39
Preparation of silica nanoparticles Process: Sol - Gel - Synthesis - Precipitation Chemical reactions: Hydrolysis - Polycondensation Hydrolysis: Si(OC 2 H 5 ) 4 + 4 H 2 O Si(OH) 4 + 4 C 2 H 5 OH pH 11 - 12 (NH 3 ) Suspension in ethanol Tetra ethyl orthosilicate (TEOS) Silicon tetra hydroxide Ethanol Polycondensation: Si(OH) SiO (S l) + 2H O Suspension in ethanol Si(OH) 4 nano- SiO 2 (Sol) + 2 H 2 O Silicon tetra hydroxide Silica pH 11 - 12 (NH 3 ) Principles: Nucleation, nucleus growth, Ostwald ripening, (agglomeration) Silicon tetra hydroxide Silica Controlled double jet precipitation (CDJP)

Preparation of silica nanoparticles - Otto von Guericke ... · Preparation of silica nanoparticles - Experimental realisation Disadvantages: G. Kolbe, Das Komplexchemische Verhalten

  • Upload
    lamtu

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Preparation of silica nanoparticles

Process: Sol - Gel - Synthesis - Precipitation

Chemical reactions: Hydrolysis - Polycondensation

Hydrolysis:

Si(OC2H5)4 + 4 H2O Si(OH)4 + 4 C2H5OH pH 11 - 12 (NH3)

Suspension in ethanol

Tetra ethyl orthosilicate (TEOS) Silicon tetra hydroxide Ethanol

Polycondensation:

Si(OH) SiO (S l) + 2 H OSuspension in ethanol

Si(OH)4 nano- SiO2 (Sol) + 2 H2O

Silicon tetra hydroxide Silica

pH 11 - 12 (NH3)

Principles: Nucleation, nucleus growth, Ostwald ripening, (agglomeration)

Silicon tetra hydroxide Silica

p g p g gg

Controlled double jet precipitation (CDJP)

Preparation of silica nanoparticles - Experimental realisation

G. Kolbe, Das Komplexchemische Verhalten der Kieselsaure, Dissertation, Friedrich-Schiller-Universität Jena, 1956 W. Stöber, A. Fink, E. Bohn, Controlled growth of monodispersed spheres in the micron size range, J. Colloid and Interface Sci. 26 (1968) 62-69 H. Giesche, Synthesis of monodispersed silica powders - 1. Particles properties and reaction kinetics, J. Eur. Ceram. Soc 14 (1994) 189-204 H. Giesche, Synthesis of monodispersed silica powders - 2. Controlled growth reaction and continuous production process, J. Eur. Ceram. Soc. 14 (1994), 205-214

Transmission electron microscopy (TEM) image of Stöber particles

Scanning electron microscopy (SEM) im-age of Stöber particles

T. Sugimoto: Fine particles-synthesis, characterization, and mechanism of growth, Surfactant Sci. Ser. Vol. 92, Marcel Dekker, New York, 2000

Products: titanium (IV) –oxide, aluminium oxide, zirconium (IV)-oxide nuclear power materials ThO2, UO2, PuO2

Advantages: often mono disperse, spherical particles of controlled size Disadvantages: reaction has to be carried out with low particle concentrations, low produc-

tion output

0,2 M tetraethylorthosilicate

ethanol

particles 50 nm – 10 μm

ammonia / water

ethanol

tetraethylorthosilicate / ethanol

One-step-process - Two-step-process

G. Kolbe / W. Stöber / H. Giesche - H. Giesche

Model of LaMer and Dinegar

concentration of a low soluble component+

+

+

+

+ +

+

l f i i i l i C

super saturation

nucleus formation critical super saturation C0

C0

saturation concentration C

super saturation

growth saturation concentration CS

CS

growth nucleus formation

reaction time

V.K. LaMer, R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Amer. Chem. Soc.72(1950) 4847-4854

Stöber process for generating monodisperse silica particles

100

%

80 Reaction time

on Q

0 in

60 2 min 4 min

15 idist

ribu

tio

Temperature : 50 °C 20

40 15 min

ticle

size

d

Supersaturation: 135

0

20

Part

0 50 100 150 200 250 300Particle diameter d in nm

Particle size distributions Q0 (d): nucleation and growth of silica Scanning electron microscopy (SEM) images of silica particles

