62
269 © Springer Science+Business Media, LLC 2015 I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix Preparation of Collagen-Glycosaminoglycan Copolymers for Tissue Regeneration Lila J. Chamberlain and Ioannis V. Yannas Adapted from Chamberlain, L. J. and I. V. Yannas. 1998. Preparation of collagen- glycosaminoglycan copolymers for tissue regeneration. Methods of Molecular Medicine, edited by Morgan, J. R. and M. L. Yarmush. Tolowa, NJ: Humana Press. Introduction Certain analogs of the extracellular matrix (ECM) have been shown to possess regenerative activity during healing of lesions in various anatomical sites. This chapter describes methods for synthesis of the two ECM analogs that have been studied most extensively. The reader is referred to descriptions of these methods in the original literature (Yannas et al. 1980, 1989; Chang et al. 1990). The biologi- cal activity of ECM analogs has been reviewed elsewhere (Yannas 1995). Updated methodology for collagen scaffolds has been published (Soller et al. 2012). One of these analogs, referred to as the dermis regeneration template (DRT; re- ferred to below also as SRT), has induced regeneration of dermis in full-thickness skin wounds in the guinea pig model (Yannas et al. 1981, 1982, 1989; Murphy et al. 1990), the porcine model (Orgill et al. 1996), and in humans (Yannas et al. 1981; Burke et al. 1981; Heimbach et al. 1988; Stem et al. 1990). Since it is well known that the dermis of the adult mammal does not regenerate spontaneously (Billingham and Medawar 1951, 1955), the DRT is required for dermal regeneration in all com- monly encountered skin wounds that are sufficiently deep to have compromised the dermis. The DRT is currently used as a dermal regeneration treatment for pa- tients who have sustained deep burns or deep mechanical trauma, including trauma from elective surgery, and who would otherwise have been treated with autografts (Heimbach et al. 1988). In the clinical setting or in animal models, the SRT is ap- plied on wounds as a bilayer graft; the proximal layer is the highly porous ECM analog and the distal layer is a silicone film. The latter has no biological activity, but serves as a temporary dressing that protects the proximal layer from dehydration and bacterial invasion, and also converts the bilayer into a mechanically competent sheet, capable of being handled conveniently and sutured on the patient’s tissues.

Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

269© Springer Science+Business Media, LLC 2015I. V. Yannas, Tissue and Organ Regeneration in Adults,DOI 10.1007/978-1-4939-1865-2

Appendix

Preparation of Collagen-Glycosaminoglycan Copolymers for Tissue Regeneration Lila J. Chamberlain and Ioannis V. Yannas

Adapted from Chamberlain, L. J. and I. V. Yannas. 1998. Preparation of collagen-glycosaminoglycan copolymers for tissue regeneration. Methods of Molecular Medicine, edited by Morgan, J. R. and M. L. Yarmush. Tolowa, NJ: Humana Press.

Introduction

Certain analogs of the extracellular matrix (ECM) have been shown to possess regenerative activity during healing of lesions in various anatomical sites. This chapter describes methods for synthesis of the two ECM analogs that have been studied most extensively. The reader is referred to descriptions of these methods in the original literature (Yannas et al. 1980, 1989; Chang et al. 1990). The biologi-cal activity of ECM analogs has been reviewed elsewhere (Yannas 1995). Updated methodology for collagen scaffolds has been published (Soller et al. 2012).

One of these analogs, referred to as the dermis regeneration template (DRT; re-ferred to below also as SRT), has induced regeneration of dermis in full-thickness skin wounds in the guinea pig model (Yannas et al. 1981, 1982, 1989; Murphy et al. 1990), the porcine model (Orgill et al. 1996), and in humans (Yannas et al. 1981; Burke et al. 1981; Heimbach et al. 1988; Stem et al. 1990). Since it is well known that the dermis of the adult mammal does not regenerate spontaneously (Billingham and Medawar 1951, 1955), the DRT is required for dermal regeneration in all com-monly encountered skin wounds that are sufficiently deep to have compromised the dermis. The DRT is currently used as a dermal regeneration treatment for pa-tients who have sustained deep burns or deep mechanical trauma, including trauma from elective surgery, and who would otherwise have been treated with autografts (Heimbach et al. 1988). In the clinical setting or in animal models, the SRT is ap-plied on wounds as a bilayer graft; the proximal layer is the highly porous ECM analog and the distal layer is a silicone film. The latter has no biological activity, but serves as a temporary dressing that protects the proximal layer from dehydration and bacterial invasion, and also converts the bilayer into a mechanically competent sheet, capable of being handled conveniently and sutured on the patient’s tissues.

Page 2: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

270 Appendix

Materials

Preparation of Collagen-GAG Suspension

1. Type I collagen, from bovine tendon, (Integra LifeSciences, Plainsboro, NJ), in the form of hydrated fibrillar granules, is divided into 14-g aliquots and stored at 0 °C. Freeze-thaw cycles during storage should be avoided. If dry collagen is used, it should be kept refrigerated at 4 °C.

2. Cooled overhead blender (Granco overhead blender, Granco, Kansas City, MO), including a cooling system (Brinkman cooler model RC-2T, Brinkman, West-bury, NY). The blender is used to mix the collagen-glycosaminoglycan (GAG) suspension, which must be kept at 4 °C during the entire preparation.

3. 0.05 M acetic acid solution: Add 8.7 mL glacial acetic acid (Mallinckrodt Chemi-cal, Paris, KY) to 3 L dH2O. This solution has a shelf life of approx. 1 week.

4. Peristaltic pump (Manostat Cassette Pump, cat. No. 75-500-0.00, Manostat, New York).

5. 0.11 % w/v chondroitin 6-sulfate solution: Dissolve 275 mg chondroitin 6-sulfate (from shark cartilage, cat. No. C-4384, Sigma, St. Louis, MO) in 250 mL 0.05 M acetic acid solution. The chondroitin 6-sulfate is stored at 4 °C and has a shelf life of 1 day. The chondroitin 6-sulfate powder is stored in a desiccator at 4 °C.

Formation of Matrix Pore Structure

Skin Regeneration Template

1. Freeze dryer (VirTis Genesis, VirTis, Gardiner, NY). Required to freeze the sus-pension and to sublimate the ice crystals, leaving behind a highly porous matrix structure. The freeze dryer is equipped with trays that are pressed against the chamber shelves when placed in the freeze dryer. These trays ensure good con-tact between the cooled shelf and the product, and are important for proper pore formation in the skin regeneration template.

Nerve Regeneration Template

1. Polyvinylchloride (PVC) tubing (0.125 in. id, 0.25 in. od), cut into 12-cm lengths.2. Silicone processing tubes (model 602-235 medical grade Silastic, 0.058 in. id,

0.077 in. od, Dow-Corning, Midland, MI) cut into 15-cm lengths.3. Silicone adhesive (Medical Grade Silastic, Dow Corning, MI)4. Liquid nitrogen: 160-L canister

Page 3: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

271Materials

5. Axial freezing bath: This custom-made device is required to freeze the suspen-sion for a nerve regeneration template (Loree 1988). To achieve the appropriate pore structure, the suspension is injected into tubes and lowered into a freezing bath. The freezing apparatus consists of a liquid nitrogen-controlled cooling sys-tem and a gear train arrangement, which allows for variable lowering velocities. The cooling system uses liquid nitrogen, traveling through coiled copper tub-ing to cool the transfer fluid inside the bath (Silicone Oil, Slytherm XLT Heat Transfer Liquid, Dow Corning, MI). A simple temperature controller is used to regulate the flow of liquid nitrogen. The freezing bath is insulated with hard Styrofoam and capped with an acrylic disk.

6. Freeze dryer (CirTi Genesis). Required to sublimate the ice crystals, leaving behind a highly porous matrix structure.

Crosslinking, Sterilization, and Hydration

Skin Regeneration Template

1. Vacuum oven (Fisher Isotemp Vacuum Oven, Fisher Scientific, Boston, MA; VacTorr 150 Vacuum Pump, GCA/Precision Scientific, Chicago, IL).

2. Silicone adhesive (Silastic, Dow-Corning, MI); sterilize by autoclaving. 3. Sterile implements: 5-L plastic tub (approx. W11 × L14 × D4 in.) with Teflon

cover (does not need to seal, only cover the tub), gauze, Teflon working sur-face, forceps, metal spatulas, rulers, scalpel blade holder, and scalpel blades. Sterilize by autoclaving.

4. Laminar flow bench (Relialab, Tenney Engineering, Union, NJ). All sterile pro-cedures are performed in the laminar flow bench.

5. 0.05 M acetic acid solution: Add 2.9 mL glacial acetic acid (Mallinckrodt) to 1000 mL dH20. Sterilize by filtration using a 0.2-µm filter (cat. No. 8310, Costar Scientific, Cambridge, MA). This solution has a shelf life of approx. 1 week.

6. 0.25 % glutaraldehyde in 0.05 M acetic acid: Combine 10 mL of 25 % glutar-aldehyde and 3 mL of 3 mL glacial acetic acid. Add distilled water to 100 mL. Add an additional 900 mL of dH20. This solution has a shelf life of about 1 week, and is stored in a dark container at room temperature. Sterilize by filtra-tion using a 0.2-µm filter.

7. 4000 mL dH20: Sterilize by filtration using a 0.2-µm filter. 8. Teflon cutting template: Make a matrix-cutting template by cutting a piece of

Teflon the size and shape of the desired matrix sheet. Using this type of tem-plate the matrix is cut without tearing, and is ensured the proper size matrix sheet. Sterilize template by autoclaving.

9. Phosphate buffered saline (PBS) (cat. No. P-3813, Sigma), 1000 mL: Sterilize by filtration using a 0.2-µm filter.

10. 70 % isopropanol in dH20, 1000 mL: Sterilize by filtration using a 0.2-µm filter

Page 4: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

272 Appendix

Nerve Regeneration Template

1. Implantation tubes1: For implantation, the nerve regeneration template is ensheathed by an implantation tube. Tubes that can be used include porous colla-gen tubes (1.5 mm id, 3.0 mm od, Integra), nonporous collagen tubes (1.5 mm id, 1.8 mm od, Integra), and silicone tubes (model 602-235 medical grade Silastic, 0.058 in. id 0.077 in. od, Dow-Corning).

2. Vacuum oven (Fisher Isotemp Vacuum Oven, Fisher Scientific; VacTorr 150 Vacuum Pump, GCA/Precision Scientific).

3. Sterile implements: several pair of forceps, scalpel blade holder, scalpel blades, ruler, specimen jars, and a Teflon working surface. Sterilize by autoclaving.

4. PBS (cat. No. P-3813, Sigma) 1000 mL: Sterilize by filtration using a 0.2-µm filter.

5. 70 % isopropanol in dH20, 1000 mL: Sterilize by filtration using a 0.2-µm filter

Methods

Preparation of Collagen-GAG Suspension

The technique for preparing the collagen-GAG suspension is identical for the SRT and NRT (after 2000 NRT has been prepared without GAG and otherwise had simi-lar structure to SRT). It is important that the collagen and GAG components remain refrigerated; therefore, the entire suspension preparation must take place at 4 °C.

1. Defrost a 14-g aliquot of frozen hydrated tendon collagen for 30–60 min at room temperature.

2. Turn on cooling system for blender and cool to 4 °C (takes about 30 min).3. Add 13.69 g of defrosted hydrated tendon collagen (or 3.6 of dry collagen), all

at once, to 600 mL of 0.05 M acetic acid in one blender, and blend at high speed setting (approx. 20,000 RPM) for 90 min.2

4. Calibrate the peristaltic pump to 40 mL/5 min.5. Add 120 mL of 0.11 % w/v chondroitin 6-sulfate solution dropwise to the blend-

ing collagen dispersion over 15 min, using the peristaltic pump (maintain blender at 4 °C and high-speed setting).

1 Using a degradable, collagen implantation tube yields a superior regenerated nerve than when using a nondegradable, silicone tube for regeneration across a 10-mm gap in the rat sciatic nerve. This finding is based on histological data at 30 week (Chamberlain 1996).2 The blending time is critical because this is the step that induces swelling of the collagen fibrils and conversion of about 90 % of banded collagen fibers to unbanded structures (Forbes 1980). The blending procedure does not, however, remove the triple helical structure of collagen (Yannas et al. 1980). Banded collagen induces platelet aggregation; by removing the banding, the collagen fibrils do not aggregate platelets (Sylvester et al. 1989). Blending for shorter times, or at slower speeds, does not eliminate the banding to the desired extent.

Page 5: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

273Methods

6. Blend the mixture for an additional 90 min on high-speed setting (approx. 20,000 RPM).

7. Pour out the collagen-GAG suspension and store in a capped bottle at 4 °C. The suspension has a shelf life of about 4 month.3 If stored more than 4 week, reblend for 15 min at low speed (approx. 10,000 RPM), in cooled blender (4 °C), before using.

Formation of the Matrix Pore Structure

Skin Regeneration Template

1. Remove the air from the collagen-GAG suspension by placing it into a 1500 mL Erlenmeyer flask under vacuum for 10 min with agitation, or until bubbles are no longer visible.

2. Set the shelf temperature of the freeze-dryer to − 45 °C. 3. Turn on the condenser of the freeze-dryer. 4. Allow at least 1 h for the shelf temperature to reach − 45 °C. 5. Pour the collagen-GAG suspension into an aluminum VirTis freeze-dryer tray.

The depth of the suspension can be varied to change the thickness of the result-ing dry matrix.

6. Place the suspension-filled tray on the freeze-dryer shelf, and close the cham-ber door. Be sure that the tray and the shelf are in good contact.

7. Wait for approx. 1 h (or longer if necessary) until the collagen-GAG suspension is frozen.4

8. Check the condenser temperature. It must be at − 50 °C or below before pro-ceeding to the next step.

9. After the suspension is frozen, turn on the freeze-dryer vacuum pump. Make sure the chamber door makes a good seal.

10. Once the vacuum is below 200 mTorr, increase the shelf temperature to 0 °C.11. Leave overnight (at least 15 h).12. Increase the shelf temperature to 20 °C.13. When the chamber reaches 20 °C, turn off the vacuum pump and condenser.

Release the vacuum in the chamber and remove the dry collagen-GAG matrix in the form of a white, highly porous sheet.

3 Collagen-GAG suspension that is stored for over 4 month may be contaminated with fungus. It is recommended to prepare the suspension shortly before matrices are to be manufactured to avoid possible contamination.4 Freezing the collagen-GAG suspension on a cool, flat surface creates randomly oriented pore channels with approximately circular cross sections. The average pore diameter can be manipulat-ed by varying the shelf temperature. For optimum dermal regeneration the pores must be between 20 and 125 µm (Yannas et al. 1989). Freezing at − 45 °C typically results in pores with an average channel diameter of 70 ± 30 µm (Fig. 3a).

Page 6: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

274 Appendix

Nerve Regeneration Template

1. Prepare vented PVC jackets by heating 12-cm sections of flexible PVC tubing at 105 °C for 2 h, to straighten. Puncture each tube with a 25 gage needle at 90-degree intervals around the tube, spaced 1 cm apart for the length of the tube.

2. Flush silicone processing tubes (15 cm in length) with dH20, and let dry. 3. Seal one end of each silicone processing tube with silicone adhesive. Inject a

cylindrical plug of adhesive, approx. 5 mm in length, into the end of silicone tube and allow the excess to stay on the outside of the tube. The excess is important for adhesion and can be cut off later. Let cure for 24 h at room tem-perature to a tack-free, elastomeric state.

4. Prepare for use a 160-L liquid nitrogen tank for the bath cooling system. 5. Remove the air from the collagen-GAG suspension by placing into a 1500-ml

Erlenmeyer flask under vacuum for 10 min with agitation, or until bubbles are no longer visible.

6. Turn on the cooling system of the axial freezing bath and set the bath tempera-ture to − 80 °C.5 It takes approx. 45 min of liquid nitrogen cooling for the bath to reach this temperature.

7. Insert each plugged silicone processing tube into a prepared PVC jacket. 8. Draw collagen-GAG suspension into a 10-cc syringe (Becton Dickinson model

5604, Becton Dickinson, Rutherford, NJ) and expel all the air bubbles. Attach a 25-gage needle (Becton Dickinson model 25G5/8, Becton Dickinson) to the syringe and insert the needle carefully into the plugged end of the silicone tube. The needle should be inserted far enough so that a needle length of about 3–5 mm extends beyond the Silastic plug into the tube.

9. Inject collagen-GAG suspension until the tube is full and no air remains in the tube. Pinch the free end of the silicone processing tube against the wall of the PVC jacket using a conical, plastic plug (the end of a pipet tip works well). Insert the plug far enough so that the silicone processing tube is sealed, and no suspension can leak out. Insert another conical, plastic plug into the needle end of the tube. The plug at the needle end should not block the flow of the suspen-sion into the silicone tube via the needle.

10. Inject additional suspension until the silicone processing tube becomes pres-surized and expands to fill the entire PVC jacket. The silicone tube will inflate because of pressure from the injection of additional suspension. The end of the needle should be inside the PVC jacket to help prevent pressure build up at the needle tip. When the silicone tube has completely filled the PVC jacket, care-fully remove the needle; simultaneously, press the conical plug into the end of the tube until the silicone processing tube is pinched against the PVC jacket

5 The temperature of the axial freezing bath controls the average pore diameter. In the case of NRTs, pores with an average diameter of 5–10 µm were determined to be optimal for the regenera-tion of axons (Chang et al. 1990; Chang and Yannas 1992; Loree et al. 1989). Freezing at − 80 °C results in pore channels that average 5–10 µm in diameter (Fig. 3b). Higher freezing temperatures result in larger pore diameters (Loree 1988).

Page 7: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

275Methods

and sealed. Pressure should be kept on the syringe plunger until the needle is completely out of the tube. Check to make sure the silicone processing tube is still filling the entire PVC jacket.

11. Attach the drive gear to the electric timing motor on the axial freezing appara-tus. Place prepared PVC jackets, up to four at a time, on the tube carrier. Place the tube carrier on the gear train and manually lower until the bottom of the PVC jacket assembly is just touching the freezing bath. Start the motor and let the tubes lower into the bath at a velocity of 10− 4 m/s.6 Monitor the process of lowering to ensure that the tubes do not stick to the copper tubing in the freez-ing bath.

12. Turn on the freeze dryer and set the shelf temperature to − 20 °C.13. Turn on the condenser of the freeze dryer.14. When the PVC jackets are fully immersed in the freezing bath, turn-off the

timing motor and remove the tubes from the bath. Quickly separate the tubes and remove the conical plugs. Cut off the plugged end of the silicone tube and cut each PVC jacket assembly approximately in half with a sharp razor blade. This process provides more exposed surface for sublimation of the ice crystals. Lay the PVC jacket assemblies on a freeze dryer tray and place the tray in the − 20 °C freeze dryer. This step must be done as quickly as possible (within a minute) to ensure that the tubes stay completely frozen.

15. Seal the chambers on the freeze dryer and close the vacuum outlet tube. Check to be sure the condenser temperature is below − 45 °C (if not, wait for the con-denser temperature to reach − 45 °C before proceeding to the next step).

16. Turn on the vacuum pump and wait for the vacuum to reach 200 mTorr. Make sure that the chamber door is sealed.

17. Once the vacuum reaches 200 mTorr, increase the shelf temperature to 0 °C. Leave the PVC jacket assemblies in the freeze dryer for 17 h at this temperature and pressure.

18. Increase the temperature to 25 °C, then turn-off the vacuum pump and the con-denser. Release the vacuum and remove the PVC jacket assemblies, which con-tain the dry, white, highly porous matric inside the silicone processing tubes.

Crosslinking, Sterilization, and Hydration

Skin Regeneration Template

1. After removing the dry collagen-GAG matrix from the freeze-dryer, inspect the matrix for any irregularities; using a scalpel blade, remove any regions that appear to be distinctly different in appearance from that expected of a very highly

6 By slowly lowering the suspension-filled tubes into the freezing bath, the pores form as axially aligned channels. The degree of axial alignment can be modified by changing the lowering veloc-ity. For example, quenching the tubes in the freezing bath ( V = 1 m/s) creates radial pores, while lowering the device into the bath much more slowly, say at 10−4 m/s, results in highly aligned axial pores (Forbes 1980; Yannas and Tobolsky 1967), which are preferable for regeneration (Chang et al. 1990; Chang and Yannas 1992; Loree et al. 1989).

Page 8: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

276 Appendix

porous solid of uniform thickness. Usually these regions will be located near the pan edges. Take note of the difference between the pan side (the side that was in contact with the horizontal pan surface) and the air side (the side that was in con-tact with the environment) of the dry matrix. The pan side has a much smoother surface. Future steps will require distinguishing between the pan and air sides of the dry matrix.

2. Make an aluminum foil pouch large enough to fit the sheet of dry matrix. Take a large piece of foil and fold it in half. The folded edge is now the bottom of the pouch. Take the left edges and fold, at least twice, to form a sealed side. Repeat on the right side of the pouch. Insert the dry matrix into the pouch (one sheet of matrix per pouch) and leave the top open.

3. Place the matrix-filled pouch (top open) in the vacuum oven for dehydrother-mal (DHT) treatment.7 The conditions of treatment in the vacuum oven are: 30 mTorr, 105 °C, 24 h.

4. After 24 h, remove the pouch and immediately seal the top by folding the top edges of the foil pouch at least twice. If the matrix is not being prepared for immediate use, it can be stored in the foil pouch in a desiccator (upto 1 year) until needed. The matrix is now sterile and must be handled using sterile procedure from this point.

5. After the DHT process, or after storage, sterile silicone adhesive is placed on the dry matrix. Prepare a sterile field in the laminar flow hood and place in it all sterile implements, including the sterile silicone adhesive and the dry matrix (dropped in the sterile area out of the foil pouch; the pouch can be discarded). Prepare operator for sterile work in gown, cap, coat, and sterile gloves. Pour 1000 mL of 0.05 M sterile acetic acid solution into the sterile 5-L plastic tub. Cover tub loosely with the sterile Teflon cover.

6. Place the matrix on the sterile Teflon working surface with the air side up (the silicone adhesive is placed on the air side of the dry matrix). Squeeze a long bead of the viscous silicone fluid along one edge of the dry matrix sheet. Holding the matrix with one finger on the edge, spread the silicone in a thick layer, using straight sweeps of the spatula toward the opposite edge of the sheet. Use only one sweep of the spatula for each portion of the dry matrix. Wipe the spatula clean with sterile gauze. Another bead of silicone adhesive may be necessary in the canter of the dry matrix to reach the opposite edge, if the matrix sheet is large. Spread along the pore channels, if possible, so the matrix does not tear.

7. Next, use the spatula at a 90° angle to remove the excess silicone and create a thin layer of approximately constant thickness (approx. 1 mm) Use single strokes to cover each area. Exercise care, since the dry matrix tears easily. If tearing occurs, it will be necessary to discard the torn portion of the coated sheet. Wipe the spatula often with the gauze to remove excess silicone adhesive.

7 DHT treatment in a vacuum oven at 105 °C for 24 h serves as a method of crosslinking (Yannas 1972; Yannas et al. 1975)and sterilizing (Yannas et al. 1980) the prepared matrices. Treatment at 105 °C does not affect the triple helical structure of the collagen, provided the moisture content at the beginning of DHT treatment is below 10 wt%, which is achieved by freeze-drying the matrices (Yannas et al. 1980).

Page 9: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

277Methods

8. Immerse the matrix, silicone side up, in the acetic acid solution for 15 s. Flip the matrix over, silicone side down, and leave it for 20 h in the covered tub filled with acetic acid.

9. After 20 h in the acetic acid solution, the air bubbles must be removed from the hydrated matrix. Prepare operator for sterile procedure (as in step 5). Remove the air in the hydrated matrix by holding one edge of the matrix (wearing sterile gloves) and gently rubbing the hydrated matrix with one finger until air bubbles come out. Be careful not to tear the hydrated matrix.

10. Turn the matrix over so that the silicone side faces up; allow it to rehydrate in the acetic acid for 4 h. Remove any trapped air bubbles. After the 4-h rehydra-tion, remove the acetic acid from the tub with suction. If the matrix is allowed to dehydrate, the pores close and its activity will be lost.

11. Within 1 min or less after removing the acetic acid, begin pouring 1000 mL of sterile 0.25 % glutaraldehyde in 0.05 M acetic acid into the tub. Pour carefully, to avoid air bubbles. Remove any air bubbles by gently rubbing the foam (see step 9). Soak the matrix in the glutaraldehyde solution for 24 h in the covered tub at ambient temperature (20–22 °C).8

12. Remove the excess glutaraldehyde solution with suction. Rinse the matrix 3x by adding three 1000-ml sterile water rinses to the tub, allowing the matrix to soak for 10 min in each rinse, then remove the rinse water with suction. Add a fourth rinse of sterile water (1000 mL) to the tub, cover, and soak the matrix for 24 h (see step 9).

13. After the 24-h period, the matrix must be cut and stored. Remove the hydrated, porous matrix from the water and place it, silicone side down, on the Teflon sheet. Be careful not to let the matrix fold. Cut away any jagged edges with a scalpel. Place the Teflon cutting template on the matrix and cut around it gently with a scalpel. Do not press down on the template while cutting. Hold only the edges of the matrix. This step must be completed within less than 1 min to pre-vent dehydration (which leads to pore closure and deactivation of the matrix).

14. For immediate use, place the cut matrix in a storage container filled with sterile PBS. The matrix can be stored in this medium for 1 day. For longer term stor-age, place the cut matrix into a storage container with 70 % sterile isopropanol. Store at 4 °C in this medium up to 30 day. Place the matrix in PBS for 12–24 h prior to use as an implant.

8 Glutaraldehyde is used to covalently crosslink the matrix in addition to crosslinking introduced by DHT treatment and may be omitted if a lower level of crosslink density (leading to a more rapid degradation rate in vivo) is desired (26; Yannas et al. 1980). For the SRT, a 24-h treatment in glutaraldehyde resulted in a degradation rate favorable for dermal regeneration. The maximum allowable degradation rate is 140 enzyme unites, as determined by using an in vitro collagenase digestion assay (Yannas et al. 1989). Glutaraldehyde treatment is not used for the NRT, since a rapidly degrading collagen-GAG matrix was found to be optimal for peripheral nerve regenera-tion (Chang 1988; Chang and Yannas 1992; Chang et al. 1990). Although the SRT has a higher crosslink density because of glutaraldehyde treatment, the degradation half-life of the SRT is much shorter than the NRT speculatively due to a significantly lower collagenolytic activity in a nerve lesion compared to a skin lesion (Table 1).

Page 10: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

278 Appendix

Nerve Regeneration Template

1. Make an aluminum foil pouch for each PVC jacket assembly (containing the silicone processing tube and the matrix). Take a large piece of foil and fold it in half. The folded edge is now the bottom of the pouch. Take the left edges and fold, at least twice, to form a sealed side. Repeat on the right side of the pouch. Insert the PVC jacket assembly into the pouch (one tube per pouch) and leave the top open. The PVC jacket is left in place to protect the matrix from damage during handling and storage.

2. Prepare foil pouches (see step 1) for the implantation tubes. Place each implan-tation tube in a pouch, leaving the top open.

3. Place the matrix-filled pouches (top open) and the implantation tube pouches (top open) in the vacuum oven for the DHT treatment.9 The conditions of treat-ment in the vacuum oven are: 30 mTorr, 105 °C, 24 h.

4. After 24 h, remove each pouch and immediately seal the top by folding the top edges of the foil pouch, at least twice. If the matrix is not being prepared for immediate use, it can be stored in the foil pouch in a desiccator (up to 1 year) until needed. The matrix is now sterile and must be handled using sterile proce-dure from this point.

5. After the DHT process is complete, the matrix can be cut and hydrated for use. Prepare a sterile field and place in it all-sterile implements, including the PVC jacket assemblies and implantation tubes. Prepare the operator for sterile work in gown, cap, coat, and sterile gloves.

6. Under sterile conditions, trim each implantation tube to a length of 20 mm, using a scalpel.

7. Remove the matrix from the silicone processing tube by making a careful slit with the scalpel down the length of the silicone tube and gently pulling out the matrix with forceps. Discard the silicone processing tube.

8. Trim off any crushed or otherwise damaged pieces of the dry matrix. Cut the remaining portion of the dry matrix into 10-mm segments. The exact length depends on the experimental design for use for use of the implant.

9. Insert each 10-mm segment of matrix into the center of a trimmed implantation tube.

10. Place each implant into a specimen jar filled with sterile PBS for hydration and short term (less than 2 day) storage. If implants will not be used immediately, store at 4 °C in 70 % isopropanol for up to 30 day. Transfer the implants to ster-ile PBS solution 1 day prior to implantation.

9 After approx. 2000 the structure of the NRT was prepared in the Yannas laboratory at MIT nearly identically to that of SRT/DRT with respect to pore size and crosslinking treatment. Also, the GAG component was omitted (See Yannas I.V. 2015. Tissue and Organ Regeneration in Adult. Second Edition. New York: Springer).

Page 11: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

279References for the Appendix

References for the Appendix

Billingham, R. E., & Medawar, P. B. (1951). The technique of free skin grafting in mammals. The Journal of Experimental Biology, 28, 385–394.

Billingham, R. E., & Medawar, P. B. (1955). Contracture and intussusceptive growth in the healing of extensive wounds in mammalian skin. Journal of Anatomy, 89, 114–123.

Burke, J. F., Yannas, I. V., Quinby, W. C. Jr., Bondoc, C. C., & Jung, W. K. (1981). Successful use of a physiologically acceptable artificial skin in the treat-ment of extensive skin injury. Annals of Surgery, 194, 413–428.

Chamberlain, L. J. (1996). Long term functional and morphological evaluation of peripheral nerves regenerated through degradable collagen implants. S. M. The-sis, Massachusetts Institute of Technology.

Chang, A. S.-P. (1988). Electrophysiological recovery of peripheral nerves re-generated by biodegradable polymer matrix. S. M. Thesis, Massachusetts Institute of Technology.

Chang, A. S., & Yannas, I. V. (1992). Peripheral nerve regeneration. In B. Smith & G. Adelman (Eds.), Neuroscience year (Supplement 2 to Encyclopedia of Neuro-science) (pp. 125–126). Boston: Birkhaüser.

Chang, A. S., Yannas, I. V., Perutz, S., Loree, H., Sethi, R., Krarup, C., et al. (1990). Electrophysiological study of recovery of peripheral nerves regenerated by a collagen-glycosaminoglycan copolymer matrix. In C. G. Gebelein & R. L. Dunn (Eds.), Progress in biomedical polymers (pp. 107–120). New York: Plenum.

Forbes, M. J. (1980). Cross-flow filtration, transmission electron micrographic analysis and blood compatibility testing of collagen composite materials for use as vascular prosthesis. S. M. Thesis, Massachusetts Institute of Technology.

Heimbach, D., Luterman, A., Burke, J., Cram, A., Herndon, D., Hunt, J., et al. (1988). A multi-center randomized clinical trial: Artificial dermis for major burns. Annals of Surgery, 208, 313–320.

Loree, H. (1988). A freeze-drying process for fabrication of polymeric bridges for peripheral nerve regeneration. S. M. Thesis, Massachusetts Institute of Technol-ogy.

Loree, H. M., Yannas, I. V., Mikic, B., Chang, A. S., Perutz, S. M., Norregaard, T. V., & Krarup, C. (1989). A freeze drying process for fabrication of polymeric bridges for peripheral nerve regeneration. Proceedings of Northeast Bioengineering Conference, pp. 53–54.

