4
Preparation and Photocatalytic Properties of Cobalt Phthalocyanine Tetrasulfonate Sensitized Crystalline BiVO 4 by Sonochemical Method Hai-feng Chen, Guo-xiang Pan, Min-hong Xu, Pei-song Tang, Feng Cao Department of Chemistry, Huzhou Teachers College, Huzhou Teachers Coll, Huzhou, Peoples R China Email: [email protected] Abstract: A novel method has been developed to sensitize BiVO 4 photocatalyst by sonochemical method for improving its visible light photocatalytic activity in this study. Containing Bi (NO 3 ) 3 • 5H 2 O in dilute aqueous solution of nitric acid solution and NH 4 VO 3 as reactants, BiVO 4 nucleated and grown under the ultrasound while simultaneous adsorption of Cobalt phthalocyanine tetrasulfonate (CoPcTs) as sensitizing agent. The CoPcTs/BiVO 4 photocatalyst was characterized by X-ray diffraction (XRD), laser particle size analyzer, scanning electron microscopy (SEM) diffuse reflectance spectroscopy (DRS) and UV–vis spectrophotometer techniques. The results show that: the XRD patterns demonstrated that BiVO 4 was monoclinic phase structure, grain size of about 30 nm; the laser particle size analyzer counted the size distribution coefficient of 0.631; its optical absorption increased between 300 nm - 500 nm; the SEM pictures illustrated particles together more obvious and the surface of secondary particles had much porous; the photocatalytic decolorization rate was at least 1 fold higher than non-sensitized photocatalyst; ultrasound 2 hours preparation of the photocatalyst, 70 mins after the decolorization rate of close to 100%; enhancing the catalytic effect of visible light was from the synergies after sensitization and it may be one reason that the existence of porous on sensitized surface. Keywords: visible light photocatalyst; BiVO 4 ; Cobalt phthalocyanine; sonochemical 酞菁钴敏化 BiVO 4 光催化剂的超声化学法 制备与光催化性能 陈海锋,潘国祥,徐敏虹,唐培松,曹 湖州师范学院,湖州,中国,313000 Email: [email protected] 要:采用超声波化学法制备四磺酸钠酞菁钴(CoPcTs)敏化 BiVO 4 光催化剂,尝试提高 BiVO 4 催化剂的可见光催化活性。具体以含 Bi(NO 3 ) 3 ·5H 2 O 的稀硝酸溶液和 NH 4 VO 3 的水溶液为反应物,加入 CoPcTs,超声条件下 BiVO 4 成核生长和敏化剂的吸附同步,使得酞菁钴成功敏化了 BiVO 4 。利用 X 线衍射(XRD)、激光粒度仪、扫描电子显微镜( SEM) 和漫反射谱(DRS)对其进行了相应表征;利用 甲基橙溶液的 464 nm 特征峰的吸光度研究了超声制备时间和光照反应时间对其光催化性能的影响。研 究表明:通过上述方法合成的该光催化剂为单斜相结构;其粒径分布系数为 0.631;其光吸收性能在 300 nm ~ 500 nm 之间增强;超声 2 小时制备的该光催化剂,70 min 后对甲基橙的脱色率接近 100%。 该光催化剂比未敏化 BiVO 4 光催化剂的脱色率至少高 1 倍以上,上述光催化效果的提升可能来自于敏 化之后的协同效应和敏化剂表面空隙的存在。 关键词:可见光催化剂; 钒酸铋; 酞菁钴; 超声化学 1 引言 目前报道的 BiVO 4 的制备方法主要有固相反应法 [1] 、水热法 [2] 以及化学浴沉积法 [3] 等,其中具有白钨矿 结构(单斜晶系)BiVO 4 在可见光照射下表现出一定 的催化活性。克服 BiVO 4 对反应物的吸附性能较弱, 增强光催化剂 BiVO 4 的可见光活性,本课题组成员通 过染料的激发从而来扩展半导体的波长范围,即光敏 资助信息:钱江人才计划(2009R10050) 、浙江省自然科学基金 NoY4100471)、浙江省分析测试科技计划项目(2008F70042)、 浙江省教育厅项目(Y200908366 )和湖州市自然科学资金项目 (2010YZ01) 1850 The 7th National Conference on Functional Materials and Applications 978-1-935068-41-9 © 2010 SciRes.