T. Günther, J. Jupesta, W. Hintz, J. Tomas, Untersuchung der Einflußgrößen auf das Wachstum von Siliziumdioxidpartikeln, Vortrag, GVC-Fachausschußtagung Kristallisation, Boppard, 17.-18.03.2005

Stöber process for generating monodisperse silica particles

p f g g p p

80

100

Reaction temperature 0 in %

60

80 20 °C 30 °Cib

utio

n Q

0

40

40 °C 50 °C 60 °C

e si

ze d

istr

i

0

20 Supersaturation S = 135 Pa

rtic

le

100 200 300 400 500 6000

Particle diameter d in nm

Particle size distributions Q0 (d): temperature influence on particle growth Scanning electron microscopy (SEM) images of silica particles

T. Günther, J. Jupesta, W. Hintz, J. Tomas, Untersuchung der Einflußgrößen auf das Wachstum von Siliziumdioxidpartikeln, Vortrag, GVC-Fachausschußtagung Kristallisation, Boppard, 17.-18.03.2005

Stöber process for generating monodisperse silica particles

100%

80

100

Reaction timen Q

0 in %

60 a) Addition of TEOS 5 minst

ribu

tion

40 30 min 60 min b) Addition of TEOS cl

e si

ze d

is

0

20) f

5 min Pa

rtic

0 50 100 150 200 2500

Particle diameter d in nm Particle size distributions Q0 (d): Particle growth after further Scanning electron microscopyParticle size distributions Q0 (d): Particle growth after further Addition of TEOS (Temperature: 50 °C, Supersaturation : 35.7, Critical radius : 0.5

Scanning electron microscopy (SEM) images of silica particles

T. Günther, J. Jupesta, W. Hintz, J. Tomas, Untersuchung der Einflußgrößen auf das Wachstum von Siliziumdioxidpartikeln, Vortrag, GVC-Fachausschußtagung Kristallisation, Boppard, 17.-18.03.2005

Growth mechanisms of particles

Reaction – limited cluster aggregation RLCA

reaction rate : Hydrolysis >> polycondensation

pH of suspension : pH in an acid range

Formation of polymer - like networks, porous particle with small pores

Reaction – limited monomer cluster growth RLMC (Eden growth)

reaction rate : Hydrolysis << polycondensation

pH of suspension : pH in an alkaline range

Formation of large, nonporous particles, colloidal gel with large pores

Morphology of silica nanoparticles

Si(OH)4

Dimers

pH < 7 or

pH 7 - 10 with salts

Cycles

Particles pH 7 - 10 without salt

1 nm

p

5 nm

10 nm10 nm

30 nm

3 – dimensional gel network 100 nm

Sol (Stöber – Particles)

Brinker, C.J.; Scherer, G.W. : Sol-Gel-Science, The Physics and Chemistry of Sol-Gel-Science, Academic Press, San Diego, 1990

Stöber process for generating monodisperse silica particles

particle formation models p f

concentrations of sparely soluble compounds+

+++

+

Model according LaMer and Dinegar (1950)

sparely soluble monomers and oligomers

+

+

+

+

fast homogenuous nucleation

and oligomers

fractal structures of oligomers

i

nucleation critical supersaturation C0

C0

growth process by diffusion particle formation by densification of fractals

saturation concentration CS

CS

supersaturation growth

growth

densification of fractals

monomer addition onto particle surface

process time

nucleationparticle surface

stable spherical particles Model according Bogush and Zukoski (1992)

+

+

+

+

+ +

+

“explosive” nucleation process rearrangement and disaggregation stable spherical particles

Model according Bailey (1992)

“fluffy” larger aggregates process time

+ +

V.K. LaMer, R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Amer. Chem. Soc.72(1950) 4847-4854 , g , y, p f f f p y , ( )J.K. Bailey, M.L. Mecartney, Formation of colloidal silica particles from alkoxides, Colloids and Surfaces 63 (1992) 151-161 G.H. Bogush, C.F. Zukoski, Uniform silica particle precipitation: an aggregative growth model, J. Colloid Interface Sci. 142 (1992) 19 -34

