84
Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans Precise Measurement of the π + e + ν Branching Ratio E. Frlež (for the PEN Collaboration) Department of Physics University of Virginia New Trends in High Energy Physics Yalta, Crimea, Sept. 27 - Oct. 4, 2008

Precise Measurement of the +e+ Branching Ratio · Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans Precise Measurement of the π+ → e+ν

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Precise Measurement ofthe π+ → e+ν Branching Ratio

    E. Frlež (for the PEN Collaboration)

    Department of PhysicsUniversity of Virginia

    New Trends in High Energy PhysicsYalta, Crimea, Sept. 27 - Oct. 4, 2008

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Outline

    Physics MotivationPIBETA Experimental Programπ → eν: Theoretical Statusπ → eν: Experimental Status

    Experimental ApparatusPEN DetectorCentral Detector RegionWaveform Digitizer

    Data & AnalysisADC/TDC/DIG SpectraWaveform AnalysisANN Analysis

    Summary & Future PlansPEN 2007-2009

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PSI Experiment R-05-01 (PEN) collaboration members:

    L. P. Alonzi,a V. A. Baranov,c W. Bertl,b M. Bychkov,a

    Yu.M. Bystritsky,c E. Frlež,a N.V. Khomutov,c

    A.S. Korenchenko,c S.M. Korenchenko,c M. Korolija,f

    T. Kozlowski,d N.P. Kravchuk,c N.A. Kuchinsky,c D. Mekterović,f

    D. Mzhavia,c,e A. Palladino,a D. Počanić,a∗ P. Robmann,g

    O.A. Rondon-Aramayo,a A.M. Rozhdestvensky,c T.Sakhelashvili,g V.V. Sidorkin,c U. Straumann,g I. Supek,f

    Z. Tsamalaidze,e A. van der Schaaf,g∗ E.P. Velicheva,c andV.V. Volnykhc

    aDept of Physics, Univ of Virginia, Charlottesville, VA 22904-4714, USAbPaul Scherrer Institut, CH-5232 Villigen PSI, SwitzerlandcJoint Institute for Nuclear Research, RU-141980 Dubna, RussiadInstitute for Nuclear Studies, PL-05-400 Swierk, PolandeIHEP, Tbilisi, State University, GUS-380086 Tbilisi, GeorgiafRudjer Bošković Institute, HR-10000 Zagreb, CroatiagPhysik Institut der Universität Zürich, CH-8057 Zürich, Switzerland

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN follows the PIBETA experiment

    PIBETA program (precision checks of SM):

    I π+ → π0e+νe—main goal◦ SM checks related to CKM unitarity

    I π+ → e+νeγ(or e+e−)◦ FA/FV , π polarizability (χPT prediction)◦ tensor coupling besides V − A (?)

    I µ+ → e+νeν̄µγ(or e+e−)◦ departures from V − A in Lweak

    ⇒ The PEN experiment:I π+ → e+νe◦ e-µ universality◦ pseudoscalar coupling besides V − A◦ ν-sector anomalies, Majoron searches, mh+, PS l-q’s, Vl-q’s, . . .

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN follows the PIBETA experiment

    PIBETA program (precision checks of SM):

    I π+ → π0e+νe—main goal◦ SM checks related to CKM unitarity

    I π+ → e+νeγ(or e+e−)◦ FA/FV , π polarizability (χPT prediction)◦ tensor coupling besides V − A (?)

    I µ+ → e+νeν̄µγ(or e+e−)◦ departures from V − A in Lweak

    ⇒ The PEN experiment:I π+ → e+νe◦ e-µ universality◦ pseudoscalar coupling besides V − A◦ ν-sector anomalies, Majoron searches, mh+, PS l-q’s, Vl-q’s, . . .

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN follows the PIBETA experiment

    PIBETA program (precision checks of SM):

    I π+ → π0e+νe—main goal◦ SM checks related to CKM unitarity

    I π+ → e+νeγ(or e+e−)◦ FA/FV , π polarizability (χPT prediction)◦ tensor coupling besides V − A (?)

    I µ+ → e+νeν̄µγ(or e+e−)◦ departures from V − A in Lweak

    ⇒ The PEN experiment:I π+ → e+νe◦ e-µ universality◦ pseudoscalar coupling besides V − A◦ ν-sector anomalies, Majoron searches, mh+, PS l-q’s, Vl-q’s, . . .

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN follows the PIBETA experiment

    PIBETA program (precision checks of SM):

    I π+ → π0e+νe—main goal◦ SM checks related to CKM unitarity

    I π+ → e+νeγ(or e+e−)◦ FA/FV , π polarizability (χPT prediction)◦ tensor coupling besides V − A (?)

    I µ+ → e+νeν̄µγ(or e+e−)◦ departures from V − A in Lweak

    ⇒ The PEN experiment:I π+ → e+νe◦ e-µ universality◦ pseudoscalar coupling besides V − A◦ ν-sector anomalies, Majoron searches, mh+, PS l-q’s, Vl-q’s, . . .

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN follows the PIBETA experiment

    PIBETA program (precision checks of SM):

    I π+ → π0e+νe—main goal◦ SM checks related to CKM unitarity

    I π+ → e+νeγ(or e+e−)◦ FA/FV , π polarizability (χPT prediction)◦ tensor coupling besides V − A (?)

    I µ+ → e+νeν̄µγ(or e+e−)◦ departures from V − A in Lweak

    ⇒ The PEN experiment:I π+ → e+νe◦ e-µ universality◦ pseudoscalar coupling besides V − A◦ ν-sector anomalies, Majoron searches, mh+, PS l-q’s, Vl-q’s, . . .

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν decay: SM predictions; measurements

    Modern theoretical calculations:

    Bcalc =Γ(π → eν̄(γ))Γ(π → µν̄(γ))calc

    =

    1.2352 (5)× 10−4 Marciano and Sirlin, [PRL 71 (1993) 3629]1.2356 (1)× 10−4 Decker and Finkemeier, [NP B 438 (1995) 17]1.2352 (1)× 10−4 Cirigliano and Rosell, [PRL 99, 231801 (2007)]

    Experiment, world average [current PDG]:

    Γ(π → eν̄(γ))Γ(π → µν̄(γ))exp

    = (1.230± 0.004)× 10−4

    PEN goal:δBB' 5× 10−4 .

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν decay: SM predictions; measurements

    Modern theoretical calculations:

    Bcalc =Γ(π → eν̄(γ))Γ(π → µν̄(γ))calc

    =

    1.2352 (5)× 10−4 Marciano and Sirlin, [PRL 71 (1993) 3629]1.2356 (1)× 10−4 Decker and Finkemeier, [NP B 438 (1995) 17]1.2352 (1)× 10−4 Cirigliano and Rosell, [PRL 99, 231801 (2007)]

    Experiment, world average [current PDG]:

    Γ(π → eν̄(γ))Γ(π → µν̄(γ))exp

    = (1.230± 0.004)× 10−4

    PEN goal:δBB' 5× 10−4 .

