11
Precision control of Precision control of single molecule single molecule electrical junctions electrical junctions Iain Grace & Colin Lambert I 0 I w

Precision control of single molecule electrical junctions Iain Grace & Colin Lambert

Embed Size (px)

Citation preview

Page 1: Precision control of single molecule electrical junctions Iain Grace & Colin Lambert

Precision control of Precision control of single molecule single molecule

electrical junctionselectrical junctions

Iain Grace & Colin Lambert

(b)

I0 Iw

Page 2: Precision control of single molecule electrical junctions Iain Grace & Colin Lambert

CollaboratorsCollaborators

University of LiverpoolUniversity of Liverpool• W. Haiss• R. Nicholls• R. Schiffron

Durham UniversityDurham University• C. Wang• M. Bryce• A. Batsanov

Smeagol teamSmeagol team• A. R. Rocha • S. Sanvito• V. Garcia Suarez• J. Ferrer• S. Bailey• C. Lambert

Page 3: Precision control of single molecule electrical junctions Iain Grace & Colin Lambert

Modelling of Molecular Electronics at Modelling of Molecular Electronics at LancasterLancaster

Controlling transport through single moleculesControlling transport through single molecules

Molecule Synthesis ~ Durham UniversityMolecule Synthesis ~ Durham University

•M. Bryce & C. Wang

O

O

O

O

R R

R RO O

O

O

O

O

R

R

R

R

S SNC CN

27 R = C6H13

HN

O

O

O

O

R R

R RO O

O

O

O

O

R

R

R

R

S SNC CN

28 R = C6H13

N N

Molecule CharacterizationMolecule Characterization• STM measurements• Cranfield ~ G. Ashwell, W. Tyrell• Liverpool ~ W. Haiss, R. Nicholls

Device fabrication ~ QinetiQDevice fabrication ~ QinetiQ Scalable technologyScalable technology

Gold contacts

Theory ~ Lancaster UniversityTheory ~ Lancaster University• I. Grace, T. Papadopolous, C. Finch• S. Sirichantaropass , V. Garcia Suarez• C. Lambert

Page 4: Precision control of single molecule electrical junctions Iain Grace & Colin Lambert

(b)

I0 Iw

Experimental Details ~ I(t) MethodExperimental Details ~ I(t) MethodX-Ray Crystallogaphy structure

Length ~ 2nm

IW ~ Measured current through the molecule

W. Haiss et al, Phys. Chem. Chem. Phys., 2004, 6, 4330.

Page 5: Precision control of single molecule electrical junctions Iain Grace & Colin Lambert

Tilting MoleculesTilting Molecules

No temperature dependence~ molecule is rigid~ for non-rigid molecules there is a strong temperature dependence

Theory on molecule tiltingTheory on molecule tiltingKornilovitch et al, PRB 64, 195413 (2001)Geng et al, App. Phys. Lett. 85, 5992 (2004)

Page 6: Precision control of single molecule electrical junctions Iain Grace & Colin Lambert

Theoretical ModellingTheoretical Modelling

Relax geometry of the isolated molecular wire ( SIESTA DFT code)

Extend the molecule to include surface layers of gold

Using SIESTA extract a tight binding Hamiltonian describing the extended

molecule

Compute zero-bias transport with a greens function scattering approach.

)(2 2

ETh

eG

Employ a simpler form of the SMEAGOL code~ developed to study very long molecules (10nm) efficiently

Page 7: Precision control of single molecule electrical junctions Iain Grace & Colin Lambert

Theoretical tilt dependenceTheoretical tilt dependenceHollow site

Top site

Artificially shifted LUMO resonances

Page 8: Precision control of single molecule electrical junctions Iain Grace & Colin Lambert

Surfaces of constant LDOSSurfaces of constant LDOS

Increasing the tilt angle alters the strength of the contact coupling

Page 9: Precision control of single molecule electrical junctions Iain Grace & Colin Lambert

Molecule GeometryMolecule Geometry

Geometry A ~ α = 0

Geometry B ~ α = 60

Rings are free to rotate about the molecule axis

Page 10: Precision control of single molecule electrical junctions Iain Grace & Colin Lambert

Rotational DependenceRotational DependenceRotate the whole molecule about its axis by an angle Φ

Page 11: Precision control of single molecule electrical junctions Iain Grace & Colin Lambert

ConclusionsConclusions

• Developed a theoretical method, based on the SMEAGOL code, to

compute efficiently the zero bias conductance of molecular wires.

• Good agreement with the measured magnitude of conductance.

• The behaviour of the tilt dependence of the conductance is determined by geometry of the molecule between the contacts.