Stöber process for generating monodisperse silica particles S d d i l h

100

%Seeded particle - growth process

80

n Q

0(d)

in %

Seeded particles

40

60

dist

ribu

tion

Reaction time of particle formation

12 hours

20

40

rtic

le si

ze d 25 hours

36 hours 50 hours

72 hours

0 1 2 3 4 50Pa

r

P ti l di t d i

72 hours

20 μm

Light microscopy image of Stöber i l (d 2 1 )Particle diameter d in μm

Particle size distributions Q0(d) for the seed particle - growth process of silica particles, Seeded particles d50,0 = 344 nm, Zeta-potential -58,9 mV, end particles d50,0 = 2,1 μm, Zeta-potential -83,5 mV

particles (d50,0 = 2,1 μm)

a „critical specific particle surface area“ is necessary during the growth process to avoid secondary nucleation,

r (hydrolysis) < r (condensation onto the particle surface) (Chen 1996)d)k,k,c(f

A oncondensatihydrolysisTEOSr (hydrolysis) < r (condensation onto the particle surface) (Chen, 1996) d)CC(D2

AS

y yk −=

Population balance model for particle formation and aggregation (Nagao)

Classical kinetic theory: Particle formation: B0(t) i - mer + j - mer i + j - mer = k - mer, i, j ≥ 1 ….max

kij

Aggregation: Particle formation:

)(BδCk)δ1(CCCk)δ1(1Cd max1kk ∑∑

j j , , j

)t(BδCk)δ1(CCCk)δ1(2td 01k

1iiikk,ik

1iikiik,iik,i

k ⋅++−+= ∑∑==

−−− jifür0undjifür1mit j,ij,i ≠=== δδ

)tk(expCk)t(B Hydrolysis0TEOSHydrolysis0 ⋅−⋅∝

Smoluchowski process: Increase of k - mers by aggregation of particles of size i and k – i with i = 1, 2 ... k - 1 Decrease of k - mers by aggregation with particles of size i = 1, 2 .... max

Introduction of the particle - particle interactions: )k,k(fk R

ijDijij = aggregation kernel in the model depends on the diffusion process and the surface reaction

2

Diffusion: ji

2ji

ij

Dij rr3

)rr(Tk2W1k

η+

= with ∫∞

+

⎟⎠⎞

⎜⎝⎛+=

⋅=

ji rr2

totalji

ij

0ij

ij ada

kT)a(exp)rr(

kk

W ϕ and )a()a()a( repattrtotal ϕϕϕ +=

van-der-Waals attraction: ⎟⎟⎞

⎜⎜⎛ +−

++−= 22

2ji

2

22ji

22jiH

attr

)rr(aln

rr2rr2A)a(ϕ ; surface reaction: van de Waals att action: ⎟⎠

⎜⎝ −−

+−−

++− 2

ji22

ji22

ji2attr )rr(a

ln)rr(a)rr(a6

)a(ϕ ; su face eaction:

electrostatical repulsion: ( )ji20

jir0rep rra((exp1ln

arr

4)a( −−−+= κψεεπϕ 2ji

jitotal0S

Rij )rr(

kT)rr(

expkk +⎟⎟⎠

⎞⎜⎜⎝

⎛ +−=ϕ

D. Nagao, T. Satoh, M. Konno, A generalized model for describing particle formation in the synthesis of monodisperse oxide particles based on the hydrolysis and condensation of tetraethyl orthosilicate, J. Colloid Interface Sci. 232 (2000) 102-110

Stöber process for generating monodisperse silica particlesStöber process for generating monodisperse silica particlesModelling of the particle growth process

80

100

d) in

%

Experimental results:0 04

0,05 Experimental results90 s Reaction time

q 0(d

) in

nm-1

Modelled distribution

60

80

ribu

tion

Q0(

d

90 s Reaction time 20 min Reaction time 120 min Reaction time

0,03

0,04

dist

ribu

tion

q Modelled distribution90 s Reaction time

20

40

icle

size

dis

tr

Modelled distributions (Nagao)