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν decay: SM predictions; measurements

    Modern theoretical calculations:

    Bcalc =Γ(π → eν̄(γ))Γ(π → µν̄(γ))calc

    =

    1.2352 (5)× 10−4 Marciano and Sirlin, [PRL 71 (1993) 3629]1.2356 (1)× 10−4 Decker and Finkemeier, [NP B 438 (1995) 17]1.2352 (1)× 10−4 Cirigliano and Rosell, [PRL 99, 231801 (2007)]

    Experiment, world average [current PDG]:

    Γ(π → eν̄(γ))Γ(π → µν̄(γ))exp

    = (1.230± 0.004)× 10−4

    PEN goal:δBB' 5× 10−4 .

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν Decay and the SM

    Be/µ is given in SM to 10−4 accuracy; dominated by helicitysuppression (V − A). Deviations from this rate primarily causedby new pseudoscalar interactions (mass scale ΛeP):

    ∆Be/µ = 1−Bnewe/µBSMe/µ

    ∼√

    2Gµ

    m2πme(mu + md)

    1Λ2eP

    (1TeVΛeP

    2)× 103.

    Thus (δB/B)exp = 10−4 probes ΛeP∼ 103 TeV! → Limits on:I charged Higgs in theories with richer Higgs sector than

    SM,I R-parity violating SUSY; loop diagrams with certain SUSY

    partner particles,I PS and V leptoquarks in various theories with dynamical

    symmetry breaking,I non-zero mν and mixing; sterile ν’s; Majorans.

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν Decay and the SM

    Be/µ is given in SM to 10−4 accuracy; dominated by helicitysuppression (V − A). Deviations from this rate primarily causedby new pseudoscalar interactions (mass scale ΛeP):

    ∆Be/µ = 1−Bnewe/µBSMe/µ

    ∼√

    2Gµ

    m2πme(mu + md)

    1Λ2eP

    (1TeVΛeP

    2)× 103.

    Thus (δB/B)exp = 10−4 probes ΛeP∼ 103 TeV! → Limits on:

    I charged Higgs in theories with richer Higgs sector thanSM,

    I R-parity violating SUSY; loop diagrams with certain SUSYpartner particles,

    I PS and V leptoquarks in various theories with dynamicalsymmetry breaking,

    I non-zero mν and mixing; sterile ν’s; Majorans.

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν Decay and the SM

    Be/µ is given in SM to 10−4 accuracy; dominated by helicitysuppression (V − A). Deviations from this rate primarily causedby new pseudoscalar interactions (mass scale ΛeP):

    ∆Be/µ = 1−Bnewe/µBSMe/µ

    ∼√

    2Gµ

    m2πme(mu + md)

    1Λ2eP

    (1TeVΛeP

    2)× 103.

    Thus (δB/B)exp = 10−4 probes ΛeP∼ 103 TeV! → Limits on:I charged Higgs in theories with richer Higgs sector than

    SM,

    I R-parity violating SUSY; loop diagrams with certain SUSYpartner particles,

    I PS and V leptoquarks in various theories with dynamicalsymmetry breaking,

    I non-zero mν and mixing; sterile ν’s; Majorans.

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν Decay and the SM

    Be/µ is given in SM to 10−4 accuracy; dominated by helicitysuppression (V − A). Deviations from this rate primarily causedby new pseudoscalar interactions (mass scale ΛeP):

    ∆Be/µ = 1−Bnewe/µBSMe/µ

    ∼√

    2Gµ

    m2πme(mu + md)

    1Λ2eP

    (1TeVΛeP

    2)× 103.

    Thus (δB/B)exp = 10−4 probes ΛeP∼ 103 TeV! → Limits on:I charged Higgs in theories with richer Higgs sector than

    SM,I R-parity violating SUSY; loop diagrams with certain SUSY

    partner particles,

    I PS and V leptoquarks in various theories with dynamicalsymmetry breaking,

    I non-zero mν and mixing; sterile ν’s; Majorans.

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν Decay and the SM

    Be/µ is given in SM to 10−4 accuracy; dominated by helicitysuppression (V − A). Deviations from this rate primarily causedby new pseudoscalar interactions (mass scale ΛeP):

    ∆Be/µ = 1−Bnewe/µBSMe/µ

    ∼√

    2Gµ

    m2πme(mu + md)

    1Λ2eP

    (1TeVΛeP

    2)× 103.

    Thus (δB/B)exp = 10−4 probes ΛeP∼ 103 TeV! → Limits on:I charged Higgs in theories with richer Higgs sector than

    SM,I R-parity violating SUSY; loop diagrams with certain SUSY

    partner particles,I PS and V leptoquarks in various theories with dynamical

    symmetry breaking,

    I non-zero mν and mixing; sterile ν’s; Majorans.

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν Decay and the SM

    Be/µ is given in SM to 10−4 accuracy; dominated by helicitysuppression (V − A). Deviations from this rate primarily causedby new pseudoscalar interactions (mass scale ΛeP):

    ∆Be/µ = 1−Bnewe/µBSMe/µ

    ∼√

    2Gµ

    m2πme(mu + md)

    1Λ2eP

    (1TeVΛeP

    2)× 103.

    Thus (δB/B)exp = 10−4 probes ΛeP∼ 103 TeV! → Limits on:I charged Higgs in theories with richer Higgs sector than

    SM,I R-parity violating SUSY; loop diagrams with certain SUSY

    partner particles,I PS and V leptoquarks in various theories with dynamical

    symmetry breaking,I non-zero mν and mixing; sterile ν’s; Majorans.

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Experimental Constraints on Lepton Non-UniversalityLepton coupling constants gl=e,µ,τ : gl = gl(1 + �l), ∆ij = �i − �j

    Loinaz et al. PRD70 (2004).

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Experimental Constraints on Lepton Non-UniversalityLepton coupling constants gl=e,µ,τ : gl = gl(1 + �l), ∆ij = �i − �j

    Loinaz et al. PRD70 (2004).

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PSI π → eν Experiment: Czapek et al. 1993

    • PSI cyclotron, 78 MeV/c π+ beam• Segmented BGO calorimeter:

    132 crystals, φ 55 mm, l=300 mm• Good energy (1.7 %) and timing rms (1 ns)• large solid angle (∼ 4π) coverage• π+ → e+ν tail simulated, not measured• PRL93: (1.235± 0.004± 0.004) · 10−4

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PSI π → eν Experiment: Czapek et al. 1993

    • PSI cyclotron, 78 MeV/c π+ beam• Segmented BGO calorimeter:

    132 crystals, φ 55 mm, l=300 mm• Good energy (1.7 %) and timing rms (1 ns)• large solid angle (∼ 4π) coverage• π+ → e+ν tail simulated, not measured• PRL93: (1.235± 0.004± 0.004) · 10−4

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PSI π → eν Experiment: Czapek et al. 1993

    • PSI cyclotron, 78 MeV/c π+ beam

    • Segmented BGO calorimeter:132 crystals, φ 55 mm, l=300 mm

    • Good energy (1.7 %) and timing rms (1 ns)• large solid angle (∼ 4π) coverage• π+ → e+ν tail simulated, not measured• PRL93: (1.235± 0.004± 0.004) · 10−4