Preparation and Photocatalytic Properties of Cobalt ...file.scirp.org/pdf/22-1.428.pdfPreparation and Photocatalytic Properties of Cobalt Phthalocyanine Tetrasulfonate Sensitized Crystalline

Embed Size (px)

Citation preview

Page 1: Preparation and Photocatalytic Properties of Cobalt ...file.scirp.org/pdf/22-1.428.pdfPreparation and Photocatalytic Properties of Cobalt Phthalocyanine Tetrasulfonate Sensitized Crystalline

Preparation and Photocatalytic Properties of Cobalt Phthalocyanine Tetrasulfonate Sensitized Crystalline

BiVO4 by Sonochemical Method

Hai-feng Chen, Guo-xiang Pan, Min-hong Xu, Pei-song Tang, Feng Cao Department of Chemistry, Huzhou Teachers College, Huzhou Teachers Coll, Huzhou, Peoples R China

Email: [email protected]

Abstract: A novel method has been developed to sensitize BiVO4 photocatalyst by sonochemical method for improving its visible light photocatalytic activity in this study. Containing Bi (NO3)3 • 5H2O in dilute aqueous solution of nitric acid solution and NH4VO3 as reactants, BiVO4 nucleated and grown under the ultrasound while simultaneous adsorption of Cobalt phthalocyanine tetrasulfonate (CoPcTs) as sensitizing agent. The CoPcTs/BiVO4 photocatalyst was characterized by X-ray diffraction (XRD), laser particle size analyzer, scanning electron microscopy (SEM) diffuse reflectance spectroscopy (DRS) and UV–vis spectrophotometer techniques. The results show that: the XRD patterns demonstrated that BiVO4 was monoclinic phase structure, grain size of about 30 nm; the laser particle size analyzer counted the size distribution coefficient of 0.631; its optical absorption increased between 300 nm - 500 nm; the SEM pictures illustrated particles together more obvious and the surface of secondary particles had much porous; the photocatalytic decolorization rate was at least 1 fold higher than non-sensitized photocatalyst; ultrasound 2 hours preparation of the photocatalyst, 70 mins after the decolorization rate of close to 100%; enhancing the catalytic effect of visible light was from the synergies after sensitization and it may be one reason that the existence of porous on sensitized surface.

Keywords: visible light photocatalyst; BiVO4; Cobalt phthalocyanine; sonochemical

酞菁钴敏化 BiVO4光催化剂的超声化学法

制备与光催化性能

陈海锋,潘国祥,徐敏虹,唐培松,曹 枫 湖州师范学院,湖州,中国,313000

Email: [email protected]

摘 要:采用超声波化学法制备四磺酸钠酞菁钴(CoPcTs)敏化 BiVO4光催化剂,尝试提高 BiVO4光催化剂的可见光催化活性。具体以含 Bi(NO3)3·5H2O 的稀硝酸溶液和 NH4VO3的水溶液为反应物,加入CoPcTs,超声条件下 BiVO4成核生长和敏化剂的吸附同步,使得酞菁钴成功敏化了 BiVO4。利用 X 射线衍射(XRD)、激光粒度仪、扫描电子显微镜( SEM) 和漫反射谱(DRS)对其进行了相应表征;利用甲基橙溶液的 464 nm 特征峰的吸光度研究了超声制备时间和光照反应时间对其光催化性能的影响。研究表明:通过上述方法合成的该光催化剂为单斜相结构;其粒径分布系数为 0.631;其光吸收性能在300 nm ~ 500 nm 之间增强;超声 2 小时制备的该光催化剂,70 min 后对甲基橙的脱色率接近 100%。该光催化剂比未敏化 BiVO4光催化剂的脱色率至少高 1 倍以上,上述光催化效果的提升可能来自于敏化之后的协同效应和敏化剂表面空隙的存在。