90 s Reaction time20 min Reaction time 0,01

0,02

ze fr

eque

ncy

d

10 100 10000

Part

i 20 min Reaction time 120 min Reaction time

10 1000,00

0,01

Part

icle

siz

Particle diameter d in nm

Comparison of experimental particle size distributions Q0(d) with simulated particle size distributions Q0(d),

Particle diameter d in nm

p f p p z Q0( ) p z Q0( ),(

3NHC = 0.34 mol L-1), and particle size frequency distribution q0(d) for a reaction time of 90 s, respectively

gels drying T < TF T > TC T < TC cryogel aerogel xerogel

Influence of pH and drying conditions on the morphology of silica particles

sols agglutination coagulation coacervation peptisation

silica silica

Preparation of titania nanoparticles

Process: Sol - Gel - Synthesis - Redispersion

Chemical reactions: Hydrolysis - Polycondensation - RedispersionChemical reactions: Hydrolysis Polycondensation Redispersion

Hydrolysis :

aqueous suspension, 50 °C

Ti(OC3H7)4 + 4 H2O Ti(OH)4 + 4 C3H7OH

pH 1,3 (0,1 M HNO3)

aqueous suspension, 50 C

Titanium tetra isopropoxide TTIP Titanium tetra hydroxide Isopropanol

Polycondensation :

Polycondensation :

Ti(OH)4 TiO2 + 2 H2O pH 1 3 (0 1 M HNO )

aqueous suspension, 50 °C

Titanium tetra hydroxide Titania

Redispersion :

pH 1,3 (0,1 M HNO3)

Redispersion :

TiO2 (Gel) nano - TiO2 (Sol) H 1 3 (0 1 M HNO )

aqueous suspension, 50 °C

Titania Titania pH 1,3 (0,1 M HNO3)

Particle size distribution of titania nanoparticlesParticle size distribution of titania nanoparticles

Method : Dynamic light scattering DLS

m-1

Instrument : Zetamaster (Malvern)

Particle size distribution of titania suspension4.0

g d)

in n

m

Particle size distribution of titania suspension

after the redispersion process of 24 hours

3.0tion

q 0 (l

og

Characteristic shear rate •

γ : 437 s-1

Reynolds number Re: 6,650

3.0

y di

stri

but

Reynolds number Re: 6,650

Specific power consumption PV: 0.1 kW m-3

2.0

freq

uenc

y

Mean particle diameter:

dm 3 = 18.6 nm (volume mean)

1.0

rtic

le si

ze f

m, 3 ( )

dm, 0 = 12.0 nm (number mean) 5 10 50 100

Par

Particle diameter in nm

Stabilisation of titania nanoparticles in suspension

40

30 Zeta - Potential in mV

n m

V

20entia

l in

O-OH + OH20

ta -

Pote

++ Ti O

O

+ H+

TiOH OH +OH-

OH2 OH

Ti10Ze

t

OH2+OH2

+ Ti O-

O-

Ti

base

OH2+

O- Tiacid

0,0 0,5 1,0 1,5 2,0 2,50

OOHOH2

pH - value of suspension

Zeta potential of TiO2 ranging from + 20 mV to + 40 mV for a pH < 3.0

Experimental Design

Characteristic shear rate•

γ : 437 s-1 … 3426 s-1 Experimental setup

γ

Reynolds number Re: 6,650 … 25,250

turbulent fluid flow

p pStirred tank reactor DIN 28139 T2 standard

with a six-blade disk turbine DIN 28131 standard

turbulent fluid flow

Specific power consumption / dissipation rate ε :

0 1 kW m-3 7 0 kW m-3

Optimal reaction parameters

0.1 kW m … 7.0 kW m Reaction temperature: 50 °C

Conc. Nitric acid HNO3: 0.1 M HNO3 (pH 1.3)

Conc. Titanium tetra isopropoxide (TTIP): 0.23 M

Characteristic shear rate: )SteinCampref(

21

⎟⎟⎞

⎜⎜⎛• εγ

Conc. Titanium tetra isopropoxide (TTIP): 0.23 M

Conc. of solid particles TiO2: ≈ 1.8 % w/w in suspension Characteristic shear rate: Reynolds number:

)Stein,Camp.ref(⎟⎟⎠

⎜⎜⎝

γ

ν

2DnRe =

Number of revolutions n: 500 rpm … 1900 rpm

Circumferential speed: 0.58 m s-1… 2.2 m s-1

Specific power consumption PV of stirrer:

ν

DnNP 53P ρCircumferential speed: 0.58 m s … 2.2 m s

VDnN

VPP P

==

Camp, T.R.; Stein, P.C.: Velocity Gradients and Internal Work in Fluid Motion, Journal of the Boston Society of Civil Engineers 30, 219 - 237 (1943)

Particle size distribution of titania nanoparticles

Method : Laser diffraction

80

100 shear rate 437 s-1

shear rate 1309 s-1

n Q

3 in % Instrument : Mastersizer 2000

(Malvern)

60

80 shear rate 2403 s

-1

shear rate 3426 s-1

dist

ribu

tion

Mean agglomerate diameter :

40

mer

ate

size

γ& = 437 s-1 d50,3 = 214.5μm

γ& = 1309 s-1 d50,3 = 175.1 μm

1 10 100 10000

20

Agg

lom

γ& = 2403 s-1 d50,3 = 114.9 μm

γ& = 3426 s-1 d50,3 = 87.6 μm 1 10 100 1000

Agglomerate diameter d in μm Agglomerate size distributions Q (d) for different shear rates in the initial state of redispersionAgglomerate size distributions Q3(d) for different shear rates in the initial state of redispersion

The sequence of applied shear rates in relation to its effects of creating smaller particle size is

3426 -1 > 2403 -1 > 1309 -1 > 437 -13426 s 1 > 2403 s 1 > 1309 s 1 > 437 s 1

Particle size distributions during redispersion

quantiles d10 3 with Q3 (d10 3) = 10 %

600

μm

10,3 3 10,3

d50,3 Q3 (d50,3) = 50 %

d Q (d ) 90 %

Method : Laser diffraction

Instrument : Mastersizer 2000

(Malvern)

400

500

es d

in d90,3 Q3 (d90,3) = 90 %

(Malvern)

Hydrodynamics :

300

400

ra

te si

ze Hydrodynamics :

Shear rate: γ& = 1309 s-1

100

200

gglo

mer Shear rate: γ 1309 s

Reynolds number: Re = 13290

Specific power consumption:

0 50 100 150 2000

Ag

PV = 1.01 kW m-3

0 50 100 150 200

Redispersion time in min

Agglomerate sizes during the redispersion process (shear rate γ& = 1309 s-1)

Particle size distributions during redispersiong p

100% 80

100

reaction time of redispersionn Q

0 in

60

80 reaction time of redispersion

6 hourshst

ribu

tion

40

7 hours 8 hours 9 hourste

size

dis

20 10 hours

glom

erat

0 10 20 30 40 50 60 70 800

Agg

0 10 20 30 40 50 60 70 80Agglomerate diameter d in nm

1Agglomerate size distributions Q0 (d) during the redispersion process (shear rate γ& = 437 s-1)

Morphology of silica nanoparticles

Si(OH)4

Dimers

pH < 7 or

pH 7 - 10 with salts

Cycles

Particles pH 7 - 10 without saltp

1 nm

pH 7 10 without salt

5 nm

10 nm

30 nm

3 – dimensional gel network 100 nm100 nm

Sol (Stöber – Particles)

Brinker, C.J.; Scherer, G.W. : Sol-Gel-Science, The Physics and Chemistry of Sol-Gel-Science, Academic Press, San Diego, 1990

( )

Granulometric properties of solid titania powder

Solid titania powder: Redispersion for 24 hours in 0.1 M HNO3, Freeze-drying for 48 hours

p f 3, z y g f

Drying for 24 hours at 80 °C

Calcinations for 2 hours at 250 °C and 500 °C

polydisperse particle size distribution (d50,3 : 210 μm - 450 μm)

not treated drying calcinations

80 °C 250 °C 500 °C 3 3 3 3solid particle density ρS 3.2 g cm-3 4.0 g cm-3 4.0 g cm-3 4.0 g cm-3

specific surface area (BET) 185 m2 g-1 188 m2 g-1 84 m2 g-1

f i ht d di t d 7 8 7 9 18 3

surface weighted diameter d32 7.8 nm 7.9 nm 18.3 nm

Differential Scanning Calorimetry / Thermo Gravimetry (crystalline modifications)