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PSI π → eν Experiment: Czapek et al. 1993

    • PSI cyclotron, 78 MeV/c π+ beam• Segmented BGO calorimeter:

    132 crystals, φ 55 mm, l=300 mm

    • Good energy (1.7 %) and timing rms (1 ns)• large solid angle (∼ 4π) coverage• π+ → e+ν tail simulated, not measured• PRL93: (1.235± 0.004± 0.004) · 10−4

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PSI π → eν Experiment: Czapek et al. 1993

    • PSI cyclotron, 78 MeV/c π+ beam• Segmented BGO calorimeter:

    132 crystals, φ 55 mm, l=300 mm• Good energy (1.7 %) and timing rms (1 ns)

    • large solid angle (∼ 4π) coverage• π+ → e+ν tail simulated, not measured• PRL93: (1.235± 0.004± 0.004) · 10−4

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PSI π → eν Experiment: Czapek et al. 1993

    • PSI cyclotron, 78 MeV/c π+ beam• Segmented BGO calorimeter:

    132 crystals, φ 55 mm, l=300 mm• Good energy (1.7 %) and timing rms (1 ns)• large solid angle (∼ 4π) coverage

    • π+ → e+ν tail simulated, not measured• PRL93: (1.235± 0.004± 0.004) · 10−4

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PSI π → eν Experiment: Czapek et al. 1993

    • PSI cyclotron, 78 MeV/c π+ beam• Segmented BGO calorimeter:

    132 crystals, φ 55 mm, l=300 mm• Good energy (1.7 %) and timing rms (1 ns)• large solid angle (∼ 4π) coverage• π+ → e+ν tail simulated, not measured

    • PRL93: (1.235± 0.004± 0.004) · 10−4

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PSI π → eν Experiment: Czapek et al. 1993

    • PSI cyclotron, 78 MeV/c π+ beam• Segmented BGO calorimeter:

    132 crystals, φ 55 mm, l=300 mm• Good energy (1.7 %) and timing rms (1 ns)• large solid angle (∼ 4π) coverage• π+ → e+ν tail simulated, not measured• PRL93: (1.235± 0.004± 0.004) · 10−4

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    TRIUMF π → eν Program: D. Bryman et al. 1983 & 1993

    • TRIUMF cyclotron, 83 MeV/c π+ beam• NaI(Tl) “TINA”: φ 460 mm, l=510 mm• Good energy and timing resolution• small (2.9 %) solid angle coverage• π+ → e+ν tail measured• PRD86: (1.218± 0.014) · 10−4• PLR93: (1.2265± 0.0034± 0.0044) · 10−4

    • TRIUMF E1072 experiment proposed 2006◦ better tracking, larger solid angle (25 %)

    Goal:δBB' 1× 10−3 .

    ◦ Engineering runs Aug.-Oct. 2008◦ Data taking 2009-10

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    TRIUMF π → eν Program: D. Bryman et al. 1983 & 1993

    • TRIUMF cyclotron, 83 MeV/c π+ beam• NaI(Tl) “TINA”: φ 460 mm, l=510 mm• Good energy and timing resolution• small (2.9 %) solid angle coverage• π+ → e+ν tail measured• PRD86: (1.218± 0.014) · 10−4• PLR93: (1.2265± 0.0034± 0.0044) · 10−4

    • TRIUMF E1072 experiment proposed 2006◦ better tracking, larger solid angle (25 %)

    Goal:δBB' 1× 10−3 .

    ◦ Engineering runs Aug.-Oct. 2008◦ Data taking 2009-10

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    TRIUMF π → eν Program: D. Bryman et al. 1983 & 1993

    • TRIUMF cyclotron, 83 MeV/c π+ beam

    • NaI(Tl) “TINA”: φ 460 mm, l=510 mm• Good energy and timing resolution• small (2.9 %) solid angle coverage• π+ → e+ν tail measured• PRD86: (1.218± 0.014) · 10−4• PLR93: (1.2265± 0.0034± 0.0044) · 10−4

    • TRIUMF E1072 experiment proposed 2006◦ better tracking, larger solid angle (25 %)

    Goal:δBB' 1× 10−3 .

    ◦ Engineering runs Aug.-Oct. 2008◦ Data taking 2009-10

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    TRIUMF π → eν Program: D. Bryman et al. 1983 & 1993

    • TRIUMF cyclotron, 83 MeV/c π+ beam• NaI(Tl) “TINA”: φ 460 mm, l=510 mm

    • Good energy and timing resolution• small (2.9 %) solid angle coverage• π+ → e+ν tail measured• PRD86: (1.218± 0.014) · 10−4• PLR93: (1.2265± 0.0034± 0.0044) · 10−4

    • TRIUMF E1072 experiment proposed 2006◦ better tracking, larger solid angle (25 %)

    Goal:δBB' 1× 10−3 .

    ◦ Engineering runs Aug.-Oct. 2008◦ Data taking 2009-10

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    TRIUMF π → eν Program: D. Bryman et al. 1983 & 1993

    • TRIUMF cyclotron, 83 MeV/c π+ beam• NaI(Tl) “TINA”: φ 460 mm, l=510 mm• Good energy and timing resolution

    • small (2.9 %) solid angle coverage• π+ → e+ν tail measured• PRD86: (1.218± 0.014) · 10−4• PLR93: (1.2265± 0.0034± 0.0044) · 10−4

    • TRIUMF E1072 experiment proposed 2006◦ better tracking, larger solid angle (25 %)

    Goal:δBB' 1× 10−3 .

    ◦ Engineering runs Aug.-Oct. 2008◦ Data taking 2009-10

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    TRIUMF π → eν Program: D. Bryman et al. 1983 & 1993

    • TRIUMF cyclotron, 83 MeV/c π+ beam• NaI(Tl) “TINA”: φ 460 mm, l=510 mm• Good energy and timing resolution• small (2.9 %) solid angle coverage

    • π+ → e+ν tail measured• PRD86: (1.218± 0.014) · 10−4• PLR93: (1.2265± 0.0034± 0.0044) · 10−4

    • TRIUMF E1072 experiment proposed 2006◦ better tracking, larger solid angle (25 %)

    Goal:δBB' 1× 10−3 .

    ◦ Engineering runs Aug.-Oct. 2008◦ Data taking 2009-10

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    TRIUMF π → eν Program: D. Bryman et al. 1983 & 1993

    • TRIUMF cyclotron, 83 MeV/c π+ beam• NaI(Tl) “TINA”: φ 460 mm, l=510 mm• Good energy and timing resolution• small (2.9 %) solid angle coverage• π+ → e+ν tail measured

    • PRD86: (1.218± 0.014) · 10−4• PLR93: (1.2265± 0.0034± 0.0044) · 10−4

    • TRIUMF E1072 experiment proposed 2006◦ better tracking, larger solid angle (25 %)

    Goal:δBB' 1× 10−3 .