关键词:可见光催化剂; 钒酸铋; 酞菁钴; 超声化学

1 引言

目前报道的 BiVO4 的制备方法主要有固相反应法

[1]、水热法[2]以及化学浴沉积法[3]等,其中具有白钨矿

结构(单斜晶系)的 BiVO4 在可见光照射下表现出一定

的催化活性。克服 BiVO4对反应物的吸附性能较弱,

增强光催化剂 BiVO4的可见光活性,本课题组成员通

过染料的激发从而来扩展半导体的波长范围,即光敏

资助信息:钱江人才计划(2009R10050)、浙江省自然科学基金

(NoY4100471)、浙江省分析测试科技计划项目(2008F70042)、

浙江省教育厅项目(Y200908366)和湖州市自然科学资金项目(2010YZ01)

1850

The 7th National Conference on Functional Materials and Applications

978-1-935068-41-9 © 2010 SciRes.

Page 2: Preparation and Photocatalytic Properties of Cobalt ...file.scirp.org/pdf/22-1.428.pdfPreparation and Photocatalytic Properties of Cobalt Phthalocyanine Tetrasulfonate Sensitized Crystalline

化[4]对催化剂进行改性。光敏化结合具体的催化剂制

备方法,我们已经以TiO2为敏化对象,采用水热法[5-6]、

超声法[7]、化学键合[8]开展了一些工作;其他研究者

Hidaka 等人采用溶胶-凝胶法[9]、Eun Youngbaeand 等

人采用真空升华沉积法[10]等方法。考虑到超声波技术

制造的泡沫中,具有非常高的温度( >5000 K ),压力

(>20 MPa)和冷却速度(>1010 K/s)[11]能实现,可能会

创造出小尺寸和高比表面积的无机晶体材料[12],结合

敏化剂,对于半导体的光催化活性的提高带来可能。

2 试 验

2.1 催化剂的制备

将10 mmol Bi(NO3)3·5H2O溶于2 molL-1的硝酸溶

液,将10 mmol的NH4VO3溶于去离子水;再将100 mg

磺化酞菁钴加入到上述反应溶液中,调节溶液pH值5

以下,保持溶液的温度为50 ℃;将含NH4VO3的水溶

液缓慢滴加到入Bi(NO3)3溶液,同时对溶液进行超声

(40 KHz和150 W)2 h,沉淀过滤,洗涤,然后放入

烘箱恒温100 oC干燥12 h,得到蓝色CoPcTs/ BiVO4光

催化剂粉末。对比试样制备步骤同上,但不加入

CoPcTs,得到黄色BiVO4对比空白粉末试样。

2.2 样品的性能及表征

采用 X-98 型转靶 X 射线衍射仪(飞利浦 X 光管)