244 °C 380 °C 244 C 380 CTiO2 (amorph) TiO2 (anatase) TiO2 (rutile)

Pore volume frequency distribution inside the titania agglomerates

0 04

Pore volume frequency distribution

f q y gg

0,04be

nt Pore volume frequency distribution

B tt J H l d (BJH) th d0,03

/g a

dsor

bm

eter

Barrett-Joyner-Halenda (BJH) method

applying Kelvin equation:

0,02

e in

cm

3 /po

re d

ia

molk

PPlnTR

cosV2r

⋅⋅

⋅⋅⋅−=

Θσ

0,01

re v

olum

e/n

m p

0P

2 4 6 8 100,00

Por

2 4 6 8 10Pore diameter in nm

Solid titania powder: Redispersion for 24 hours in 0 1 M HNO3 Freeze-drying for 48 hoursSolid titania powder: Redispersion for 24 hours in 0.1 M HNO3 , Freeze-drying for 48 hours,

Drying for 24 hours at 80 °C

Structure of agglomerates in the suspensionStructure of agglomerates in the suspension

Model of agglomerate structure Image of scanning electron microscopy

of titania nanoparticles produced in a 0.1 M agglomerate (porous) DLS HNO3 suspension (pH 1.3)

(solid agglomerates obtained by freeze-drying)

agglomerate (porous) DLS

primary particles (nonporous) BET

Kinetics of particle agglomeration and redispersion

Agglomeration

Redispersion

colloidal particle C1

Agglomerate k14

k11

b C4

b13

Ci, Cj, Ck Particle concentration of i, j, k - mers

kij Agglomeration rate constant of i - mer + j - mer

ij gg f j

bij Redispersion rate constant of k - mer to i - mer + j - mer

Population balance model of the particle agglomeration and redispersionPopulation balance model of the particle agglomeration and redispersion Classical kinetic theory:

kij

i - mer + j - mer i + j - mer = k - mer, i, j ≥ 1 ….max

ij

bij

Redispersion: reverse Smoluchowski - process

∑∑ +

+++−=max

kiikik

1k

ikiikikk Cb)1(b)1(C1Cd δδ

Agglomeration: Smoluchowski - process

∑∑−

−−− +−+=max

iikkik

1k

ikiikiikik Ck)1(CCCk)1(

21

dCd

δδ ∑∑=

+=

−−1i

kiikik1i

ik,iik,ik )()(2td

∑∑== 1i

iikk,ik1i

ikiik,iik,i )()(2td

jifor0andjifor1with j,ij,i ≠=== δδ

Smoluchowski - process :

Increase of k - mers by agglomeration of particles of size i and k – i with i = 1, 2 ... k - 1

Decrease of k - mers by agglomeration with particles of size i = 1, 2 ... max

Reverse Smoluchowski - process :Reverse Smoluchowski - process :

Decrease of k - mers by redispersion to particles of size i and k – i with i = 1, 2 ... k - 1

Increase of k - mers by redispersion to particles of size k and i = 1, 2 ... maxIncrease of k mers by redispersion to particles of size k and i 1, 2 ... max von Smoluchowski, M : Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Phys. Chem. 92 (1918) 129 - 168

Population balance model of the particle agglomeration and redispersion

To calculate the change in the particle number concentration, a nonlinear differential

equation system which includes all particles with 1 ∞ primary particles has to be solvedequation system, which includes all particles with 1 … ∞ primary particles, has to be solved.

Kernels of convection - controlled (orthokinetic) system:Kernels of convection controlled (orthokinetic) system:

Agglomeration rate constant:

Redispersion rate constant:

3jiDij )rr(kk +=

3jiDij rbb +=

with ri and rj radii of agglomerating and redispersing particles.