    ◦ Engineering runs Aug.-Oct. 2008◦ Data taking 2009-10

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    TRIUMF π → eν Program: D. Bryman et al. 1983 & 1993

    • TRIUMF cyclotron, 83 MeV/c π+ beam• NaI(Tl) “TINA”: φ 460 mm, l=510 mm• Good energy and timing resolution• small (2.9 %) solid angle coverage• π+ → e+ν tail measured• PRD86: (1.218± 0.014) · 10−4

    • PLR93: (1.2265± 0.0034± 0.0044) · 10−4

    • TRIUMF E1072 experiment proposed 2006◦ better tracking, larger solid angle (25 %)

    Goal:δBB' 1× 10−3 .

    ◦ Engineering runs Aug.-Oct. 2008◦ Data taking 2009-10

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    TRIUMF π → eν Program: D. Bryman et al. 1983 & 1993

    • TRIUMF cyclotron, 83 MeV/c π+ beam• NaI(Tl) “TINA”: φ 460 mm, l=510 mm• Good energy and timing resolution• small (2.9 %) solid angle coverage• π+ → e+ν tail measured• PRD86: (1.218± 0.014) · 10−4• PLR93: (1.2265± 0.0034± 0.0044) · 10−4

    • TRIUMF E1072 experiment proposed 2006◦ better tracking, larger solid angle (25 %)

    Goal:δBB' 1× 10−3 .

    ◦ Engineering runs Aug.-Oct. 2008◦ Data taking 2009-10

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    TRIUMF π → eν Program: D. Bryman et al. 1983 & 1993

    • TRIUMF cyclotron, 83 MeV/c π+ beam• NaI(Tl) “TINA”: φ 460 mm, l=510 mm• Good energy and timing resolution• small (2.9 %) solid angle coverage• π+ → e+ν tail measured• PRD86: (1.218± 0.014) · 10−4• PLR93: (1.2265± 0.0034± 0.0044) · 10−4

    • TRIUMF E1072 experiment proposed 2006

    ◦ better tracking, larger solid angle (25 %)

    Goal:δBB' 1× 10−3 .

    ◦ Engineering runs Aug.-Oct. 2008◦ Data taking 2009-10

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    TRIUMF π → eν Program: D. Bryman et al. 1983 & 1993

    • TRIUMF cyclotron, 83 MeV/c π+ beam• NaI(Tl) “TINA”: φ 460 mm, l=510 mm• Good energy and timing resolution• small (2.9 %) solid angle coverage• π+ → e+ν tail measured• PRD86: (1.218± 0.014) · 10−4• PLR93: (1.2265± 0.0034± 0.0044) · 10−4

    • TRIUMF E1072 experiment proposed 2006◦ better tracking, larger solid angle (25 %)

    Goal:δBB' 1× 10−3 .

    ◦ Engineering runs Aug.-Oct. 2008◦ Data taking 2009-10

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    TRIUMF π → eν Program: D. Bryman et al. 1983 & 1993

    • TRIUMF cyclotron, 83 MeV/c π+ beam• NaI(Tl) “TINA”: φ 460 mm, l=510 mm• Good energy and timing resolution• small (2.9 %) solid angle coverage• π+ → e+ν tail measured• PRD86: (1.218± 0.014) · 10−4• PLR93: (1.2265± 0.0034± 0.0044) · 10−4

    • TRIUMF E1072 experiment proposed 2006◦ better tracking, larger solid angle (25 %)

    Goal:δBB' 1× 10−3 .

    ◦ Engineering runs Aug.-Oct. 2008

    ◦ Data taking 2009-10

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    TRIUMF π → eν Program: D. Bryman et al. 1983 & 1993

    • TRIUMF cyclotron, 83 MeV/c π+ beam• NaI(Tl) “TINA”: φ 460 mm, l=510 mm• Good energy and timing resolution• small (2.9 %) solid angle coverage• π+ → e+ν tail measured• PRD86: (1.218± 0.014) · 10−4• PLR93: (1.2265± 0.0034± 0.0044) · 10−4

    • TRIUMF E1072 experiment proposed 2006◦ better tracking, larger solid angle (25 %)

    Goal:δBB' 1× 10−3 .

    ◦ Engineering runs Aug.-Oct. 2008◦ Data taking 2009-10

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    The PIBETA/PEN Apparatus: 1998-2008

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    The PIBETA/PEN Apparatus: 1998-2008

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    The PIBETA/PEN Apparatus: 1998-2008

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    The PIBETA/PEN Apparatus: 1998-2008

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    The PIBETA/PEN Apparatus: Basic Subsystems

    ◦ stopped π+ beam◦ active tracking degrader◦ active target counter◦ 240-det. CsI(p) calo.◦ central tracking◦ digitized PMT signals◦ stable temp./humidity

    AT

    MWPC1

    MWPC2

    PV

    AD

    AC1

    AC2BC

    CsIpure

    π+beam

    10 cm

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    The PIBETA/PEN Apparatus: Basic Subsystems

    ◦ stopped π+ beam◦ active tracking degrader◦ active target counter◦ 240-det. CsI(p) calo.◦ central tracking◦ digitized PMT signals◦ stable temp./humidity

    AT

    MWPC1

    MWPC2

    PV

    AD

    AC1

    AC2BC

    CsIpure

    π+beam

    10 cm

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    The PIBETA/PEN Apparatus: Basic Subsystems

    ◦ stopped π+ beam◦ active tracking degrader◦ active target counter◦ 240-det. CsI(p) calo.◦ central tracking◦ digitized PMT signals◦ stable temp./humidity

    AT

    MWPC1

    MWPC2

    PV

    AD

    AC1

    AC2BC

    CsIpure

    π+beam

    10 cm

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Central detector region for the 2007/2008 run

    ActiveDegrader

    ActiveCollimator

    Photomultiplier ModuleHamamatsu H2431-50

    TargetCounter

    12,5 mm

    15,0 mm

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    4-wedge Tracking Active Degrader 2008

    OverviewDeg2008Ver1.xxx

    Universität Zürich

    Allgemeintoleranz DIN 7168-f

    Physik-Institut

    Bearb.

    der

    POS.

    Datum

    ZEICH_Nr. ANZ. MATERIAL

    MASSTAB:

    FILE:

    PROJEKT/TITEL:

    BESCHREIBUNG

    (±0.1)

    Degrader 2008Overview

    BLATT:

    Robmann August 2002

    PeterPro

    x

    y

    x

    z

    y

    x

    y

    z

    π+Beam

    Scintillation Properties BC-408

    Light Output, %AnthraceneRise Time, nsDecay Time, nsPulse Width, FWHM, nsWavelength of Maximum Emission, nmBulk Light Attenuation Length, cm

    640,92,1~2,5425380

    Wrapping thickness: VM 2000 Foil+ Kapton

    76 µm75 µm

    top

    bottom

    left

    right

    5,00 mm1,50 mm

    1,50 mm5,00 mm

    1,50 mm5,00 mm

    1,50 mm5,00 mm

    ø 15,00 mm ø 12,00 mm

    topHV cnannel S2

    rightHV cnannel S1

    bottomHV cnannel S3

    leftHV cnannel S0

    bottomHV cnannel S3

    topHV cnannel S2

    leftHV cnannel S0

    rightHV cnannel S1

    PEN Degrader 2008Version 1 Overview

    Beam

    ◦ AD π+ + MWPC e+ Tracking =e+ pathlength in Target=suppresion of In-Flight Decays

    ◦ BC-408 Scintillator◦ 0.9 ns Rise Time◦ 2.1 ns Decay Time◦ 160 Phel/MeV◦ two x and two y Wedges◦ 3 cm Upstream of Target

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    4-wedge Tracking Active Degrader 2008

    OverviewDeg2008Ver1.xxx

    Universität Zürich

    Allgemeintoleranz DIN 7168-f

    Physik-Institut

    Bearb.

    der

    POS.