测定样品的 XRD 谱,测试条件:Cu 靶,管电压 40 kV,

管电流 36 mA,扫描速度为 40/min,步宽为 0.020,

狭缝宽度:DS l mm,RS 0.32 mm,SS l mm。扫描电

镜是 S-4800 (Hitachi Company) FE-SEM 型,电压 5.0

kV;Horiba LB-55 激光粒度仪,样品未经超声测其二

次粒子分布情况;采用 UV4100 spectrometer (Hitachi

Company)测得其漫反射谱(DRS),硫酸钡作参比白板。

2.3 光催化实验

光催化活性采用降解甲基橙来表征,具体测试过

程与方法如下:将 10 mg 样品和 10 mL 浓度为 20 mg

L-1的甲基橙溶液混合放入 50 mL 反应器中,避光条件

下搅拌 30 min 待达到吸附脱附平衡。然后放入光催化

反应装置(光源采用金属卤化灯 HQI-BT,400W/D,德

国欧斯朗公司)中,在磁力搅拌下,光照下进行光催化

降解反应实验。达到所需时间后,将降解液转入洁净

离心管中,放入离心机以 3000 r min-1离心分离,取上

层清液在 F95 型分光光度计上测得降解液的吸光度。

根据甲基橙降解液的 UV-Vis 谱中 464 nm 处特征峰强

度的相对变化率来表征样品的活性,具体采用甲基橙

标准曲线方程计算其降解率(或脱色率)。每个样品均

进行 3 次测试,取平均值,以保证实验的可重复性。

同时采用对比空白粉末试样进行对比实验。

3 结果与讨论

3.1 XRD 分析

BiVO4的晶体结构有 3 种,分别是单斜白钨矿、

四方锆石和四方白钨矿,其中单斜相 BiVO4的可见光

活性最高。图 l 是样品的 XRD 图谱。采用 JADE5 软

件分析,判断 3 个基本的 X 射线衍射峰都属于斜铋酸

钒的特征衍射峰,和标准图谱 BiVO4(JCPDS 83-1699)

完全吻合,没有发现四方锆石和四方白钨矿的衍射峰,

可确认试样为单相单斜白钨矿型。根据 Debye Scherrer

公式估算其晶粒粒径约为30 nm。说明在40 kHz和150

W 的条件下超声反应 2 h,有助于钒酸铋晶体的成核

生长与扩散,而且是在较小的粒径下使其发育完备,

有效地提高了晶体的完整度。

3.2 SEM 分析

该催化剂如图 2 所示团聚较为严重,局部微粒形

貌似球体,直径约为 2 um,同时该球体表面存在较多

空隙。考虑到光催化发生在表面的情况,我们认为这

些空隙的存在一定程度上有利于被降解对象甲基橙分

子的吸附,为进一步的光催化创造了条件。

3.3 粒径分析

该催化剂在粒径分布图 2a 中积分面积后统计的

平均粒径为 2.29 um。由图 2b 中的数据可知该催化剂

10 20 30 40 50 60 70 80(o)

Inte

nsit

y(a.

u.)

Figure 1. The powders XRD patterns of sample.

图 1. 样品的 XRD 测试图谱

1851

The 7th National Conference on Functional Materials and Applications

978-1-935068-41-9 © 2010 SciRes.

Page 3: Preparation and Photocatalytic Properties of Cobalt ...file.scirp.org/pdf/22-1.428.pdfPreparation and Photocatalytic Properties of Cobalt Phthalocyanine Tetrasulfonate Sensitized Crystalline

Figure 2. The scannner electron micrographic image of CoPcTs/

BiVO4 particles.

图 2. CoPcTs/ BiVO4催化剂的扫描电镜照片

0 1 2 3 4 5 60

5

10

15

20

25

30

Diameter(um)

q (

%)

a

b

0

20

40

60

80

100

Un

dersize(%

)

Figure 3. The grain-size frequency distribution curve(a)and accu-

mulation frequency curve(b).

图 3. 粒度频率分布曲线(a)与累积频率曲线(b)

的二次颗粒中中位径 d50 为 2.25 um,d90 为 3.20 um,

d10 为 1.49 um,粒径分布系数为 0.631。结合 XRD 和

SEM 的情况,显然该催化剂发生了严重的团聚。

3.4 DRS 分析

将一定量的敏化BiVO4光催化剂和空白BiVO4光

催化剂压成 0.5 cm 厚度的圆片,采用 UV4100 spec-

trometer 分别测得其漫反射谱,通过 Kubeika-Munk 方

程转化为漫反射吸收谱图 4,用来表征样品的光吸收

性能。图 4 中曲线 A 为敏化 BiVO4 催化剂,曲线 B

为空白纯 BiVO4催化剂,明显说明了 CoPcTs/ BiVO4

催化剂在可见光波段的吸收来自于 CoPcTs 和 BiVO4

两者均有,这也为证明了 CoPcTs/ BiVO4 活性比纯

BiVO4 增强的原因 [7]。显然敏化催化剂粉末由于

CoPcTs 的加入,其光吸收性能在 300 nm ~ 500 nm 之

间增强。

3.5 光照反应时间对光催化效果的影响

300 350 400 450 500 550 600 650 700 750 800

(1-R

)2 /(2R

)