Approach for a convection - controlled agglomeration kernel kD

21

81 ⎟⎞

⎜⎛ επ

turbulent shear–induced agglomeration, in absence of i d i d l l ff

2

ijD 15

8W1k ⎟⎟

⎞⎜⎜⎝

⎛=

νεπ

viscous retardation and agglomerate structural effects

Wij stability factor, agglomerate interactions taken into account

Reference: Saffman, P.G.; Turner, J.S.: On the collision of drops in turbulent clouds, J. Fluid Mech., 1, 16-30 (1956)

Approach for the particle size frequency calculation Number of primary particles NPP Number of agglomerates N0Number of primary particles NPP Number of agglomerates N0

in a single agglomerate (k-mer): in the suspension:

3d 3S03 N)d(q πρ

3BET

DLSPP d

d)1(N ε−=

DLS3

atanti

S0

0

3 d6m

N)d(q)d(q πρ

⋅=

q (d) : Particle size frequency distribution based on quantity r : mass (3) number (0)qr(d) : Particle size frequency distribution based on quantity r : mass (3), number (0)

N b f ll l t N i th i d th b b dNumber of all agglomerates N0 in the suspension and the number based concen-

trations Ci, Cj, Ck ... of the i, j, k - mers can be calculated

Particle size distributions during redispersion

40 reaction time of redispersion

30

35μ 0 in

%f p

6 hours 7 hours

20

25

30

frac

tion μ 7 ou s 8 hours 9 hours

10 hours

15

20

num

ber f

10 hours

5

10

Part

icle

n

1 2 4 8 16 32

P

Number of primary particles per single aggregate

Distributions of particle number fractions vs number of primary particlesDistributions of particle number fractions µ0 vs. number of primary particles per single aggregate (shear rate γ& = 437 s-1)

Optimisation problem of the population balance equation

for the reaction system in the equilibrium state :

0dt

dC k = as well as D

DC b

kK = with KC equilibrium constant :

∑∑

=++

=− +−+

max

1iki

3kiik

1k

1i

3kik,ik Cr)1(r)1(C

21

Kδδ

∑ ∑−

= =−−−

==

++−++= 1k

1i

max

1ii

3kiikkiki

3ikiik,i

1i1iC

C)rr()1(CCC)rr()1(21

Kδδ

for the reaction system in the non-equilibrium state :

kD Agglomeration rate constant

bD Redispersion rate constant 0)]t,r,r,k,b(C[fdt

dCjiDDk

k =+D p

Ci Cj Ck Particle concentrations of i j k - mers experimentally obtained from DLS

dt

Ci, Cj, Ck ... Particle concentrations of i, j, k - mers, experimentally obtained from DLS

Kinetic constants of the agglomeration / redispersion process Polydisperse system:

Polydisperse system:

Agglomeration kD = 3.0 10-3 s-1 with

Redispersion bD = 6.9 10-13 cm-3 s-1 3jiDij rbb =

3jiDij )rr(kk +=

Redispersion bD 6.9 10 cm s Turbulent agglomeration kernel without particle interactions

•8

jiDij rbb +

21

⎞⎛

with St bilit f t W l t i t ti l d t l l ti

= γπ15

8k 0,D 1

2

s437 −•

=⎟⎟⎠

⎞⎜⎜⎝

⎛=

νεγ

10,D s565k −=

Stability factor Wij agglomerate interactions lead to slow coagulation from experiment Wij = 1.9 105 (corresponding energy barrier ≈ 15 kT)

D

0,Dij k

kW =

Monodisperse system: ri = rj = 3,9 nm (only primary particles)

D

Agglomeration kij = 14.6 10-22 cm3/s (ref. Vorkapic kij = 7,9 10-22 cm3/s)

Redispersion bij = 8.4 10-6 s-1 (ref. Vorkapic bij = 4,6 10-6 s-1)

Equilibrium constant KC = 1.7 10-16 cm3 with ij

ijC b

kK =

Reference : Vorkapic, D.; Matsoukas,T. : J. Colloid Interface Sci. 214, 283-291 (1999)

ij

Sol - gel processing

Cryogel chemical reaction

dehydratisation chemical reaction drying

Precursor Sol Gel Aerogel

chemical reaction drying

dryingcoating i i drying

dipping organic suspension

surfactants

spherical particle in gel structure Xerogel spherical particle in gel structure Xerogel

Calcination Calcination Calcination

Calcination

Thin layer structure Powder Ceramics

C.J. Brinker, G.W. Scherer: Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, Academic press, San Diego, 1990

precursor TiO2 nanoparticle

SiO2-nano -particle

dense, closed TiO2 layer

TiO2 agglomerate

SiO2-nano -particle

SiO2-nano -particle

homogeneous layer of heterogeneous layer of mono-disperse TiO2 polydisperse TiO2 particles