Lundborg, G., Dahlin, L. B., Danielsen, N., Gelberman, R. H., Longo, F. M., Powell, H. C., & Varon, S. (1982). Nerve regeneration in silicone chambers: In-fluence of gap length and distal stump components. Experimental Neurology, 76, 361–375.

Page 12: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

280 Appendix

Murphy, G. F., Orgill, D. P., & Yannas, I. V. (1990). Partial dermal regeneration is induced by biodegradable collagen-glycosaminoglycan grafts. Laboratory Inves-tigation: A Journal of Technical Methods and Pathology, 63, 305–313.

Orgill, D. P., Butler, C. E., & Regan, J. F. (1996). Behavior of collagen-GAG matrices as dermal replacement in rodent and porcine models. Wounds, 8, 151–157.

Stern, R., McPherson, M., & Longaker, M. T. (1990). Histologic study of artifi-cial skin used in the treatment of full-thickness thermal injury. Journal of Burn Care & Rehabilitation, 11, 7–13.

Sylvester, M., Yannas, I. V., & Salzman, E. W. (1989). Collagen banded fibril structure and the collagen platelet reaction. Thrombosis Research, 55, 135.

Yannas, I. V. (1972). Collagen and gelatin in the solid state. Journal of Macro-molecular Science: Reviews in Macromolecular Chemistry & Physics, C7, 49–104.

Yannas, I. V. (1995). Regeneration templates. In J. D. Bronzino (Ed.), The bio-medical engineering handbook (pp. 1619–1635). Boca Raton: CRC.

Yannas, I. V., & Tobolsky, A. V. (1967). Cross-linking of gelatin by dehydration. Nature, 215, 509–510.

Yannas, I. V., Burke, J. F., Huang, C., & Gordon, P. L. (1975). Correlation of in vivo collagen degradation rate with in vitro measurements. Journal of Biomedical Materials Research, 8, 623–628.

Yannas, I. V., Burke, J. F., Gordon, P. L., Huang, C., & Rubenstein, R. H. (1980). Design of and artificial skin. II. Control of chemical composition. Journal of Bio-medical Materials Research, 14, 107–131.

Yannas, I. V., Burke, J. F., Warpehoski, M., Stasikelis, P., Skrabut, E. M., Orgill, D., & Giard, D. J. (1981). Prompt, long-term functional replacement of skin. Trans-actions American Society for Artificial Internal Organs, 27, 19–22.

Yannas, I. V., Burke, J. F., Orgill, D. P., & Skrabut, E. M. (1982). Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Sci-ence, 215, 174–176.

Yannas, I. V., Orgill, D. P., Silver, J., Norregaard, T. V., Zervas, N. T., & Schoene, W. C. (1987). Regeneration of sciatic nerve across 15 mm gap by use of a polymeric template. In C.G. Gebelein (Ed.), Advances in biomedical polymers (pp. 1–9). New York: Plenum.

Yannas, I. V., Lee, E., Orgill, D. P., Skrabut, E. M., & Murphy, G. F. (1989). Synthesis and Characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proceedings of the National Academy of Sci-ences of the United States of America, 86, 933–937.

Page 13: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

281References for the Appendix

Abercrombie, M., James, D. W., & Newcombe, J. F. (1960). Wound contraction in rabbit skin, studied by splinting the wound margins. Journal of Anatomy, 94, 170–182.

Abraham, J. A., & Klagsbrun, M. (1996). Modulation of wound repair by members of the fibro-blast growth factor family. In R. A. F. Clark (Ed.), The molecular and cellular biology of wound repair. New York: Plenum.

Adams, S. R., Campbell, R. E., Gross, L. A., Martin, B. R., Walkup, G. K., Yao, Y., Liopis, J., & Tsien, R. Y. (2002). New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications. Journal of the American Chemical Society, 124, 6063–6076.

Adzick, N. S., & Lorenz, H. P. (1994). Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair. Annals of Surgery, 220, 10–18.

Aebischer, P., Guénard, V., Winn, S. R., Valentini, R. F., & Galletti, P. M. (1988). Blind-ended semipermeable guidance channels support peripheral nerve regeneration in the absence of a distal nerve stump. Brain Research, 454, 179–187.

Aebischer, P., Salessiotis, A. N., & Winn, S. R. (1989). Basic fibroblast growth factor released from synthetic guidance channels facilitates regeneration across long nerve gaps. Journal of Neuroscience Research, 23, 282–289.

Aguayo, A. J., Peyronnard, J. M., & Bray, G. M. (1973). A qualitative ultrastructural study of regeneration from isolated proximal stumps of transected umyelinated nerves. Journal of Neu-ropathology and Experimental Neurology, 32, 256–270.

Aihara, M. (1989). Ultrastructural study of grafted autologous cultured human epithelium. British Journal of Plastic Surgery, 42, 35–42.

Albertson, S., Hummel, R. P., Breeden, M., & Greenhalgh, D. S. (1993). PDGF and FGF reverse the healing impairment in protein-malnourished diabetic mice. Surgery, 114, 368–373.

Aldini, N. N., Perego, G., Cella, G. D., Maltarello, M. C., Fini, M., Rocca, M., & Giardino, R. (1996). Effectiveness of a bioresorbable conduit in the repair of peripheral nerves. Biomater, 17, 959–962.

Allbrook, D. (1962). An electron microscopic study of regenerating skeletal muscle. Journal of Anatomy, 96, 137–152.

Al-Mulla, F., Leibovich, S. J., Francis, I. M., & Bitar, M. S. (2011). Impaired TGF-β signaling and a defect in resolution of inflammation contribute to delayed wound healing in a female rat model of type 2 diabetes. Molecular BioSystems, 7, 3006–3020.

Alvarez, O. M., Goslen, J. B., Eaglestein, W. H., Welgus, H. G., & Stricklin, G. P. (1987). Wound healing. In T. B. Fitzpatrick, A. Z. Eisen, K. Wolff, I. M. Freedberg, & K. F. Austen (Eds.), Dermatology in general medicine (3rd ed.). New York: McGraw-Hill.

Amadio, P. C. (1992). Tendon and ligament. In I. K. Cohen, R. F. Diegelmann, & W. J. Lindblad (Eds.), Wound healing. Philadelphia: Saunders.

Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2013). Bone tissue engineering: Recent ad-vances and challenges. Critical Reviews in Biomedical Engineering, 40, 363–408.

Ananta, M., Brown, R. A., & Mudera, V. (2012). A rapid fabricated living dermal equivalent for skin tissue engineering: An in vivo evaluation in an acute wound model. Tissue Engineering. Part A, 18, 353–361.

Ansselin, A. D., Fink, T., & Davey, D. F. (1997). Peripheral nerve regeneration through nerve guides seeded with adult Schwann cells. Neuropathology and Applied Neurobiology, 23, 387–398.

Antebi, B., Cheng, X., Harris, J. N., Gower, L. B., Chen, X. D., & Ling, J. (2013). Biomimetic collagen-hydroxyapatite composite fabricated via a novel perfusion-flow mineralization tech-nique. Tissue Engineering. Part C, Methods, 19, 487–496.

Arbuthnot, R., Boyd, I. A., & Kalu, K. U. (1980). Ultrastructural dimensions of myelinated periph-eral nerve fibers in the cat and their relation to conduction velocity. The Journal of Physiology, 308, 125–157.

Archibald, S. J., & Fisher, T. R. (1987). Micro-surgical fascicular nerve repair: A morphological study of the endoneurial bulge. The Journal of Hand Surgery, 12, 5–10.

Page 14: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

283© Springer Science+Business Media, LLC 2015I. V. Yannas, Tissue and Organ Regeneration in Adults,DOI 10.1007/978-1-4939-1865-2

References

Archibald, S. J., Krarup, C., Sheffner, J., Li, S. T., & Madison, R. D. (1991). A collagen-based nerve guide conduit for peripheral nerve repair: An electrophysiological study of nerve re-generation in rodents and nonhuman primates. The Journal of Comparative Neurology, 306, 685–696.

Archibald, S. J., Sheffner, J., Krarup, C., & Madison, R. D. (1995). Monkey median nerve repaired by nerve graft or collagen nerve guide tube. The Journal of Neuroscience, 15, 4109–4123.

Arora, P. D., Narani, N., & McCulloch, C. A. (1999). The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. The American Journal of Pathology, 154, 871–882.

Asmussen, P. D., & Sollner, B. (1993). Wound care. Stuttgart: Hippokrates.Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., & Retik, A. B. (2006). Tissue-engineered autologous

bladders for patients needing cystoplasty. The Lancet, 367, 1241–1246.Azzam, N. A., Zalewski, A. A., Williams, L. R., & Azzam, R. N. (1991). Nerve cables formed in

silicone chambers reconstitute a perineurial but not a vascular endoneurial permeability barrier. The Journal of Comparative Neurology, 314, 807–819.

Badalamente, M. A., Hurst, L. C., Eilstein, J., & McDevitt, C. A. (1985). The pathobiology of hu-man neuromas: An electron microscopic and biochemical study. The Journal of Hand Surgery, 10, 49–53.

Badiavas, E. V., Paquette, D., Carson, P., & Falanga, V. (2002). Human chronic wounds treated with bioengineered skin: Histologic evidence of host-graft interactions. Journal of the Ameri-can Academy of Dermatology, 46, 524–530.

Badylak, S. F., Kropp, B., McPherson, T., Liang, H., & Snyder, P. W. (1998). Small intestinal sub-mucosa: A rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model. Tissue Engineering, 4, 379–387.

Badylak, S., Meurling, S., Chen, M., Spievack, A., & Simmons-Byrd, A. (2000). Resorbable bioscaffold for esophageal repair in a dog model. Journal of Pediatric Surgery, 35, 1097–1103.

Badylak, S., Kokini, K., Tullius, B., Simmons-Byrd, A., & Morff, R. (2002). Morphologic study of small intestinal submucosa as a body wall repair device. The Journal of Surgical Research, 103, 190–202.

Badylak, S. F., Freytes, D. O., & Gilbert, T. W. (2009). Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia, 5, 1–13.

Bailey, A. J., Bazin, S., Sims, T. J., LeLous, M., Nicoletis, C., & Delaunay, A. (1975). Charac-terization of the collagen of human hypertrophic and normal scars. Biochimica et Biophysica Acta, 405, 412–421.

Page 15: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

284 References

Bailey, S. B., Eichler, M. E., Villadiego, A., & Rich, K. M. (1993). The influence of fibronectin and laminin during Schwann cell migration and peripheral nerve regeneration through silicone chambers. Journal of Neurocytology, 22, 176–184.

Balazs, E., & Larsen, N. E. (2000). The role of hyaluronan-receptor interactions in wound repair. In H. G. Garg & M. T. Longaker (Eds.), Scarless wound healing. New York: Marcel Dekker.

Banks-Schlegel, S., & Green, H. (1980). Formation of epidermis by serially cultivated human epidermal cells transplanted as an epithelium to athymic mice. Transplant, 29, 308–313.

Barber, T. A., Harbers, G. M., Park, S., Gilbert, M., & Healy, K. E. (2005). Ligand density charac-terization of peptide-modified biomaterials. Biomaterials, 26, 6897–6905.

Barczyk, M., Carracedo, S., & Gullberg, D. (2010). Integrins. Cell and Tissue Research, 339, 269–280.

Baron-Van Ebercooren, A., Gansmuller, A., Gumpel, M., Baumann, N., & Kleinman, H. K. (1986). Schwann cell differentition in vitro: Extracellular matrix deposition and interaction. Develop-mental Neuroscience, 8, 182–196.

Barrandon, Y., Li, V., & Green, H. (1988). New techniques for the grafting of cultured human epidermal cells onto athymic animals. The Journal of Investigative Dermatology, 91, 315–318.

Barsa, J., Batra, M., Fink, R., & Sumi, S. M. (1982). A comparative in vivo study of local neuro-toxicity of lidocaine, bupivacaine, 2-chloroprocaine, and a mixture of 2-chloroprocaine and bupivacaine. Anesthesia and Analgesia, 61, 961–967.

Bauer, E. A., Gordon, J. M., Reddick, M. E., & Eisen, A. Z. (1977). Quantitative and immuno-histochemical localization of human skin collagenase in basal cell carcinoma. The Journal of Investigative Dermatology, 69, 363–367.

Baumgartner, H. R., Muggli, R., Tschopp, T. B., & Turitto, V. T. (1976). Platelet adhesion, release and aggregation in flowing blood: Effects of surface properties and platelet function. Throm-bosis and Haemostasis, 35, 124–138.

Baur, P. S., Jr., Parks, D. H., & Hudson, J. D. (1984). Epithelial mediated wound contraction in experimental wounds-the purse-string effect. The Journal of Trauma, 24, 713–720.

Baynosa, R. C., Browder, L. K., Jones, S. R., Oliver, J. A., Van Der Harten, C. A., Stephenson, L. L., Wang, W. Z., Khiabani, K. T., & Zamboni, W. A. (2009). Evaluation of artificial dermis neo-vascularization in an avascular wound. Journal of Reconstructive Microsurgery, 25, 405–410.

Beanes, S. R., Hu, F. Y., Soo, C., Dang, C. M., Urata, M., Ting, K., Atkinson, J. B., Benhaim, P., Hedrick, M. H., & Lorenz, H. P. (2002). Confocal microscopic analysis of scarless repair in the fetal rat: Defining the transition. Plastic and Reconstructive Surgery, 109, 160–170.

Beck, L. S., Chen, T. L., Mikalauski, P., & Ammann, A. J. (1990a). Recombinant human trans-forming growth factor-beta 1(rhTGF-beta1) enhances healing and strength of granulation skin wounds. Growth Factors, 3, 267–275.

Beck, L. S., Chen, T. L., Hirabayashi, S. E., Deguzman, L., Lee, W. P., McFatridge, L. L., Xu, Y., Bates, R. L., & Ammann, A. J. (1990b). Accelerated healing of ulcer wounds in the rabbit ear by recombinant human transforming growth factor-beta1. Growth Factors, 2, 273–282.

Beerens, E., Slot, J., & VanDerLeun, J. (1975). Rapid regeneration of the dermal-epidermal junc-tion after partial separation by vacuum: An electron microscopic study. The Journal of Investi-gative Dermatology, 65, 513–521.

Behrman, J. E., & Acland, R. D. (1981). Experimental study of the regenerative potential of peri-neurium at a site of nerve transection. Journal of Neurosurgery, 54, 79–83.

Bell, E., Ivarsson, B., & Merrill, C. (1979). Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proceedings of the National Academy of Sciences of the United States of America, 76, 1274–1278.

Bell, E., Ehrlich, H. P., Buttle, D. J., & Nakatsuji, T. (1981a). Living skin formed in vitro and ac-cepted as skin-equivalent tissue of full thickness. Science, 211, 1052–1054.

Bell, E., Ehrlich, H. P., Sher, S., Merrill, C., Sarber, R., Hull, B., Nakatsuji, T., Church, D., & Buttle, D. J. (1981b). Development and use of a living skin equivalent. Plastic and Reconstruc-tive Surgery, 67, 386–392.

Page 16: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

285References

Bell, E., Sher, S., Hull, B., Merrill, C., Rosen, S., Chamson, A., Asselineau, D., Dubertret, L., Coulomb, B., Lapiere, C., et al. (1983). The reconstitution of living skin. The Journal of Inves-tigative Dermatology, 81, 2–10.

Bell, E., Sher, S., & Hull, B. (1984). The living skin-equivalent as a structural and immunological model in skin grafting. Scanning Electron Microscopy, 4, 1957–1962.

Bently, J. P. (1967). Rate of chondroitin sulfate formation in wound healing. Annals of Surgery, 165, 186–191.

Bertolami, C., & Donoff, R. B. (1982). Identification, characterization and partial purification of mammalian skin wound hyaluronidase. The Journal of Investigative Dermatology, 79, 417–421.

Besner, G. E., & Klamar, J. E. (1998). Integra Artificial Skin as a useful adjunct in the treatment of purpura fulminans. The Journal of Burn Care & Rehabilitation, 19, 324–329.

Billingham, R. E., & Medawar, P. B. (1950). Pigment spread in mammalian skin: Serial propaga-tion and immunity reactions. Heredity, 4, 141–164.

Billingham, R. E., & Medawar, P. B. (1951). The technique of free skin grafting in mammals. The Journal of Experimental Biology, 28, 385–402.

Billingham, R. E., & Medawar, P. B. (1955). Contracture and intussusceptive growth in the healing of extensive wounds in mammalian skin. Journal of Anatomy, 89, 114–123.

Billingham, R. E., & Reynolds, J. (1952). Transplantation studies on sheets of pure epidermal epi-thelium and epidermal cell suspensions. British Journal of Plastic Surgery, 5, 25–36.

Billingham, R. E., & Russell, P. S. (1956). Studies on wound healing, with special reference to the phenomenon of contracture in experimental wounds in rabbits’ skin. Annals of Surgery, 144, 961–981.

Birchall, M. A., Ayling, S. M., Harley, R., Murison, P. J., Burt, R., Mitchard, L., Jones, A., Mac-chiarini, P., Stokes, C. R., & Bailey, M. (2012). Laryngeal transplantation in minipigs: Early immunological outcomes. Clinical and Experimental Immunology, 167, 556–564.

Birk, D. E., & Trelstad, R. L. (1985). Fibroblasts compartmentalize the extracellular space to regu-late and facilitate collagen fibril, bundle, and macro-aggregate formation. In A. H. Reddi (Ed.), Extracellular matrix: Structure and function. New York: Alan R. Liss.

Bishop, S. M., Walker, M., Rogers, A. A., & Chen, W. Y. (2003). Importance of moisture balance at the wound-dressing interface. Journal of Wound Care, 12, 125–128.

Bjorklund, A., & Stenevi, U. (1984). Intracerebral neural implants: Neuronal replacement and reconstruction of damaged circuitries. Annual Review of Neuroscience, 7, 279–308.

Borkenhagen, M., Stoll, R. C., Neuenschwander, P., Suter, U. W., & Aebischer, P. (1998). In vivo performance of anew bioegradable polyester urethane system used as a nerve guidance chan-nel. Biomaterials, 19, 2155–2165.

Bosca, A. R., Tinois, E., Faure, M., Kanitakis, J., Roche, P., & Thivolet, J. (1988). Epithelial differ-entiation of human skin equivalents after grafting onto nude mice. The Journal of Investigative Dermatology, 91, 136–141.

Böttcher-Haberzeth, S., Biedermann, T., Schiestl, C., Hartmann-Fritsch, F., Schneider, J., Reich-mann, E., & Meuli, M. (2012). Matriderm® 1 mm versus Integra® Single Layer 1.3 mm for one-step closure of full thickness skin defects: A comparative experimental study in rats. Pedi-atric Surgery International, 28, 171–177.

Boyce, S. T., & Ham, R. G. (1983). Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. The Journal of Investigative Dermatology, 81, 33–40.

Boyce, S. T., & Ham, R. G. (1985). Cultivation, frozen storage, and clonal growth of normal hu-man epidermal keratinocytes in serum-free medium. Journal of Tissue Culture Methods, 9, 83–93.

Boyce, S. T., & Hansbrough, J. F. (1988). Biologic attachment and growth of cultured human kera-tinocytes onto a graftable collagen and chondroitin 6-sulfate substrate. Surgery, 103, 421–431.

Boyce, S. T., Christianson, D., & Hansbrough, J. F. (1988). Structure of a collagen-GAG substi-tute optimized for cultured human epidermal keratinocytes. Journal of Biomedical Materials Research, 22, 939–957.

Page 17: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

286 References

Boyce, S. T., Greenhalgh, D. G., Kagan, R. J., Housinger, T., Sorrell, J. M., Childress, C. P., Rie-man, M., & Warden, G. D. (1993). Skin anatomy and antigen expression after burn wound closure with composite grafts of cultured skin cells and biopolymers. Plastic and Reconstruc-tive Surgery, 91, 632–641.

Boykin, J. V., & Molnar, J. A. (1992). Burn scar and skin equivalents. In I. K. Cohen, R. F. Diegel-mann, & W. J. Lindblad (Eds.), Wound healing. Philadelphia: Saunders.

Bradley, J. L., Abernethy, D. A., King, R. H., Muddle, J. R., & Thomas, P. K. (1998). Neural archi-tecture in transected rabbit sciatic nerve after prolonged nonreinnervation. Journal of Anatomy, 192, 529–538.

Brandt, J., Nilsson, A., Kanje, M., Lundborg, G., & Dahlin, L. B. (2005). Acutely-dissociated Schwann cells used in tendon autografts for bridging nerve defects in rats: A new principle for tissue engineering in nerve reconstruction. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 39, 321–325.

Breitkreutz, D., Mirancea, N., & Nischt, R. (2009). Basement membranes in skin: Unique matrix structures with diverse functions? Histochemistry and Cell Biology, 132, 1–10.

Breitkreutz, D., Koxholt, I., Thiemann, K., & Nischt, R. (2013). Skin basement membrane: The foundation of epidermal integrity-BM functions and diverse roles of bridging molecules nido-gen and perlecan. BioMed Research International, 2013, 179784.

Breuing, K., Eriksson, E., Liu, P. Y., & Miller, D. R. (1992). Healing of partial thickness porcine skin wounds in a liquid environment. The Journal of Surgical Research, 52, 50–58.

Briggaman, R. A., & Wheeler, C. E. (1975). The epidermal-dermal junction. The Journal of Inves-tigative Dermatology, 65, 71–84.

Briggaman, R. A., Dalldorf, F. G., & Wheeler, J. C. E. (1971). Formation and origin of basal lamina and anchoring fibrils in adult human skin. The Journal of Cell Biology, 51, 384–395.

Brockes, J. P. (1997). Amphibian limb regeneration: Rebuilding a complex structure. Science, 275, 81–87.

Brockes, J. P., & Gates, P. B. (2014). Mechanisms underlying vertebrate limb regeneration: Les-sons from the salamander. Biochemical Society Transactions, 42, 625–630.

Brockes, J. P., & Kumar, A. (2008). Comparative aspects of animal regeneration. Annual Review of Cell and Developmental Biology, 24, 525–549.

Broberg, A., & Heino, J. (1996). Integrin alpha2beta1-dependent contraction of floating collagen gels and induction of collagenase are inhibited by tyrosine kinase inhibitors. Experimental Cell Research, 228, 29–35.

Brodsky, B., & Ramshaw, J. A. M. (1994). Collagen organization in an oriented fibrous capsule. International Journal of Biological Macromolecules, 16, 27–30.

Brodsky, B., Thiagarajan, G., Madhan, B., & Kar, K. (2008). Triple-helical peptides: An approach to collagen conformation, stability, and self-association. Biopolymers, 89, 345–353.

Brown, H. (1992). Wound healing research through the ages. In I. K. Cohen, R. F. Diegelmann, & W. J. Lindblad (Eds.), Wound healing. Philadelphia: Saunders.

Brown, I. A. (1972). Scanning electron microscopy of human dermal fibrous tissue. Journal of Anatomy, 113, 159–168.

Brown, G. L., Curtsinger, L., III., Brightwell, J. R., Ackerman, D. M., Tobin, G. R., Polk, J. H. C., George-Nacimento, C., Valenzuela, P., & Schultz, G. S. (1986). Enhancement of epidermal regeneration by biosynthetic epidermal growth factor. The Journal of Experimental Medicine, 163, 1319–1324.

Brown, R. E., Erdmann, D., Lyons, S. F., & Suchy, H. (1996). The use of cultured Schwann cells in nerve repair in a rabbit hind-limb model. Journal of Reconstructive Microsurgery, 12, 149–152.

Brown, A. L., Farhat, A., Merguerian, P. A., Wilson, G. J., & Woodhouse, K. A. (2002a). 22 week assessment of bladder acellular matrix in a porcine model. Biomaterials, 23, 2179–2190.

Brown, R. A., Sethi, K. K., Gwanmesia, I., Raemdonck, D., Eastwood, M., & Mudera, V. (2002b). Enhanced fibroblast contraction of 3D collagen lattices and integrin expression by TGF-beta1 and -beta3: Mechanoregulatory growth factors. Experimental Cell Research, 274, 310–322.

Bucher, N. L. R. (1963). Regeneration of mammalian liver. International Review of Cytology, 15, 245–300.

Page 18: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

287References

Buckley, G., Wong, J., Metcalfe, A. D., & Ferguson, M. W. (2012). Denervation affects regen-erative responses in MRL/MpJ and repair in C57BL/6 ear wounds. Journal of Anatomy, 220, 3–12.

Buehler, C., Kim, K. H., Greuter, U., Schlumpf, N., & So, P. T. (2005). Single-photon counting multicolor multiphoton fluorescence microscope. Journal of Fluorescence, 15, 41–51.

Bunge, R. P., & Bunge, M. B. (1978). Evidence that contact with connective tissue matrix is required for normal interaction between Schwann cells and nerve fibers. The Journal of Cell Biology, 78, 943–950.

Bunge, R. P., & Bunge, M. B. (1983). Interrelationship between Schwann cell function and extra-cellular matrix production. Trends in neurosciences, 6, 499–505.

Bunge, M. B., Williams, A. K., Wood, P. M., Uitto, J., & Jeffrey, J. J. (1980). Comparison of nerve cell and nerve cell plus Schwann cell cultures, with particular emphasis on basal lamina and collagen formation. The Journal of Cell Biology, 84, 184–202.

Bunge, M. B., Williams, A. K., & Wood, P. M. (1982). Neuron-Schwann cell interaction in basal lamina formation. Developmental Biology, 92, 449–460.

Bunge, M. B., Wood, P. M., Tynan, L. B., Bates, M. L., & Sanes, J. B. (1989). Perineurium origi-nates from fibroblasts: Demonstration in vitro with a retroviral marker. Science, 243, 229–231.

Burgess, W. H., & Maciag, T. (1989). The heparin-binding (fibroblast) growth factor family of proteins. Annual Review of Biochemistry, 58, 575–606.

Burke, J. F. (1987). Observations on the development and clinical use of artificial skin: An attempt to employ regeneration rather than scar formation in wound healing. The Japanese Journal of Surgery, 17, 431–438.

Burke, J. F., Bondoc, C. C., & Quinby, W. C. (1974). Primary burn excision and immediate graft-ing: A method of shortening illness. The Journal of Trauma, 14, 389–395.

Burke, J. F., Yannas, I. V., Quinby, W. C., Jr., Bondoc, C. C., & Jung, W. K. (1981). Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Annals of Surgery, 194, 413–428.

Burkitt, H. G., Young, B., & Heath, J. W. (1993). Wheater’s functional histology (3rd ed.). Edin-burgh: Churchill Livingstone.

Burrington, J. D. (1971). Wound healing in the fetal lamb. Journal of Pediatric Surgery, 6, 523–528.

Butí, M., Verdú, E., Labrador, R. O., Vilches, J. J., Forés, J., & Navarro, X. (1996). Influence of physical parameters of nerve chambers on peripheral nerve regeneration and reinnervation. Experimental Neurology, 137, 26–33.

Butler, C. E., & Orgill, D. P. (2005). Simultaneous in vivo regeneration of neodermis, epidermis, and basement membrane. Advances in Biochemical Engineering/Biotechnology, 94, 23–41.

Butler, C. E., Orgill, D. P., Yannas, I. V., & Compton, C. C. (1998). Effect of keratinocyte seeding of collagen-glycosaminoglycan membranes on the regeneration of skin in a porcine model. Plastic and Reconstructive Surgery, 101, 1572–1579.

Butler, C. E., Yannas, I. V., Compton, C. C., Correia, C. A., & Orgill, D. P. (1999a). Comparison of cultured and uncultured keratinocytes seeded into a collagen-GAG matrix for skin replace-ments. British Journal of Plastic Surgery, 52, 127–132.

Butler, P. E., Sims, C. D., Randolph, M. A., Menkes, D., Onorato, J., & Lee, W. P. (1999b). A com-parative study of nerve healing in adult, neonatal, and fetal rabbits. Plastic and Reconstructive Surgery, 104, 1386–1392.

Caballos, D., Navarro, X., Dubey, N., Wendelschafer-Crabb, G., Kennedy, W. R., & Tranquillo, R. T. (1999). Magnetically aligned collagen gel filling a collagen nerve guide improves peripheral nerve regeneration. Experimental Neurology, 158, 290–300.

Cajal, R. Y. (1928). Degeneration and regeneration of the nervous system (Volume reissued in 1982). London: Oxford University Press.

Calderwood, D. A., Tuckwell, D. S., Eble, J., Kühn, K., & Humphries, M. J. (1997). The integrin alpha1 A-domain is a ligand binding site for collagens and laminin. The Journal of Biological Chemistry, 272, 12311–12317.

Page 19: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

288 References

Calloni, R., Cordero, E. A., Henriques, J. A., & Bonatto, D. (2013). Reviewing and updating the major molecular markers for stem cells. Stem Cells and Development. [Epub ahead of print]

Campbell, C. J. (1969). The healing of cartilage defects. Clinical Orthopaedics, 64, 45–63.Canty, E. G., & Kadler, K. E. (2005). Procollagen trafficking, processing and fibrillogenesis. Jour-

nal of Cell Science, 118, 1341–1353.Cao, X., & Shoichet, M. S. (2003). Investigating the synergistic effect of combined neurotrophic

factor concentration gradients to guide axonal growth. Neuroscience, 122, 381–389.Carbonetto, S. (1991). Facilitatory and inhibitory effects of glial cells and extracellular matrix in

axonal regeneration. Current Opinion in Neurobiology, 1, 407–413.Carbonetto, S., & Cochard, P. (1987). In vitro studies on the control of nerve fiber growth by the

extracellular matrix of the nervous system. The Journal of Physiology, 82, 258–270.Carbonetto, S., Gruver, M. M., & Turner, D. C. (1983). Nerve fiber growth in culture on fibronec-

tin, collagen, and glycosaminoglycan substrates. The Journal of Neuroscience, 3, 2324–2335.Carey, D. J., & Todd, M. S. (1987). Schwann cell myelination in a chemically defined medium:

Demonstration of a requirement for additives that promote Schwann cell extracellular matrix formation. Brain Research, 429, 95–102.

Carey, D. J., Eldridge, C. F., Cornbrooks, C. J., Timpl, R., & Bunge, R. P. (1983). Biosynthesis of type IV collagen by cultured rat Schwann cells. The Journal of Cell Biology, 97, 473–479.

Carey, D. J., Todd, M. S., & Rafferty, C. M. (1986). Schwann cell myelination: Induction by exogenous basement membrane-like extracellular matrix. The Journal of Cell Biology, 102, 2254–2263.

Carletti, E., Motta, A., & Migliaresi, C. (2011). Scaffolds for tissue engineering and 3D cell cul-ture. Methods in Molecular Biology, 695, 17–39.

Carman, L. S., Schneider, G. E., & Yannas, I. V. (1988). Extension of critical age for retinal axon regeneration by polymer bridges conditioned in neonatal cortex. Society for Neuroscience, 14, 498.

Carrel, A., Hartmann, R., A (1916). Cicatrization of wounds I: The relation between the size of a wound and the rate of its cicatrization. The Journal of Experimental Medicine, 24, 429–450.

Carver, N., Navsaria, H. A., Green, C. J., & Leigh, I. M. (1993a). The effect of backing materials on keratinocyte autograft take. British Journal of Plastic Surgery, 46, 228–234.

Carver, N., Navsaria, H. A., Fryer, P., Green, C. J., & Leigh, I. M. (1993b). Restoration of base-ment membrane structure in pigs following keratinocyte autografting. British Journal of Plas-tic Surgery, 46, 384–392.