Wavelength (nm)

A

B

Figure 4. UV–vis diffuse reflectance spectra of the photocatalytic

samples. (A)CoPcTs/ BiVO4 and (B) pure BiVO4. *The ordinate

scale is expressed in Kubelka-Munk unit (R:reflectance)

图 4. 敏化 BiVO4(A)与纯 BiVO4(B)光催化剂的漫反射吸收谱

(其中 R 为反射率)

10 20 30 40 50 60 700

20

40

60

80

100

B

A

Dec

olor

izin

g R

ate

%

Reaction time (min)

Figure 5. the relationship curves between the photocatalytic decol-

orizing rate and reaction time. (A)CoPcTs/ BiVO4 and (B) pure

BiVO4.

图 5. 光催化实验褪色率与光照反应时间关系曲线。其中敏化

BiVO4(A)与纯 BiVO4(B)。

采用取多个光催化时间点和对比空白BiVO4光催

化剂。首先实验显示纯酞菁钴对于甲基橙在464 nm处

的吸光度光催化实验中没有变化,即没有光催化效果。

图5为可见光照射下不同时间光催化剂样品(A)对甲

1852

The 7th National Conference on Functional Materials and Applications

978-1-935068-41-9 © 2010 SciRes.

Page 4: Preparation and Photocatalytic Properties of Cobalt ...file.scirp.org/pdf/22-1.428.pdfPreparation and Photocatalytic Properties of Cobalt Phthalocyanine Tetrasulfonate Sensitized Crystalline

基橙脱色率的曲线。空白样(B)实验中甲基橙脱色

率12.06%,可见光照射70 min后脱色率30.86%,说明

0 1 2 3 4 50

20

40

60

80

100

Ultrasound Preparation Time (h)

Dec

olor

izin

g R

ate

%

Figure 6. the relationship curves between the photocatalytic decol-

orizing rate and ultrasound preparation time. (the decolorization

computed by the absorbance on 464 nm)

图6. 不同超声时间制备酞菁钴敏化BiVO4的褪色效果(在464 nm

处可见光照10 min后的褪色率)

可见光下甲基橙发生褪色不明显,随着时间的延长,

效果有限。而CoPcTs/ BiVO4光催化剂的甲基橙溶液的

脱色率曲线随时间的延长而不断增大,经可见光照射

10 min后脱色率达到37.55%,到70 min后,甲基橙的

脱色率达到97.46%。对比可知认为磺化酞菁钴负载后

的敏化效果极大的增加了BiVO4的可见光催化活性,

同等条件下脱色率至少高1倍。

3.6 超声制备时间对光催化效果的影响

酞菁钴敏化BiVO4光催化活性采用降解甲基橙来

表征,测试过程与方法如前 2.3 所述。如图 6 所示,2

h 超声波的 CoPcTs/ BiVO4光催化剂 10 min 对甲基橙

的降解率最高。原因可能是随着超声时间的延长,

BiVO4晶体颗粒粒径长大,其电子的基点能有所下降,

影响其电子分离复合效果,导致光催化效果下降,所

以存在一最佳超声化学制备时间。

4 结 论

本文通过超声化学法制备了 CoPcTs/ BiVO4光催

化剂,控制实验相关参数,得到单斜相结构 BiVO4。

对于甲基橙溶液,上述光催化剂比纯 BiVO4的脱色率

至少高 1 倍以上;最佳催化剂样品,光照 70 min 后对

甲基橙的脱色率接近 100%。该催化剂的光催化效果

对比的提升来自于敏化之后的协同效应,其表面空隙

的存在可能有助于提高降解效果。

References(参考文献)