    Datum

    ZEICH_Nr. ANZ. MATERIAL

    MASSTAB:

    FILE:

    PROJEKT/TITEL:

    BESCHREIBUNG

    (±0.1)

    Degrader 2008Overview

    BLATT:

    Robmann August 2002

    PeterPro

    x

    y

    x

    z

    y

    x

    y

    z

    π+Beam

    Scintillation Properties BC-408

    Light Output, %AnthraceneRise Time, nsDecay Time, nsPulse Width, FWHM, nsWavelength of Maximum Emission, nmBulk Light Attenuation Length, cm

    640,92,1~2,5425380

    Wrapping thickness: VM 2000 Foil+ Kapton

    76 µm75 µm

    top

    bottom

    left

    right

    5,00 mm1,50 mm

    1,50 mm5,00 mm

    1,50 mm5,00 mm

    1,50 mm5,00 mm

    ø 15,00 mm ø 12,00 mm

    topHV cnannel S2

    rightHV cnannel S1

    bottomHV cnannel S3

    leftHV cnannel S0

    bottomHV cnannel S3

    topHV cnannel S2

    leftHV cnannel S0

    rightHV cnannel S1

    PEN Degrader 2008Version 1 Overview

    Beam

    ◦ AD π+ + MWPC e+ Tracking =e+ pathlength in Target=suppresion of In-Flight Decays

    ◦ BC-408 Scintillator◦ 0.9 ns Rise Time◦ 2.1 ns Decay Time◦ 160 Phel/MeV◦ two x and two y Wedges◦ 3 cm Upstream of Target

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Acqiris Digitizer for Target Counters

    ◦ High-Speed 10-bit PXI/CompactPCI◦ 1 ch=8 G/s, 2 ch=4 G/s, 4 ch=2 G/s◦ Acquisition memory: 256-1024 kp◦ Complete pre- and post-triggering◦ Low 350 ns dead time◦ 400 MB/s PCI bus transfers data◦ High-res. TTI for accurate timing◦ Device driver for Windows XP

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Acqiris Digitizer for Target Counters

    ◦ High-Speed 10-bit PXI/CompactPCI◦ 1 ch=8 G/s, 2 ch=4 G/s, 4 ch=2 G/s◦ Acquisition memory: 256-1024 kp◦ Complete pre- and post-triggering◦ Low 350 ns dead time◦ 400 MB/s PCI bus transfers data◦ High-res. TTI for accurate timing◦ Device driver for Windows XP

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN: Statistical Uncertainties

    Relative statistical uncertainty for Ne2 = (1 + �)Np HT events:

    ∆Ne2Ne2

    =

    [1

    Np+

    (∆�)2

    (1 + �)2

    ]1/2.

    For LT prescaling factor f we find:

    ∆Ne2Ne2

    [f + � + �2

    fNp

    ]1/2.

    Conservative choice of EHT = 46 MeV → tail fraction � = 0.02.Setting ∆Ne2/Ne2 = 2× 10−4, rπstop = 20, 000/sec, f = 1/16:

    Np = 3.4× 107 andrtrig ∼ 75 (6 months net beam time).

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN: Statistical Uncertainties

    Relative statistical uncertainty for Ne2 = (1 + �)Np HT events:

    ∆Ne2Ne2

    =

    [1

    Np+

    (∆�)2

    (1 + �)2

    ]1/2.

    For LT prescaling factor f we find:

    ∆Ne2Ne2

    [f + � + �2

    fNp

    ]1/2.

    Conservative choice of EHT = 46 MeV → tail fraction � = 0.02.

    Setting ∆Ne2/Ne2 = 2× 10−4, rπstop = 20, 000/sec, f = 1/16:

    Np = 3.4× 107 andrtrig ∼ 75 (6 months net beam time).

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN: Statistical Uncertainties

    Relative statistical uncertainty for Ne2 = (1 + �)Np HT events:

    ∆Ne2Ne2

    =

    [1

    Np+

    (∆�)2

    (1 + �)2

    ]1/2.

    For LT prescaling factor f we find:

    ∆Ne2Ne2

    [f + � + �2

    fNp

    ]1/2.

    Conservative choice of EHT = 46 MeV → tail fraction � = 0.02.Setting ∆Ne2/Ne2 = 2× 10−4, rπstop = 20, 000/sec, f = 1/16:

    Np = 3.4× 107 andrtrig ∼ 75 (6 months net beam time).

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN: Systematics Uncertainties

    I π/µ decay discrimination: low µ decay pileup, digitizedtarget waveforms

    I π/µ decay normalization: Michel energy spectrum,absolute energy calibration (≤ 1× 10−4)

    I Acceptance ratio for πe2 and Michel decays: RMD →PIBETA data & analysis (≤ 1× 10−4)

    I Hadronic background in the detector: GEANT4 studies(≤ 1× 10−4)

    I Time-zero definition and fπd/fsd ratio(≤ 2× 10−4 → ∆t0 = 5 ps)

    I Total systematic uncertainty: ≤ 2− 3× 10−4)

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN: Systematics Uncertainties

    I π/µ decay discrimination: low µ decay pileup, digitizedtarget waveforms

    I π/µ decay normalization: Michel energy spectrum,absolute energy calibration (≤ 1× 10−4)

    I Acceptance ratio for πe2 and Michel decays: RMD →PIBETA data & analysis (≤ 1× 10−4)

    I Hadronic background in the detector: GEANT4 studies(≤ 1× 10−4)

    I Time-zero definition and fπd/fsd ratio(≤ 2× 10−4 → ∆t0 = 5 ps)

    I Total systematic uncertainty: ≤ 2− 3× 10−4)

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN: Systematics Uncertainties

    I π/µ decay discrimination: low µ decay pileup, digitizedtarget waveforms

    I π/µ decay normalization: Michel energy spectrum,absolute energy calibration (≤ 1× 10−4)

    I Acceptance ratio for πe2 and Michel decays: RMD →PIBETA data & analysis (≤ 1× 10−4)

    I Hadronic background in the detector: GEANT4 studies(≤ 1× 10−4)

    I Time-zero definition and fπd/fsd ratio(≤ 2× 10−4 → ∆t0 = 5 ps)

    I Total systematic uncertainty: ≤ 2− 3× 10−4)

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN: Systematics Uncertainties