Carver, W., Molano, I., Reaves, T. A., Borg, T. K., & Terracio, L. (1995). Role of the alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts. Journal of Cellular Physiology, 165, 425–437.

Cass, D. L., Sylvester, K. G., Yang, E. Y., Crombleholme, T. M., & Adzick, N. S. (1997). Myofi-broblast persistence in fetal sheep wounds is associated with scar formation. Journal of Pedi-atric Surgery, 32, 1017–1021.

Ceballos, D., Navarro, X., Dubey, N., Wendelschafer-Crabb, G., Kennedy, W. R., & Tranquillo, R. T. (1999). Magnetically aligned collagen gel filling a collagen nerve guide improves peripheral nerve regeneration. Experimental Neurology, 158, 290–300.

Chamberlain, L. J. (1998). Influence of implant parameters on the mechanisms of peripheral nerve regeneration. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

Chamberlain, L. J., & Yannas, I. V. (1998). Preparation of collagen-glycosaminoglycan copoly-mers for tissue regeneration. In J. R. Morgan & M. L. Yarmush (Eds.), Methods of molecular medicine. Tolowa: Humana Press.

Chamberlain, L. J., Yannas, I. V., Arrizabalaga, A., Hsu, H. P., Norregaard, T. V., & Spector, M. (1998a). Early peripheral nerve healing in collagen and silicone tube implants: Myofibroblasts and the cellular response. Biomaterials, 19, 1393–1403.

Chamberlain, L. J., Yannas, I. V., Hsu, H. P., Strichartz, G., & Spector, M. (1998b). Collagen-GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of auto-graft. Experimental Neurology, 154, 315–329.

Page 20: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

289References

Chamberlain, L. J., Yannas, I. V., Hsu, H. P., & Spector, M. (2000a). Connective tissue response to tubular implants for peripheral nerve regeneration: The role of myofibroblasts. The Journal of Comparative Neurology, 417, 415–430.

Chamberlain, L. J., Yannas, I. V., Hsu, H.-P., Strichartz, G. R., & Spector, M. (2000b). Near termi-nus axonal structure and function following rat sciatic nerve regeneration through a collagen-GAG matrix in a 10-mm gap. Journal of Neuroscience Research, 60, 666–677.

Chamson, A., Germain, N., Clad, A., Perier, C., & Frey, J. (1989). Study of basement membrane formation in dermal-epidermal recombinants in vitro. Archives of Dermatological Research, 281, 267–272.

Chang, A. S. (1988). Electrophysiological recovery of peripheral nerves regenerated by biode-gradable polymer matrix. M. S. thesis, Massachusetts Institute of Technology.

Chang, A. S., & Yannas, I. V. (1992). Peripheral nerve regeneration. In B. Smith & G. Adelman (Eds.), Neuroscience year. Boston: Birkhauser.

Chang, A. S., Yannas, I. V., Perutz, S., Loree, H., Sethi, R. R., Krarup, C., Norregaard, T. V., Zervas, N. T., & Silver, J. (1990). Electrophysiological study of recovery of peripheral nerves regenerated by a collagen-glycosaminoglycan copolymer matrix. In C. G. Gebelein (Ed.), Progress in biomedical polymers. New York: Plenum.

Chen, E. H. Y. (1982). The effects of porosity and crosslinking of a collagen based artificial skin on wound healing. M. S. thesis, Massachusetts Institute of Technology, Cambridge, MA.

Chen, Y. S. H., Wang-Bennet, L. T., & Coker, N. J. (1989). Facial nerve regeneration in the silicone chamber: The influence of nerve growth factor. Experimental Neurology, 103, 52–60.

Chen, F., Yoo, J. J., & Atala, A. (1999). Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology, 54, 407–410.

Chin, G. S., Stelnicki, E. J., Gittes, G. K., & Longaker, M. T. (2000). Characteristics of fetal wound repair. In H. G. Garg & M. T. Longaker (Eds.), Scarless wound healing. New York: Marcel Dekker.

Cho, K. S., So, K. F., & Chung, S. K. (1996). Induction of axon-like processes from axotomized retinal ganglion cells of adult hamsters after intravitreal injection of sciatic nerve exudate. Neuroreport, 25, 2879–2882.

Chun, S. Y., Lim, G. J., Kwon, T. J., Kwak, E. K., Kim, B. W., Atala, A., & Yoo, J. J. (2007). Iden-tification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials, 28, 4251–4256.

Chvapil, M., & Holusa, R. (1968). Experimental experiences with the collagen sponge as hemo-staticum and tampon. Journal of Biomedical Materials Research, 2, 245–264.

Chvapil, M., Holusa, R., Kliment, K., & Stoll, M. (1969). Some chemical and biological char-acteristics of a new collagen-polymer compound material. Journal of Biomedical Materials Research, 3, 315–332.

Clark, A. H. (1919). The effect of diet on the healing of wounds. Bulletin of the Johns Hopkins Hospital, 30, 117–120.

Clark, R. A. F. (1993). Regulation of fibroplasia in cutaneous wound repair. The American Journal of the Medical Sciences, 306, 42–48.

Clark, R. A. F. (Ed.). (1996a). The molecular and cellular biology of wound repair (2nd ed.). New York: Plenum.

Clark, R. A. F. (1996b). Wound repair. Overview and general considerations. In R. A. F. Clark (Ed.), The molecular and cellular biology of wound repair. New York: Plenum.

Clark, R. A. F. (1997). Wound repair: Lessons for tissue engineering. In R. Lanza, R. Langer, & W. Chick (Eds.), Principles of tissue engineering. Austin: R.G. Landes Company.

Clark, M. B., & Bunge, M. B. (1989). Cultured Schwann cells assemble normal-appearing basal lamina only when they ensheathe axons. Developmental Biology, 133, 393–404.

Clark, R. A. F., & Henson, P. M. (Eds.). (1988). The molecular and cellular biology of wound repair (1st ed.). New York: Plenum.

Clark, R. A. F., Lanigan, J., Dellapelle, P., Manseau, E., Dvorak, H., & Colvin, R. (1982). Fi-bronectin and fibrin provide a provisional matrix for epidermal-dermal cell migration during wound re-epithelialization. The Journal of Investigative Dermatology, 79, 264–269.

Page 21: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

290 References

Clark, R. A. F., Quinn, H. J., Winn, H. J., & Colvin, R. B. (1983). Fibronectin beneath reepithelial-izing epidermis in vivo: Sources and significance. The Journal of Investigative Dermatology, 80, 26–30.

Clark, R. A. F., Nielsen, L. D., Welch, M. P., & McPherson, J. M. (1995). Collagen matrices at-tenuate the collagen synthetic response of cultured fibroblasts to TGF-beta. Journal of Cell Science, 108, 1251–1261.

Cohen, I. K. (1991). Wound healing models to study connective tissue metabolism: Normal and chronic wounds. In A. Barbul, M. Caldwell, W. Eaglstein, T. Hunt, D. Marshall, E. Pines, & G. Skover (Eds.), Clinical and experimental approaches to dermal and epidermal repair. New York: Alan R. Liss.

Cohen, S. (1959). Purification and metabolic effects of a nerve growth-promoting protein from snake venom. The Journal of Biological Chemistry, 234, 1129–1137.

Cohen, J., Burne, J. F., Winter, J., & Bartlett, P. F. (1986). Retinal ganglion cells lose response to laminin with maturation. Nature, 322, 465–467.

Coleman, C., Tuan, T. L., Buckley, S., Anderson, K. D., & Warburton, D. (1998). Contractility, transforming growth factor-beta, and plasmin in fetal skin fibroblasts: Role in scarless wound healing. Pediatric Research, 43, 403–409.

Colwell, A. S., Longaker, M. T., & Lorenz, H. P. (2005). Mammalian fetal organ regeneration. Advances in Biochemical Engineering/Biotechnology, 93, 83–100.

Colwell, A. S., Krummel, T. M., Kong, W., Longaker, M. T., & Lorenz, H. P. (2006). Skin wounds in the MRL/MPJ mouse heal with scar. Wound Repair and Regeneration, 14, 81–90.

Comninou, M., & Yannas, I. V. (1976). Dependence of stress-strain nonlinearity of connective tis-sues on the geometry of collagen fibers. Journal of Biomechanics, 9, 427–433.

Compton, C. C., Gill, J. M., Bradford, D. A., Regauer, S., Gallico, G. G., & O’Connor, N. E. (1989). Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. Laboratory Investigation, 60, 600–612.

Compton, C. C., Butler, C. E., Yannas, I. V., Warland, G., & Orgill, D. P. (1998). Organized skin structure is regenerated in vivo from collagen-GAG matrices seeded with autologous keratino-cytes. The Journal of Investigative Dermatology, 110, 908–916.

Contard, P., Bartel, R. L., Jacobs 2d, L., Perlish, J. S., MacDonald 2d, E. D., Handler, L., Cone, D., & Fleischmajer, R. (1993). Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differentiation and formation of a basal lamina-anchoring zone. The Journal of Investigative Dermatology, 100, 35–39.

Cook, J. R., & Van Buskirk, R. G. (1995). The matrix form of collagen and basal microporosity influence basal lamina deposition and laminin synthesis/secretion by stratified human keratino-cytes in vitro. In Vitro Cellular & Developmental Biology. Animal, 31, 132–139.

Coolen, N. A., Verkerk, M., Reijnen, L., Vlig, M., van den Bogaerdt, A. J., Breetveld, M., Gibbs, S., Middelkoop, E., Ulrich, M. M. (2007). Culture of keratinocytes for transplantation without the need of feeder layer cells. Cell Transplantation, 16, 649–661.

Cooper, M. L., & Hansbrough, J. F. (1991). Use of a composite skin graft composed of cultured hu-man keratinocytes and fibroblasts and a collagen-GAG matrix to cover full-thickness wounds on athymic mice. Surgery, 109, 198–207.

Cooper, M. L., Hansbrough, J. F., Spielvogel, R. L., Cohen, R., Bartel, R. L., & Naughton, G. (1991). In vivo optimization of a living dermal substitute employing cultured human fibro-blasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials, 12, 243–248.

Cooper, M. L., Andree, C., Hansbrough, J. F., Zapata-Sirvent, R. L., & Spielvogel, R. L. (1993). Direct comparison of a cultured composite skin substitute containing human keratinocytes and fibroblasts to an epidermal sheet graft containing human keratinocytes on athymic mice. The Journal of Investigative Dermatology, 101, 811–819.

Cordeiro, P. G., Seckel, B. R., Lipton, S. A., D’Amore, P. A., Wagner, J., & Madison, R. (1989). Acidic fibroblast growth factor enhances peripheral nerve regeneration in vivo. Plastic and Reconstructive Surgery, 83, 1013–1019.

Page 22: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

291References

Cornbrooks, C. J., Carey, D. J., McDonald, J. A., Timpl, R., & Bunge, R. P. (1983). In vivo and in vitro observations on laminin production by Schwann cells. Proceedings of the National Academy of Sciences of the United States of America, 80, 3850–3854.

Cowin, A. J., Brosnan, M. P., Holmes, T. M., & Ferguson, M. W. (1998). Endogenous inflamma-tory response to dermal wound healing in the fetal and adult mouse. Developmental Dynamics, 212, 385–393.

Crandall, S. H., Dahl, N. C., & Lardner, T. J. (1972). An introduction to the mechanics of solids. New York: McGraw-Hill.

Cruickshank, C. N. D., Cooper, J. R., & Hooper, C. (1960). The cultivation of cells from adult epidermis. The Journal of Investigative Dermatology, 34, 339–342.

Cumpstone, M. B., Kennedy, A. H., Harmon, C. S., & Potts, R. O. (1989). The water permeability of primary mouse keartinocyte cultures grown at the air-liquid interface. The Journal of Inves-tigative Dermatology, 92, 598–600.

Cuono, C., Langdon, R., & McGuire, J. (1986). Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet, 8490, 1123–1124.

Cuono, C. B., Langdon, R., Birchall, N., Barttelbort, S., & McGuire, J. (1987). Composite autol-ogous-allogeneic skin replacement: Development and clinical application. Plastic and Recon-structive Surgery, 80, 626–637.

Cuppage, F. E., Neagoy, D. R., & Tate, A. (1967). Repair of the nephron following temporary oc-clusion of the renal pedicle. Laboratory Investigation, 17, 660–674.

Cuthbertson, A. M. (1959). Contraction of full thickness skin wounds in the rat. The Journal of Surgery, Gynecology And Obstetrics, 108, 421–432.

Dagalakis, N., Flink, J., Stasikelis, P., Burke, J. F., & Yannas, I. V. (1980). Design of an artifi-cial skin. Part III. Control of pore structure. Journal of Biomedical Materials Research, 14, 511–528.

Dahners, L. E., Banes, A. J., & Burridge, K. W. T. (1986). The relationship of actin to ligament contraction. Clinical Orthopaedics, 210, 246–251.

Daimon, E., Shibukawa, Y., & Wada, Y. (2013). Calponin 3 regulates stress fiber formation in dermal fibroblasts during wound healing. Archives of Dermatological Research, 305, 571–584.

Dallon, J. C., & Sherratt, J. A. (1998). A mathematical model for fibroblast and collagen orienta-tion. Bulletin of Mathematical Biology, 60, 101–129.

Dang, C., Ting, K., Soo, C., Longake, M. T., & Lorenz, H. P. (2003). Fetal wound healing current perspectives. Clinics in Plastic Surgery, 30, 13–23.

Danielsen, N. (1990). Regeneration of the rat sciatic nerve within the silicone chamber model. Restorative Neurology and Neuroscience, 1, 253–259.

Danielsen, N., Pettman, B., Vahlsing, H. L., Manthorpe, M., & Varon, S. (1988). Fibroblast growth factor effects on peripheral nerve regeneration in a silicone chamber model. Journal of Neuro-science Research, 20, 320–330.

Dantzer, E., Queruel, P., Salinier, L., Palmier, B., & Quinot, J. F. (2003). Dermal regeneration template for deep hand burns: Clinical utility for both early grafting and reconstructive surgery. British Journal of Plastic Surgery, 56, 764–774.

Darden, D. L., Hu, F. Z., Ehrlich, M. D., Gorry, M. C., Dressman, D., Li, H. S., Whitcomb, D. C., Hebda, P. A., Dohar, J. E., & Ehrlich, G. D. (2000). RNA differential display of scarless wound healing in fetal rabbit indicates downregulation of a CCT chaperonin subunit and upregulation of a glycophorin-like gene transcript. Journal of Pediatric Surgery, 35, 406–419.

Darwin, C. (1872). On the origin of species (republished 1991). Norwalk: Easton Press.DaSilva, C. F., & Langone, F. (1989). Addition of nerve growth factor to the interior of a tubular

prosthesis increases sensory neuron regeneration in vivo. Brazilian Journal of Medical and Biological Research, 22, 691–694.

DaSilva, C. F., Madison, R., Dikkes, P., Chiu, T.-H., & Sidman, R. L. (1985). An in vivo model to quantify motor and sensory peripheral nerve regeneration using bioresorbable nerve guide tubes. Brain Research, 342, 307–315.

Page 23: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

292 References

David, G., Schueren, B. Vd, & Bernfield, M. (1981). Basal lamina formation by normal and trans-formed mouse mammary epithelial cells duplicated in vitro. Journal of the National Cancer Institute, 67, 719–728.

Davidson, J. M., Klagsbrun, M., Hill, K. E., Buckley, A., Sullivan, R., Brewer, P. S., & Wood-ward, S. C. (1985). Accelerated wound repair, cell proliferation, and collagen accumulation are produced by a cartilage-derived growth factor. The Journal of Cell Biology, 100, 1219–1227.

Davidson, J. M., Giro, G., & Quaglino, D. (1992). Elastin repair. In I. K. Cohen, R. F. Diegelmann, & W. J. Lindblad (Eds.), Wound healing. Philadelphia: Saunders.

Davison, S. P., McCaffrey, T. V., Porter, M. N., & Manders, E. (1999). Improved nerve regenera-tion with neutralization of transforming growth factor-b1. The Laryngoscope, 109, 631–635.

Dawber, R., & Shuster, S. (1971). Scanning electron microscopy of dermal fibrous tissue. The British Journal of Dermatology, 84, 130–134.

Dawson, J. A. (1997). Personal communication with the author.De Corte, P., Verween, G., Verbeken, G., Rose, T., Jennes, S., De Coninck, A., Roseeuw, D.,

Vanderkelen, A., Kets, E., Haddow, D., & Pirnay, J. P. (2012). Feeder layer- and animal prod-uct-free culture of neonatal foreskin keratinocytes: Improved performance, usability, quality and safety. Cell and Tissue Banking, 13, 175–189.

De Filippo, R. E., Yoo, J. J., & Atala, A. (2002). Urethral replacement using cell seeded tabularized collagen matrices. The Journal of Urology, 168, 1789–1792.

Delecluse, C., Regnier, M., & Prunieras, M. (1974). Studies on guinea pig skin cell cultures II: Ef-fect of a pif skin extract on DNA synthesis. Acta Dermato-Venereologica, 54, 1–6.

Dellon, A. L., & MacKinnon, S. E. (1988). Basic scientific and clinical applications of peripheral nerve regeneration. Surgery Annual, 20, 59–100.

de Medinacelli, L., Wyatt, R. J., & Freed, W. J. (1983). Peripheral nerve reconnection: Mechani-cal, thermal, and ionic conditions that promote the return of function. Experimental Neurology, 81, 469–487.

den Dunnen, W. F. A., Schakenraad, J. M., Zondervan, G. Z., Pennings, A. J., van der Lei, B., & Robinson, P. H. (1993a). A new PLLA/PCL copolymer for nerve regeneration. Journal of Ma-terials Science: Materials in Medicine, 4, 521–525.

den Dunnen, W. F. A., van der Lei, B., Schakenraad, J. M., Blaauw, E. H., Stokroos, I., Pennings, A. J., & Robinson, P. H. (1993b). Long-term evaluation of nerve regeneration in a biodegrad-able nerve guide. Microsurgery, 14, 508–515.

den Dunnen, W. F. A., Stickroos, I., Blaauw, E. H., Holwerda, A., Pennings, A. J., Robinson, P. H., & Schakenraad, J. M. (1996). Light-microscopic and electron-microscopic evaluation of short-term nerve regeneration using a biodegradable poly(DL-lactide-e-caprolacton) nerve guide. Journal of Biomedical Materials Research, 31, 105–115.

Denny-Brown, D. (1946). Importance of neural fibroblasts in the regeneration of nerve. Archives of Neurology and Psychiatry, 55, 171–215.

Deng, L. X., Deng, P., Ruan, Y., Xu, Z. C., Liu, N. K., Wen, X., Smith, G. M., & Xu, X. M. (2013). A novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes propriospinal axonal regeneration, synapse formation, and partial recovery of func-tion after spinal cord injury. The Journal of Neuroscience, 27, 5655–5667.

Derby, A., Engleman, V. W., Frierdich, G. E., Neises, G., Rapp, S. R., & Roufa, D. G. (1993). Nerve growth factor facilitates regeneration across nerve gaps: Morphological and behavioral studies in rat sciatic nerve. Experimental neurology, 119, 176–191.

Desmoulière, A., & Gabbiani, G. (1996). The role of the myofibroblast in wound healing and fibrocontractive diseases. In R. A. F. Clark (Ed.), The molecular and cellular biology of wound repair. New York: Plenum.

Desmoulière, A., Genioz, A., Gabbiani, F., & Gabbiani, G. (1993). Transforming growth factor-b1 induces a-smooth muscle actin expression in granulation tissue, myofibroblasts and in quies-cent and growing cultured fibroblasts. The Journal of Cell Biology, 122, 103–111.

Desmoulière, A., Redard, M., Darby, I., & Gabbiani, G. (1995). Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. The American Journal of Pathology, 146, 56–66.

Page 24: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

293References

Desmoulière, A., Badid, C., Bochaton-Piallat, M.-L., & Gabbiani, G. (1997). Apoptosis during wound healing, fibrocontractive diseases and vascular wall injury. The International Journal of Biochemistry & Cell Biology, 29, 19–30.

Desmoulière, A., Chaponnier, C., & Gabbiani, G. (2005). Tissue repair, contraction, and the myo-fibroblast. Wound Repair and Regeneration, 13, 7–12.

Dickeson, S. K., Mathis, N. L., Rahman, M., Bergelson, J. M., & Santoro, S. A. (1999). Determi-nants of ligand binding specificity of the alpha1beta1 and alpha2beta1 integrins. The Journal of Biological Chemistry, 274, 32182–32191.

Diegelmann, R. F., Lindblad, W. J., & Cohen, I. K. (1988). Fibrogenic processes during tissue repair. In M. E. Nimni (Ed.), Collagen. Boca Raton: CRC Press.

Donohue, K. G., Carson, P., Iriondo, M., Zhou, L., Saap, L., Gibson, K., & Falanga, V. (2005). Safety and efficacy of a bilayered skin construct in full-thickness surgical wounds. The Journal of Dermatology, 32, 626–631.

Dore, C., Noordenbos, J., & Hansbrough, J. F. (1998). Management of partial thickness burns with Dermagraft-TC. The Journal of Burn Care & Rehabilitation, 19, 172.

Dorin, R. P., Pohl, H. G., De Filippo, R. E., Yoo, J. J., & Atala, A. (2008). Tubularized urethral replacement with unseeded matrices: What is the maximum distance for normal tissue regen-eration? World Journal of Urology, 26, 323–326.

Dragúňová, J., Kabát, P., Koller, J., & Jarabinská, V. (2012). Experience gained during the long term cultivation of keratinocytes for treatment of burns patients. Cell and Tissue Banking, 13, 471–478.

Draper, B. K., Davidson, M. K., & Nanney, L. B. (2002). MMPs and TIMP-1 are differentially expressed between acute murine excisional and laser wounds. Lasers in Surgery and Medicine, 30, 106–116.

Ducker, T. B., & Hayes, G. J. (1967). A comparative study of the technique of nerve repair. Surgi-cal Forum, 28, 443–445.

Ducker, T. B., & Hayes, G. J. (1968a). Experimental improvements in the use of silastic cuff for peripheral nerve repair. Journal of neurosurgery, 28, 52–587.

Ducker, T. B., & Hayes, G. J. (1968b). Peripheral nerve injuries: A comparative study of the ana-tomical and functional results following primary nerve repair in chimpanzees. Military Medi-cine, 133, 298–302.

Duffy, P., Schmandke, A., Schmandke, A., Sigworth, J., Narumiya, S., Cafferty, W. B., & Strittmat-ter, S. M. (2009). Rho-associated kinase II (ROCKII) limits axonal growth after trauma within the adult mouse spinal cord. The Journal of Neuroscience, 2, 15266–15276.

Dunn, M. G., & Silver, F. H. (1983). Viscoelastic behavior of human connective tissues: Relative contribution of viscous and elastic components. Connective Tissue Research, 12, 59–70.

Dunn, M. G., Silver, F. H., & Swann, D. A. (1985). Mechanical analysis of hypertrophic scar tis-sue: Structural basis for apparent increased rigidity. The Journal of Investigative Dermatology, 84, 9–13.

Dunphy, J. E., & Winkle, V. (1968). Repair and regeneration: The scientific basis for surgical practice. New York: McGraw-Hill.

Eaglstein, W. H., Iriondo, M., & Laszlo, K. (1995). A composite skin substitute (Graft-skin) for surgical wounds. Dermatologic Surgery, 21, 839–843.

Eather, T. F., Pollock, M., & Myers, D. B. (1986). Proximal and distal changes in collagen content of peripheral nerve that follow transection and crush lesions. Experimental Neurology, 92, 299–310.

Eckes, B., Aumailley, M., & Krieg, T. (1996). Collagens and the reestablishment of dermal integ-rity. In R. A. F. Clark (Ed.), The molecular and cellular biology of wound repair (2nd edn., pp. 493–512). New York: Plenum.

Egawa, S., Miura, S., Yokoyama, H., Endo, T., & Tamura, K. (2014). Growth and differentiation of a long bone in limb development, repair and regeneration. Development, Growth & Differ-entiation, 56, 410–424.

Ehrlich, H. P. (1988). Wound closure: Evidence of cooperation between fibrobasts and collagen matrix. Eye, 2, 149–157.

Page 25: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

294 References

Ehrlich, H. P. (2000). Collagen considerations in scarring and regenerative repair. In H. G. Garg & M. T. Longaker (Eds.), Scarless wound healing (pp. 99–113). New York: Marcel Dekker.

Ehrlich, H. P. (2004). Understanding experimental biology of skin equivalent: From laboratory to clinical use in patients with burns and chronic wounds. American Journal of Surgery, 187, 29–33.

Ehrlich, H. P., & Rajaratnam, J. B. M. (1990). Cell locomotion forces versus cell contraction forces for collagen lattice contraction: An in vitro model of wound contraction. Tissue & Cell, 22, 407–417.

Ehrlich, H. P., Cremona, O., & Gabbiani, G. (1998). The expression of alpha 2 beta 1 integrin and alpha smooth muscle actin in fibroblasts grown on collagen. Cell Biochemistry and Function, 16, 129–137.

Ehrlich, H. P., Allison, G. M., & Leggett, M. (2006). The myofibroblast, cadherin, alpha smooth muscle actin and the collagen effect. Cell Biochemistry and Function, 24, 63–70.

Eisinger, M., Lee, J. S., Hefton, J. M., Darzynkiewicz, Z., Chiao, J. W., & DeHarven, E. (1979). Human epidermal cell cultures: Growth and differentiation in the absence of dermal compo-nents or medium supplements. Proceedings of the National Academy of Sciences of the United States of America, 76, 5340–5344.

Eisinger, M., Monden, M., Raaf, J. H., & Fortner, J. G. (1980). Wound coverage by a sheet of epidermal cells grown in vitro from dispersed single cell preparations. Surgery, 88, 287–293.

Eisinger, M., Kraft, E. R., & Fortner, J. G. (1984). Wound coverage by epidermal cells grown in vi-tro. In T. K. Hunt, R. B. Heppenstall, E. Pines, & D. Rovee (Eds.), Soft and hard tissue repair: Biological and clinical aspects. New York: Praeger.

Eitan, Y., Sarig, U., Dahan, N., & Machluf, M. (2010). Acellular cardiac extracellular matrix as a scaffold for tissue engineering: In vitro cell support, remodeling, and biocompatibility. Tissue Engineering. Part C, Methods, 16, 671–683.

Eldad, A., Burt, A., Clarke, J. A., & Gusterson, B. (1987). Cultured epithelium as a skin substitute. Burns, 13, 173–180.

Eldridge, C. F., Bunge, M. B., Bunge, R. P., & Wood, P. M. (1987). Differentiation of axon-related Schwann cells in vitro I: Ascorbic acid regulates basal lamina assembly and myelin formation. The Journal of Cell Biology, 105, 1023–1034.

Eldridge, C. F., Bunge, M. B., & Bunge, R. P. (1989). Differentiation of axon-related Schwann cells in vitro II: Control of myelin formation by basal lamina. The Journal of Neuroscience, 9, 625–638.

El-Kassaby, A. W., Retik, A. B., Yoo, J. J., & Atala, A. (2003). Urethral stricture repair with an off-the-shelf collagen matrix. The Journal of Urology, 169, 170–173.

Ellis, D., Tholpady, S., Thies, S., & Yannas, I. V. (1997). Unpublished observations.Elsdale, T., & Bard, J. (1972). Collagen substrata for studies on cell behavior. The Journal of Cell

Biology, 54, 626–637.Emsley, J., King, S. L., Bergelson, J. M., & Liddington, R. C. (1997). Crystal structure of the I

domain from integrin alpha2beta1. The Journal of Biological Chemistry, 272, 28512–28517.Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J., & Liddington, R. C. (2000). Structural

basis of collagen recognition by integrin alpha2beta1. Cell, 101, 47–56.Eng, L. F., Reier, P. J., & Houle, J. D. (1987). Astrocyte activation and fibrous gliosis: Glial fibril-

lary acidic protein immunostaining of astrocytes following intraspinal cord grafting of fetal CNS tissue. Progress in Brain Research, 71, 439–455.

Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., & Discher, D. (2004). Substrate compliance versus ligand density in cell on gel responses. Biophysical Journal, 86, 617–628.

English, K. B., Stayner, N., Krueger, G. G., & Tuckett, R. P. (1992). Functional innervation of cultured skin grafts. The Journal of Investigative Dermatology, 99, 120–128.

Eriksson, E., Breuing, K., Johansen, L. B., & Miller, D. R. (1989). Growth factor solutions for wound treatment in pigs. Surgical Forum, 40, 618–620.

Estes, J. M., Vande Berg, J. S., Adzick, N. S., MacGillivray, T. E., Desmoulière, A., & Gabbiani, G. (1994). Phenotype and functional features of myofibroblasts in sheep fetal wounds. Dif-ferentiation, 56, 173–181.

Page 26: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

295References

Estavillo, D., Ritchie, A., Diacovo, T. G., & Cruz, M. A. (1999). Functional analysis of a recom-binant glycoprotein Ia/IIa (Integrin α2β1) I domain that inhibits platelet adhesion to colla-gen and endothelial matrix under flow conditions. The Journal of Biological Chemistry, 274, 35921–35926.

Eyden, B. (2001). The fibronexus in reactive and tumoral myofibroblasts: Further characterisation by electron microscopy. Histology and Histopathology, 16, 57–70.

Falanga, V., Margolis, D., Alvarez, O., Auletta, M., Maggiacomo, F., Altman, M., Jensen, J., Sabo-linski, M., & Hardin-Young, J. (1998). Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Archives of Dermatology, 134, 293–300.

Fang, T., Lineaweaver, W. C., Sailes, F. C., Kisner, C., & Zhang, F. (2013). Clinical application of cultured epithelial autografts on acellular dermal matrices in the treatment of extended burn injuries. Annals of Plastic Surgery, [Epub ahead of print].

Farquhar, M. G. (1981). The glomerular basement membrane: A selective macromolecular filter. In E. D. Hay (Ed.), Cell biology of extracellular matrix (pp. 335–378). New York: Plenum.

Faure, M., Mauduit, G., Schmitt, D., Kanitakis, J., Demidem, A., & Thivolet, J. (1987). Growth and differentiation of human epidermal cultures used as auto- and allografts in humans. The British Journal of Dermatology, 116, 161–170.

Fava, R. A., & McClure, D. B. (1987). Fibronectin-associated transforming growth factor. Journal of Cellular Physiology, 131, 184–191.

Fearon, D. T. (2014). The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunology Research, 2, 187–193.

Ferdman, A. (1987). The measurement of collagen fiber orientation in tissue by small-angle light scattering. Ph.D. thesis, Massachusetts Institute of Technology.

Ferdman, A., & Yannas, I. V. (1986). Small-angle light scattering from dermal tissues. MIT Laser Research Center, Massachusetts Institute of Technology.

Ferdman, A., & Yannas, I. V. (1987). Small angle light scattering from histological sections of con-nective tissue. Transactions of the Society for Biomaterials, 10, 207.

Ferdman, A. G., & Yannas, I. V. (1993). Scattering of light from histologic sections: A new method for the analysis of connective tissue. The Journal of Investigative Dermatology, 100, 710–716.

Fernandez-Valle, C., Gorman, D., Gomez, A. M., & Bunge, M. B. (1997). Actin plays a role in both changes in cell shape and gene-expression associated with Schwann cell myelination. The Journal of Neuroscience, 17, 241–250.

Ferraris, C., Bernard, B. A., & Dhouailly, D. (1997). Adult epidermal keratinocytes are endowed with pilosebaceous forming abilities. The International Journal of Developmental Biology, 41, 491–498.

