94
Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Embed Size (px)

Citation preview

Page 1: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Precambrian Eukaryotes

Acritarchs

Ediacaran

Vendian

Page 2: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

AcritarchsCysts of unicellular eukaroytes, perhaps algae or egg cases of

multicellular orgs. 1800 my through Devonian

Page 3: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Ediacaran

• 600 my-545 my• Soft-bodied• Many organisms of

uncertain affinity

Page 4: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Possible annelids, cnidarians (coral

relatives)

Page 5: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Possible mollusc?

Probable cnidarian

Page 6: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Total mysteries

Page 7: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Vendian

• “little shellies”• Right at Cambrian

boundary

Page 8: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Phanerozoic Life, Part I.

1. Cambrian, Paleozoic and Modern Faunas slides

2. Phanerozoic Aquarium project: with your partners, go through your Aquarium pages. Identify each organism using your handouts: Invertebrates, Fish, Tetrapods

3. Time Travel Submarine

Page 9: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Trilobites:Extinct arthropods(like lobsters or shrimp but withcalcite skeleton)

Cambrian

Page 10: Precambrian Eukaryotes Acritarchs Ediacaran Vendian
Page 11: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Lingulate brachiopods

Page 12: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Strange echinoderms

Page 13: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Sponge reef

Page 14: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Burgess Shale

• Middle Cambrian• Excellent preservation of soft-bodied orgs.• 5 kinds of arthropods (only 3 kinds today)• First vertebrate• Mysterious critters

Page 15: Precambrian Eukaryotes Acritarchs Ediacaran Vendian
Page 16: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Cambrian• Smallish• Skeletons (if any) of phosphate or thin CaCO3• Live on or near ocean floor• Sponges, trilobites, early molluscs, echinoderms, lingulate

brachiopods

Page 17: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Why the Cambrian explosion in diversity?

• Proterozoic glaciation

• Atmospheric oxygen

• Proterozoic rifting

• Changes in ocean nutrients

• Extinction of cyanobacteria

• Evolution of predators

Page 18: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Ordovician

Brachiopods(articulate)

Page 19: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Bryozoans

Page 20: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Crinoids (echinoderms)

Page 21: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Cephalopods

Page 22: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Corals

Page 23: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Graptolites

Page 24: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Ordovician invertebrates

• More robust skeletons

• Calcite skeletons

• Taller, deeper (take up more ecological space)

• The Paleozoic fauna appears: rhynchenelliform brachiopods, bryozoans, crinoids/blastoids, primitive cephalopods, graptolites, rugose/tabulate corals

Page 25: Precambrian Eukaryotes Acritarchs Ediacaran Vendian
Page 26: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Middle-Late Paleozoic

Page 27: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Middle-Late Paleozoic

• Increasing height, increasing depth

• Increasing diversity

• New organisms– Eurypterids (giant sea scorpions)

• Fish/amphibians

Page 28: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Eurypterid

Page 29: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Fish

Page 30: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Jawless (bony plates on outside)Ostracoderms

Page 31: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Armored:Acanthodians & Placoderms

Page 32: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Chondrichthyes:

Page 33: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Osteichthyes:

Page 34: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Lobe-finned fish

Page 35: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Forerunners of quadrapeds

Page 36: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Mesozoic Life

• Oceans - a whole new crew

• The Modern Fauna– Mollusks– Crustaceans– Echinoids– Fish

Page 37: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Molluscs

Bivalves

Gastropods

Page 38: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Crustaceans

Page 39: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Echinoids

Page 40: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Mesozoic Life

• Oceans - a whole new crew

• The Modern Fauna– Mollusks– Crustaceans– Echinoids– Fish

• Plus marine reptiles and ammonites

Page 41: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Marine reptiles

Page 42: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Ammonites

Page 43: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Cenozoic Oceans

• Like Mesozoic: Modern Fauna• Minus marine reptiles and ammonites• Plus whales and marine mammals

Page 44: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Phanerozoic Life, Pt. II

1. Find your Phanerozoic Terrarium pages.

2. As we go through the Powerpoint slides, find organisms in the appropriate time period.

3. Safari Through Time

4. Extinction

Page 45: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Evolution of Tetrapods

• Arise from sarcopterygians (lobe-finned fish)• Amphibianish creatures• Reptiles (to birds)• Mammals

Page 46: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Tiktaalik - recent transitional find

Page 47: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Amphibians

Page 48: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Adaptations for life on land

• Breathe!• Locomotion• Avoid dessication• Reproduction - amniotic egg allows longer

development (no swimming larvae)– Leathery covering or eggshell– Larger size of egg– Larger yolk

Page 49: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Adaptations for life on land: plants

• Avoid dessication – thicker outsides

• Reproduction – – Fancy fertilization methods, seeds– Marine plants release gametes into water

• More complicated dispersal mechanisms for young

Page 50: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Reptiles• Anapsids: turtles and their ancestors

• Synapsids: pre-mammals & mammals

Page 51: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Synapsids

Page 52: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Therapsids: immediate

forerunners of mammals

Page 53: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Reptiles• Anapsids: turtles and their ancestors

• Synapsids: pre-mammals & mammals

• Diapsids: Rest of reptiles– Marine reptiles– Snakes, lizards– Pterosaurs – Crocodilians– Dinosaurs and birds

Page 54: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

DiapsidsPterosaurs

Marine reptilesCrocodiles

Page 55: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Marine reptiles

Page 56: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Diapsids

Dinosaurs

Birds

Page 57: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

What were dinosaurs like?

• At your table, address one of these questions:– How did dinosaurs stand? Were they capable

of fast movement?– Were dinosaurs social animals?– Were dinos warm-blooded?

• How do you know?