Schematic representation of possible coating processes

Application of titania as a photocatalyst *

Project in cooperation with the Bulgarian Academy of Sciences, Sofia

Titania generates with UVA irradiation (320 - 400 nm): activated electrons and holes (h+ + e-) TiO2 + hν TiO2 (h+ + e-) h+ + OH- OH●

OH● acts as an oxidising agent for organic compounds:

manufacturing of thin layers on a substrate

modification of thin layers by laser irradiation or chemical doping

characterisation of the modified thin layers

evaluation of the photo catalytic properties for degradation of

• organic compounds hazardous to environment

• biological materials

*Yordanova,V.; Starbova, K.; Hintz,W.; Tomas, J.;Wendt,U.: Excimer laser induced photo-thermal changes of sol-gel TiO2 thin film, Journal of optoelectronics and advanced materials (Bukarest) 7 (2005) 2601-2606 *Starbova, K.; Yordanova, V.; Nihtianova, D.; Hintz, W.; Tomas, J.; Starbov, N.: Excimer laser processing as a tool for photocatalytic design of sol-gel TiO2 thin films, Applied Surface Science, 254 (2008) 4044-4051

2 4 6 8 10 12

-40

-20

0

20

40 silica particles titania particles

Zeta

-pot

entia

l in

mV

pH value

Hetero-agglomeration process for coating silica particles with titania

Zeta-potential of silica and titania particles in dependence of the pH value

Surface modification

p.z.c. of TiO2 at pH 6.8

p.z.c. of SiO2 at pH 2.3

instable

stable

stable

Schematic representation of experimental procedure

0.1 M Nitric acid (pH 1.0)

Hydrolysis, Polycondensation, Redispersion

Nano-scaled titania particles - dm,0 = 12.0 nm Amorphous titania sol at pH 1.3

conversion to crystalline modification Anatase ( temperature > 220 °C)

addition of titania suspension to SiO2

Tetraisopropyl-orthotitanat

SiO2 suspension centrifugation - 10 min, 1000 g drying at 80 °C for 3 hours

Ammonia, Isopropanol, Water (pH 11. 0 - 12.0)

Tetraethyl-orthosilicate

Hydrolysis, Polycondensation

Silica (Stöber) particles - dm,0 = 332 nm, 500 nm, 800 nm

SiO2 particles redispersion in water (1 % wt/wt) adjusting to pH 1.6 with HNO

HNO3

Titania coated silica particles

Zeta-potential of coated and non-coated silica particles

Zeta-potential of coated and non-coated 332 nm silica particles - coating with 2 % wt/wt, 10 % wt/wt, 20 % wt/wt TiO2 on SiO2

1 2 3 4 5 6 7

-40

-20

0

20

40 silica particles TiO2/SiO2 2 wt% TiO2/SiO2 10 wt% TiO2/SiO2 20 wt%

Zeta

-pot

entia

l in

mV

pH value

22222222

2222

SiO/TiOSiOSiOSiOSiO/TiOSiO

SiO/TiOSiOSiO

.z.c.pc.z.p(M).z.c.pc.z.p(M).z.c.pc.z.p(M

eragecovsurfaceapparent

−−−

−=

Apparent surface coverage of TiO2 particles on silica surface

Apparent surface coverage of TiO2 on 332 nm silica particle surface relating to the mass percentage of TiO2 to SiO2 in suspension

0 5 10 15 20 25 30 350

10

20

30

40

50

60

70Ap

pare

nt su

rfac

e cov

erag

e of T

iO2 i

n%

Mass of TiO2 in % (wt/wt) of SiO2 in suspension

Apparent surface coverage of TiO2 on SiO2 surface

Surface morphology of Titania modified Silica particles

SEM image for coated 332 nm silica with 2 % (wt/wt) i i

SEM image for coated 332 nm silica with 10 % (wt/wt) i i

SEM image for coated 332 nm silica with 30 % (wt/wt) i i

SEM image for coated 332 nm silica with 20 % (wt/wt) i i