Ferraris, C., Chevalier, G., Favier, B., Jahoda, C. A., & Dhouailly, D. (2000). Adult corneal epi-thelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli. Development (Cambridge, Eng-land), 127, 5487–5495.

Fessler, J. H., Lunstrum, G., Duncan, K. G., Campbell, A. G., Sterne, R., Bächinger, H. P. & Fes-sler, L. I. (1984). Evolutionary constancy of basement membrane components. In R. L. Trelstad (Ed.), The role of extracellular matrix in development (pp. 207–219). New York: Alan R. Liss.

Ffrench-Constant, C., Van de Water, L., Dvorak, H. F., & Hynes, R. O. (1989). Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. The Journal of Cell Biology, 109, 903–914.

Fiddes, J. C., Hebda, P. A., Hayward, P., Robson, M. C., Abraham, J. A., & Klingbeil, C. K. (1991). Preclinical wound-healing studies with recombinant human basic fibroblast growth factor. An-nals of the New York Academy of Sciences, 638, 316–328.

Fields, R. D., & Ellisman, M. H. (1986a). Axons regenerated through silicone tube splices I: Con-duction properties. Experimental Neurology, 92, 48–60.

Fields, R. D., & Ellisman, M. H. (1986b). Axons regenerated through silicone tube splices II: Functional morphology. Experimental Neurology, 92, 61–74.

Page 27: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

296 References

Fields, R. D., Le Beau, J. M., Longo, F. M., & Ellisman, M. H. (1989). Nerve regeneration through artificial tubular implants. Progress in Neurobiology, 33, 8–134.

Fischer, D. W., Beggs, J. L., Shetter, A. G., & Waggener, J. D. (1983). Comparative study of neu-roma formation in the rat sciatic nerve after CO2 laser and scalpel neurectomy. Neurosurgery, 13, 287–294.

Fitzgerald, P. J., Herman, L., Carol, B., Roque, A., Marsh, W. H., Rosenstock, L., Richards, C., & Perl, D. (1968). Pancreatic acinal cell regeneration I: Cytologic, cytochemical and pancreatic weight changes. The American Journal of Pathology, 52, 983–1011.

Fleischmajer, R., Schechter, A., Bruns, M., Perlish, J. S., Macdonald, E. D., Pan, T. C., & Timpl, R. (1995). Skin fibroblasts are the only source of nidogen during early basal lamina formation in vitro. The Journal of Investigative Dermatology, 105, 597–601.

Flory, P. J. (1953). Principles of polymer chemistry. Ithaca: Cornell University Press.Flynn, S. (1983). Effects of glutaraldehyde crosslinking and chondroitin 6-sulfate upon the me-

chanical properties and in vivo healing response of an artificial skin. B. S. thesis, Massachu-setts Institute of Technology, Cambridge, MA.

Follonier, L., Schaub, S., Meister, J. J., & Hinz, B. (2008). Myofibroblast communication is con-trolled by intercellular mechanical coupling. Journal of Cell Science, 121, 3305–3316.

Follonier, L., Castella, L., Gabbiani, G., McCulloch, C. A., & Hinz, B. (2010). Regulation of myo-fibroblast activities: Calcium pulls some strings behind the scene. Experimental Cell Research, 316, 2390–2401.

Fong, D., Denton, K. M., Moritz, K. M., Evans, R., & Singh, R. R. (2014). Compensatory re-sponses to nephron deficiency: Adaptive or maladaptive? Nephrology (Carlton), 19, 119–128.

Forbes, S. J., & Parola, M. (2011). Liver fibrogenic cells. Best Practice & Research. Clinical gastroenterology, 25, 207–217.

Frame, J. D., Still, J., Lakhel-LeCoadou, A., Carstens, M. H., Lorenz, C., Orlet, H., Spence, R., Berger, A. C., Dantzer, E., & Burd, A. (2004). Use of dermal regeneration template in contrac-ture release procedures: A multicenter evaluation. Plastic and Reconstructive Surgery, 113, 1330–1338.

Freed, L. E., & Vunjak-Novakovic, G. (1995). Cultivation of cell-polymer tissue constructs in simulated microgravity. Biotechnology and Bioengineering, 46, 306–313.

Freeman, A. E., Igel, H. J., Herrman, B. J., & Kleinfeld, K. L. (1976). Growth and characterization of human skin epithelial cultures. In Vitro, 12, 352–362.

Freyman, T., Yannas, I. V., & Gibson, L. (2000). Unpublished observations.Friedman, S. L. (2000). Molecular regulation of hepatic fibrosis, an integrated cellular response to

tissue injury. The Journal of Biological Chemistry, 275, 2247–2250.Frykman, G. K., Adams, J., & Bowen, W. W. (1981). Neurolysis. The Orthopedic Clinics of North

America, 12, 325–342.Fu, S. Y., & Gordon, T. (1997). The cellular and molecular basis of peripheral nerve regeneration.

Cellular and Molecular Neurobiology, 14, 67–116.Furthmayr, H. (1988). Basement membranes. In R. A. F. Clark & P. M. Henson (Eds.), The Mo-

lecular and cellular biology of wound repair. New York: Plenum.Gabbiani, G. (1998). Evolution and clinical implications of the myofibroblast concept. Cardiovas-

cular Research, 38, 545–548.Gabbiani, G., Ryan, G. B., & Majno, G. (1971). Presence of modified fibroblasts in granulation

tissue and possible role in wound contraction. Experientia, 27, 549–550.Gabbiani, G., Hirschel, B. J., Ryan, G. B., Stakov, P. R., & Majno, G. (1972). Granulation tissue as

a contractile organ. The Journal of Experimental Medicine, 135, 719–734.Gallico, G. G., O’Connor, N. E., Compton, C. C., Kehinde, O., & Green, H. (1984). Permanent

coverage of large burn wounds with autologous cultured human epithelium. The New England Journal of Medicine, 311, 448–451.

Garbay, B., Heape, A. M., Sargueil, F., & Cassagne, C. (2000). Myelin synthesis in the peripheral nervous system. Progress in Neurobiology, 61, 267–304.

Garg, H. G., Burd, D. A. R., & Swann, D. A. (1989). Small dermatan sulfate proteoglycans in hu-man epidermis and dermis. Biomedical Research, 10, 197–207.

Page 28: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

297References

Garg, H. G., Lippay, E. W., & Burd, D. A. R. (1990). Purification and characterization of iduronic acid-rich and glucuronic acid-rich proteoglycans implicated in human post-burn keloid scar. Carbohydrate Research, 207, 295–305.

Garg, H. G., Warren, C. D., & Siebert, J. W. (2000). Chemistry of scarring. In H. G. Garg & M. T. Longaker (Eds.), Scarless wound healing. New York: Marcel Dekker.

Gelse, K., Pöschl, E., & Aigner, T. (2003). Collagens-structure, function, and biosynthesis. Ad-vanced Drug Delivery Reviews, 55, 1531–1546.

Gerwins, P., Skoldenberg, E., & Claesson-Welsh, L. (2000). Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Critical Reviews in Oncology/Hematology, 34, 185–194.

El Ghalbzouri, A., Jonkman, M. F., Dijkman, R., & Ponec, M. (2005). Basement membrane recon-struction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. The Journal of Investigative Dermatology, 124, 79–86.

Giannini, C., & Dyck, P. J. (1990). The fate of Schwann cell basement membranes in permanently transected nerves. Journal of Neuropathology and Experimental Neurology, 49, 550–563.

Gibson, K. L., Remson, L., Smith, A., Satterlee, N., Strain, G. M., & Daniloff, J. K. (1991). Com-parison of nerve regeneration through different types of neural prostheses. Microsurgery, 12, 80–85.

Gibson, T., Kenedi, R. M., & Craik, J. E. (1965). The mobile microarchitecture of dermal collagen: A bioengineering study. The British Journal of Surgery, 52, 764–770.

Gilbert, T. W., Stewart-Akers, A. M., Simmons-Byrd, A., & Badylak, S. F. (2007). Degradation and remodeling of small intestinal submucosa in canine achilles tendon repair. The Journal of Bone and Joint Surgery. American volume, 89, 621–630.

Gilbert, T. W., Nieponice, A., Spievack, A. R., Holcomb, J., Gilbert, S., & Badylak, S. F. (2008). Repair of the thoracic wall with an extracellular matrix scaffold in a canine model. The Journal of Surgical Research, 147, 61–67.

Ginsbach, G., Busch, L. C., & Kühnel, W. (1979). The nature of the collagenous capsules around breast implants. Plastic and Reconstructive Surgery, 64, 456–464.

Godbout, C., Follonier Castella, L., Smith, E. A., Talele, N., Chow, M. L., Garonna, A., & Hinz, B. (2013). The mechanical environment modulates intracellular calcium oscillation activities of myofibroblasts. PLoS One, 8, 64560.

Gohari, S., Gambla, C., Healey, M., Spaulding, G., Gordon, K. B., Swan, J., Cook, B., West, D. P., & Lapiere, J. C. (2002). Evaluation of tissue-engineered skin (human skin substitute) and secondary intention healing in the treatment of full thickness wounds after Mohs micrographic or excisional surgery. Dermatologic Surgery, 28, 1107–1114.

Goldberg, S. R., McKinstry, R. P., Sykes, V., & Lanning, D. A. (2007). Rapid closure of midgesta-tional excisional wounds in a fetal mouse model is associated with altered transforming growth factor-beta isoform and receptor expression. Journal of Pediatric Surgery, 42, 966–971.

Gong, P., McLaughlin, R. A., Liew, Y. M., Munro, P. R., Wood, F. M., & Sampson, D. D. (2014). Assessment of human burn scars with optical coherence tomography by imaging the attenu-ation coefficient of tissue after vascular masking. Journal of Biomedical Optics, 19, 21111.

Goodrum, J. F., Weaver, J. E., Goines, N. D., & Bouldin, T. W. (1995). Fatty acids from degen-erating myelin lipids are conserved and reutilized for myelin synthesis during regeneration in peripheral nerve. Journal of Neurochemistry, 65, 1752–1759.

Goodrum, J. F., Fowler, K. A., & Hostetter, J. D. (2000). Peripheral nerve regeneration and choles-terol reutilization are normal in the low-density lipoprotein receptor knockout mouse. Journal of Neuroscience research, 15, 581–586.

Gordon, P. L., Huang, C., Lord, R. C., & Yannas, I. V. (1974). The far infrared spectrum of col-lagen. Macromolecule, 7, 954–956.

Górnikiewicz, B., Ronowicz, A., Podolak, J., Madanecki, P., Stanislawska-Sachadyn, A., & Sa-chadyn, P. (2013). Epigenetic Basis of Regeneration: Analysis of Genomic DNA Methylation Profiles in the MRL/MpJ Mouse. DNA Research : An International Journal for Rapid Publica-tion of Reports on Genes and Genomes. [Epub ahead of print].

Goss, R. J. (1964). Adaptive growth. New York: Academic.

Page 29: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

298 References

Goss, R. J. (1969). Principles of regeneration. New York: Academic.Goss, R. J. (1980). Prospects for regeneration in man. Clinical Orthopaedics and Related Re-

search, 151, 270–282.Goss, R. J. (1987). Why mammals don’t regenerate-or do they? News in Physiological Sciences,

2, 112–115.Goss, R. J. (1992a). Regeneration versus repair. In I. K. Cohen, R.F. Diegelmann, & W. J. Lindblad

(Eds.), Wound healing. Philadelphia: Saunders.Goss, R. J. (1992b). The evolution of regeneration: Adaptive or inherent? Journal of Theoretical

Biology, 159, 241–260.Goss, R. J., & Grimes, L. N. (1972). Tissue interactions in the regeneration of rabbit ear holes.

American Zoologist, 12, 151–157.Goss, R. J., & Grimes, L. N. (1975). Epidermal downgrowths in regenerating rabbit ear holes.

Journal of Morphology, 146, 533–542.Gottlieb, M. E., & Furman, J. (2004).Successful Management and Surgical Closure of Chronic

and Pathological Wounds using Integra®. Journal of Burns and Surgical Wound Care, 3, 4.Graham, M. F., Blomquist, P., & Zederfeldt, B. (1992). The alimentary canal. In I. K. Cohen, R.F.

Diegelmann, & W. J. Lindblad (Eds.), Wound healing. Philadelphia: Saunders.Grant, C. A., Twigg, P. C., & Tobin, D. J. (2012). Static and dynamic nanomechanical properties of

human skin tissue using atomic force microscopy: Effect of scarring in the upper dermis. Acta Biomaterialia, 8, 4123–4129.

Green, H., & Rheinwald, J. G. (1977). Process for serially culturing keratinocytes. US Patent No. 4,016,036. Washington, DC: United States Patent Office.

Green, H., Kehinde, O., & Thomas, J. (1979). Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proceedings of the National Academy of Sciences of the United States of America, 76, 5665–5668.

Green, H. A., Burd, E., Nishioka, N. S., Brüggermann, U., & Compton, C. C. (1992). Mid-dermal wound healing. Archives of Dermatology, 128, 639–645.

Greenhalgh, D. G., Sprugel, K. H., Murray, M. J., & Ross, R. (1990). PDGF and FGF stimulate wound healing in the genetically diabetic mouse. The American Journal of Pathology, 136, 1235–1246.

Griffith, L. (2000). Polymeric biomaterials. Acta Materialia, 48, 263–277.Grillo, H. C., & Gross, J. (1962). Thermal reconstitution of collagen from solution, and the re-

sponse to its heterologous implantation. The Journal of Surgical Research, 2, 69–82.Grillo, H. C., Watts, G. T., & Gross, J. (1958). Studies in wound healing. I. Contraction and the

wound contents. Annals of Surgery, 148, 145–152.Grinnell, F. (1992). Cell adhesion. In I. K. Cohen, R.F. Diegelmann, & W. J. Lindblad (Eds.),

Wound healing. Philadelphia: Saunders.Grinnell, F. (1994). Fibroblasts, myofibroblasts, and wound contraction. The Journal of Cell Biol-

ogy, 124, 401–404.Grondin, C. M., Campeau, I., Thornton, J. C., Engle, J. C., Cross, F. S., & Schreiber, H. (1989).

Coronary artery bypass grafting with saphenous vein. Circulation, 79(I), 24–29.Gross, J., Farinelli, W., Sadow, P., Anderson, R., & Burns, R. (1995). On the mechanism of skin

wound “contraction”: A granulation tissue “knockout” with a normal phenotype. Proceedings of the National Academy of Sciences of the United States of America, 92, 5982–5986.

Grzesiak, J. J., & Bouvet, M. (2007). Determination of the ligand-binding specificities of the alpha2beta1 and alpha1beta1 integrins in a novel 3-dimensional in vitro model of pancreatic cancer. Pancreas, 34, 220–228.

Gu, Y., Zhu, J., Xue, C., Li, Z., Ding, F., Yang, Y., & Gu, X. (2014). Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials, 35, 2253–2263.

Guénard, V., Kleitman, N., Morrissey, T. K., Bunge, R. P., & Aebischer, P. (1992). Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. The Journal of Neuroscience, 12, 3310–3320.

Page 30: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

299References

Guo, M., & Grinnell, F. (1989). Basement membrane formation and human epidermal differentia-tion in vitro. The Journal of Investigative Dermatology, 93, 372–378.

Gurfinkel, R., Lavon, I., Cagnano, E., Volgin, K., Shaltiel, L., Grossman, N., Kost, J., Singer, A. J., & Rosenberg, L. (2009). Combined ultrasonic and enzymatic debridement of necrotic eschars in an animal model. Journal of Burn Care & Research, 30, 505–513.

Haber, R. M., Hanna, W., Ramsay, C. A., & Boxall, L. B. (1985). Cicatricial junctional epider-molysis bullosa. Journal of the American Academy of Dermatology, 12, 836–844.

Haftek, J., & Thomas, P. K. (1968). Electron-microscope observations on the effects of local-ized crush injuries on the connective tissues of peripheral nerves. Journal of Anatomy, 103, 233–243.

Hall, S. M. (1986). Regeneration in cellular and acellular autografts in the peripheral nervous system. Journal of Neuropathology and Applied Neurobiology, 12, 27–46.

Hall, S. M. (1986). The effect of inhibiting Schwann cell mitosis on the reinnervation of acellular autografts in the peripheral nervous system of the mouse. Journal of Neuropathology and Ap-plied Neurobiology, 12, 402–414.

Ham, A. W. (1965). Histology. Philadelphia: J. B. Lippincott.Hamaia, S. W., Pugh, N., Raynal, N., Némoz, B., Stone, R., Gullberg, D., Bihan, D., & Farndale,

R. W. (2012). Mapping of potent and specific binding motifs, GLOGEN and GVOGEA, for integrin α1β1 using collagen toolkits II and III. The Journal of Biological Chemistry, 287, 26019–26028.

Hansbrough, J. F., Boyce, S. T., Cooper, M. L., & Foreman, T. J. (1989). Burn wound closure with cultured autologous keratinocytes attached to a collagenglycosaminoglycan substrate. Journal of the American Medical Association, 262, 2125–2130.

Hansbrough, J. F., Cooper, M. L., Cohen, R., Spielvogel, R., Greenleaf, G., Bartel, R. L., & Naugh-ton, G. (1992a). Evaluation of a biodegradable matrix containing cultured human fibroblasts as a dermal replacement beneath meshed skin grafts on athymic mice. Surgery, 111, 438–446.

Hansbrough, J. F., Dore, C., & Hansbrough, W. B. (1992b). Clinical trials of a living dermal tissue replacement placed beneath meshed, split-thickness skin grafts on excised burn wounds. The Journal of Burn Care & Rehabilitation, 13, 519–529.

Hansbrough, J. F., Morgan, J. L., Greenleaf, G. E., & Bartel, R. (1993). Composite grafts of human keratinocytes grown on a polyglactin mesh-cultured fibroblast dermal substitute function as a bilayer skin replacement in full-thickness wounds on athymic mice. The Journal of Burn Care & Rehabilitation, 14, 485–494.

Hansbrough, J. F., Morgan, J., Greenleaf, G., Parikh, M., Nolte, C., & Wilkins, L. (1994). Evalu-ation of Graftskin composite grafts on full-thickness wounds on athymic mice. The Journal of Burn Care & Rehabilitation, 15, 346–353.

Harbers, G. M., Gamble, L. J., Irwin, E. F., Castner, D. G., & Healy, K. E. (2005). Development and characterization of a high-throughput system for assessing cell-surface receptor-ligand engagement. Langmuir: The ACS Journal of Surfaces and Colloids, 21, 8374–8384.

Harley, B. A., Spilker, M. H., Wu, J. W., Asano, K., Hsu, H. P., Spector, M., & Yannas, I. V. (2004). Optimal degradation rate for collagen chambers used for regeneration of peripheral nerves over long gaps. Cells, Tissues, Organs, 176, 153–165.

Harriger, M. D., & Hull, B. E. (1992). Cornification and basement membrane formation in a bilay-ered human skin equivalent maintained at an air-liquid interface. The Journal of Burn Care & Rehabilitation, 13, 187–193.

Harris, A. K., Wild, P., & Stopak, D. (1980). Silicone rubber substrate: A new wrinkle in the study of cell locomotion. Science, 280, 177–179.

Harris, A. K., Stopak, D., & Wild, P. (1981). Fibroblast traction as a mechanism for collagen mor-phogenesis. Nature, 290, 249–251.

Hartwell, S. W. (1955). The mechanisms of healing in human wounds. Springfield: Charles C. Thomas.

Hay, E. D. (1966). Regeneration. New York: Holt, Rinehart & Winston.Hay, E. D. (1981). Collagen and embryonic development. In E. D. Hay (Ed.), Cell biology of the

extra-cellular matrix. New York: Plenum.

Page 31: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

300 References

Hayward, P., & Robson, M. C. (1991). Animal models of wound contraction. In A. Barbul, M. Caldwell, W. Eaglstein, T. Hunt, D. Marshall, E. Pines, & G. Skover (Eds.), Clinical and ex-perimental approaches to dermal and epidermal repair: Normal and chronic wounds. New York: Alan R. Liss.

Hayward, P., Hokanson, J., Heggers, J., Fiddes, J., & Klingbeil, C. (1992). Fibroblast growth fac-tor reverses the bacterial retardation of wound contraction. American Journal of Surgery, 163, 288–293.

Hazari, A., & Elliot, D. (2004). Treatment of end-neuromas, neuromas-in-continuity and scarred nerves of the digits by proximal relocation. Journal of Hand Surgery, British Volume, 29, 338–350.

Heck, E. L., Bergstresser, P. R., & Baxter, C. R. (1985). Composite skin graft: Frozen dermal allografts support the engraftment and expansion of autologous epidermis. The Journal of Trauma, 25, 106–112.

Hefton, J. M., Madden, M. R., Finkelstein, J. L., & Shires, G. T. (1983). Grafting of burn patients with allografts of cultured epidermal cells. The Lancet, 2, 428–430.

Heimbach, D., Luterman, A., Burke, J., Cram, A., Herndon, D., Hunt, J., Jordan, M., McManus, W., Solem, L., Warden, G., et al. (1988). Artificial dermis for major burns. Annals of Surgery, 208, 313–320.

Heino, J. (2000). The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biology, 19, 319–323.

Heldin, C. H., & Westermark, B. (1996). Role of Platelet-derived growth factor in vivo. In R. A. F. Clark (Ed.), The molecular and cellular biology of wound repair. New York: Plenum.

Heng, M. C. (2011). Wound healing in adult skin: Aiming for perfect regeneration. International Journal of Dermatology, 50, 1058–1066.

Henry, E. W., Chiu, T.-H., Nyilas, E., Brushart, T. M., Dikkes, P., & Sidman, R. L. (1985). Nerve regeneration through biodegradable polyester tubes. Experimental Neurology, 90, 652–676.

Hermanson, G. T. (2008). Bioconjugate techniques (2nd edn.). New York: Academic.Hertz, M. I., Snyder, L., Harmon, K. R., & Bitterman, P. B. (1992). Acute lung injury. In I. K.

Cohen, R.F. Diegelmann, & W. J. Lindblad (Eds.), Wound healing. Philadelphia: Saunders.Hickerson, W. L., Compton, C., Fletchall, S., & Smith, L. R. (1994). Cultured epidermal autografts

and allodermis combination for permanent burn wound coverage. Burns, 20, 52–56.Higgins, G. M., & Anderson, R. M. (1931). Experimental pathology of the liver I: Restoration

of the liver of the white rat following partial surgical removal. Archives of Pathology, 12, 186–202.

Higton, D. L. R., & James, D. W. (1964). The force of contraction of full-thickness wounds of rab-bit skin. The British. Journal of Surgery, 51, 462–466.

Hinz, B., Pittet, P., Smith-Clerc, J., Chaponnier, C., & Meister, J. J. (2004). Myofibroblast develop-ment is characterized by specific cell-cell adherens junctions. Molecular Biology of the Cell, 15, 4310–4320.

Hinz, B., Phan, S. H., Thannickal, V. J., Prunotto, M., Desmoulière, A., Varga, J., De Wever, O., Mareel, M., & Gabbiani, G. (2012). Recent developments in myofibroblast biology: Paradigms for connective tissue remodeling. The American Journal of Pathology, 180, 1340–1355.

Ho, K., Soller, E., Karp, S., Rogers, A., & Yannas, I. V. (2011). Unpublished observations.Hirone, T., & Taniguchi, S. (1980). Basal lamina formation by epidermal cells in cell culture. Cur-

rent Problems in Dermatology, 10, 159–169.Holbrook, K. A., Byers, P. H., & Pinnell, S. R. (1982). The structure and function of dermal con-

nective tissue in normal individuals and patients with inherited connective tissue disorder. Scanning Electron Microscopy, 4, 1731–1744.

Hollowell, J. P., Villadiego, A., & Rich, K. M. (1990). Sciatic nerve regeneration across gaps within silicone chambers: Long-term effects of NGF and consideration of axonal branching. Experimental Neurology, 110, 45–51.

Holmes, W., & Young, J. Z. (1942). Nerve regeneration after immediate and delayed suture. Jour-nal of Anatomy, 77, 63–96.

Page 32: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

301References

Honma, T., Itagaki, T., Nakamura, M., Kamakura, S., Takahashi, I., Echigo, S., & Sasano, Y. (2008). Bone formation in rat calvaria ceases within a limited period regardless of completion of defect repair. Oral Diseases, 14, 457–464.

Hoppen, H. J., Leenslag, J. W., Pennings, A. J., van der Lei, B., & Robinson, P. H. (1990). Two-ply biodegradable nerve guide: Basic aspects of design, construction and biological performance. Biomaterials, 11, 286–290.

Horne, R. S. C., Hurley, J. V., Crowe, D. M., Ritz, M., O’Brien, B. M., & Arnold, L. I. (1992). Wound healing in foetal sheep: A histological and electron microscopic study. British Journal of Plastic Surgery, 45, 333–344.

Horst, M., Madduri, S., Gobet, R., Sulser, T., Milleret, V., Hall, H., Atala, A., & Eberli, D. (2012). Engineering functional bladder tissues. Journal of Tissue Engineering and Regenerative Medi-cine, 7, 515–522.

Howard, M. A., Asmis, R., Evans, K. K., & Mustoe, T. A. (2013). Oxygen and wound care: A review of current therapeutic modalities and future direction. Wound Repair and Regeneration, 21, 503–511.

Hsiong, S. X., Huebsch, N., Fischbach, C., Kong, H. J., & Mooney, D. J. (2008). Integrin-adhesion ligand bond formation of preosteoblasts and stem cells in three-dimensional RGD presenting matrices. Biomacromolecules, 9, 1843–1851.

Hsu, W. C., Spilker, M. H., Yannas, I. V., & Rubin, P. A. D. (2000). Inhibition of conjunctival scarring and contraction by a porous collagen-GAG implant. Investigative Ophthalmology & Visual Science, 41, 2404–2411.

Hu, P., & Luo, B. H. (2013). Integrin bi-directional signaling across the plasma membrane. Journal of Cellular Physiology, 228, 306–312.

Hu, S., Kirsner, R. S., Falanga, V., Phillips, T., & Eaglstein, W. H. (2006). Evaluation of Apligraf persistence and basement membrane restoration in donor site wounds: A pilot study. Wound Repair and Regeneration, 14, 427–433.

Huang, C. (1974). Physicochemical studies of collagen and collagen-mucopolysaccharide com-posite materials. D. Sc. thesis, Massachussetts Institute of Technology, MA, Cambridge.

Huang, C., & Yannas, I. V. (1977). Mechanochemical studies of enzymatic degradation of in-soluble collagen fibers. Journal of Biomedical Materials Research, 11, 137–154.

Huang, Y. C., Leung, V. Y., Lu, W. W., & Luk, K. D. (2013). The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. The Spine Journal, 13, 352–362.

Hubbell, J. A. (2000). Matrix effects. In R. P. Lanza, R. Langer, & J. Vacanti (Eds.), Principles of tissue engineering. San Diego: Academic.

Huebsch, N. D., & Mooney, D. J. (2007). Fluorescent resonance energy transfer: A tool for prob-ing molecular cell-biomaterial interactions in three dimensions. Biomaterials, 28, 2424–2437.

Hull, B. E., Sher, S. E., Rosen, S., Church, D., & Bell, E. (1983a). Fibroblasts in isogeneic skin equivalents persist for long periods after grafting. The Journal of Investigative Dermatology, 81, 436–438.

Hull, B. E., Sher, S. E., Rosen, S., Church, D., & Bell, E. (1983b). Structural integration of skin equivalents grafted to Lewis and Sprague-Dawley rats. The Journal of Investigative Dermatol-ogy, 81, 429–436.

Hunter, J. A. A., & Finlay, J. B. (1976). Scanning electron microscopy of normal scar tissue and keloids. The British. Journal of Surgery, 63, 826–830.

Hurtado, H., Knoops, B., & Van den Bousch de Aguilar, P. (1987). Rat sciatic nerve regeneration in semipermeable artificial tubes. Experimental Neurology, 97, 751–757.

Hynes, R. O. (1990). Fibronectins. New York: Springer-Verlag.Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110, 673–687.Hwang, K., Sim, H. B., Huan, F., & Kim, D. J. (2010). Myofibroblasts and capsular tissue tension

in breast capsular contracture. Aesthetic Plastic Surgery, 34, 716–721.Igel, H. J., Freeman, A. E., Boeckman, C. R., & Kleinfeld, K. L. (1974). A new method for cov-

ering large surface area wounds with autografts II: Surgical application of tissue culture ex-panded rabbit-skin autografts. Archives of Surgery, 108, 724–729.

Page 33: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

302 References

Ignotz, R. A., & Massague, J. (1986). Transforming growth factor-b stimulates the expression of fibronectin and collagen and their incorporation into extracellular matrix. The Journal of Bio-logical Chemistry, 261, 4337–4340.

Ikeda, K., Oda, Y., Tomita, K., Nomura, S., & Nakanishi, I. (1989). Isolated Schwann cells can synthesize the basement membrane in vitro. Journal of Electron Microscopy, 38, 230–234.

Illingworth, C. M. (1974). Trapped fingers and amputated finger tips in children. Journal of Pedi-atric Surgery, 9, 853–858.

Inoue, M., Kratz, G., Haegerstrand, A., & Stahle-Backdahl, M. (1995). Collagenase expression is rapidly induced in wound-edge keratinocytes after acute injury in human skin, persists dur-ing healing, and stops at re-epithelialization. The Journal of Investigative Dermatology, 104, 479–483.

Ippolito, E., Natali, P. G., Postacchini, F., Acccinni, L., & DeMartino, C. (1980). Morphological, immunochemical and biochemical study of rabbit achilles tendon at various ages. The Journal of Bone and Joint Surgery, 62A, 583–598.

Iredale, J. P. (2001). Hepatic stellate cell behavior during resolution of liver injury. Seminars in Liver Disease, 21, 427–436.

Iredale, J. P. (2008). Defining therapeutic targets for liver fibrosis: Exploiting the biology of in-flammation and repair. Pharmacological Research, 58, 129–136.

Itoh, S., Takakuda, K., Samejima, H., Ohta, T., Shinomiya, K., & Ichinose, S. (1999). Synthetic collagen fibers coated with a synthetic peptide containing the YISGR sequence of laminin to promote peripheral nerve regeneration in vivo. Journal of Materials Science. Materials in Medicine, 10, 129–134.

Iwaisako, K., Brenner, D. A., & Kisseleva, T. (2012). What's new in liver fibrosis? The origin of myofibroblasts in liver fibrosis. Journal of Gastroenterology and Hepatology, 27(Suppl 2), 65–68.

Jahoda, C. A., & Reynolds, A. J. (2001). Hair follicle dermal sheath cells: Unsung participants in wound healing. The Lancet, 358, 1445–1448.

Jaklenec, A., Stamp, A., Deweerd, E., Sherwin, A., & Langer, R. (2012). Progress in the tissue engineering and stem cell industry “are we there yet?”. Tissue Engineering. Part B. Reviews, 18, 155–166.

Jang, J. Y., Min, J. H., Chae, Y. H., Baek, J. Y., Wang, S. B., Park, S. J., Oh, G. T., Lee, S. H., Ho, Y. S., & Chang, T. S. (2014). Reactive Oxygen Species Play a Critical Role in Collagen-Induced Platelet Activation via SHP-2 Oxidation. Antioxidants & Redox Signaling, 20, 2528–2540.

Jenq, C. B., & Coggeshall, R. E. (1984). Effects of sciatic nerve regeneration and axonal popula-tions in tributary nerves. Brain Research, 295, 91–100.

