI I1 0

    1 0

    Q2 SNR/2(Electrical signal-to-noise ratio)

    THEN

    2 3 4 5 6 7 810-15

    10-10

    10-5

    Q

    BE

    R

    BER < 10-9

    for Q > 62

    )2/exp(BER

    2

    Q

    Q

    Q parameter

  • 676767 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Eye diagramEye diagram

    10 Gb/s NRZ

    215-1 PRBS

    Before

    transmission

    After transmission

    (DSF 80 km)

    25 ps/div

    686868 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    I1 – I0

    Q = (I1 – I0)/( 1 + 0) 7/(1+0.5) = 5 ( BER 10-7 )

    Using the eye diagramUsing the eye diagram

  • 696969 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    System Performance REVIEWSystem Performance REVIEW

    • Noise in optical field gives shot noise, but in photodetected, electrical

    signals, thermal noise dominates

    • Eye diagram is a powerful tool for system diagnostics

    – BER is determined by Q factor (Q2 ~ SNR/2)

    – BER < 10-9 for Q > 6

    • What are the physical limits of fiber optic transmission systems?

    – Attenuation?

    – Dispersion?

    – Nonlinearities?

    70

    WDM SystemsWDM Systems

    Traditional Systems – 3R

    Optically Amplified systems

    WDM

  • 717171 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Traditional Optical Communication SystemTraditional Optical Communication System

    Tx

    Timing &

    Shaping

    circuits

    Transmitter Repeater

    Rx

    Receiver

    Laser

    Optoelectronic repeater

    Photodiode

    Optical fiber (20-50 km)

    Loss compensation: Repeaters at every 20-50 km

    System capacity limited by speed of electronic

    circuits

    3R

    3R =

    Retiming,

    Reshaping &

    Regeneration

    727272 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Optically Amplified SystemsOptically Amplified Systems

    Photodiode

    EDFA

    Laser

    EDFAEDFA EDFA

    Signal

    (1.55 µm)

    WDM

    Erbium Doped Fiber (10-50 m)

    Amplified

    Signal

    Pump Lasers (1.48 µm or 980 nm)

    isolatorWDM

    Booster Pre-Amp

    Fiber (20-100 km)

    Bits continue in photonic format

    EDFA = Erbium Doped Fiber Amplifier

  • 737373 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Characteristics of EDFA based SystemsCharacteristics of EDFA based Systems

    Bandwidth > 4 THz

    depends on glass host

    (100 nm in Telurite glass)

    Low noise

    NF ~ 4 – 7 dB

    Optical power > 10 mW

    larger distance between EDFAs

    Transparent to bit rate, modulation format,

    and bit coding

    Ideal for WDM

    (Wavelength Division Multiplexing)

    15

    20

    30

    Ga

    in (

    dB

    )

    Wavelength (nm)

    1500 1520 1540 1560 1580

    35 nm

    747474 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    DWDM SystemsDWDM Systems

    Transmitters (Bit rate = B)

    Optical Amplifiers

    N

    Receivers

    N

    MUX

    DeM

    UX

    Po

    we

    rd

    en

    sit

    y

    Frequency, (THz)

    192.8 193.0 193.1192.9

    = 100 GHz, 50 GHz,

    (up to 40 Gb/s) DWDM

    25 GHz, or 12.5 GHz

    (up to 10 Gb/s)

    UDWDM (Ultra Dense)

    DWDM = Dense Wavelength Division MultiplexingDWDM = Dense Wavelength Division Multiplexing

    ITU grid

    n = + n

    = 193.1 THz

    (1552.52 nm)

    (n = 0, ±1, ±2, ...)

  • 757575 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Bandwidth of WDM systems with Bandwidth of WDM systems with EDFAsEDFAs

    • 4 THz Optical Bandwidth

    • 80 WDM channels x 40 Gb/s

    (50 GHz channel spacing)

    • Total capacity: 3.2 Tb/s

    • Important issues:

    – BBandwidth

    – GGain flatness

    – OOutput power

    15

    20

    30

    Ga

    in (

    dB

    )Wavelength (nm)

    1500 1520 1540 1560 1580

    35 nm

    EDFA = Erbium Doped Fiber AmplifierEDFA = Erbium Doped Fiber Amplifier

    C band (1530C band (1530--1560 nm)1560 nm)

    Capacity of DWDM systems determined by

    bandwidth of optical amplifiers

    767676 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Chirped Fiber Bragg GratingsChirped Fiber Bragg Gratings

    1 2

    L12

    • Dispersion compensation

    Optical Delay = nL12/c

    • Gain flattening

    (varying index modulation)

    M. Guy and F. Trépanier, WDM, March 2001

  • 777777 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Systems Concepts REVIEWSystems Concepts REVIEW

    • Optical Communication system use several Multiplexing

    techniques, all include TDM (Time Division Multiplexing)

    – TDM standards (SONET, SDH): ex. OC-192 = STM-64 = 10 Gb/s

    – Modulation is ISK – Intensity Shifted Keying and NRZ format

    • DWDM systems use Gb/s lasers at different lambdas

    – Aggregated bit rate = NxB

    – Channel spacing 50-100 GHz; ITU grid

    – Total optical bandwidth limited by bandwidth of optical amplifiers

    – Total power NxP (nonlinear optical effects are important)

    787878 H. Fragnito UNICAMP H. Fragnito UNICAMP H. Fragnito UNICAMP ––– IFGWIFGWIFGW

    Where to get more informationWhere to get more information

    G.P. Agrawal, Fiber-Optic Communication Systems, 2nd ed., J. Wiley & Sons, New York (1998).

    Lightwave Magazine, PennWell, free subscription: http://lw.pennnet.com/home.cfm

    B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, Wiley, New York, 1991.

    K. Iizuka, Elements of Photonics, Vol. II: For fiber and integrated optics, Wiley, New York, 2002.

    G. Keiser, Optical Fiber Communications, 2nd ed., Mc Graw Hill, New York, 1991.

    J.A. Buck, Fundamentals of optical Fibers, Wiley, New York, 1995.

    Journal of Lightwave Technology 24(12), special issue, Dec. 2006.