[1] Chundu Wu, Hui Xu, Huaming Li, Jinyu Chu, Yongsheng Yan, Changsheng Li. Photocatalytic decolorization of methylene blue via Ag-deposited BiVO4 under UV-light irradiation[J]. Fresenius Environmental Bulletin, 2007, 16(3): 242-246

[2] Cho YG, Hwang BH, Park DW, Woo HC, Chung JS. Phase Cooperation of V2O5 and Bi2O3 in the Selective Oxidation of H2S Containing Ammonia and Water[J]. Korean journal of chemical engineering, 2002, 19(4): 611-616

[3] Márcia C. Neves and Tito Trindade. Chemical bath deposition of BiVO4[J]. Thin Solid Films, 2002, 406(1): 93-97

[4] P Wang, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Se-kiguchi T& Grätzel M. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte[J]. Nature materials, 2003, 6: 402-407

[5] ZY Wang, CM Gao, WP Mao, B Zhao, HF Chen, XP Fan, GD Qian. Copper(II) phthalocyanine tetrasulfonate sensitized nanocrystalline TiO2: in-situ hydrothermal synthesis and photo-catalysis under visible light[J]. Rare metal materials and engi-neering, 2008, 37(S2): 468-472 (Ch). 王智宇,高春梅,毛卫平,赵彬,陈海锋,樊先平,钱国栋. 酞菁敏化纳米 TiO2 的水热法原位合成及其可见光催化性能[J].稀有金属材料与工程, 2008, 37(S2): 468-472

[6] ZY Wang, HF Chen, PS Tang, WP Mao, FA Zhang, GD Qian, XP Fan. Hydrothermal in situ preparation of the copper phthalo-cyanine tetrasulfonate modified titanium dioxide photocatalyst[J]. Colloids and surfaces: A-physicochemical and engineering as-pects, 2006, 289(3): 207-211

[7] ZY Wang, WP Mao, HF Chen, F Zhang, XP Fan, GD Qian. Copper(II) phthalocyanine tetrasulfonate sensitized nanocrystal-line titania photocatalyst: Synthesis in situ and photocatalysis under visible light[J]. Catalysis communications, 2006, 7(8): 518-522

[8] ZY Wang, HF Chen, B Zhao, XT Lin, XP Fan, GD Qian. Prepa-ration and properties of the copper phthalocyanine tetrasulfonate sensitized TiO2 photocatalyst[J]. Rare metal materials and engi-neering, 2008, 37(S2): 402-405 (Ch). 王智宇,陈海锋,赵彬,林旭添,樊先平,钱国栋. 化学键合

型酞菁改性纳米 TiO2 及可见光催化活性[J]. 稀有金属材料与

工程, 2008, 37(S2): 402-405 [9] H. Hidaka, K. Ajisaka, S. Horikoshi, T. Oyama, K. Takeuchi, J.

Zhao, N. Serpone. Comparative assessment of the efficiency of TiO2/OTE thin film electrodes fabricated by three deposition methods: Photoelectrochemical degradation of the DBS anionic surfactant[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 138(2): 185-192

[10] Eunyoung Bae, Wonyong Choi. Highly Enhanced Photoreduc-tive Degradation of Perchlorinated Compounds on Dye-Sensitized Metal/TiO2 under Visible Light[J]. Environ. Sci. Technol., 2003, 37(1): 147-152

[11] Kenneth S. Suslick, Seok-Burm Choe, Andrzej A. Cichowlas, Mark W. Grinstaff. Sonochemical synthesis of amorphous iron[J]. Nature, 1991, 353: 414-416

[12] Lin Zhou, Wenzhong Wang, Shengwei Liu, Lisha Zhang, Haolan Xu, Wei Zhu. A sonochemical route to visi-ble-light-driven high-activity BiVO4 photocatalyst[J]. Journal of Molecular Catalysis A: Chemical, 2006, 252(2): 120-124

1853

The 7th National Conference on Functional Materials and Applications

978-1-935068-41-9 © 2010 SciRes.