Jenq, C. B., & Coggeshall, R. E. (1985a). Numbers of regenerating axons in parent and tributary peripheral nerves in the rat. Brain Research, 326, 27–40.

Jenq, C. B., & Coggeshall, R. E. (1985b). Long-term patterns of axon regeneration in the sciatic nerve and its tributaries. Brain Research, 345, 34–44.

Jenq, C. B., & Coggeshall, R. E. (1985c). Nerve regeneration through holey silicone tubes. Brain Research, 361, 233–241.

Jenq, C. B., & Coggeshall, R. E. (1987). Permeable tubes increase the length of the gap that regen-erating axons can span. Brain Research, 408, 239–242.

Jenq, C. B., Jenq, L. L., & Coggeshall, R. E. (1987). Nerve regeneration changes with filters of different pore size. Experimental Neurology, 97, 662–671.

Jia, S., Zhao, Y., & Mustoe, T. A. (2011). The effects of topically applied silicone gel and its silver derivative on the prevention of hypertrophic scarring in two rabbit ear-scarring models. Jour-nal of Plastic, Reconstructive & Aesthetic Surgery, 64, 332–334.

Johnson, A., & Dipietro, L. A. (2013). Apoptosis and angiogenesis: An evolving mechanism for fi-brosis. Federation of American Societies for Experimental Biology Journal FJ, 27, 3893–3901.

Jokinen, J., Dadu, E., Nykvist, P., Käpylä, J., White, D. J., Ivaska, J., Vehviläinen, P., Reunanen, H., Larjava, H., Häkkinen, L., & Heino, J. (2004). Integrin-mediated cell adhesion to type I collagen fibrils. The Journal of Biological Chemistry, 279, 31956–31963.

Page 34: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

303References

Joseph, J., & Dyson, M. (1966). Tissue replacement in the rabbit's ear. The British. Journal of Surgery, 53, 372–380.

Kamolz, L. P., Kitzinger, H. B., Karle, B., & Frey, M. (2009). The treatment of hand burns. Burns, 35, 327–337.

Kangesu, T., Navsaria, H. A., Manek, S., Shurey, C. B., Jones, C. R., Fryer, P. R., Leigh, I. M., & Green, C. J. (1993). A porcine model using skin graft chambers for studies on cultured kerati-nocytes. British Journal of Plastic Surgery, 46, 393–400.

Kangesu, T., Navsaria, H. A., Manek, S., Fryer, P. R., Leigh, I. M., & Green, C. J. (1993). Kerato-dermal grafts: The importance of dermis for the in vivo growth of cultured keratinocytes. Brit-ish Journal of Plastic Surgery, 46, 401–409.

Karasek, M. A. (1966). In vitro culture of human skin epithelial cells. The Journal of Investigative Dermatology, 47, 533–540.

Karasek, M. A. (1968). Growth and differentiation of transplanted epithelial cell cultures. The Journal of Investigative Dermatology, 51, 247–252.

Kauppila, T., Jyväsjärvi, E., Huopaniemi, T., Hujanen, E., & Liesi, P. (1993). A laminin graft re-places neurorrhaphy in the restorative surgery of the rat sciatic nerve. Experimental Neurology, 123, 181–191.

Kawasumi, A., Sagawa, N., Hayashi, S., Yokoyama, H., & Tamura, K. (2013). Wound healing in mammals and amphibians: Toward limb regeneration in mammals. Current Topics in Microbi-ology and Immunology, 2013:367, 33–49.

Keeley, R. D., Nguyen, K. D., Stephanides, M., Padilla, J., & Rosen, J. M. (1991). The artifi-cial nerve graft: A comparison of blended elastomer hydrogel with polyglycolic acid conduits. Journal of Reconstructive Microsurgery, 7, 93–100.

Kefalides, N. A., & Alper, R. (1988). Structure and organization of macromolecules in basement membranes. In M. E. Nimni, (Ed.), Collagen. Boca Raton: CRC Press.

Kelynack, K. J., Hewitson, T. D., Nicholls, K. M., Darby, I. A., & Becker, G. J. (2000). Human renal fibroblast contraction of collagen I lattices is an integrin-mediated process. Nephrology, Dialysis, Transplantation, 15, 1766–1772.

Kennedy, D. F., & Cliff, W. J. (1979). A systematic study of wound contraction in mammalian skin. Pathology, 11, 207–222.

Kiernan, J. A. (1979). Hypotheses concerned with axonal regeneration in the mammalian nervous system. Biological Reviews of the Cambridge Philosophical Society, 54, 155–197.

Kierszenbaum, A. L., & Tres, L. L. (2012). Histology and Cell Biology (3rd edn.). Philadelphia: Saunders.

Kiistala, U. (1972). Dermal-epidermal separation. Annals of Clinical Research, 4, 10–22.Kim, D. H., Connolly, S. E., Zhao, S., Beuerman, R. W., Voorhies, R. M., & Kline, D. G. (1993).

Comparison of macropore, semipermeable, and nonpermeable collagen conduits in nerve re-pair. Journal of Reconstructive Microsurgery, 9, 415–420.

Kim, D. H., Connoly, S. E., Kline, D. G., Voorhies, R. M., Smith, A., Powell, M., Yoes, T., & Daniloff, J. K. (1994). Labeled Schwann cell transplants versus sural nerve grafts in nerve repair. Journal of Neurosurgery, 80, 254–260.

Kim, H. B., Vakili, K., Modi, B. P., Ferguson, M. A., Guillot, A. P., Potanos, K. M., Prabhu, S. P., & Fishman, S. J. (2012). A novel treatment for the midaortic syndrome. The New England Journal of Medicine, 367, 2361–2362.

Kim, J. P., Zhang, K., Kramer, R. H., Schall, T. J., & Woodley, D. T. (1992). Integrin receptors and RGD sequences in human keratinocyte migration: Unique anitmigratory function of a3b1. The Journal of Clinical Investigation, 98, 764–770.

Kingshott, P., Andersson, G., McArthur, S. L., & Griesser, H. J. (2011). Surface modification and chemical surface analysis of biomaterials. Current Opinion in Chemical Biology, 15, 667–676.

Kisseleva, T., & Brenner, D. A. (2012). The phenotypic fate and functional role for bone marrow-derived stem cells in liver fibrosis. Journal of Hepatology, 56, 965–972.

Kiviat, M. D., Ross, R., & Ansell, J. S. (1973). Smooth muscle regeneration in the ureter. The American Journal of Pathology, 72, 403–416.

Page 35: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

304 References

Kivirikko, K. I., & Myllylä, R. (1984). Biosynthesis of the collagens. In K. A. Piez & A. H. Reddi (Eds.), Extracellular matrix biochemistry. New York: Elsevier.

Kiyotani, T., Teramachi, M., Takimoto, Y., Nakamura, T., Shimizu, Y., & Endo, K. (1996). Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube: A histological and electrophysiological evaluation of regenerated nerves. Brain Research, 740, 66–74.

Klagsbrun, M. (1989). The fibroblast growth factor family: Structure and biological properties. Progress in Growth Factor Research, 1, 207–235.

Kline, D. G., & Hayes, G. J. (1964). The use of resorbable wrapper for peripheral nerve repair. Journal of Neurosurgery, 21, 737–750.

Klingbeil, C. K., Cesar, L. B., & Fiddes, J. C. (1991). Basic fibroblast growth factor accelerated tissue repair in models of impaired wound healing. In A. Barbul, M. Caldwell, W. Eaglstein, T. Hunt, D. Marshall, E. Pines, & G. Skover (Eds.), Clinical and experimental approaches to dermal and epidermal repair: Normal and chronic wounds. New York: Alan R. Liss.

Kljavin, I. J., & Madison, R. D. (1991). Peripheral nerve regeneration within tubular prostheses: Effects of laminin and collagen matrices on cellular ingrowth. Cells & Mater, 1, 17–28.

Knapp, T. R., Daniels, J. R., & Kaplan, E. N. (1977). Pathologic scar formation. The American Journal of Pathology, 80, 47–63.

Knight, C. G., Morton, L. F., Onley, D. J., Peachey, A. R., Messent, A. J., Smethurst, P. A., Tuck-well, D. S., Farndale, R. W., & Barnes, M. J. (1998). Identification in collagen type I of an integrin alpha2 beta1-binding site containing an essential GER sequence. The Journal of Bio-logical Chemistry, 273, 33287–33294.

Knight, C. G., Morton, L. F., Peachey, A. R., Tuckwell, D. S., Farndale, R. W., & Barnes, M. J. (2000). The collagen-binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) rec-ognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. The Journal of Biological Chemistry, 275, 35–40.

Knoops, B., Hurtado, H., & Aguilar, P. B. (1990). Rat sciatic nerve regeneration within an acrylic semipermeable tube and comparison with a silicone impermeable material. Journal of Neuro-pathology and Experimental Neurology, 49, 438–448.

Kong, H. J., Boontheekul, T., & Mooney, D. J. (2006). Quantifying the relation between adhesion ligand-receptor bond formation and cell phenotype. Proceedings of the National Academy of Sciences of the United States of America, 103, 18534–18539.

Kolokythas, P., Aust, M. C., Vogt, P. M., & Paulsen, F. (2008). Dermal subtsitute with the collagen-elastin matrix Matriderm in burn injuries: A comprehensive review. Handchirurgie, Mikro-chirurgie, Plastische Chirurgie, 40, 367–371.

Konig, A., & Bruckner-Tuderman, L. (1991). Epithelial-mesenchymal interactions enhance ex-pression of collagen VII in vitro. The Journal of Investigative Dermatology, 96, 803–808.

Krawczyk, W. S., & Wilgram, G. (1973). Hemidesmosome and desmosome morphogenesis during epidermal wound healing. Journal of Ultrastructure Research, 45, 93–101.

Kremer, M., Lang, E., & Berger, A. C. (2000). Evaluation of dermal-epidermal skin equivalents ('composite-skin') of human keratinocytes in a collagen-glycosaminoglycan matrix (Integra artificial skin). British Journal of Plastic Surgery, 53, 459–465.

Krikorian, D., Manthorpe, M., & Varon, S. (1982). Purified mouse Schwann cells: Mitogenic ef-fects of fetal calf serum and fibrobalst growth factor. Developmental Neuroscience, 5, 77–91.

Kroeze, K. L., Vink, L., de Boer, E. M., Scheper, R. J., van Montfrans, C., & Gibbs, S. (2012). Simple wound exudate collection method identifies bioactive cytokines and chemokines in (arterio) venous ulcers. Wound Repair and Regeneration, 20, 294–303.

Kronick, P. L., & Buechler, P. R. (1986). Fiber orientation in calfskin by laser light scattering or x-ray diffraction and quantitative relation to mechanical properties. Journal of the American Leather Chemists Association, 81, 221–230.

Krummel, T. M., Nelson, J. M., Diegelmann, R. F., Lindblad, W. J., Salzberg, A. M., Greenfield, L. J., & Cohen, I. K. (1987). Fetal response to injury in the rabbit. Journal of Pediatric Surgery, 22, 640–644.

Page 36: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

305References

Krummel, T. M., Michna, B. A., Thomas, B. L., Sporn, M. B., Nelson, J. M., Salzberg, A. M., Co-hen, I. K., & Diegelmann, R. F. (1988). Transforming growth factor beta (TGF beta) induced fibrosis in a fetal wound model. Journal of Pediatric Surgery, 2643, 7–652.

Krummel, T. M., Ehrlich, H. P., Nelson, J. M., Michna, B. A., Thomas, B. L., Haynes, J. M., Co-hen, I. K., & Diegelmann, R. F. (1989). Fetal wounds do not contract in utero. Surgical Forum, 40, 613–614.

Krummel, T. M., Ehrlich, H. P., Nelson, J. M., Michna, B. A., Thomas, B. L., Haynes, J. H., Cohen, L. K., & Diegelmann, R. F. (1993). In vitro and in vivo analysis of the inability of fetal rabbit wounds to contract. Wound Repair and Regeneration, 1, 15–21.

Ksander, G. A., Chu, G. H., McMullin, H., Ogawa, Y., Pratt, B. M., Rosenblatt, J. S., & McPher-son, J. M. (1990). Transforming growth factors-beta1 and beta2 enhance connective tissue formation in animal models of dermal wound healing by secondary intent. Annals of the New York Academy of Sciences, 593, 135–147.

Labrador, R. O., Butí, M., & Navarro, X. (1995). Peripheral nerve repair: Role of agarose matrix density on functional recovery. Neuroreport, 6, 2022–2026.

Labrador, R. O., Butí, M., & Navarro, X. (1998). Influence of collagen and laminin gels concen-tration on nerve regeneration after resection and tube repair. Experimental Neurology, 149, 243–252.

Lachenbruch, C., & VanGilder, C. (2012). Estimates of evaporation rates from wounds for various dressing/support surface combinations. Advances in Skin & Wound Care, 25, 29–36.

Langdon, R. C., Cuono, C. B., Birchall, N., Madri, J. A., Kuklinska, E., McGuire, J., & Moell-mann, G. E. (1988). Reconstitution of structure and cell function in human skin grafts derived from cryopreserved allogeneic dermis and autologous cultured keratinocytes. The Journal of Investigative Dermatology, 91, 478–485.

Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260, 920–928.Lanning, D. A., Nwomeh, B. C., Montante, S. J., Yager, D. R., Diegelmann, R. F., & Haynes, J. H.

(1999). TGF-beta1 alters the healing of cutaneous fetal excisional wounds. Journal of Pediat-ric Surgery, 34, 695–700.

Lanning, D. A., Diegelmann, R. F., Yager, D. R., Wallace, M. L., Bagwell, C. E., & Haynes, J. H. (2000). Myofibroblast induction with transforming growth factor beta1 and beta3 in cutaneous fetal excisional wounds. Journal of Pediatric Surgery, 35, 183–187.

Latarjet, J., Gangolphe, M., Hezez, G., Masson, C., Chomel, P. Y., Cognet, J. B., Galoisy, J. P., Joly, R., Robert, A., Foyatier, J. L., et al. (1987). The grafting of burns with cultured epidermis as autografts in man. Scandinavian Journal of Plastic and Reconstructive Surgery, 21, 241–244.

Lavker, R. M. (1979). Structural alterations in exposed and unexposed aged skin. The Journal of Investigative Dermatology, 73, 59–66.

Le Beau, J. M., Ellisman, M. H., & Powell, H. C. (1988). Ultrastructural and morphometric analy-sis of long-term peripheral nerve regeneration through silicone tubes. Journal of Neurocytol-ogy, 17, 161–172.

Lee, D. Y., & Cho, K. H. (2005). The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in three-dimensional culture systems. Ar-chives of Dermatological Research, 296, 296–302.

Lee, Y. J., & Kim, S. W. (2013). Current Management of Urethral Stricture. Korean Journal of Urology, 54, 561–569.

Lehv, M., & Fitzgerald, P. J. (1968). Pancreatic acinar cell regeneration IV: Regeneration after surgical resection. The American Journal of Pathology, 53, 513–535.

Leigh, I. M., Purkis, P. E., Navsaria, H. A., & Phillips, T. J. (1987). Treatment of chronic venous ulcers with sheets of cultured allogenic keratinocytes. The British Journal of Dermatology, 117, 591–597.

Leipziger, L. S., Glushko, V., DiBernardo, B., Shafaie, F., Noble, J., Nichols, J., & Alvarez, O. M. (1985). Dermal wound repair: Role of collagen matrix implants and synthetic polymer dress-ings. Journal of the American Academy of Dermatology, 12, 409–419.

Leitinger, B. (2011). Transmembrane collagen receptors. Annual Review of Cell and Developmen-tal Biology, 27, 265–290.

Page 37: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

306 References

Lever, W. F., & Schaumburg-Lever, G. (1990). Histopathology of the skin (7th ed.). Philadelphia: J.B. Lippincott.

Levi-Montalcini, R., & Hamburger, V. (1951). Selective growth stimulating effects of mouse sarcoma on sensory and sympathetic nervous system of the chick embryo. The Journal of Experimental Zoology, 116, 321–362.

Levi-Montalcini, R., & Hamburger, V. (1951). Selective growth stimulating effects of mouse sar-coma on sensory and sympathetic nervous system of the chick embryo. The Journal of Experi-mental Zoology, 116, 321–362.

Levine, J. H., Moses, H. J., Gold, L. I., & Nanney, L. B. (1993). Spatial and temporal patterns of immunoreactive transforming growth factor beta1, beta2, and beta3 during excisional wound repair. The American Journal of Pathology, 143, 368–380.

Li, X., Mohan, S., Gu, W., Miyakoshi, N., & Baylink, D. J. (2000). Differential protein profile in the ear-punched tissue of regeneration and non-regeneration strains of mice: A novel approach to explore the candidate genes for soft-tissue regeneration. Biochimica et Biophysica Acta, 1524, 102–109.

Li, Y., Liu, J., & Wang, D. (2007). A review of studies on hair follicle dermal sheath cells. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 24, 694–696.

Liao, J., Guo, X., Grande-Allen, K. J., Kasper, F. K., & Mikos, A. G. (2010). Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials, 31, 8911–8920.

Lichti, U., Weinberg, W. C., Goodman, L., Ledbetter, S., Dooley, T., Morgan, D., & Yuspa, S. H. (1993). In vivo regulation of murine hair growth: Insights from grafting defined cell popula-tions onto nude mice. The Journal of Investigative Dermatology, 101, 124S–129S.

Lillie, J. H., MacCallum, D. K., & Jepsen, A. (1988). Growth of stratified squamous epithelium on reconstituted extracellular matrices: Long-term culture. The Journal of Investigative Dermatol-ogy, 90, 100–109.

Lin, K. Y., Posnick, J. C., al-Qattan, M. M., Vajsar, J., & Becker, L. E. (1994). Fetal nerve healing: An experimental study. Plastic and Reconstructive Surgery, 93, 1323–1333.

Lindquist, G. (1946). The healing of skin defects: An experimental study on the white rat. Acta Chirurgica Scandinavica, 94, 1–163.

Liu, Y., Bharadwaj, S., Lee, S. J., Atala, A., & Zhang, Y. (2009). Optimization of a natural col-lagen scaffold to aid cell-matrix penetration for urologic tissue engineering. Biomaterials, 30, 3865–3873.

Liuzzi, F. J., & Lasek, R. J. (1987). Astrocytes block axonal regeneration in mammals by activat-ing the physiological stop pathway. Science, 237, 642–645.

Longaker, M. T., & Adzick, N. S. (1991). The biology of fetal wound healing: A review. Plastic and Reconstructive Surgery, 87, 788–798.

Longaker, M. T., Burd, D. A. R., Gown, A. M., Yen, T. S. B., Jennings, R. W., Duncan, B. W., Harrison, M. R., & Adzick, N. S. (1991a). Midgestation fetal lamb wounds contract in utero. Journal of Pediatric Surgery, 26, 942–948.

Longaker, M. T., Whitby, D. J., Jennings, R. W., Duncan, B. W., Ferguson, M. W. J., Harrison, M. R., & Adzick, N. S. (1991b). Fetal diaphragmatic wounds heal with scar formation. The Jour-nal of Surgical Research, 50, 375–385.

Longaker, M. T., Chiu, E. S., Adzick, N. S., Stern, M., Harrison, M. R., & Stern, R. (1991). Studies on fetal wound healing V: A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Annals of Surgery, 213, 292–296.

Longaker, M. T., Moelleken, B. R. W., Cheng, J. C., Jennings, R. W., Adzick, N. S., Mintorovich, J., Levinsohn, D. G., Gordon, L., Harrison, M. R., & Simmons, D. J. (1992). Fetal fracture healing in a lamb model. Plastic and Reconstructive Surgery, 90, 161–171.

Longaker, M. T., Bouhana, K. S., & Harrison, M. R. (1994). Wound healing in the fetus. Possible role for macrophages and transforming growth factor-beta isoforms. Wound Repair and Re-generation, 2, 104–112.

Page 38: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

307References

Longo, F. M., Skaper, S. D., Manthorpe, M., Williams, L. R., Lundborg, G., & Varon, S. (1983a). Temporal changes of neuronotrophic activities accumulating in vivo within nerve regeneration chambers. Experimental Neurology, 81, 756–769.

Longo, F. M., Manthorpe, M., Skaper, S. D., Lundborg, G., & Varon, S. (1983b). Neuronotrophic activities accumulate in vivo within silicone nerve regeneration chambers. Brain Research, 261, 109–117.

Lorenz, H. P., & Adzick, N. S. (1993). Scarless skin wound repair in the fetus. The Western Journal of Medicine, 159, 350–355.

Lorenz, H. P., Longaker, M. T., Perkocha, L. A., Jennings, R. W., Harrison, M. R., & Adzick, N. S. (1992). Scarless wound repair: A human fetal skin model. Development, 114, 253–259.

Lorenz, C., Petracic, A., Hohl, H.-P., Wessel, L., & Waag, K.-L. (1997). Early wound closure and early reconstruction: Experience with a dermal substitute in a child with 60 per cent surface area burn. Burns, 23, 505–508.

Lovvorn, H. N., Cass, D. L., Sylvester, K. G., Yang, E. Y., Crombleholme, T. M., Adzick, N. S., & Savani, R. C. (1998). Hyaluronan receptor expression increases in fetal excisional skin wounds and correlates with fibroplasia. Journal of Pediatric Surgery, 33, 1062–1069.

Lu, H., Hoshiba, T., Kawazoe, N., Koda, I., Song, M., & Chen, G. (2011). Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials, 32, 9658–9666.

Luccioli, G. M., Kahn, D. S., & Robertson, H. R. (1964). Histologic study of wound contraction in the rabbit. Annals of Surgery, 160, 1030–1040.

Lui, S. C., & Karasek, M. (1978). Isolation and serial cultivation of rabbit skin epithelial cells. The Journal of Investigative Dermatology, 70, 288–293.

Lundborg, G. (1987). Nerve regeneration and repair. Acta Orthopaedica Scandinavica, 58, 145–169.

Lundborg, G. (1988). The nerve chamber as an experimental tool. In G. Lundborg (Ed.), Nerve injury and repair. New York: Churchill Livingstone.

Lundborg, G. (2000). A 25-year perspective of peripheral nerve surgery: Evolving neuroscientific concepts and clinical significance. The Journal of Hand Surgery, 25, 391–414.

Lundborg, G., & Rosén, B. (2007). Hand function after nerve repair. Acta Physiologica, 189, 207–217.

Lundborg, G., Fahlin, L. B., Danielsen, N., Gelberman, R. H., Longo, F. M., Powell, H. C., & Varon, S. (1982a). Nerve regeneration in silicone model chambers: Influence of gap length and of distal stump components. Experimental Neurology, 76, 361–375.

Lundborg, G., Dahlin, L. B., Danielsen, N., Johannesson, A., Hansson, H. A., Longo, F., & Varon, S. (1982b). Nerve regeneration across an extended gap: A neuronobiological view of nerve repair and the possible involvement of neuronotrophic factors. The Journal of Hand Surgery, 7, 580–587.

Lundborg, G., Gelberman, R. H., Longo, F. M., Powell, H. C., & Varon, S. (1982c). In vivo regen-eration of cut nerves encased in silicone tubes: Growth across a six-millimeter gap. Journal of Neuropathology and Experimental Neurology, 41, 412–422.

Lundborg, G., Longo, F. M., & Varon, S. (1982d). Nerve regeneration model and trophic factors in vivo. Brain Research, 232, 157–161.

Lundborg, G., Dahlin, L. B., & Danielsen, N. (1991). Ulnar nerve repair by the silicone chamber technique. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 25, 79–82.

Lundborg, G., Rosén, B., Abrahamson, S. O., Dahlin, L., & Danielsen, N. (1994). Tubular repair of the median nerve in the human forearm. The Journal of Hand Surgery, 19, 273–276.

Lundborg, G., Dahlin, L., Dohi, D., Kanje, M., & Terada, N. (1997). A new type of “bioartificial” nerve graft for bridging extended defects in nerves. The Journal of Hand Surgery, 22, 299–303.

Luo, B. H., Carman, C. V., & Springer, T. A. (2007). Structural basis of integrin regulation and signaling. Annual Review of Immunology, 25, 619–647.

Ma, Z., Mao, Z., & Gao, C. (2007). Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces. B, Biointerfaces, 60, 137–157.

Page 39: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

308 References

Mackinnon, S. E., & Dellon, A. L. (1990). A study of nerve regeneration across synthetic (Maxon) and biologic (collagen) nerve conduits for nerve gaps up to 5 cm in the primate. Journal of Reconstructive Microsurgery, 6, 117–121.

Mackinnon, S. E., Dellon, A. L., Hudson, A. R., & Hunter, D. A. (1986). Chronic human nerve compression: A histological assessment. Neuropathology and Applied Neurobiology, 12, 547–565.

Madden, J. W. (1972). Wound healing: Biologic and clinical features. In D. Sabison (Ed.), Text-book of surgery. Philadelphia: Saunders.

Madduri, S., & Gander, B. (2012). Growth factor delivery systems and repair strategies for dam-aged peripheral nerves. Journal of Controlled Release, 161, 274–282.

Madison, R. D., & Archibald, S. J. (1994). Point sources of Schwann cells result in growth into a nerve entubulation repair site in the absence of axons: Effects of freeze thawing. Experimental Neurology, 128, 266–275.

Madison, R. D., Silva, C. F. D., Dikkes, P., Chiu, T.-H., & Sidman, R. L. (1985). Increased rate of peripheral nerve regeneration using bioresorbable nerve guides and a laminin-containing gel. Experimental Neurology, 88, 767–772.

Madison, R. D., Silva, C. F. D., & Dikkes, P. (1988). Entubulation repair with protein additives increases the maximum nerve gap distance successfully bridged with tubular prostheses. Brain Research, 447, 325–334.

Madison, R. D., Archibald, S. J., & Krarup, C. (1992). Peripheral nerve injury. In I. K. Cohen, F. Diegelmann R., & J. & Lindblad W. (Eds.), Wound healing. Philadelphia: Saunders.

Madrazo, A., Suzuki, Y., & Churg, J. (1970). Radiation nephritis II: Radiation changes after high doses of radiation. The American Journal of Pathology, 61, 37–56.

Madri, J. A., Sankar, S., & Romanic, A. M. (1996). Angiogenesis. In R. A. F. Clark (Ed.), The molecular and cellular biology of wound repair. New York: Plenum.

Maheshwari, G., Brown, G., Lauffenburger, D. A., Wells, A., & Griffith, L. G. (2000). Cell adhe-sion and motility depend on nanoscale RGD clustering. Journal of Cell Science, 113, 1677–1686.

Majno, G. (1982). The healing hand. Man and wound in the ancient world. Cambridge: Harvard University Press.

Majno, G., Gabbiani, G., Hirschel, B. J., Ryan, G., & Statkov, P. R. (1971). Contraction of granula-tion tissue in vitro: Similarity to smooth muscle. Science, 173, 548–550.

Mak, V. H. W., Cumpstone, M. B., Kennedy, A. H., Harmon, C. S., Guy, R. H., & Potts, R. O. (1991). Barrier function of human keratinocyte cultures grown at the air-liquid interface. Jour-nal of Cell Science, 96, 323–327.

Mallat, A., & Lotersztajn, S. (2013). Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis. American Journal of Physiology. Cell Physiology, 305, 789–799.

Mann, P., & Constable, H. (1977). Induction of basal lamina formation in epidermal cell cultures in vitro. The British Journal of Dermatology, 96, 421–426.

Marinkovich, M. P., Keene, D. R., Rimberg, C. S., & Burgeson, R. E. (1993). Cellular origin of the dermal-epidermal basement membrane. Developmental Dynamics, 197, 255–267.

Marinkovich, M. P., Peavey, C. L., Burgeson, R. E., & Woodley, D. T. (1994). Kalinin inhibits col-lagen-driven human keratinocyte migration. The Journal of Clinical Investigation, 102, 157.

Marks, R., Abell, E., & Nishikawa, T. (1975). The junctional zone beneath migrating epidermis. The British Journal of Dermatology, 92, 311–319.

Martin, P. (1996). Mechanisms of wound healing in the embryo and fetus. Current Topics in De-velopmental Biology, 32, 175–203.

Martin, P. (1997). Wound healing: Aiming for perfect skin regeneration. Science, 276, 75–81.Martinez-Hernandez, A. (1985). The hepatic extracellular matrix. II. Electron immunohistochemi-

cal studies in rats with CCl4-induced cirrhosis. Laboratory Investigation, 53, 166–186.Martinez-Hernandez, A. (1988). Repair, regeneration and fibrosis. In E. Rubin & J. L. Farber

(Eds.), Pathology. Philadelphia: J.B. Lippincott.

Page 40: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

309References

Maruyama, T., Ayabe, S., Murata, T., Hori, M., & Ozaki, H. (2011). Relaxant effect of prostaglan-din D(2)-receptor DP agonist on liver myofibroblast contraction. Journal of Pharmacological Sciences, 116, 197–203.

Massagué, J., & Like, B. (1985). Cellular receptors for type-b transforming growth factor. The Journal of Biological Chemistry, 260, 2636–2645.

Mast, B. A. (1992). The skin. In I. K. Cohen, R. F. Diegelmann, & W. J. Lindblad (Eds.), Wound healing. Philadelphia: Saunders.

Mast, B. A., Diegelmann, R. F., Krummel, T. M., & Cohen, I. K. (1992a). Scarless wound healing in the mammalian fetus. Surgery, Gynecology & Obstetrics, 174, 441–451.

Mast, B. A., Neslon, J. M., & Krummel, T. M. (1992b). Tissue repair in the mammalian fetus. In I. K. Cohen, R. F. Diegelmann, & W. J. Lindblad (Eds.), Wound healing. Philadelphia: Saunders.

Masur, S. K., Dewal, H. S., Dinh, T. T., Erenburg, I., & Petridou, S. (1996). Myofibroblasts dif-ferentiate from fibroblasts when plated at low density. Proceedings of the National Academy of Sciences of the United States of America, 93, 4219–4223.

Matsumura, H., Gondo, M., Imai, R., Shibata, D., & Watanabe, K. (2013). Chronological histolog-ical findings of cultured epidermal autograft over bilayer artificial dermis. Burns, 39, 705–713.

Matsuzaki, T., Inamatsu, M., & Yoshizato, K. (1996). The upper dermal sheath has a potential to regenerate the hair in the rat follicular epidermis. Differentiation, 60, 287–297.

Masuzaki, R., Zhao, S. R., Csizmadia, E., Yannas, I., & Karp, S. J. (2013). Scar formation and lack of regeneration in adult and neonatal liver after stromal injury. Wound Repair and Regenera-tion, 21, 122–130.

Mayr, E. (1997). This is biology. Cambridge: Harvard University Press.McCallion, R. L., & Ferguson, M. W. J. (1996). Fetal wound healing and the development of antis-

carring therapies for adult wound healing. In R. A. F. Clark (Ed.), The molecular and cellular biology of wound repair. New York: Plenum.

McCarthy, M. (2007). The sun farmer. Chicago: Ivan R. Dee.McColl, D., Cartlidge, B., & Connolly, P. (2007). Real-time monitoring of moisture levels in

wound dressings in vitro: An experimental study. International Journal of Surgery, 5, 316–322.McCusker, C. D., & Gardiner, D. M. (2014). Understanding positional cues in salamander limb

regeneration: Implications for optimizing cell-based regenerative therapies. Disease Models & Mechanisms, 7, 593–599.