    I π/µ decay discrimination: low µ decay pileup, digitizedtarget waveforms

    I π/µ decay normalization: Michel energy spectrum,absolute energy calibration (≤ 1× 10−4)

    I Acceptance ratio for πe2 and Michel decays: RMD →PIBETA data & analysis (≤ 1× 10−4)

    I Hadronic background in the detector: GEANT4 studies(≤ 1× 10−4)

    I Time-zero definition and fπd/fsd ratio(≤ 2× 10−4 → ∆t0 = 5 ps)

    I Total systematic uncertainty: ≤ 2− 3× 10−4)

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN: Systematics Uncertainties

    I π/µ decay discrimination: low µ decay pileup, digitizedtarget waveforms

    I π/µ decay normalization: Michel energy spectrum,absolute energy calibration (≤ 1× 10−4)

    I Acceptance ratio for πe2 and Michel decays: RMD →PIBETA data & analysis (≤ 1× 10−4)

    I Hadronic background in the detector: GEANT4 studies(≤ 1× 10−4)

    I Time-zero definition and fπd/fsd ratio(≤ 2× 10−4 → ∆t0 = 5 ps)

    I Total systematic uncertainty: ≤ 2− 3× 10−4)

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN: Systematics Uncertainties

    I π/µ decay discrimination: low µ decay pileup, digitizedtarget waveforms

    I π/µ decay normalization: Michel energy spectrum,absolute energy calibration (≤ 1× 10−4)

    I Acceptance ratio for πe2 and Michel decays: RMD →PIBETA data & analysis (≤ 1× 10−4)

    I Hadronic background in the detector: GEANT4 studies(≤ 1× 10−4)

    I Time-zero definition and fπd/fsd ratio(≤ 2× 10−4 → ∆t0 = 5 ps)

    I Total systematic uncertainty: ≤ 2− 3× 10−4)

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν Branching Ratio and π → eν Tail Fraction

    Illustration from 2008 data: BR will be determined from HTdata, tail fraction deduced from prescaled LT runs.

    Raw histograms show total target energy vs total CsIcalorimeter energy (left: HT, right: LT).

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Timing Spectra

    RMS 0.07891

    DEG-TGT DSC Time (ns)-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

    Num

    ber o

    f Eve

    nts

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900 RMS 0.07891RMS 0.07891

    DEG-CsI TDC (ns)0 50 100 150 200

    Num

    ber o

    f Eve

    nts

    0

    10000

    20000

    30000

    40000

    50000

    HT Trigger+π68 MeV/c

    DEG-CsI TDC (ns)0 20 40 60 80 100 120

    Num

    ber o

    f Eve

    nts

    0

    10000

    20000

    30000

    40000

    50000

    HT Trigger+π68 MeV/c

    DEG-CsI TDC (ns)0 20 40 60 80 100 120

    Num

    ber o

    f Eve

    nts

    0

    200

    400

    600

    800

    1000 HT Trigger+π68 MeV/c

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Target Waveforms: π → eν Events

    Digitizer Channel (0.5 ns/ch)

    Deg

    rade

    r D

    igiti

    zer

    Am

    plitu

    de

    π → e ν

    0

    10000

    20000

    30000

    40000

    50000

    60000

    350 400 450 500 550 600 650 700

    Digitizer channel (0.5 ns/ch)

    Deg

    rade

    r D

    igiti

    zer

    Am

    plitu

    de

    π → e ν

    0

    10000

    20000

    30000

    40000

    50000

    60000

    400 450 500 550 600 650 700

    Digitizer Channel (0.5 ns/ch)

    Tar

    get D

    igiti

    zer

    Am

    plitu

    de

    π → e ν

    0

    10000

    20000

    30000

    40000

    50000

    60000

    350 400 450 500 550 600 650 700

    Digitizer channel (0.5 ns/ch)

    Tar

    get D

    igiti

    zer

    Am

    plitu

    de

    π → e ν

    0

    10000

    20000

    30000

    40000

    50000

    60000

    400 450 500 550 600 650 700

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Target Waveforms: Michel Events

    Digitizer channel (0.5 x ns/ch)

    Tar

    get D

    igiti

    zer

    Am

    plitu

    de

    π → µ → e

    0

    10000

    20000

    30000

    40000

    50000

    60000

    100 200 300 400 500 600 700

    Digitizer channel (0.5 ns/ch)

    Tar

    get D

    igiti

    zer

    Am

    plitu

    de

    π → µ → e

    0

    10000

    20000

    30000

    40000

    50000

    60000

    350 400 450 500 550 600 650 700

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Artificial Neural Network: Inputs and Output

    I Multi Layer Percepton definition - linear ANNI Network Structure: ten input neurons, two hidden layers

    (10 + 10) and one outputI Inputs: eight charge integrals, number of peaks

    (TSpectrum), π+-Stop TimingI Output: 1 = π+ → e+ν, 0 = π+ → µ+ → e+

    double p2e_mpl::value(int index,double in0,double in1, doublein2,double in3,double in4,double in5) {input0 = (in0 - 18.365)/2.02788; ...input5 = (in5 - 2.34097)/0.474034;return ((neuron0xa212580()*1)+0); }double p2e_mpl::neuron0xa212580() {double input = 0.0816982;input += synapse0xa212648(); ...return input } ...

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Artificial Neural Network: Inputs and Output

    I Multi Layer Percepton definition - linear ANN

    I Network Structure: ten input neurons, two hidden layers(10 + 10) and one output

    I Inputs: eight charge integrals, number of peaks(TSpectrum), π+-Stop Timing

    I Output: 1 = π+ → e+ν, 0 = π+ → µ+ → e+

    double p2e_mpl::value(int index,double in0,double in1, doublein2,double in3,double in4,double in5) {input0 = (in0 - 18.365)/2.02788; ...input5 = (in5 - 2.34097)/0.474034;return ((neuron0xa212580()*1)+0); }double p2e_mpl::neuron0xa212580() {double input = 0.0816982;input += synapse0xa212648(); ...return input } ...

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Artificial Neural Network: Inputs and Output

    I Multi Layer Percepton definition - linear ANNI Network Structure: ten input neurons, two hidden layers

    (10 + 10) and one output

    I Inputs: eight charge integrals, number of peaks(TSpectrum), π+-Stop Timing

    I Output: 1 = π+ → e+ν, 0 = π+ → µ+ → e+

    double p2e_mpl::value(int index,double in0,double in1, doublein2,double in3,double in4,double in5) {input0 = (in0 - 18.365)/2.02788; ...input5 = (in5 - 2.34097)/0.474034;return ((neuron0xa212580()*1)+0); }double p2e_mpl::neuron0xa212580() {double input = 0.0816982;input += synapse0xa212648(); ...return input } ...