McGarvey, M. L., Evercooren, A. G. V., Kleinman, H. K., & Dubois-Dalcq, M. (1984). Synthesis and effects of basement membrane components in cultured rat Schwann cells. Developmental Biology, 105, 18–28.

McGrath, M. H. (1982). The effect of prostaglandin inhibitors on wound contraction and the myo-fibroblast. Plastic and Reconstructive Surgery, 69, 71–83.

McMinn, R. M. H. (1969). Tissue repair. New York: Academic.McNeil, P. L., & Ito, S. (1990). Molecular traffic through plasma membrane disruptions of cells in

vivo. Journal of Cell Science, 96, 549–556.McNeil, P. L., Muthukrishnan, L., Warder, E., & D’Amore, P. A. (1989). Growth factors are re-

leased by mechanically wounded endothelial cells. The Journal of Cell Biology, 109, 811–822.McNeil, P. L., Vogel, S. S., Miyake, K., & Terasaki, M. (2000). Patching plasma membrane disrup-

tions with cytoplasmic membrane. Journal of Cell Science, 113, 1891–1902.McPherson, J. M., & Piez, K. A. (1988). Collagen in dermal wound repair (edited by R. A. F

Clark; 2nd ed.). New York: Plenum.Medawar, P. B. (1944). The behavior and fate of skin autografts and skin homografts in rabbits.

Journal of Anatomy, 78, 176–199.Melchels, F. P., Barradas, A. M., van Blitterswijk, C. A., de Boer, J., Feijen, J., & Grijpma, D. W.

(2010). Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomaterialia, 6, 4208–4217.

Mellin, T. N., Mennie, R. J., Cashen, D. E., Ronan, J. J., Capparella, J., James, M. L., Disalvo, J., Frank, J., Linemeyer, D., Gimenez-Gallego, G., & Thomas, K. A. (1992). Acid fibroblast growth factor accelerates dermal wound healing. Growth Factors, 7, 1–14.

Page 41: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

310 References

Menger, B., Vogt, P. M., Kuhbier, J. W., & Reimers, K. (2010). Applying amphibian limb regenera-tion to human wound healing: A review. Annals of Plastic Surgery, 65, 504–510.

Merle, M., Dellon, A. L., Campbell, J. N., & Chang, P. S. (1989). Complications from silicon polymer intubulation of nerves. Microsurgery, 10, 130–133.

Meuli-Simmen, C., Meuli, M., Yingling, C. D., Eiman, T., Timmel, G. B., Buncke, H. J., Lin-eaweaver, W., & Harrison, M. R. (1997). Midgestational sciatic nerve transection in fetal sheep results in absent nerve regeneration and neurogenic muscle atrophy. Plastic and Reconstructive Surgery, 99, 486–492.

Michaeli, D., & McPherson, M. (1990). Immunologic study of artificial skin used in the treatment of thermal injuries. The Journal of Burn Care & Rehabilitation, 11, 21–26.

Michalopoulos, G. K. (1990). Liver regeneration: Molecular mechanisms and growth control. FASEB Journal, 4, 176–187.

Michalopoulos, G. K. (2013). Principles of liver regeneration and growth homeostasis. Compre-hensive Physiology, 3, 485–513.

Michalopoulos, G. K., & DeFrances, M. C. (1997). Liver regeneration. Science, 276, 60–66.Michalopoulos, G. K., & DeFrances, M. C. (2005). Liver regeneration. Regenerative medicine I.

Theories, models and methods (pp. 101–134). Heidelberg: Springer.Mikuz, G., Hoinkes, G., Propst, A., & Wilflingseder, P. (1984). Tissue reactions with silicone rub-

ber implants (morphological, microchemical, and clinical investigations in humans and labora-tory animals). In G. W. Hastings & P. Ducheyne (Eds.), Macromolecular biomaterials. Boca Raton: CRC Press.

Miller, E. J. (1984). Chemistry of the collagens and their distribution. In K. A. Piez & A. H. Reddi (Eds.), Extracellular matrix biochemistry. New York: Elsevier.

Millesi, H. (1967). Erfahrungen mit der Mikrochirurgie peripherer Nerven. Chirurgia Plastica et Reconstructiva, 3, 47–55.

Millesi, H., Meissl, G., & Berger, G. (1972). The interfascicular nerve grafting of the median and ulnar nerves. The Journal of Bone and Joint Surgery, 54(A), 727–750.

Millesi, H., Meissl, G., & Berger, G. (1976). Further experience with interfascicular grafting of the median, ulnar and radial nerves. The Journal of Bone and Joint Surgery, 58(A), 209–216.

Mizisin, A. P., & Weerasuriya, A. (2011). Homeostatic regulation of the endoneurial microenvi-ronment during development, aging and in response to trauma, disease and toxic insult. Acta Neuropathologica, 121, 291–312.

Molander, H., Engkvist, O., Hagglund, J., Olsson, Y., & Torebjork, E. (1983). Nerve repair us-ing a polyglactin tube and nerve graft: An experimental study in the rabbit. Biomaterials, 4, 276–280.

Mommaas, A. M., Teepe, R. G., Leigh, I. M., Mulder, A. A., Koebrugge, E. J., & Vermeer, B. J. (1992). Ontogenesis of the basement membrane zone after grafting cultured human epithelium: A morphologic and immunoelectron microscopic study. The Journal of Investigative Derma-tology, 99, 71–77.

Morris, J. A., Hudson, A. F., & Weddell, G. (1972a). A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy I: The traumatic degeneration of myelin in the proximal stump of the divided nerve. Zeitschrift für Zellforschung und Mikros-kopische Anatomie, 124, 76–102.

Morris, J. A., Hudson, A. F., & Weddell, G. (1972b). A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy II: The development of the “regener-ating unit.” Zeitschrift für Zellforschung und Mikroskopische Anatomie, 124, 103–130.

Morris, J. A., Hudson, A. F., & Weddell, G. (1972c). A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy III: Changes in the axons of the proximal stump. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 124, 131–164.

Morris, J. A., Hudson, A. F., & Weddell, G. (1972d). A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy IV: Changes in fascicular microto-pography, perineurium and endoneurial fibroblasts. Zeitschrift für Zellforschung und mikros-kopische Anatomie, 124, 165–203.

Page 42: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

311References

Moses, J. W., Kipshidze, N., & Leon, M. B. (2002). Perspectives of drug-eluting stents: The next revolution. American Journal of Cardiovascular Drugs, 2, 163–172.

Moss, T. H., & Lewkowicz, S. J. (1981). A comparative scanning electron-microscopical study of endoneurial collagen around normal mouse nerve fibres, nerve fibres following crush injury and nerve fires of the dystonic mouse mutant (dt/dt). Cell and Tissue Research, 220, 881–887.

Moulin, V., & Plamondon, M. (2002). Differential expression of collagen integrin receptor on fetal vs. adult skin fibroblasts: Implication in wound contraction during healing. The British Journal of Dermatology, 147, 886–892.

Moya, F., Bunge, M. B., & Bunge, R. P. (1980). Schwann cells proliferate but fail to differentiate in defined medium. Proceedings of the National Academy of Sciences of the United States of America, 77, 6902–6906.

Mukhatyar, V., Pai, B., Clements, I., Srinivasan, A., Huber, R., Mehta, A., Mukhopadaya, S., Ru-dra, S., Patel, G., Karumbaiah, L., & Bellamkonda, R. (2013). Molecular sequelae of topo-graphically guided peripheral nerve repair. Annals of Biomedical Engineering, 42, 1436–1455.

Müller, H., Shibib, K., Friedrich, H., & Modrack, M. (1987). Evoked muscle action potentials from regenerated rat tibial and peroneal nerves: Synthetic versus autologous interfascicular grafts. Experimental Neurology, 95, 21–33.

Müller, C. S., Schiekofer, C., Körner, R., Pföhler, C., & Vogt, T. (2013). Improved patient-cen-tered care with effective use of Integra® in dermatologic reconstructive surgery. Journal der Deutschen Dermatologischen Gesellschaft, 11, 537–548.

Munster, A. M. (1992). Use of cultured epidermal autograft in ten patients. The Journal of Burn Care & Rehabilitation, 13, 124–126.

Munster, A. M. (1996). Cultured skin for massive burns. Annals of Surgery, 224, 372–377.Murphy, G. F., Orgill, D. P., & Yannas, I. V. (1990). Partial dermal regeneration is induced by bio-

degradable collagen-glycosaminoglycan grafts. Laboratory Investigation, 62, 305–313.Murray, J. E., Merrill, J. P., & Harrison, J. H. (1955). Renal homotransplantation in identical twins.

Journal of the American Society of Nephrology, 6, 432–436.Mustoe, T. A., Pierce, G. F., Morishima, C., & Deuel, T. F. (1991). Growth-factor induced accel-

eration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. The Journal of Clinical Investigation, 87, 694–703.

Myers, R. R., Heckman, H. M., & Powell, H. C. (1983). Endoneurial fluid is hypertonic. Journal of Neuropathology and Experimental Neurology, 42, 217–224.

Nanney, L. B. (1990). Epidermal and dermal effects of epidermal growth factor during wound repair. The Journal of Investigative Dermatology, 94, 624–629.

Nanney, L. B., & King, L., E., Jr. (1996). Epidermal growth and transforming growth factor-a. In R. A. F. Clark (Ed.), The molecular and cellular biology of wound repair. New York: Plenum.

Nanney, L. B., Stoschek, C. M., King, L., E., Jr., Underwood, R. A., & Holbrook, K. A. (1990). Immunolocalization of epidermal growth factor receptors in normal developing human skin. The Journal of Investigative Dermatology, 94, 742–748.

Nath, R. K., Kwon, B., McKinnon, S. E., Jensen, J. N., Reznik, S., & Boutros, S. (1998). Antibody to transforming growth factor beta reduces collagen production in injured peripheral nerve. Plastic and Reconstructive Surgery, 102, 1100–1106.

Nathaniel, E. L., & Pease, D. C. (1963). Degenerative changes in rat dorsal roots following Wal-lerian degeneration. Journal of Ultrastructure Research, 9, 511–532.

Naughton, G., Mansbridge, J., & Gentzkow, G. (1997). A metabolically active human dermal re-placement for the treatment of diabetic foot ulcers. Artificial Organs, 21, 1–7.

Navarro, X., Rodríguez, F. J., Labrador, R. O., Butí, M., Ceballos, D., Gómez, N., Cuadra, J., & Perego, G. (1996). Peripheral nerve regeneration through bioresorbable and durable nerve guides. Journal of the Peripheral Nervous System, 1, 53–64.

Neidrauer, M., Zubkov, L., Weingarten, M. S., Pourrezaei, K., & Papazoglou, E. S. (2010). Near infrared wound monitor helps clinical assessment of diabetic foot ulcers. Journal of Diabetes Science and Technology, 4, 792–798.

Nesbitt, J. A., & Acland, R. D. (1980). Histopathological changes following removal of the peri-neurium. Journal of Neurosurgery, 53, 233–238.

Page 43: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

312 References

Ng, C. P., Hinz, B., & Swartz, M. A. (2005). Interstitial fluid flow induces myofibroblast differen-tiation and collagen alignment in vitro. Journal of Cell Science, 118, 4731–4739.

Nguyen, D. Q., Potokar, T. S., & Price, P. (2010). An objective long-term evaluation of Integra (a dermal skin substitute) and split thickness skin grafts, in acute burns and reconstructive surgery. Burns, 36, 23–28.

Nieponice, A., McGrath, K., Qureshi, I., Beckman, E. J., Luketich, J. D., Gilbert, T. W., & Ba-dylak, S. F. (2009). An extracellular matrix scaffold for esophageal stricture prevention after circumferential EMR. Gastrointestinal Endoscopy, 69, 289–296.

Nilsson, A., Dahlin, L., Lundborg, G., & Kanje, M. (2005). Graft repair of a peripheral nerve with-out the sacrifice of a healthy donor nerve by the use of acutely dissociated autologous Schwann cells. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 39, 1–6.

Nimni, M. E. (1983). Collagen: Structure, function, and metabolism in normal and fibrotic tissues. Seminars in Arthritis and Rheumatism, 13, 1–86.

Nimni, M. E. (1988). Biochemistry. Vol. 1, Collagen. Boca Raton: CRC Press.Noback, C. R., Husby, J., Girado, J. M., Andrew, C., Bassett, L., & Campbell, J. B. (1958). Neural

regeneration across long gaps in mammalian peripheral nerves: Early morphological findings. The Anatomical Record, 131, 633–647.

Nolte, C. J. M., Oleson, M. A., Bilbo, P. R., & Parenteau, N. L. (1993). Development of a stratum corneum and barrier function in an organotypic skin culture. Archives of Dermatological Re-search, 285, 466–474.

Nolte, C. J. M., Oleson, M. A., Hansbrough, J. F., Morgan, J., Greenleaf, G., & Wilkins, L. (1994). Ultrastructural features of composite skin cultres grafted onto athymic mice. Journal of Anat-omy, 185, 325–333.

Obremski, V. J., & Bunge, M. B. (1995). Addition of purified basal lamina molecules enables Schwann cell ensheathment of sympathetic neurites in culture. Developmental Biology, 168, 124–137.

Obremski, V. J., Wood, P. M., & Bunge, M. B. (1993). Fibroblasts promote Schwann cell basal lamina deposition and elongation in the absence of neurons in culture. Developmental Biology, 160, 119–134.

O’Connor, N. E., Mulliken, J. B., Banks-Schlegel, S., Kehinde, O., & Green, H. (1981). Grafting of burns with cultured epithelium prepared from autologous epidermal cells. The Lancet, 1, 75–78.

Ogawa, M. M., Hashimoto, T., Suzuki, T., & Nishikawa, T. (1990). The establishment of optimum conditions for keratinocytes from human adult skin, and an attempt to graft cultured epidermal sheets onto athymic mice. The Keio Journal of Medicine, 39, 14–20.

Ohbayashi, K., Inoue, H. K., Awaya, A., Kobayashi, S., Kohga, H., Nakamura, M., & Ohye, C. (1996). Peripheral nerve regeneration in a silicone tube: Effect of collagen sponge prosthe-sis, laminin, and pyrimidine compound administration. Neurologia Medico-Chirurgica, 36, 428–433.

Okamoto, E., & Kitano, Y. (1993). Expression of basement membrane components in skin equiva-lents: Influence of dermal fibroblasts. Journal of Dermatological Science, 5, 81–88.

Okuyama, K., Miyama, K., Mizuno, K., & Bächinger, H. P. (2012). Crystal structure of (Gly- Pro-Hyp)(9): Implications for the collagen molecular model. Biopolymers, 97, 607–616.

Oliver, J. (1953). Correlations of structure and function and mechanisms of recovery in acute tubular necrosis. The American journal of medicine, 15, 535–557.

Olsson, Y. (1990). Microenvironment of the peripheral nervous system under normal and patho-logical conditions. Critical Reviews in Neurobiology, 5, 285–311.

Oppenheimer, R., & Hinman, F., Jr. (1955). Ureteral regeneration: Contracture vs. hyperplasia of smooth muscle. The Journal of Urology, 74, 476–484.

Orabi, H., Aboushwareb, T., Zhang, Y., Yoo, J. J., & Atala, A. (2012). Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: A preclinical study. European Urology, 63, 531–538.

Orgill, D. P. (1983). The effects of an artificial skin on scarring and contraction in open wounds. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

Page 44: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

313References

Orgill, D. P., & Yannas, I. V. (1998). Design of an artificial skin IV: Use of island graft to isolate organ regeneration from scar synthesis and other processes leading to skin wound closure. Journal of Biomedical Materials Research, 36, 531–535.

Orgill, D. P., Butler, C. E., & Regan, J. F. (1996). Behavior of collagen-GAG matrices as dermal replacements in rodent and porcine models. Wounds, 8, 151–157.

Orgill, D. P., Butler, C., Regan, J. F., Barlow, M. S., Yannas, I. V., & Compton, C. C. (1998). Vas-cularized collagen-glycosaminoglycan matrix provides a dermal substrate and improves take of cultured epithelial autografts. Plastic and Reconstructive Surgery, 102, 423–429.

Ott, H. C., Matthiesen, T. S., Goh, S.-K., Black, L. D., Kren, S. M., Netoff, T. I., & Taylor, D. A. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14(2):213–221. doi:10.1038/nm1684. Epub 2008 Jan 13.

Ott, H. C., Clippinger, B., Conrad, C., Schuetz, C., Pomerantseva, I., Ikonomou, L., Kotton, D., & Vacanti, J. P. (2010). Regeneration and orthotopic transplantation of a bioartificial lung. Nature Medicine, 16, 927–934.

Palao, R., Gómez, P., & Huguet, P. (2003). Burned breast reconstructive surgery with Integra der-mal regeneration template. British Journal of Plastic Surgery, 56, 252–259.

Pandya, A. N., Woodward, B., & Parkhouse, N. (1998). The use of cultured autologous keratino-cytes with Integra in the resurfacing of acute burns. Plastic and Reconstructive Surgery, 102, 825–828.

Paralkar, V. M., Vukicevic, S., & Reddi, A. H. (1991). Transforming growth factor typeb1 binds to collagen IV basement membrane matrix: Implications for development. Developmental Biol-ogy, 143, 303–308.

Parenteau, N. L., Nolte, C. M., Bilbo, P., Rosenberg, M., Wilkins, L. M., Johnson, E. W., Watson, S., Mason, V. S., & Bell, E. (1991). Epidermis generated in vitro: Practical considerations and applications. Journal of Cellular Biochemistry, 45, 245–251.

Parenteau, N. L., Bilbo, P., Nolte, C. J. M., Mason, V. S., & Rosenberg, M. (1992). The organotypic culture of human skin keratinocytes and fibroblasts to achieve form and function. Cytotechnol, 9, 163–171.

Parenteau, N., Sabolinski, M., Prosky, S., Nolte, C., Oleson, M., Kriwet, K., & Bilbo, P. (1996). Biological and physical factors influencing the successful engraftment of a cultured human skin substitute. Biotechnology and Bioengineering, 52, 3–14.

Peacock, E. E., Jr. (1971). Wound healing and care of the wound. Manual of preoperative and postoperative care. Philadelphia: A.C.S., Saunders.

Peacock, E. E., Jr. (1984). Wound healing and wound care. In S. I. Schwartz, G. T. Shires, F. C. Spencer, & E. H. Storer (Eds.), Principles of surgery. New York: McGraw-Hill.

Peacock, E. E., Jr., & Van Winkle, W., Jr. (1976). Wound repair. Philadelphia: Saunders.Pedraza, C. E., Marelli, B., Chicatun, F., McKee, M. D., & Nazhat, S. N. (2010). An in vitro as-

sessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering. Tissue Engineering. Part A, 16, 781–793.

Peehl, D. M., & Ham, R. G. (1980). Clonal growth of human keratinocytes with small amounts of dialyzed serum. In Vitro, 16, 526–540.

Penn, J. W., Grobbelaar, A. O., & Rolfe, K. J. (2012). The role of the TGF-β family in wound healing, burns and scarring: A review. International Journal of Burns and Trauma, 2, 18–28.

Petersen, M. J., Woodley, D. T., Stricklin, G. P., & O’Keefe, E. J. (1989). Constitutive production of procollagensae and collagenase inhibitor by human keratinocytes in culture. The Journal of Investigative Dermatology, 92, 156–159.

Petersen, M. J., Woodley, D. T., & Stricklin, G. P., & O’Keefe, E. J. (1990). Enhanced synthesis of collagenase by human keratinocytes cultured on type I or type IV collagen. The Journal of Investigative Dermatology, 94, 341–346.

Pfister, L. A., Papaloïzos, M., Merkle, H. P., & Gander, B. (2007). Nerve conduits and growth fac-tor delivery in peripheral nerve repair. Journal of the Peripheral Nervous System, 12, 65–82.

Pierce, G. F., Berg, J. V., Rudolph, R., Tarpley, J., & Mustoe, T. A. (1991). Platelet-derived growth factor-BB and transforming growth factor beta 1 selectively modulate glycosaminoglycans,

Page 45: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

314 References

collagen and myofibroblasts in excisional wounds. The American Journal of Pathology, 138, 629–646.

Pierce, G. F., Tarpley, J. E., Yanagihara, D., Mustoe, T. A., Fox, G. M., & Thomason, A. (1992). Platelet-derived growth factor (BB homodimer), transforming growth factor-b1, and basic fi-broblast growth factor in dermal wound healing. The American Journal of Pathology, 140, 1375–1388.

Pierschbacher, M. D., & Ruoslahti, E. (1984a). The cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 309, 30–33.

Pierschbacher, M. D., & Ruoslahti, E. (1984b). Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proceedings of the National Academy of Sciences of the United States of America, 81, 5985–5988.

Piez, K. A., & Reddi, A. H. (Eds.). (1984). Extracellular matrix biochemistry. New York: Elsevier.Pinkus, H. (1952). Examination of the epidermis by the strip method of removing horny layers II:

Biometric data on regeneration of the human epidermis. The Journal of Investigative Derma-tology, 19, 431–441.

Podratz, J. L., Rodriguez, E. H., DiNonno, E. S., & Windebank, A. J. (1998). Myelination by Schwann cells in the absence of extracellular matrix assembly. Glia, 23, 383–388.

Polezhaev, L. V. (1972). Loss and restoration of regenerative capacity in tissues and organs of animals. Jerusalem: Keter Press.

Politis, M. J., Ederle, K., & Spencer, P. S. (1982). Tropism in nerve regeneration in vivo. Attrac-tion of regenerating axons by diffusible factors derived from cells in distal nerve stumps of transected peripheral nerves. Brain Research, 253, 1–12.

Popova, S. N., Lundgren-Akerlund, E., Wiig, H., & Gullberg, D. 2007). Physiology and pathology of collagen receptors. Acta Physiologica, 190, 179–187.

Powell, H. M., Supp, D. M., & Boyce, S. T. (2008). Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials, 29, 834–843.

Prunieras, M. (1975). Culture of the skin: How and why. International Journal of Dermatology, 14, 12–22.

Prunieras, M., Moreno, G., Dosso, Y., & Vinzens, F. (1976). Studies of guinea pig cell cultures V: Co-cultures of pigmented melanocytes and albino keratinocytes, a model for the study of pigmented transfer. Acta Dermatovener (Stockholm), 56, 1–9.

Prunieras, M., Regnier, M., & Schlotterer, M. (1979). New process of growing human epidermal cells on homologous vs. heterologous dermis: Preparation of recombined grafts. Annales de Chirurgie Plastique, 24, 357–362.

Pudenz, R. H. (1958). Experimental and clinical observations on the shunting of cerebrospinal fluid into the circulatory system. Clinical Neurosurgery, 5, 98–115.

Puolakkainen, P. A., Twardzik, D. R., Ranchalis, J. E., Pankey, S. C., Reed, M. J., & Gombotz, W. R. (1995). The enhancement in wound healing by transforming growth factorb1(TGF-b1) depends on the topical delivery system. The Journal of Surgical Research, 58, 321–329.

Purdue, G. F., Hunt, J. L., Still, J. M., Jr., Law, E. J., Herndon, D. N., Goldfarb, I. W., Schiller, W. R., Hansbrough, J. F., Hickerson, W. L., Himel, H. N., et al. (1997). A multicenter clinical trial of a biosynthetic skin replacement, Dermagraft-TC, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. The Journal of Burn Care & Rehabilitation, 18, 52–57.

Racine-Samson, L., Rockey, D. C., & Bissell, D. M. (1997). The role of alpha1beta1 integrin in wound contraction. A quantitative analysis of liver myofibroblasts in vivo and in primary cul-ture. The Journal of Biological Chemistry, 272, 30911–30917.

Radtke, C., Reimers, K., Allmeling, C., & Vogt, P. M. (2009). Efficient production of transfected human keratinocytes under serum-free and feeder layer-free conditions. Handchirurgie, Mik-rochirurgie, Plastische Chirurgie, 41, 333–340.

Rafiei, Y., Tan, A., Motiwala, A., Cousins, B. G., & Seifalian, A. M. (2013). Evolution of covered stents in the contemporary era: Clinical application, materials and manufacturing strategies using nanotechnology. Biotechnology Advances, 31, 524–542.

Page 46: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

315References

Ramirez, A. T., Soroff, H. S., Schwartz, M. S., Mooty, J., Pearson, E., & Raben, M. S. (1969). Experimental wound healing in man. Surgery, Gynecology & Obstetrics, 128, 283–293.

Rasmussen, C., Thomas-Virnig, C., & Allen-Hoffmann, B. L. (2013). Classical human epidermal keratinocyte cell culture. Methods in Molecular Biology, 945, 161–175.

Regan, M. C., & Barbul, A. (1991). Effect of wound fluid on local and systemic immune respons-es. In A. Barbul, M. Caldwell, W. Eaglstein, T. Hunt, D. Marshall, E. Pines, & G. Skover (Eds.), Clinical and experimental approaches to dermal and epidermal repair: Normal and chronic wounds. New York: Alan R. Liss.

Regauer, S., & Compton, C. (1990). Cultured keratinocyte sheets enhance spontaneous re-epi-thelia-lization in a dermal explant model of partial-thickness wound healing. The Journal of Investigative Dermatology, 95, 341–346.

Regauer, S., Seiler, G. R., Barrandon, Y., Easley, K. W., & Compton, C. C. (1990). Epithelial origin of cutaneous anchoring fibrils. The Journal of Cell Biology, 111, 2109–2115.

Regnier, M., & Prunieras, M. (1974). Studies on guinea pig skin cell cultures III: Minimum cell numbers for establishment. Acta Dermatovener ( Stockholm), 54, 339–342.

Regnier, M., Vaigot, P., Michel, S., & Prunieras, M. (1985). Localization of bullous pemphigoid antigen (BPA) in isolated human keratinocytes. The Journal of Investigative Dermatology, 85, 187–190.

Rehim, S. A., Singhal, M., & Chung, K. C. (2014). Dermal skin substitutes for upper limb recon-struction: Current status, indications, and contraindications. Hand Clinics, 30, 239–252.

Reing, J. E., Zhang, L., Myers-Irvin, J., Cordero, K. E., Freytes, D. O., Heber-Katz, E., Bedel-baeva, K., McIntosh, D., Dewilde, A., Braunhut, S. J., & Badylak, S. F. (2009). Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Engineering. Part A, 15, 605–614.

Rheinwald, J. G., & Green, H. (1975a). Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell, 6, 317–330.

Rheinwald, J. G., & Green, H. (1975b). Serial cultivation of strains of human epidermal keratino-cytes: The formation of keratinizing colonies from single cells. Cell, 6, 331–343.

Rich, K. M., Alexander, T. D., Pryor, J. C., & Hollowell, J. P. (1989). Nerve growth factor enhances regeneration through silicone chambers. Experimental Neurology, 105, 162–170.

Rich, R. L., Deivanayagam, C. C., Owens, R. T., Carson, M., Höök, A., Moore, D., Symersky, J., Yang, V. W., Narayana, S. V., Höök, M. (1999). Trench-shaped binding sites promote multiple classes of interactions between collagen and the adherence receptors, alpha(1)beta(1) integrin and Staphylococcus aureus cna MSCRAMM. The Journal of Biological Chemistry, 274(35), 24906–24913.

Rigal, C., Pieraggi, M.-T., Vincent, C., Prost, C., Bouissou, H., & Serre, G. (1991). Healing of full-thickness cutaneous wounds in the pig I: Immunohistochemical study of epidermodermal junction regeneration. The Journal of Investigative Dermatology, 96, 777–785.

Riikonen, T., Westermarck, J., Koivisto, L., Broberg, A., Kähäri, V. M., & Heino, J. (1995). Inte-grin α2β1 is a positive regulator of collagenase (MMP-1) and collagen α1(I) gene expression. The Journal of Biological Chemistry, 270, 13548–13552.

Roberts, A. B., & Sporn, M. B. (1996). Transforming growth factor-b. In R. A. F. Clark (Ed.), The molecular and cellular biology of wound repair. New York: Plenum.

Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche, M. S., Heine, U. F., Liotta, L., Falanga, V., Kehrl, J. H., & Fauci, A. S. (1986). Transforming growth factor beta: Rapid induc-tion of fibrosis and angiogenesis in vivo and stimulation of collagen formation. Proceedings of the National Academy of Sciences of the United States of America, 83, 41678–44171.

Robinson, P. H., van der Lei, B., Hoppen, H. J., Leenslag, J., Pennings, A. J., & Nieuwenhuis, P. (1991). Nerve regeneration through a two-ply biodegradable nerve guide in the rat and the influence of ACTH4-9 nerve growth factor. Microsurgery, 12, 412–419.

Rodriguez, F. J., Verdu, E., Ceballos, D., & Navarro, X. (2000). Nerve guides seeded with au-tologous Schwann cells improve nerve regeneration. Experimental Neurology, 161, 571–584.

Page 47: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

316 References

Rodriguez, A., Karen, J., Gardner, H., Gerdin, B., Rubin, K., & Sundberg, C. (2009). Integrin al-pha1beta1 is involved in the differentiation into myofibroblasts in adult reactive tissues in vivo. Journal of Cellular and Molecular Medicine, 13, 3449–3462.

Rosdy, M., & Clauss, L. C. (1990). Terminal epidermal differentiation of human keratinocytes grown in chemically defined medium on inert filter substrates at the air-liquid interface. The Journal of Investigative Dermatology, 95, 409–414.

Rosdy, M., Pisani, A., & Ortonne, J. P. (1993). Production of basement membrane components by a reconstructed epidermis cultured in the absence of serum and dermal factors. The British journal of dermatology, 129, 227–234.

Ross, R., & Benditt, E. P. (1961). Wound healing and collagen formation I: Sequential changes in components of guinea pig skin wounds observed in the electron microscope. The Journal of Biophysical and Biochemical Cytology, 11, 677–700.

Ross, R., & Odland, G. (1968). Human wound repair II: Inflammatory cells, epithelial-mesenchy-mal interrelations, and fibrogenesis. The Journal of Cell Biology, 39, 152–168.

Ross, M. H., & Reith, E. J. (1969). Perineurium: Evidence for contractile elements. Science, 165, 604–606.

Ross, R., & Vogel, A. (1978). The platelet-derived growth factor. Cell, 14, 203–210.Ross, E. V., Naseef, G. S., McKinlay, J. R., Barnette, D. J., Skrobal, M., Grevelink. (2000). Com-

parison of carbon dioxide laser, erbium: YAG laser, dermabrasion, and dermatome: A study of thermal damage, wound contraction, and wound healing in a live pig model: Implications for skin resurfacing. Journal of the American Academy of Dermatology, 42, 92–105.

Roy, P., Petroll, W. M., Chuong, C. J., Cavanaugh, H. D., & Jester, J. V. (1999). Effect of cell mi-gration on the maintenance of tension on a collagen matrix. Annals of Biomedical Engineering, 27, 721–730.

Röyttä, M., & Salonen, V. (1988). Long-term endoneurial changes after nerve transection. Acta Neuropathologica, 76, 35–45.

Rubin, E., & Farber, J. L. (Eds.). (1988). Pathology. Philadelphia: J.B. Lippincott.Rudolph, R. (1975). Skin graft preparation and wound contraction. Surgery, Gynecology &

Obstetrics, 26, 560–562.Rudoph, R. (1979). Location of the force of wound contraction. Surgery, Gynecology & Obstet-

rics, 148, 547–551.Rudolph, R. (1980). Contraction and the control of contraction. World Journal of Surgery, 4, 279–

287.Rudolph, R., & Klein, L. (1973). Healing processes in skin grafts. The Journal of Surgery, Gyne-

cology and Obstetrics, 136, 641–654.Rudolph, R., Gruber, S., Suzuki, M., & Woodward, M. (1977). The life cycle of the myofibroblast.

The Journal of Surgery, Gynecology and Obstetrics, 145, 389–394.Rudolph, R., Abraham, J., Vecchione, T., Guber, S., & Woodward, M. (1978). Myofibroblasts and

free silicon around breast implants. Plastic and Reconstructive Surgery, 62, 185–196.Rudolph, R., McClure, W. J., & Woodward, M. (1979a). Contractile fibroblasts in chronic alco-

holic cirrhosis. Gastroenterol, 76, 704–709.Rudolph, R., Fisher, J. C., & Ninneman, J. L. (1979b). Skin grafting. Boston: Little, Brown.Rudolph, R., Van de Berg, & Ehrlich, P. (1992). Wound contraction and scar contracture. In I. K.

Cohen, R. F. Diegelmann, & W. J. Lindblad (Eds.), Wound healing. Philadelphia: Saunders.Rutka, J. T., Apodaca, G., Stern, R., & Rosenblum, M. (1988). The extracellular matrix of the

central and peripheral nervous systems structure and function. Journal of Neurosurgery, 69, 155–170.

Ryan, G. B., Cliff, W. J., Gabbiani, G., Irle, C., Statkov, P. R., & Majno, G. 1974). Myofibroblasts in human granulation tissue. Human Pathology, 5, 55–67.

Ryssel, H., Germann, G., Kloeters, O., Gazyakan, E., & Radu, C. A. (2010). Dermal substitution with Matriderm(®) in burns on the dorsum of the hand. Burns, 36, 1248–1253.

Rzymski, P., Kubasik, M., & Opala, T. (2011). Use of shear wave sonoelastography in capsular contracture before and after secondary surgery: Report of two cases. Journal of Plastic, Recon-structive & Aesthetic Surgery, 64, 309–312.

Page 48: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

317References

Sabolinski, M. L., Alvarez, O., Aulettea, M., Mulder, G., & Parenteau, N. L. (1996). Cultured skin as a “smart material” for healing wounds experience in venous ulcers. Biomaterials, 17, 311–320.

Saffle, J. R. (2009). Closure of the excised burn wound: Temporary skin substitutes. Clinics in Plastic Surgery, 36, 627–641.

Sahakyants, T., Lee, J. Y., Friedrich, P. F., Bishop, A. T., & Shin, A. Y. (2013). Return of motor function after repair of a 3-cm gap in a rabbit peroneal nerve: A comparison of autograft, col-lagen conduit, and conduit filled with collagen-GAG matrix. The. Journal of Bone and Joint Surgery. American Volume, 95, 1952–1958.

Salonen, V., Lehto, M., Vaheri, A., Aro, H., & Peltonen, J. (1985). Endoneurial fibrosis following nerve transection. An immunohistological study of collagen types and fibronectin in the rat. Acta Neuropathologica, 67, 315–321.

Salonen, V., Röyttä, M., & Peltonen, J. (1987a). The effects of nerve transection on the endoneurial collagen fibril sheaths. Acta Neuropathologica, 74, 13–21.

Salonen, V., Peltonen, J., Röyttä, M., & Virtanen, I. (1987b). Laminin in traumatized peripheral nerve: Basement membrane changes during degeneration and regeneration. Journal of Neuro-cytology, 16, 713–720.

Saltzman, W. M. (2000). Cell interactions with polymers. In R. P. Lanza, R. Langer, & J. Vacanti (Eds.), Principles of tissue engineering. San Diego: Academic.

Santos, P. M., Winterowd, J., Allen, G. G., Bothwell, M. A., & Rubel, E. W. (1991). Nerve growth factor: Increased angiogenesis without improved nerve regeneration. Otolaryngology and Head and Neck Surgery, 105, 12–25.

Sasagasako, N., Ohno, M., & Quarles, R. H. (1999). Evidence for regulation of myelin protein synthesis by contact between adjacent Schwann cell plasma membranes. Developmental Neu-roscience, 21, 417–422.

Sawai, T., Usui, N., Sando, K., Fukui, Y., Kamata, S., Okada, A., Taniguchi, N., Itano, N., & Kimata, K. (1997). Hyaluronic acid of wound fluid in adult and fetal rabbits. Journal of Pedi-atric Surgery, 32, 41–43.

Sawhney, C. P., & Monga, H. L. (1970). Wound contraction in rabbits and the effectiveness of skin grafts in preventing it. British Journal of Plastic Surgery, 23, 318–321.

Scaravilli, F. (1984). Regeneration of the perineurium across a surgically induced gap in a nerve encased in a plastic tube. Journal of Anatomy, 139, 411–424.

Shachar, M., Tsur-Gang, O., Dvir, T., Leor, J., & Cohen, S. (2011). The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomaterialia, 7, 152–162.

Schaffer, C. J., Reinisch, L., Polis, S. L., Stricklin, G. P., & Nanney, L. B. (1997). Comparisons of wound healing among excisional, laser-created and standard thermal burns in porcine wounds of equal depth. Wound Repair and Regeneration, 5, 52–61.

Scherman, P., Lundborg, G., Kanje, M., & Dahlin, L. B. (2000). Sutures alone are sufficient to support regeneration across a gap in the continuity of the sciatic nerve in rats. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 34, 1–8.

Scherman, P., Kanje, M., & Dahlin, L. B. (2005). Sutures as longitudinal guides for the repair of nerve defects-influence of suture numbers and reconstruction of nerve bifurcations. Restor-ative Neurology and Neuroscience, 23, 79–85.

Schiller, H. B., Friedel, C. C., Boulegue, C., & Faessler, R. (2011). EMBO reports. European Molecular Biology Organization Press, 12, 259–266.

Schiro, J. A., Chan, B. M. C., Roswit, W. R., Kassner, P. D., Pentland, A. P., Hemler, M. E., Eisen, A. Z., & Kupper, T. S. (1991). Integrin a2b1(VLA-2) mediates reorganization and contraction of collagen matrices by human cells. Cell, 67, 403–410.

Schmidhammer, R., Zandieh, S., Hopf, R., Mizner, I., Pelinka, L. E., Kroepfl, A., & Redl, H. (2004). Alleviated tension at the repair site enhances functional regeneration: The effect of full range of motion mobilization on the regeneration of peripheral nerves-histologic, electrophysi-ologic, and functional results in a rat model. The Journal of Trauma, 56, 571–584.

Schmitz, J. P., & Hollinger, J. O. (1986). The critical size defect as an experimental model for cra-niomandibulofacial nonunions. Clinical Orthopaedics and Related Research, 205, 299–308.

Page 49: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

318 References

Schmitz, J. P., Schwartz, Z., Hollinger, J. O., & Boyan, B. D. (1990). Characterization of rat cal-varial nonunion defects. Acta Anatomica, 138, 185–192.

Schuppan, D. (1990). Structure of the extracellular matrix in normal and fibrotic liver: Collagens and glycoproteins. Seminars in Liver Disease, 10, 1–10.

Schürch, W., Seemayer, T. A., & Gabbiani, G. (1998). The myofibroblast. A quarter century after its discovery. The American Journal of Surgical Pathology, 22, 141–147.

Schwartz, S. M., Stemerman, M. B., & Benditt, E. P. (1975). The aortic intima II: Repair of the aortic lining after mechanical denudation. The American Journal of Pathology, 81, 15–42.

Seckel, B. R., Chiu, T. H., Nyilas, E., & Sidman, R. L. (1984). Nerve regeneration through syn-thetic biodegradable nerve guides: Regulation by the target organ. Plastic and Reconstructive Surgery, 74, 173–181.

Seyer, J. M., & Raghow, R. (1992). Hepatic fibrosis. In I. K. Cohen, R. F. Diegelmann, & W. J. Lindblad (Eds.), Wound healing. Philadelphia: Saunders.

Shafritz, T. A., Rosenberg, L. C., & Yannas, I. V. (1994). Specific effects of glycosaminoglycans in an analog of extracellular matrix that delays wound contraction and induces regeneration. Wound Repair and Regeneration, 2, 270–276.

Shah, M., Foreman, D. M., & Ferguson, M. W. J. (1992). Control of scarring in adult wounds by neutralizing antibody to transforming growth factor b. The Lancet, 339, 213–214.

Shah, M., Foreman, D. M., & Ferguson, M. W. (1994). Neutralising antibody to TGFb1,2 reduces cutaneous scarring in adult rodents. Journal of Cell Science, 107, 1137–1157.

Shah, M., Foreman, D. M., & Ferguson, M. J. (1995). Neutralization of TGF-b1 and TGF-b2 or exogenous addition of TGF-b3 to cutaneous rat wounds reduces scarring. Journal of Cell Sci-ence, 108, 985–1002.

Shannon, D. B., McKeown, S. T., Lundy, F. T., & Irwin, C. R. 2006). Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression. Wound Repair and Regeneration, 14, 172–178.

Shapiro, F. (1988). Cortical bone repair. The Journal of bone and joint surgery, 70, 1067–1081.Shapiro, S., Woodall, B., & Muller, J. (1989). Comparative study of neuroma formation in the rat

sciatic nerve after CO2 laser and scalpel neurectomy in combination with milliwatt CO2 laser “sealing”. Surgical Neurology, 32, 81–84.

Shaterian, A., Borboa, A., Sawada, R., Costantini, T., Potenza, B., Coimbra, R., Baird, A., & Eli-ceiri, B. P. (2009). Real-time analysis of the kinetics of angiogenesis and vascular permeability in an animal model of wound healing. Burns, 35, 811–817.

Sheridan, R. L., Hegarty, M., Tompkins, R. G., & Burke, J. F. (1994). Artificial skin in massive burns: Results to ten years. European Journal of Plastic Surgery, 17, 91–93.

Sheridan, R. L., Morgan, J. R., Cusick, J. L., Petras, L. M., Lydon, M. M., & Tompkins, R. G. (2001). Initial experience with a composite autologous skin substitute. Burns, 27, 421–424.

Shi, M., Pedchenko, V., Greer, B. H., Van Horn, W. D., Santoro, S. A., Sanders, C. R., Hudson, B. G., Eichman, B. F., Zent, R., & Pozzi, A. (2012). Enhancing integrin α1 inserted (I) domain af-finity to ligand potentiates integrin α1β1-mediated down-regulation of collagen synthesis. The Journal of Biological Chemistry, 287, 35139–35152.

Shin, R. H., Friedrich, P. F., Crum, B. A., Bishop, A. T., & Shin, A. Y. (2009). Treatment of a seg-mental nerve defect in the rat with use of bioabsorbable synthetic nerve conduits: A comparison of commercially available conduits. The. Journal of bone and joint surgery. American volume, 91, 2194–2204.

Shoseyov, O., Posen, Y., & Grynspan, F. (2013). Human collagen produced in plants: More than just another molecule. Bioengineered, 5, 49–52.

Siironen, J., Sandberg, M., Vuorinen, V., & Röyttä, M. (1992). Expression of type I and III colla-gens and fibronectin after transection of rat sciatic nerve. Reinnervation compared to denerva-tion. Laboratory Investigation, 67, 80–87.

Siironen, J., Sandberg, M., Vuorinen, V., & Röyttä, M. (1992). Laminin B1 and collagen type IV gene expression in transected peripheral nerve: Reinnervation compared to denervation. Jour-nal of Neurochemistry, 59, 2184–2192.

Page 50: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

319References

Siljander, P. R., Hamaia, S., Peachey, A. R., Slatter, D. A., Smethurst, P. A., Ouwehand, W. H., Knight, C. G., & Farndale, R. W. (2004). Integrin activation state determines selectivity for novel recognition sites in fibrillar collagens. The Journal of Biological Chemistry, 279, 47763–47772.

Silver, F. H., Yannas, I. V., & Salzman, E. W. (1978). Glycosaminoglycan inhibition of collagen induced platelet aggregation. Thrombosis Research, 13, 267–277.

Silver, F. H., Yannas, I. V., & Salzman, E. W. (1979). In vitro blood compatibility of glycosamino-glycan-precipitated collagens. Journal of Biomedical Materials Research, 13, 701–716.

Simon, A., & Tanaka, E. M. (2013). Limb regeneration. Wiley interdisciplinary reviews. Develop-mental biology, 2, 291–300.

Singer, I. I. (1979). The fibronexus: A transmembrane association of fibronectincontaining fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell, 16, 675–685.

Singer, I. I., Kawka, D. W., Kazazis, D. M., & Clark, R. A. F. (1984). In vivo codistribution of fibronectin and actin fibers in granulation tissue: Immunofluorescence and electron micro-scope studies of the fibronexus at the myofibroblast surface. The Journal of Cell Biology, 98, 2091–2106.

Singhal, S., Hasan, S. S., Cohen, D. C., Pfanner, T., Reznik, S., & Duddempudi, S. (2013). Multi-disciplinary approach for management of refractory benign occlusive esophageal strictures. Therapeutic Advances in Gastroenterology, 6, 365–370.

Smola, H., Stark, H. J., Thiekotter, G., Mirancea, N., Drieg, T., & Fusenig, N. E. (1998). Dynamics of basement membrane formation by keratinocyte-fibroblast interactions in organotypic skin culture. Experimental Cell Research, 239, 399–410.

Soller, E. C., Tzeranis, D. S., Miu, K., So, P. T., & Yannas, I. V. (2012). Common features of optimal collagen scaffolds that disrupt wound contraction and enhance regeneration both in peripheral nerves and in skin. Biomaterials, 33, 4783–4791.

Somasundaram, K., & Prathrap, K. 1970). Intra-uterine healing of skin wounds in rabbit foetuses. The Journal of Pathology, 100, 81–86.

Son, Y. J., & Thompson, W. J. (1995). Schwann cell processes guide regeneration of peripheral axons. Neuron, 14, 125–132.

Soo, C., Beans, S. R., Hu, F. Y., Zhang, X., Dang, C., Chang, G., Wang, Y., Nishimura, I., Freymill-er, E., Longaker, M. T., Lorenz, H. P., & Ting, K. (2003). Ontogenetic transition in fetal wound transforming growth factor-ß regulation correlates with collagen organization. The American Journal of Pathology, 163, 2459–2476.

Sood, R., Roggy, D., Zieger, M., Balledux, J., Chaudhari, S., Koumanis, D. J., Mir, H. S., Cohen, A., Knipe, C., Gabehart, K., & Coleman, J. J. (2010). Cultured epithelial autografts for cover-age of large burn wounds in eighty-eight patients: The Indiana University experience. Journal of Burn Care & Research, 31, 559–568.

Sopher, D. (1975). A study of wound healing in the foetal tissues of the cynomolgus monkey. Handbook of Laboratory Animal, 6, 327–335.

Sousounis, K., Michel, C. S., Bruckskotten, M., Maki, N., Borchardt, T., Braun, T., Looso, M., & Tsonis, P. A. (2013). A microarray analysis of gene expression patterns during early phases of newt lens regeneration. Molecular Vision, 19, 135–145.

Spector, M., Heyligers, I., & Roberson, J. R. (1993). Porous polymers for biological fixation. Clinical Orthopaedics and Related Research, 235, 207–219.

Spence, R. J. (1998). The use of Integra for contracture release. The Journal of Burn Care & Re-habilitation, 19, S173.

Spilker, M. H. (2000). Peripheral nerve regeneration through tubular devices. Ph.D. thesis. Mas-sachusetts Institute of Technology.

Spilker, M. H., Yannas, I. V., Kostyk, S. K., Norregaard, T. V., Hsu, H. P., & Spector, M. (2001). The effects of tubulation on healing and scar formation after transection of the adult rat spinal cord. Restorative Neurology and Neuroscience, 18, 23–38.

Sriwiriyanont, P., Lynch, K. A., Maier, E. A., Hahn, J. M., Supp, D. M., & Boyce, S. T. (2012). Morphogenesis of chimeric hair follicles in engineered skin substitutes with human keratino-cytes and murine dermal papilla cells. Experimental Dermatology, 21, 783–785.

Page 51: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

320 References

Sriwiriyanont, P., Lynch, K. A., McFarland, K. L., Supp, D. M., & Boyce, S. T. 2013). Character-ization of hair follicle development in engineered skin substitutes. PloS One, 8, 65664.

Staiano-Coico, L., Krueger, J. G., Rubin, J. S., D’limi, S., Vallat, V. P., Valentino, L., Hawes, A., T. F. III, Kingston, G., Madden, M. R., et al. (1993). Human keratinocyte growth factor effects in a porcine model of epidermal wound healing. The Journal of Experimental Medicine, 178, 865–878.

Stark, H. J., Bauer, M., Breitkreutz, D., Mirancea, N., & Fusenig, N. (1999). Organotypic keratino-cyte cocultures in defined medium with regular epidermal morphogenesis and differentiation. The Journal of Investigative Dermatology, 112, 681–691.

Steer, C. J. (1995). Liver regeneration. FASEB Journal, 9, 1396–1400.Stelnicki, E. J., Arbeit, J., Cass, D. L., Saner, C., Harrison, M., & Largman, C. (1998). Modulation

of the human homeobox genes PRX-2 and HOXB13 in scarless fetal wounds. The Journal of Investigative Dermatology, 111, 57–63.

Stelnicki, E. J., Doolabh, V., Lee, S., Baumann, F. G., Longaker, M. T., & Mackinnon, S. (2000). Nerve dependency in scarless fetal wound healing. Plastic and Reconstructive Surgery, 105, 140–147.

Stemerman, M. B. (1973). Thrombogenesis of the rabbit arterial plaque: An electron microscopic study. The American Journal of Pathology, 73, 7–18.

Stemerman, M. B., & Ross, R. (1972). Experimental arteriosclerosis I: Fibrous plaque formation in primates, an electron microscopic study. The Journal of Experimental Medicine, 136, 769–793.

Stemerman, M. B., Spaet, T. H., Pitlick, F., Cintron, J., Lejnieks, I., & Tiell, M. L. (1977). Intimal healing. The pattern of reendothelialization and intimal thickening. The American Journal of Pathology, 87, 125–142.

Stenn, K. S., & Malhotra, R. (1992). Epithelialization. In I. K. Cohen, R. F. Diegelmann, & W. J. Lindblad (Eds.), Wound healing. Philadelphia: Saunders.

Stenn, K. S., & Cotsarelis, G. (2005). Bioengineering the hair follicle: Fringe benefits of stem cell technology. Current Opinion in Biotechnology, 16, 493–497.

Stern, R., McPherson, M., & Longaker, M. T. (1990). Histologic study of artificial skin used in the treatment of full-thickness thermal injury. The Journal of Burn Care & Rehabilitation, 11, 7–13.

Stevens, M. P. (1990). Polymer chemistry. New York: Oxford University Press.Stocum, D. L. (1995). Wound repair, regeneration and artificial tissues. Austin: R.G. Landes.Stone, P. A., & Madden, J. W. 1975). Biological factors affecting wound contraction. Surgical

Forum, 26, 547–548.Stopak, D., & Harris, A. K. (1982). Connective tissue morphogenesis by fibroblast traction I: Tis-

sue culture observations. Developmental biology, 90, 383–398.Stoschek, C. M., Nanney, L. B., & King, J. L. E. (1992). Quantitative determination of EGF-R dur-

ing epidermal wound healing. The Journal of Investigative Dermatology, 99, 645–649.Straile, W. E. (1959). The expansion and shrinkage of mammalian skin near contracting wounds.

The Journal of Experimental Zoology, 141, 119–131.Strichartz, G. S., & Covino, B. G. (1990). Local anesthetics. In R. D. Miller (Ed.), Anesthesia.

New York: Churchill Livingstone.Sunderland, S. (1978). Nerves and nerve injuries. New York: Churchill Livingstone.Sunderland, S. (1990). The anatomy and pathology of nerve injury. Muscle & Nerve, 13, 771–784.Symersky, J., Patti, J. M., Carson, M., House-Pompeo, K., Teale, M., Moore, D., Jin, L., Schneider,

A., DeLucas, L. J., Höök, M., & Narayana, S. V. (1997). Structure of the collagen-binding do-main from a Staphylococcus aureus adhesin. Nature Structural Biology, 4, 833–838.

Swamydas, M., Skoff, A. M., & Adler, J. E. (2004). Partial sciatic nerve transection causes redis-tribution of pain-related peptides and lowers withdrawal threshold. Experimental Neurology, 188, 444–451.

Swann, D. A., Garg, H. G., Hendry, C. J., Hermann, H., Siebert, E., Sotman, S., & Stafford, W. (1988). Isolation and partial characterization of dermatan sulfate proteoglycans from post-burn scar tissues. Collagen and Related Research, 8, 295–313.

Page 52: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

321References

Swartzendruber, D. C., Wertz, P. W., Kitko, D. J., Madison, K. C., & Downing, D. T. (1989). Mo-lecular models of the intercellular lipid lamellae in mammalian stratum corneum. The Journal of Investigative Dermatology, 92, 251–257.

Sylvester, M. F., Yannas, I. V., Salzman, E. W., & Forbes, M. J. (1989). Collagen banded fibril structure and the collagen-platelet reaction. Thrombosis Research, 55, 135–148.

Takashima, A., Billingham, R. E., & Grinnell, F. (1986). Activation of rabbit keratinocyte fibro-nectin receptor function in vivo during wound healing. The Journal of Investigative Dermatol-ogy, 86, 585–590.

Takeo, M., Chou, W. C., Sun, Q., Lee, W., Rabbani, P., Loomis, C., Taketo, M. M., & Ito, M. (2013). Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature, 499, 228–232.

Tamori, Y., & Deng, W. M. (2013). Tissue repair through cell competition and compensatory cel-lular hypertrophy in postmitotic epithelia. Developmental Cell, 25, 350–363.

Taniguchi, S., & Hirone, T. (1983). Synthesis of basal lamina by epidermal cells in vitro. Current Problems in Dermatology, 11, 127–133.

Taniuchi, M., Clark, H. B., & Johnson, E. M. (1986). Induction of nerve growth factor receptors by Schwann cells after axotomy. Proceedings of the National Academy of Sciences of the United States of America, 83, 4094–4098.

Taniuchi, M., Clark, H. B., Schweitzer, H. B., & Johnson, E. M. (1988). Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: Ultrastructural lo-cation, suppression of axon contact, and bonding properties. The Journal of Neuroscience, 8, 664–681.

Tanzer, M. L. (1973). Cross-linking of collagen. Science, 180, 561–566.Tarallo, M., Rizzo, M. I., Monarca, C., Fanelli, B., Parisi, P., & Scuderi, N. 2012). Optimal care

for eyelid contraction after radiotherapy: Case report and literature review. Journal of Oral and Maxillofacial Surgery, 70, 2459–2465.

Tarca, T. (2012). Personal communication.Tarpila, E., Ghassemifar, R., Fagrell, D., & Berggren, A. (1997). Capsular contracture with tex-

tured versus smooth saline-filled implants for breast augmentation: A prospective clinical study. Plastic and Reconstructive Surgery, 99, 1934–1939.

Taskinen, H. S., Heino, J., & Röyttä, M. (1996). The dynamics of beta 1 integrin expression during peripheral nerve regeneration. Acta Neuropathologica, 89, 144–151.

Tassava, R. A., & Olsen, C. L. (1982). Higher vertebrates do not regenerate digits and legs because the wound epidermis is not functional: A hypothesis. Differentiation, 22, 151–155.

Taylor, A. C., & Kollros, J. J. (1946). Stages in the normal development of Rana pipiens larvae. The Anatomical Record, 94, 7–13.

Terry, M. J., Sue, G. R., Goldberg, C., & Narayan, D. (2014). Hueston revisited: Use of acellular dermal matrix following fasciectomy for the treatment of dupuytren’s disease. Annals of Plas-tic Surgery, Mar 28. [Epub ahead of print].

Terzis, J. K. (1987). Microreconstruction of Nerve Injuries. Philadelphia: Saunders.Terzis, J. K., & Smith, K. J. (1987). Repair of severed peripheral nerves: Comparison of the “de

Medinacelli” and standard microsuture methods. Experimental Neurology, 96, 672–680.Thies, S. (2010). Unpublished data on the nonspecific binding of TGFb1 on the DRT scaffold.Thomas, J. R., & Somenek, M. (2012). Scar revision review. Archives of Facial Plastic Surgery,

14, 162–174.Thomas, P. K. (1963). The connective tissue of peripheral nerve: An electron microscope study.

Journal of Anatomy, 97, 35–44.Thomas, P. K. (1988). Clinical aspects of PNS regeneration. In S. G. Waxman (Ed.), Advances in

neurology. New York: Raven Press.Thomas, P. K., & Jones, D. G. (1967). The cellular response to nerve injury II: Regeneration of the

perineurium after nerve section. Journal of Anatomy, 101, 45–55.Thomas, P. K., & Olsson, Y. (1975). Microscopic anatomy and function of the connective tissue

components of peripheral nerve. In P. J. Dyck, P. K. Thomas, & E. H. Lambert (Eds.), Periph-eral neuropathy. Philadelphia: Saunders.

Page 53: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

322 References

Thomson, R. C., Shung, A. K., Yaszemski, M. J., & Mikos, A. G. (2000). Polymer scaffold process-ing. In R. P. Lanza, R. Langer, & J. Vacanti (Eds.), Principles of tissue engineering (2nd ed., pp. 251–262). San Diego: Academic.

Timpl, R. (1984). Immunology of the collagens. In K. A. Piez & A. H. Reddi (Eds.), Extracellular matrix biochemistry. New York: Elsevier.

Tinois, E., Tiollier, J., Gaucherand, M., Dumas, H., Tardy, M., & Thivolet, J. (1991). In vitro and post-transplantation differentiation of human keratinocytes grown on the human type IV col-lagen film of a bilayered substitute. Experimental Cell Research, 193, 310–319.

Tiscornia, O. M., Jacobson, J. H., & Dreiling, D. A. (1965). Microsurgery of the canine pancreatic duct: Experimental study and review of previous approaches to the management of pancreatic duct pathology. Surgery, 58, 58–72.

Tobolsky, A. V. (1960). Properties and structure of polymers. New York: Wiley.Tomasek, J. J., Haaksma, C. J., Schwartz, R. J., & Howard, E. W. (2013). Whole animal knock-

out of smooth muscle alpha-actin does not alter excisional wound healing or the fibroblast- to-myofibroblast transition. Wound Repair and Regeneration, 21, 166–176.

Tompkins, R. G., Hilton, J. F., Burke, J. F., Scoenfeld, D. A., Hegarty, M. T., Bondoc, C. C., Jr, W. C. Q., Behringer, G. E., & Ackroyd, F. W. (1989). Increased survival after massive thermal injuries in adults: Preliminary report using artificial skin. Critical Care Medicine, 17, 734–740.

Tountas, C. P., Bergman, R. A., Lewis, T. W., Stone, H. E., Pyrek, J. D., & Mendenhall, H. V. (1993). A comparison of peripheral nerve repair using an absorbable tubulization device and conventional suture in primates. Journal of Applied Biomaterials, 4, 261–268.

Trinkaus, J. P. (1969). Cells into organs. Englewood Cliffs: Prentice-Hall.Trousdale, R. K., Jacobs, S., Simhaee, D. A., Wu, J. K., & Lustbader, J. W. (2009). Wound closure

and metabolic parameter variability in a db/db mouse model for diabetic ulcers. The Journal of Surgical Research, 151, 100–107.

Troxel, K. (1994). Delay of skin wound contraction by porous collagen-GAG matrices. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

Troxel, K., & Yannas, I. V. (1991). Myofibroblast axis orientation (alignment) is required for wound contraction. J Cell Biol Abstracts, 115, 114.

Tsao, M. C., Walthall, B. J., & Ham, R. G. (1982). Clonal growth of normal human epidermal keratinocytes in a defined medium. Journal of Cellular Physiology, 110, 219–229.

Tsonis, P. A. (1996). Limb regeneration. New York: Cambridge University Press.Tsuboi, R., & Rifkin, D. R. 1990). Recombinant basic fibroblast growth factor stimulates wound

healing in healing-impaired db/db mice. The Journal of Experimental Medicine, 172, 245–251.Tsunenaga, M., Kohno, Y., Horii, I., Yasumoto, S., Huh, N. H., Tachikawa, T., Yoshiki, S., &

Kuroki, T. (1994). Growth and differentiation properties of normal and transformed human keratinocytes in organotypic culture. Japanese Journal of Cancer Research, 85, 238–244.

Tuckwell, D., Calderwood, D. A., Green, L. J., & Humphries, M. J. (1995). Integrin alpha 2 I-domain is a binding site for collagens. Journal of Cell Science, 108, 1629–1637.

Tulla, M., Pentikäinen, O. T., Viitasalo, T., Käpylä, J., Impola, U., Nykvist, P., Nissinen, L., John-son, M. S., & Heino, J. (2001). Selective binding of collagen subtypes by integrin α1I, α2I, and α10I domains. The Journal of Biological Chemistry, 276, 48206–48212.

Tzeranis, D. S. (2013). Imaging studies of peripheral nerve regeneration induced by porous col-lagen biomaterials. Ph. D. Thesis. Departments of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Mass, USA.

Tzeranis, D. S., Roy, A., So, P. T., & Yannas, I. V. (2010). An optical method to quantify the den-sity of ligands for cell adhesion receptors in three-dimensional matrices. Journal of the Royal Society Interface, 7, 649–661.

Tzeranis, D. S., Soller, E. C., Buydash, M. C., So, P. T., & Yannas, I. V. (2014). In situ quantifica-tion of the surface chemistry of biomaterials. Submitted for publication.

Ubbink, D. T., Lindeboom, R., Eskes, A. M., Brull, H., Legemate, D. A., & Vermeulen, H. (2013). Predicting complex acute wound healing in patients from a wound expertise centre registry: A prognostic study. International Wound Journal, [Epub ahead of print].

Page 54: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

323References

Uitto, J., Mauviel, A., & McGrath, J. (1996). The dermal-epidermal basement membrane zone in cutaneous wound healing. In R. A. F. Clark (Ed.), The molecular and cellular biology of wound repair. New York: Plenum.

Ushiki, T., & Ide, C. (1986). Three-dimensional architecture of the endoneurium with special ref-erence to the collagen fibril arrangement in relation to nerve fibers. Archivum Histologicum Japonicum, 49, 553–563.

Utley, D. S., Lewin, S. L., Cheng, E. T., Verity, A. N., Sierra, D., & Terris, D. J. (1996). Brainder-ived neurotrophic factor and collagen tubulization enhance functional recovery after peripheral nerve transection and repair. Archives of Otolaryngology–Head & Neck Surgery, 122, 407–413.

Uzman, B. G., & Villegas, G. M. (1983). Mouse sciatic nerve regeneration through semipermeable tubes: A quantitative model. Journal of Neuroscience Research, 9, 325–338.

Valenick, L. V., & Schwarzbauer, J. E. (2006). Ligand density and integrin repertoire regulate cel-lular response to LPA. Matrix biology: Journal of the International Society for. Matrix Biology, 25, 223–231.

Valentin, J. E., Badylak, J. S., McCabe, G. P., & Badylak, S. F. (2006). Extracellular Matrix Bioscaffolds for Orthopaedic Applications: A Comparative Histologic Study. The Journal of Bone & Joint Surgery, 88, 2673–2686.

Valentini, R. F. (1995). Nerve guidance channels. In J. D. Bronzino (Ed.), The biomedical engi-neering handbook. Boca Raton: CRC Press.