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Artificial Neural Network: Inputs and Output

    I Multi Layer Percepton definition - linear ANNI Network Structure: ten input neurons, two hidden layers

    (10 + 10) and one outputI Inputs: eight charge integrals, number of peaks

    (TSpectrum), π+-Stop Timing

    I Output: 1 = π+ → e+ν, 0 = π+ → µ+ → e+

    double p2e_mpl::value(int index,double in0,double in1, doublein2,double in3,double in4,double in5) {input0 = (in0 - 18.365)/2.02788; ...input5 = (in5 - 2.34097)/0.474034;return ((neuron0xa212580()*1)+0); }double p2e_mpl::neuron0xa212580() {double input = 0.0816982;input += synapse0xa212648(); ...return input } ...

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Artificial Neural Network: Inputs and Output

    I Multi Layer Percepton definition - linear ANNI Network Structure: ten input neurons, two hidden layers

    (10 + 10) and one outputI Inputs: eight charge integrals, number of peaks

    (TSpectrum), π+-Stop TimingI Output: 1 = π+ → e+ν, 0 = π+ → µ+ → e+

    double p2e_mpl::value(int index,double in0,double in1, doublein2,double in3,double in4,double in5) {input0 = (in0 - 18.365)/2.02788; ...input5 = (in5 - 2.34097)/0.474034;return ((neuron0xa212580()*1)+0); }double p2e_mpl::neuron0xa212580() {double input = 0.0816982;input += synapse0xa212648(); ...return input } ...

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Artificial Neural Network: Inputs and Output

    I Multi Layer Percepton definition - linear ANNI Network Structure: ten input neurons, two hidden layers

    (10 + 10) and one outputI Inputs: eight charge integrals, number of peaks

    (TSpectrum), π+-Stop TimingI Output: 1 = π+ → e+ν, 0 = π+ → µ+ → e+

    double p2e_mpl::value(int index,double in0,double in1, doublein2,double in3,double in4,double in5) {input0 = (in0 - 18.365)/2.02788; ...input5 = (in5 - 2.34097)/0.474034;return ((neuron0xa212580()*1)+0); }double p2e_mpl::neuron0xa212580() {double input = 0.0816982;input += synapse0xa212648(); ...return input } ...

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν Discrimination with ANN: Monte Carlo

    • ANN training on High Thr. MC data: Ee>48 MeV, tπG>10 ns

    • Application on Low Thr. MC data, Ee>10 MeV, tπG>10 ns• Extract efficiency and false positive probability for π+ → e+ν

    MLP Output-0.2 0 0.2 0.4 0.6 0.8 1 1.2

    Nu

    mb

    er o

    f E

    ven

    ts

    1

    10

    210

    310

    410

    5101A HT Trigger: Signal Background

    0.00 percent±=99.98 2eπ∈ 0.01 percent±=0.08 Mm

    >10 nsGπ

    1E6 MC Events, t

    =0.50on

    MLP Output-0.2 0 0.2 0.4 0.6 0.8 1 1.2

    Nu

    mb

    er o

    f E

    ven

    ts

    1

    10

    210

    310

    410

    5101A LT Trigger: Signal Background

    0.16 percent±=99.77 2eπ∈ 0.16 percent±=0.23 Mm

    >10 nsGπ

    1E6 MC Events, t

    =0.95on

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν Discrimination with ANN: Monte Carlo

    • ANN training on High Thr. MC data: Ee>48 MeV, tπG>10 ns• Application on Low Thr. MC data, Ee>10 MeV, tπG>10 ns

    • Extract efficiency and false positive probability for π+ → e+ν

    MLP Output-0.2 0 0.2 0.4 0.6 0.8 1 1.2

    Nu

    mb

    er o

    f E

    ven

    ts

    1

    10

    210

    310

    410

    5101A HT Trigger: Signal Background

    0.00 percent±=99.98 2eπ∈ 0.01 percent±=0.08 Mm

    >10 nsGπ

    1E6 MC Events, t

    =0.50on

    MLP Output-0.2 0 0.2 0.4 0.6 0.8 1 1.2

    Nu

    mb

    er o

    f E

    ven

    ts

    1

    10

    210

    310

    410

    5101A LT Trigger: Signal Background

    0.16 percent±=99.77 2eπ∈ 0.16 percent±=0.23 Mm

    >10 nsGπ

    1E6 MC Events, t

    =0.95on

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν Discrimination with ANN: Monte Carlo

    • ANN training on High Thr. MC data: Ee>48 MeV, tπG>10 ns• Application on Low Thr. MC data, Ee>10 MeV, tπG>10 ns• Extract efficiency and false positive probability for π+ → e+ν

    MLP Output-0.2 0 0.2 0.4 0.6 0.8 1 1.2

    Nu

    mb

    er o

    f E

    ven

    ts

    1

    10

    210

    310

    410

    5101A HT Trigger: Signal Background

    0.00 percent±=99.98 2eπ∈ 0.01 percent±=0.08 Mm

    >10 nsGπ

    1E6 MC Events, t

    =0.50on

    MLP Output-0.2 0 0.2 0.4 0.6 0.8 1 1.2

    Nu

    mb

    er o

    f E

    ven

    ts

    1

    10

    210

    310

    410

    5101A LT Trigger: Signal Background

    0.16 percent±=99.77 2eπ∈ 0.16 percent±=0.23 Mm

    >10 nsGπ

    1E6 MC Events, t

    =0.95on

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    π → eν Discrimination with ANN: Monte Carlo

    • ANN training on High Thr. MC data: Ee>48 MeV, tπG>10 ns• Application on Low Thr. MC data, Ee>10 MeV, tπG>10 ns• Extract efficiency and false positive probability for π+ → e+ν

    MLP Output-0.2 0 0.2 0.4 0.6 0.8 1 1.2

    Nu

    mb

    er o

    f E

    ven

    ts

    1

    10

    210

    310

    410

    5101A HT Trigger: Signal Background

    0.00 percent±=99.98 2eπ∈ 0.01 percent±=0.08 Mm

    >10 nsGπ

    1E6 MC Events, t

    =0.50on

    MLP Output-0.2 0 0.2 0.4 0.6 0.8 1 1.2

    Nu

    mb

    er o

    f E

    ven

    ts

    1

    10

    210

    310

    410

    5101A LT Trigger: Signal Background

    0.16 percent±=99.77 2eπ∈ 0.16 percent±=0.23 Mm

    >10 nsGπ

    1E6 MC Events, t

    =0.95on

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    Discrimination with Neural Networks: MC Simulation

    0 10 20 30 40 50 60 70 80 90 1000

    5000

    10000

    15000

    20000

    25000

    1A HT threshold positron energy Entries 4416831A HT threshold positron energy

    0 10 20 30 40 50 60 70 80 90 1000

    5000

    10000

    15000

    20000

    25000

    1A HT Michel positron energy Entries 3294841A HT Michel positron energy

    -20 0 20 40 60 80 100 120 140 1600

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    1A HT p2e positron timing Entries 112199

    0.09 ns±=25.90 πτ

    1A HT p2e positron timing

    -20 0 20 40 60 80 100 120 140 1600

    500

    1000

    1500

    2000

    2500

    3000

    1A HT Michel positron timing Entries 3294841A HT Michel positron timing

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN Summary & Future Plans

    I Developed clean π+ beam tunes with up to 30,000 stoppedπ+/sec at 85 MeV/c momentum.