Valentini, R. F., Aebischer, P., Winn, S. R., & Galletti, P. M. (1987). Collagen- and laminin-con-taining gels impede peripheral nerve regeneration through semipermeable nerve guidance channels. Experimental Neurology, 98, 350–356.

van Beurden, H. E., Von den Hoff, J. W., Torensma, R., Maltha, J. C., & Kuijpers-Jagtman, A. M. (2005). Myofibroblasts in palatal wound healing: Prospects for the reduction of wound con-traction after cleft palate repair. Journal of Dental Research, 84, 871–880.

Van De Water, L., Varney, S., & Tomasek, J. J. (2013). Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis: Opportunities for new therapeutic intervention. Advances in Wound Care, 2, 122–141.

Van der Rest, M., & Garrone, R. (1991). Collagen family of proteins. FASEB Journal, 5, 2814–2823.

van Kilsdonk, J. W., van den Bogaard, E. H., Jansen, P. A., Bos, C., Bergers, M., & Schalkwijk, J. (2013). An in vitro wound healing model for evaluation of dermal substitutes. Wound Repair and Regeneration, 21, 890–896

van Zuijlen, P. P., Vloemans, J. F., van Trier, A. J., Suijker, M. H., van Unen, E., Groenevelt, F., Kreis, R. W., & Middelkoop, E. (2001). Dermal substitution in acute burns and reconstructive surgery: A subjective and objective long-term follow-up. Plastic and Reconstructive Surgery, 108, 1938–1946.

Vaughan, M. B., Howard, E. W., & Tomasek, J. J. (2000). Transforming growth factor beta1 pro-motes the morphological and functional differentiation of the myofibroblast. Experimental Cell Research, 25, 180–189.

Verhaegen, P. D., Schouten, H. J., Tigchelaar-Gutter, W., van Marle, J., van Noorden, C. J., Mid-delkoop, E., & van Zuijlen, P. P. (2012). Adaptation of the dermal collagen structure of hu-man skin and scar tissue in response to stretch: An experimental study. Wound Repair and Regeneration, 20, 658–666.

Vert, M., & Li, S. M. (1992). Bioresorbability and biocompatibility of aliphatic polyesters. Journal of Materials Science: Materials in Medicine, 3, 432–446.

Vert, M., Christel, P., Chabot, F., & Leray, J. (1984). Bioresorbable plastic materials for bone surgery. In G. W. Hastings & P. Ducheyne (Eds.), Macromolecular biomaterials. Boca Raton: CRC Press.

Volkman, R. (1893). Über die Regeneration des quergestreiften Muskelgewebes beim Menschen und Säugethier. Beitrage Pathologische. Anatomie und Allgemeine Pathologie 12, 233.

Vonderheide, R. H., & Bayne, L. J. (2013). Inflammatory networks and immune surveillance of pancreatic carcinoma. Current Opinion in Immunology, 25, 200–205.

Page 55: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

324 References

Vincenzo, L., & Ventura, C. (2013). Regenerative medicine approach to repair the failing heart. Vascular Pharmacology, 58, 159–163.

Vorontsova, M. A., & Liosner, L. D. (1960). Asexual propagation and regeneration. London: Per-gamon Press.

Voytik-Harbin, S. L., Brightman, A. O., Kraine, M. R., Waisner, B., & Badylak, S. F. (1997). Iden-tification of extractable growth factors from small intestinal submucosa. Journal of Cellular Biochemistry, 67, 478–491.

Vracko, R. (1972). Significance of basal lamina for regeneration of injured lung. Virchows Archiv. A: Pathology. Pathologische Anatomie, 355, 264–274.

Vracko, R. (1974). Basal lamina scaffold: Anatomy and significance for maintenance of orderly tissue structure. The American Journal of Pathology, 77, 313–346.

Vracko, R., & Benditt, E. P. (1972). Basal lamina: The scaffold for orderly cell replacement. The Journal of Cell Biology, 55, 406–419.

Wainwright, D. J. (1995). Use of an acellular allograft dermal matrix (AlloDerm) in the manage-ment of full-thickness burns. Burns, 21, 243–248.

Wainwright, D., Madden, M., Luterman, A., Hunt, J., Monafo, W., Heimbach, D., Kagan, R., Sit-tig, K., Dimick, A., & Herndon, D. (1996). Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns. The Journal of Burn Care & Rehabilitation, 17, 124–136.

Wall, P. D., & Gutnick, M. (1974). Ongoing activity in peripheral nerves: The physiology and pharmacology of impulses originating from a neuroma. Experimental Neurology, 43, 580–593.

Wallace, H. (1981). Vertebrate limb regeneration. New York: Wiley.Walsh, S., & Midha, R. (2009). Use of stem cells to augment nerve injury repair. Neurosurgery,

65, A80–A86.Walter, M. A., Kurouglu, R., Caulfield, J. B., Vasconez, L. O., & Thompson, J. A. (1993). En-

hanced peripheral nerve regeneration by acidic fibroblast growth factor. Lymphokine and Cy-tokine Research, 12, 135–141.

Wang, G. H. (1975). Collagen-mucopolysaccharide interaction. M. S. thesis, Massachusetts Insti-tute of Technology, Cambridge, MA.

Wang, X., Ge, J., Tredget, E. E., & Wu, Y. (2013). The mouse excisional wound splinting model, including applications for stem cell transplantation. Nature Protocols, 8, 302–309.

Wasserman, D., Sclotterer, M., Toulon, A., Cazalet, C., Marien, M., Cherruau, B., & Jaffray, P. (1988). Preliminary clinical studies of a biological skin equivalent in burned patients. Burns, 14, 326–330.

Watts, G. T., Grillo, G. C., & Gross, J. (1958). Studies in wound healing II: The role of granulation tissue in contraction. Annals of Surgery, 148, 153–160.

Waymack, P., Duff, R. G., & Sabolinski, M. (2000). The effect of a tissue engineered bilayered liv-ing skin analog, over meshed split-thickness autografts on the healing of excised burn wounds. The Apligraf Burn Study Group. Burns, 26, 609–619.

Weber, C. E., Li, N. Y., Wai, P. Y., & Kuo, P. C. (2012). Epithelial-mesenchymal transition, TGF-β, and osteopontin in wound healing and tissue remodeling after injury. Journal of Burn Care & Research, 33, 311–318.

Weerasuriya, A., & Mizisin, A. P. (2011). The blood-nerve barrier: Structure and functional signifi-cance. Methods in Molecular Biology, 686, 149–173.

Weiss, P. (1944). The technology of nerve regeneration: A review. Sutureless tubulation and related methods of nerve repair. Journal of Neurosurgery, 1, 400–450.

Weiss, P., & Taylor, A. C. (1944a). Impairment of growth and myelination in regenerating nerve fibers subject to constriction. Proceedings of the Society for Experimental Biology and Medi-cine, 55, 77–80.

Weiss, P., & Taylor, A. C. (1944b). Further experimental evidence against “neurotropism” in nerve regeneration. The Journal of Experimental Zoology, 95, 233–257.

Weitzman, J. B., Chen, A., & Hemler, M. E. (1995). Investigation of the role of beta 1 integrins in cell-cell adhesion. Journal of Cell Science, 108, 3635–3644.

Page 56: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

325References

Welch, M. P., Odland, G. F., & Clark, R. A. F. (1990). Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. The Journal of Cell Biology, 110, 133–145.

Wells, M. R., Kraus, K., Batter, D. K., Blunt, D. G., Weremowitz, J., Lynch, S. E., Antoniades, H. N., & Hansson, H.-A. (1997). Gel matrix vehicles for growth factor application in nerve gap injuries repaired with tubes: A comparison of Biomatrix, collagen and methylcellulose. Experi-mental Neurology, 146, 395–402.

Wendt, D., Stroebel, S., Jakob, M., John, G. T., & Martin, I. (2006). Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions. Biorheology, 43, 481–488.

Whitby, D. J., & Ferguson, M. W. (1991). Immunohistochemical localization of growth factors in fetal wound healing. Developmental Biology, 147, 207–215.

Whitworth, I. H., Brown, R. A., Dore, C., Green, C. J., & Terenghi, G. (1995). Orientated mats of fibronectin as a conduit material for use in peripheral nerve repair. The Journal of Hand Surgery, 20, 429–436.

Whitworth, I. H., Brown, R. A., Dore, C. J., Anand, P., Green, C. J., & Terenghi, G. (1996). Nerve growth factor enhances nerve regeneration through fibronectin grafts. The Journal of Hand Surgery, 21, 514–522.

Wille, J. J., Jr., Pittelkow, M. R., Shipley, G. D., & Scott, R. E. (1984). Integrated control of growth and differentiation of normal human prokeratinocytes cultured in serum-free medium: Clonal analyses, growth kinetics, and cell cycle studies. Journal of Cellular Physiology, 121, 31–44.

Williams, L. R. (1987). Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber. Neurochemical Research, 12, 851–860.

Williams, L. R., & Varon, S. (1985). Modification of fibrin matrix formation in situ enhances nerve regeneration in silicone chambers. The Journal of comparative neurology, 231, 209–220.

Williams, A. K., Bunge, M. B., & Wood, P. M. (1982). The development of perineurium in culture. The Journal of Cell Biology, 95, 2.

Williams, L. R., Longo, F. M., Powell, H. C., Lundborg, G., & Varon, S. (1983). Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: Parameters for a bioassay. The Journal of Comparative Neurology, 218, 460–470.

Williams, L. R., Powell, H. C., Lundborg, G., & Varon, S. (1984). Competence of nerve tissue as distal insert promoting nerve regeneration in a silicone chamber. Brain Research, 293, 201–211.

Williams, L. R., Danielsen, N., Muller, H., & Varon, S. (1987). Exogenous matrix precursors pro-mote functional nerve regeneration across a 15-mm gap within a silicone chamber in the rat. Journal of Comparative Neurology, 264, 284–290.

Wilson, C. J., & Dahners, L. E. (1988). An examination of the mechanism of ligament contracture. Clinical Orthopaedics, 227, 286–291.

Winter, G. D. (1972). Epidermal regeneration studied in the domestic pig. In H. L. Maibach & D. T. Rovee (Eds.), Epidermal wound healing. Chicago: Year Book Medical Publishers.

Wong, S. S., Aboumarzouk, O. M., Narahari, R., O’Riordan, A., & Pickard, R. (2012). Simple urethral dilatation, endoscopic urethrotomy, and urethroplasty for urethral stricture disease in adult men. The Cochrane Database of Systematic Reviews, 12, CD006934.

Wood, F. M., Kolybaba, M. L., & Allen, P. (2006). The use of cultured epithelial autograft in the treatment of major burn injuries: A critical review of the literature. Burns, 32, 395–401.

Woodley, D. T. (1989). Covering wounds with cultured keratinocytes. The Journal of the American Medical Association, 262, 2140–2141.

Woodley, D. T. (1996). Repithelialization. In R. A. F. Clark (Ed.), The molecular and cellular biol-ogy of wound repair. New York: Plenum.

Woodley, D. T., & Briggaman, R. A. (1988). Re-formation of the epidermal-dermal junction dur-ing wound healing. In R. A. F. Clark, & P. M. Henson (Eds.), The molecular and cellular biol-ogy of wound repair. New York: Plenum.

Woodley, D. T., Kalebec, T., Banes, A. J., Link, W., Prunieras, M., & Liotta, L. (1986). Adult human keratinocytes migrating over nonviable dermal collagen produce collagenolytic en-

Page 57: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

326 References

zymes that degrade type I and type IV collagen. The Journal of Investigative Dermatology, 86, 418–423.

Woodley, D. T., Peterson, H. D., Herzog, S. R., Stricklin, G. P., Burgeson, R. E., Briggaman, R. A., Cronce, D. J., & O’Keefe, E. J. (1988a). Burn wounds resurfaced by cultured epidermal auto-grafts show abnormal reconstitution of anchoring fibtils. The Journal of the American Medical Association, 259, 2566–2571.

Woodley, D. T., Bachmann, P. M., & O’Keefe, E. J. (1988b). Laminin inhibits keratinocyte migra-tion. Journal of Cellular Physiology, 136, 140–146.

Woodley, D. T., Briggaman, R. A., Herzog, S. R., Meyers, A. A., Peterson, H. D., & O’Keefe, E. J. (1990). Characterization of “neo-dermis” formation beneath cultured human epidermal autografts transplanted on muscle fascia. The Journal of Investigative Dermatology, 95, 20–26.

Woodley, D. T., Backmann, P. M., & O’Keefe, E. J. (1991). The role of matrix components in human keratinocyte re-epithelialization. In A. Barbul, M. Caldwell, W. Eaglstein, T. Hunt, D. Marshall, E. Pines, & G. Skover (Eds.), Clinical and experimental approaches to dermal and epidermal repair: Normal and chronic wounds. New York: Alan R. Liss.

Woolley, A. L., Hollowell, J. P., & Rich, K. M. (1990). Fibronectin-laminin combination enhances peripheral nerve regeneration across long gaps. Otolaryngology and Head and Neck Surgery, 103, 509–518.

Wornom, I. L., & Buchman, S. R. (1992). Bone and cartilaginous tissues. In I. K. Cohen, R. F. Diegelmann, & W. J. Lindblad (Eds.), Wound healing. Philadelphia: Saunders.

Worst, P. K. M., Valentine, E. A., & Fusenig, N. E. (1974). Formation of epidermis after reim-plantation of pure primary epidermal cell cultures from perinatal mouse skin. Journal of the National Cancer Institute, 53, 1061–1064.

Wu, L., Yu, Y. L., Galiano, R. D., Roth, S. I., & Mustoe, T. A. (1997). Macrophage colony-stim-ulating factor accelerates wound healing and upregulates TGF-beta1 mRNA levels through tissue macrophages. The Journal of Surgical Research, 72, 162–169.

Wu, J. J., Zhu, T. Y., Lu, Y. G., Liu, R. Q., Mai, Y., Cheng, B., Lu, Z. F., Zhong, B. Y., & Tang, S. Q. (2006). Hair follicle reformation induced by dermal papilla cells from human scalp skin. Archives of Dermatological Research, 298, 183–190.

Wu, Y., Schomisch, S. J., Cipriano, C., Chak, A., Lash, R. H., Ponsky, J. L., & Marks, J. M. (2013). Preliminary results of antiscarring therapy in the prevention of postendoscopic esophageal mu-cosectomy strictures. Surgical Endoscopy, 28, 447–455.

Xu, J., & Clark, R. A. F. (1996). Extracellular matrix alters PDGF regulation of fibroblast integ-rins. The Journal of Cell Biology, 132, 239–249.

Xu, J., & Clark, R. A. F. (2000). Integrin regulation in wound repair. In H. G. Garg & M. T. Lon-gaker (Eds.), Scarless wound healing. New York: Marcel Dekker.

Yamada, K. M., Gailit, J., & Clark, R. A. F. (1996). Integrins in wound repair. In R. A. F. Clark (Ed.), The molecular and cellular biology of wound repair. New York: Plenum.

Yamaguchi, Y., Mann, D. M., & Ruoslahti, E. (1990). Negative regulation of transforming growth factor-b by the proteoglycan decorin. Nature, 346, 281–284.

Yamauchi, M., & Mechanic, G. (1988). Cross-linking of collagen. In M. E. Nimni (Ed.), Collagen. Boca Raton: CRC Press.

Yan, H., Black, D., Jones, N. I., McCraw, J., Chen, H., Arnold, P., & Zhang, F. (2011). Integra acellular collagen as a vascular carrier for skin flap prefabrication in rats. Annals of Plastic Surgery, 67, 299–302.

Yang, L., Qui, C. X., Ludlow, A., Ferguson, M. W., & Brunner, G. (1999). Active transforming growth factor-beta in wound repair: Determination using a new assay. The American Journal of Pathology, 154, 105–111.

Yang, L., Witten, T. M., & Pidaparti, R. M. (2013a). A biomechanical model of wound contraction and scar formation. Journal of Theoretical Biology, 332, 228–248.

Yang, M., Sheng, L., Zhang, T. R., & Li, Q. (2013b). Stem cell therapy for lower extremity diabetic ulcers: Where do we stand? BioMed Research International, 2013, 462179.

Page 58: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

327References

Yannas, I. V. (1972a). Characterization techniques for the molecular design of polymeric implants. Paper read at Proceedings of Biomedical Materials Conference, National Science Foundation, Brighton, UT, November, 9, 1972.

Yannas, I. V. (1972b). Collagen and gelatin in the solid state. Reviews in Macromolecular Chem-istry, 7, 49–104.

Yannas, I. V. (1981). Use of artificial skin in wound management. In P. Dineen (Ed.), The surgical wound. Philadelphia: Lea & Febiger.

Yannas, I. V. (1988). Regeneration of skin and nerves by use of collagen templates. In M. Nimni (Ed.), Collagen: Biotechnology. Boca Raton: CRC Press.

Yannas, I. V. (1990a). Biologically active analogs of the extracellular matrix. Angewandte Chemie (International ed. in English), 29, 20–35.

Yannas, I. V. (1990b). Biologically active analogues of the extracellular matrix: Artificial skin and nerves. Angewandte Chemie (International ed. in English), 29, 20–35.

Yannas, I. V. (1997). Models of organ regeneration processes induced by templates. Annals of the New York Academy of Sciences, 831, 280–293.

Yannas, I. V. (1998). Studies on the biological activity of the dermal regeneration template. Wound Repair and Regeneration, 6, 518–524.

Yannas, I. V. (2000). Synthesis of organs: In vitro or in vivo? Proceedings of the National Academy of Sciences of the United States of America, 97, 9354–9356.

Yannas, I. V. (2001). Tissue and organ regeneration in adults (pp. 72, 70–77, 83–87, 259, 275, 287, 288, 292–293, 310–311). NY: Springer.

Yannas, I. V. (2005a). Facts and theories of induced organ regeneration. Advances in Biochemical Engineering/Biotechnology, 93, 1–38.

Yannas, I. V. (2005b). Regenerative medicine I. Theories, models and methods. Heidelberg: Springer.

Yannas, I. V. (2005c). Regenerative medicine II. Clinical and preclincial applications. Heidelberg: Springer.

Yannas, I. V. (2005d). Similarities and differences between induced organ regeneration in adults and early foetal regeneration. Journal of the Royal Society Interface, 2, 403–417.

Yannas, I. V. (2013). Emerging rules for inducing organ regeneration. Biomaterials, 34, 321–330.Yannas, I. V., & Burke, J. F. (1980). Design of an artificial skin I. Basic design principles. Journal

of Biomedical Materials Research, 14, 65–81.Yannas, I. V., & Huang, C. (1972). Viscoelastic distinction between helical and coiled macromol-

ecules. Macromol, 5, 99–100.Yannas, I. V., & Silver, J. F. (1975). Thromboresistant analogs of vascular tissue. Polymer Pre-

prints, 16, 529–534.Yannas, I. V., & Tobolsky, A. V. (1967). Crosslinking of gelatine by dehydration. Nature, 215,

509–510.Yannas, I. V., Sung, N. H., & Huang, C. (1972). Resolution of components of the optical rotation

tensor of collagen. The Journal of Physical Chemistry, 76, 2935–2937.Yannas, I. V., Burke, J. F., Huang, C., & Gordon, P. L. (1975a). Suppression of in vivo degrad-

ability and of immunogenicity of collagen by reaction with glycosaminoglycans. Polymer Pre-prints, 16, 209–214.

Yannas, I. V., Burke, J. F., Huang, C., & Gordon, P. L. (1975b). Correlation of in vivo collagen degradation rate with in vitro measurements. Journal of Biomedical Materials Research, 9, 623–628.

Yannas, I. V., Burke, J. F., Huang, C., & Gordon, P. L. (1977). Multilayer membrane useful as synthetic skin. US Patent 4,060,081. Washington, DC: United States Patent Office.

Yannas, I. V., Burke, J. F., Umbreit, M., & Stasikelis, P. (1979). Progress in design of an artificial skin. Federation of American Societies for Experimental Biology, 38, 988.

Yannas, I. V., Burke, J. F., Gordon, P. L., Huang, C., & Rubinstein, R. H. (1980). Design of an artificial skin II: Control of chemical composition. Journal of Biomedical Materials Research, 14, 107–131.

Page 59: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

328 References

Yannas, I. V., Burke, J. F., Warpehoski, M., Stasikelis, P., Skrabut, E. M., Orgill, D., & Giard, D. J. (1981). Prompt, long-term functional replacement of skin. Transactions—American Society for Artificial Internal Organs, 27, 19–22.

Yannas, I. V., Burke, J. F., Orgill, D. P., & Skrabut, E. M. (1982a). Wound tissue can utilize a poly-meric template to synthesize a functional extension of skin. Science, 215, 174–176.

Yannas, I. V., Burke, J. F., Orgill, D. P., & Skrabut, E. M. (1982b). Regeneration of skin following closure of deep wounds with a biodegradable template. Transactions of the Society for Bioma-terials, 5, 24–27.

Yannas, I. V., Orgill, D. P., Skrabut, E. M., & Burke, J. F. (1984). Skin regeneration with a bio-replaceable polymeric template. In C. G. Gebelein (Ed.), Polymeric materials and artificial organs. Washington, DC: American Chemical Society.

Yannas, I. V., Orgill, D. P., Silver, J., Norregaard, T. V., Zervas, N. T., & Schoene, W. C. (1985). Polymeric template facilitates regeneration of sciatic nerve across 15 mm gap. Transactions of the Society for Biomaterials, 8, 146.

Yannas, I. V., Orgill, D. P., Silver, J., Norregaard, T., Zervas, N. T., & Schoene, W. C. (1987a). Re-generation of sciatic nerve across 15-mm gap by use of a polymeric template. In C. G. Gebelein (Ed.), Advances in biomedical materials. Washington, DC: American Chemical Society.

Yannas, I. V., Lee, E., Orgill, D. P., Ferdman, A., Skrabut, E. M., & Murphy, G. F. (1987b). De novo synthesis of skin. Proceedings American Chemical Society Division of Polymeric Materials, 57, 28–32.

Yannas, I. V., Norregaard, T. V., Silver, J., Zervas, N. T., Kirk, J. F., & Colt, M. J. (1987c). Rela-tions between properties of collagen-glycosaminoglycan graft and morphology of regenerating nerve. Part I. Transactions of the Society for Biomaterials, 10, 6.

Yannas, I. V., Chang, A. S., Krarup, C., Sethi, R., Norregaard, T. V., & Zervas, N. T. (1988). Con-duction properties of peripheral nerves regenerated by use of copolymer matrices with different biodegradation rates. Society for Neuroscience Abstracts, 14, 165.

Yannas, I. V., Lee, E., Orgill, D. P., Skrabut, E. M., & Murphy, G. F. (1989). Synthesis and char-acterization of a model extracellular matrix which induces partial regeneration of adult mam-malian skin. Proceedings of the National Academy of Sciences of the United States of America, 86, 933–937.

Yannas, I. V., Chang, A. S., Perutz, S., Krarup, C., Norregaard, T. V., & Zervas, N. T. (1991). Requirement for a 1-mm pore channel opening during peripheral nerve regeneration through a biodegradable chemical analog of ECM. In C. G. Gebelein (Ed.), Biotechnology and polymers. New York: Plenum.

Yannas, I. V., Colt, J., & Wai, Y. C. (1996). Wound contraction and scar synthesis during develop-ment of the amphibian Rana catesbeiana. Wound Repair and Regeneration, 4, 31–41.

Yannas, I. V., Zhang, M., & Spilker, M. H. (2007a). Standardized criterion to analyze and directly compare various materials and models for peripheral nerve regeneration. Journal of Biomateri-als Science. Polymer Edition, 18, 943–966.

Yannas, I. V., Kwan, M. D., & Longaker, M. T. (2007b). Early fetal healing as a model for adult organ regeneration. Tissue Engineering, 13, 1789–1798.

Yao, L., Cao, J., Sun, H., Guo, A., Li, A., Ben, Z., Zhang, H., Wang, X., Ding, Z., Yang, X., Huang, X., Ji, Y., & Zhou, Z. (2014). FBP1 and p27kip1 expression after sciatic nerve injury: Impli-cations for Schwann cells proliferation and differentiation. Journal of Cellular Biochemistry, 115, 130–140.

Yokoyama, H. (2008). Initiation of limb regeneration: The critical steps for regenerative capacity. Development, Growth & Differentiation, 50, 13–22.

Young, J. Z. (1948). Growth and differentiation of nerve fibers. Symp. Soc. Exp. Biol. Growth, 2, 57–74.

Young, B., Lowe, J. S., Stevens, A., & Heath, J. W. (2006). Wheater’s functional histology: A text and colour Atlas, 5th ed.

Yuspa, S. H., Morgan, D. L., Walker, R. J., & Bates, R. R. (1970). The growth of fetal mouse skin in cell culture and transplantation to F1 mice. The Journal of Investigative Dermatology, 55, 379–389.

Page 60: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

329References

Zahir, M. (1964). Contraction of wounds. The British Journal of Surgery, 51, 456–461.Zare, S., Ali Zarei, M., Ghadimi, T., Fathi, F., Jalili, A., & Hakhamaneshi, M. S. (2013). Isolation,

cultivation and transfection of human keratinocytes. Cell Biology International, 38, 444–451.Zeitz, M., Ruiz-Torres, A., & Merker, H. J. (1978). Collagen metabolism in granulating wounds of

rat skin. Archives of dermatological research, 263, 207–214.Zhao, Q., Dahlin, L. B., Kanje, M., & Lundborg, G. (1992). The formation of a “pseudonerve” in

silicone chambers in the absence of regenerating axons. Brain Research, 592, 106–114.Zheng, Z., Nguyen, C., Zhang, X., Khorasani, H., Wang, J. Z., Zara, J. N., Chu, F., Yin, W., Pang,

S., Le, A., Ting, K., & Soo, C. (2011). Delayed wound closure in fibromodulin-deficient mice is associated with increased TGF-β3 signaling. The Journal of Investigative Dermatology, 131, 769–778.

Zhu, X., Yao, L., Yang, X., Sun, H., Guo, A., Li, A., & Yang, H. (2013). Spatiotemporal expression of KHSRP modulates Schwann cells and neuronal differentiation after sciatic nerve injury. The International Journal of Biochemistry & Cell Biology, 48, 1–10.

Znoyko, I., Trojanowska, M., & Reuben, A. (2006). Collagen binding alpha2beta1 and alpha-1beta1 integrins play contrasting roles in regulation of Ets-1 expression in human liver myofi-broblasts. Molecular and Cellular Biochemistry, 282, 89–99.

Zochodne, D. W., & Nguyen, C. (1997). Angiogenesis at the site of neuroma formation in tran-sected peripheral nerve. Journal of Anatomy, 191, 23–30.

Page 61: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

331

Index

© Springer Science+Business Media, LLC 2015I. V. Yannas, Tissue and Organ Regeneration in Adults,DOI 10.1007/978-1-4939-1865-2

AAnatomical boundaries, 57–59, 61Anatomically well-defined wound, 7, 47, 61Animal models, 5, 6, 15, 51, 59, 94, 107, 227,

235, 245, 253, 259experimental, 70, 255

BBasement membrane, 2, 14, 28, 40, 43, 45, 46,

48, 89, 92, 95, 121, 132, 136, 153, 158, 184, 197, 203, 207

approaches to, 43composition of, 40penetration of, 40physiological, 184regeneration of, 31, 40, 43scaffolding of, 14structure of, 96, 97synthesis of, 42synthesis of skin, 97–101, 103, 108tubular, 30, 31, 42, 79, 148, 150

Biodurabletubes, 166

CCollagen-binding integrins (CBI), 24, 245, 246Collagen surface, 244, 256, 264, 265Contractile cell assembly, 218, 219, 221, 222,

233, 239, 241Contraction

antagonizes regeneration, 21blockade, 173, 237, 251, 252, 255–257,

263in injured axolotl, 212, 217in injured frog, 212, 213in rabbit ear, 18, 21, 69, 214, 235oral mucosa, 256

Criticalaxon elongation, 142, 144, 145, 162, 169,

177size, 19, 25

DDecellularized matrices, 21, 22, 104, 254

regenerative activity of, 260–266Defect closure rule, 79–81, 84, 86, 87, 91,

135, 213Degradable tubes, 167–169

based on natural polymers, 169, 170Dermis

papillary, 40physiological, 34, 183, 257regeneration, 24, 55, 127synthesis, 209

Dermis regeneration template (DRT), 2, 24, 130, 132, 182, 194, 228, 248, 254, 256, 261

Dermo-epidermal junction, 29, 40, 208Dermoepidermal junction, 103, 112, 118,

122–127

EEndoneurium, 30, 38, 148, 150, 151, 155, 176,

178, 203, 208regeneration, 33, 141, 202

Epidermis, 2, 3regeneration, 29, 30, 42

Epineuriumregeneration, 38, 159

Experimental volume, 27, 47, 48, 50, 52, 53, 57, 90

size of, 56, 57

Page 62: Preparation of Collagen-Glycosaminoglycan Copolymers for ...978-1-4939-1865-2/1.pdf · I. V. Yannas, Tissue and Organ Regeneration in Adults, DOI 10.1007/978-1-4939-1865-2 Appendix

332

FFibrotic liver, 55, 254, 266, 267Frog regeneration model, 85

HHair follicle regeneration, 18, 29, 35, 75

IInduced, 1

regeneration, 2, 3, 5, 25, 27, 34, 50, 236Injury, 257

acute, 1chronic, 3, 8, 15, 267

In vitro synthesis, 22, 23, 25, 48of an epidermis, 92, 94, 95, 130

In vivo synthesis, 98, 136, 153, 195Irreducible process, 181Irreversible

damage, 39injury, 6, 11, 13, 17, 21, 46

KKeratinocyte-seeded DRT, 126, 130, 131, 136

LLigand density, 49, 245

adhesion, 246, 248

MMinimum reactants, 179Myelin sheath, 31, 42, 178

regeneration, 43, 45

NNonregenerative, 3, 42

ears, 18endoneurial stroma is, 35–37tissues, 2, 27, 34, 39, 40, 45, 50, 54, 58,

91, 180, 205, 208

OOrgan synthesis, 207

PPerineurium

regeneration, 31, 33, 142, 156, 157Peripheral nerve regeneration, 6, 31, 49, 52,

55, 139, 154, 202, 222, 249experimental and clinical studies of, 21model of, 51theories of, 20vivo studies of, 141

RReaction diagrams, 179–181, 196

irreducible, 198tabulation of, 185, 194

Regenerationparadigm, 21, 24, 25, 253, 254, 261, 265theories, 20, 137

Regenerative, 3tissues, 27, 38, 42, 57

Reversible healing, 6, 268

SScaffold regeneration paradigm, 21, 24, 254,

261, 266Scar formation, 8, 10, 24, 80, 81, 83, 85, 87,

108, 225, 227, 231, 235, 236, 268due to deep vein injury, 13hypothetically inhibited, 18

Scarlessfetal healing, 258healing axolotl, 217, 258healing fetus, 19, 21healing oral mucosa, 217healing rabbit ear, 259

Scar structure, 20, 39Schwann cell seeding, 33, 37, 42, 162Sebaceous gland regeneration, 18, 35, 75,

123, 129Skin adenexa regeneration, 24, 89Skin adnexa regeneration, 132Skin regeneration, 13, 21, 28, 55, 58, 59, 90,

126, 253Spontaneous, 1

regeneration, 4, 5, 8, 10, 11, 21, 32, 37, 46, 56, 139

regenerative tissue, 34Stroma

regeneration, 2, 57, 211Surface biology, 237, 252

TTubulation, 20, 32, 37, 61, 139, 161, 168, 177

WWound, 7, 17, 47

chronic, 55contraction, 17, 19, 21, 24, 49, 70, 223,

226, 227, 236, 237, 248, 250, 255

Index