    I Digitized signals of beam detectors: forward (B0) beamcounter, active degrader (AD), and active target (AT).

    I Two development runs, in 2007 and 2008, ramping upbeam stop and DAQ rates to design specifications.

    I In 2008 run used position-sensitive four-wedge activedegrader, considering replaced it with mini-time-projectionchamber (mTPC) for 2009 data production run.

    I Total pions stopped in 2007 and 2008 runs: > 8× 1010. Todate > 4.7× 106 π → eν decays recorded, correspondingto (δB/B)stat < 5× 10−4

    I Detailed data analysis under way in preparation for a 2009run, planned to complete the required event statistics.

    I PEN Web page: http://pen.phys.virginia.edu

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN Summary & Future Plans

    I Developed clean π+ beam tunes with up to 30,000 stoppedπ+/sec at 85 MeV/c momentum.

    I Digitized signals of beam detectors: forward (B0) beamcounter, active degrader (AD), and active target (AT).

    I Two development runs, in 2007 and 2008, ramping upbeam stop and DAQ rates to design specifications.

    I In 2008 run used position-sensitive four-wedge activedegrader, considering replaced it with mini-time-projectionchamber (mTPC) for 2009 data production run.

    I Total pions stopped in 2007 and 2008 runs: > 8× 1010. Todate > 4.7× 106 π → eν decays recorded, correspondingto (δB/B)stat < 5× 10−4

    I Detailed data analysis under way in preparation for a 2009run, planned to complete the required event statistics.

    I PEN Web page: http://pen.phys.virginia.edu

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN Summary & Future Plans

    I Developed clean π+ beam tunes with up to 30,000 stoppedπ+/sec at 85 MeV/c momentum.

    I Digitized signals of beam detectors: forward (B0) beamcounter, active degrader (AD), and active target (AT).

    I Two development runs, in 2007 and 2008, ramping upbeam stop and DAQ rates to design specifications.

    I In 2008 run used position-sensitive four-wedge activedegrader, considering replaced it with mini-time-projectionchamber (mTPC) for 2009 data production run.

    I Total pions stopped in 2007 and 2008 runs: > 8× 1010. Todate > 4.7× 106 π → eν decays recorded, correspondingto (δB/B)stat < 5× 10−4

    I Detailed data analysis under way in preparation for a 2009run, planned to complete the required event statistics.

    I PEN Web page: http://pen.phys.virginia.edu

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN Summary & Future Plans

    I Developed clean π+ beam tunes with up to 30,000 stoppedπ+/sec at 85 MeV/c momentum.

    I Digitized signals of beam detectors: forward (B0) beamcounter, active degrader (AD), and active target (AT).

    I Two development runs, in 2007 and 2008, ramping upbeam stop and DAQ rates to design specifications.

    I In 2008 run used position-sensitive four-wedge activedegrader, considering replaced it with mini-time-projectionchamber (mTPC) for 2009 data production run.

    I Total pions stopped in 2007 and 2008 runs: > 8× 1010. Todate > 4.7× 106 π → eν decays recorded, correspondingto (δB/B)stat < 5× 10−4

    I Detailed data analysis under way in preparation for a 2009run, planned to complete the required event statistics.

    I PEN Web page: http://pen.phys.virginia.edu

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN Summary & Future Plans

    I Developed clean π+ beam tunes with up to 30,000 stoppedπ+/sec at 85 MeV/c momentum.

    I Digitized signals of beam detectors: forward (B0) beamcounter, active degrader (AD), and active target (AT).

    I Two development runs, in 2007 and 2008, ramping upbeam stop and DAQ rates to design specifications.

    I In 2008 run used position-sensitive four-wedge activedegrader, considering replaced it with mini-time-projectionchamber (mTPC) for 2009 data production run.

    I Total pions stopped in 2007 and 2008 runs: > 8× 1010. Todate > 4.7× 106 π → eν decays recorded, correspondingto (δB/B)stat < 5× 10−4

    I Detailed data analysis under way in preparation for a 2009run, planned to complete the required event statistics.

    I PEN Web page: http://pen.phys.virginia.edu

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN Summary & Future Plans

    I Developed clean π+ beam tunes with up to 30,000 stoppedπ+/sec at 85 MeV/c momentum.

    I Digitized signals of beam detectors: forward (B0) beamcounter, active degrader (AD), and active target (AT).

    I Two development runs, in 2007 and 2008, ramping upbeam stop and DAQ rates to design specifications.

    I In 2008 run used position-sensitive four-wedge activedegrader, considering replaced it with mini-time-projectionchamber (mTPC) for 2009 data production run.

    I Total pions stopped in 2007 and 2008 runs: > 8× 1010. Todate > 4.7× 106 π → eν decays recorded, correspondingto (δB/B)stat < 5× 10−4

    I Detailed data analysis under way in preparation for a 2009run, planned to complete the required event statistics.

    I PEN Web page: http://pen.phys.virginia.edu

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN Summary & Future Plans

    I Developed clean π+ beam tunes with up to 30,000 stoppedπ+/sec at 85 MeV/c momentum.

    I Digitized signals of beam detectors: forward (B0) beamcounter, active degrader (AD), and active target (AT).

    I Two development runs, in 2007 and 2008, ramping upbeam stop and DAQ rates to design specifications.

    I In 2008 run used position-sensitive four-wedge activedegrader, considering replaced it with mini-time-projectionchamber (mTPC) for 2009 data production run.

    I Total pions stopped in 2007 and 2008 runs: > 8× 1010. Todate > 4.7× 106 π → eν decays recorded, correspondingto (δB/B)stat < 5× 10−4

    I Detailed data analysis under way in preparation for a 2009run, planned to complete the required event statistics.

    I PEN Web page: http://pen.phys.virginia.edu

  • Outline Physics Motivation Experimental Apparatus Data & Analysis Summary & Future Plans

    PEN Summary & Future Plans

    I Developed clean π+ beam tunes with up to 30,000 stoppedπ+/sec at 85 MeV/c momentum.

    I Digitized signals of beam detectors: forward (B0) beamcounter, active degrader (AD), and active target (AT).

    I Two development runs, in 2007 and 2008, ramping upbeam stop and DAQ rates to design specifications.

    I In 2008 run used position-sensitive four-wedge activedegrader, considering replaced it with mini-time-projectionchamber (mTPC) for 2009 data production run.

    I Total pions stopped in 2007 and 2008 runs: > 8× 1010. Todate > 4.7× 106 π → eν decays recorded, correspondingto (δB/B)stat < 5× 10−4

    I Detailed data analysis under way in preparation for a 2009run, planned to complete the required event statistics.

    I PEN Web page: http://pen.phys.virginia.edu

    OutlinePhysics MotivationPIBETA Experimental Programe: Theoretical Statuse: Experimental Status

    Experimental ApparatusPEN DetectorCentral Detector RegionWaveform Digitizer

    Data & AnalysisADC/TDC/DIG SpectraWaveform AnalysisANN Analysis

    Summary & Future PlansPEN 2007-2009