Page 58: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Brontosaurus, 1953

Apatosaurus, 2007

Page 59: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Bone strength of ceratopsians could sustain a 35mph gallop

Page 60: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

T. rex had weak leg bones, delicate skull:Probably walking, not running Maybe scavenger?

Page 61: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Maiasaurs built nests in a large nesting colony, each a mom’s length apart.Nests have no broken egg shells in them, so mom cleaned them out.Babies may have been incapable of walking, like baby birds, so required care

Maternal care

Page 62: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Bone beds may represent mass mortality of a herd -for example, trying to ford a river in flood, just likecaribou and wildebeest disasters of recent years.

Herding

Page 63: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Trackways

Some trackways have little footprints on the inside, suggesting a herd structure like elephants, where the babies are protected by the adults on the outside

Page 64: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Pack Hunting

Popular idea, not much evidence:•One specimen of multiple raptors with prey•Large optic lobes, used in reptiles for higher brain functions

Page 65: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Warm-bloodedness

• Predator-prey ratios

• Thermal inertia

• Haversian canals

• O-18 isotopic ratio

Page 66: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Dino bone

Tortoise bone

Page 67: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

O-18 to O-16 ratio varies with:•Season•Internal temperature

Cold blooded animals have growth rings and large O-18 variability.

Warm-blooded animals have no growth rings, uniform O-18 levels

Page 68: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Mammal evolution

• Permian: Dimetrodon-like synapsids

• Triassic: modern mammals appear

• Oligocene: giant mammals

• Pleistocene: megafauna

Page 69: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Mass Extinction Causes

• Coincidence: lots of organisms happened to die at the same time. Can be ruled out statistically.

Page 70: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Mass Extinction Causes

• Coincidence

• Physical causes: changes in climate, salinity, living space, etc.

Page 71: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Mass Extinction Causes

• Coincidence

• Physical causes

• Biological causes: competition, predation

Page 72: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Mass Extinction Causes

• Coincidence

• Physical causes

• Biological causes

• Catastrophe: impact, volcanoes

Page 73: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Permo-Triassic extinction

• Over 90% of life dies, so definitely real

Page 74: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Permo-Triassic extinction

• Over 90% of life dies, so definitely real

• Continental configuration and regression– Reduced continental shelf space– Glaciation– Severe climate

Page 75: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Permo-Triassic extinction

• Over 90% of life dies, so definitely real

• Continental configuration and regression

• Appearance of biological “bulldozers”: – Shallow burrowers– Earlier life was immobile bottom dwellers

(brachiopods, bryozoans, crinoids, etc.)

Page 76: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Permo-Triassic extinction

• Over 90% of life dies, so definitely real

• Continental configuration and regression

• Appearance of biological “bulldozers”

• Catastrophe:– Impact? Probably not

Page 77: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Permo-Triassic extinction

• Over 90% of life dies, so definitely real

• Continental configuration and regression

• Appearance of biological “bulldozers”

• Catastrophe:– Impact? Probably not– Volcanoes

Page 78: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Cretaceous-Tertiary Extinction

• 85% species extinction, so it’s real• No big physical changes - many small

continents with lots of shelf space, mild climate

• No big biological changes preceding the extinction, no big change in ecological structure of the oceans after the extinction

Page 79: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

K/T Catastrophe

• Impact hypothesis

• Volcanic hypothesis

Page 80: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Impact hypothesis

• Asteroid about 10 km (6 mi.) struck, probably in Yucatan at Chicxulub

Page 81: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Impact hypothesis

• Asteroid about 10 km (6 mi.) struck, probably in Yucatan at Chicxulub

• Immediate heat shock and wildfires near impact site

Page 82: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Impact hypothesis

• Asteroid about 10 km (6 mi.) struck, probably in Yucatan at Chicxulub

• Immediate heat shock and wildfires near impact site

• Particulates of gypsum (Ca2SO4) cause acid rain, killing plankton

Page 83: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Impact hypothesis

• Asteroid about 10 km (6 mi.) struck, probably in Yucatan at Chicxulub

• Immediate heat shock and wildfires near impact site

• Particulates of gypsum (Ca2SO4) cause acid rain, killing plankton

• Particulates create clouds, block sun, killing plants

Page 84: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Impact hypothesis

• Asteroid about 10 km (6 mi.) struck, probably in Yucatan at Chicxulub

• Immediate heat shock and wildfires near impact site

• Particulates of gypsum (Ca2SO4) cause acid rain, killing plankton

• Particulates create clouds, block sun, killing plants • Temperature drops, killing organisms with no

tolerance for cold

Page 85: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Evidence

• Crater at Chicxulub

Page 86: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Evidence

• Crater at Chicxulub• Iridium spike

Asteroids have higher iridium abundance than Earth’s crust. Iridium of Earth is mostly in the mantle and core.

Page 87: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Evidence

• Crater at Chicxulub• Iridium spike• Shocked quartz

Two directions of lamellae typical of

impacts

Page 88: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Evidence

• Crater at Chicxulub• Iridium spike• Shocked quartz• Tektites

Glass globules from melting of surface and

striking object

Page 89: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Evidence

• Crater at Chicxulub• Iridium spike• Shocked quartz• Tektites• Soot

Carbon in boundary clay from wildfires

Page 90: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Biological effects

• Who dies?– Planktonic orgs.

– Ocean surface ecosystem

– Orgs. with poor thermoregulation

• Who lives?

Page 91: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Biological effects

• Who dies?– Planktonic orgs.

– Ocean surface ecosystem

– Orgs. with poor thermoregulation

• Who lives?– Bottom dwellers who

eat dead things

– Orgs. with dormancy capability

Page 92: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Biological effects

• Who dies?– Planktonic forams– Marine reptiles– Ammonites– Dinosaurs– Birds– Non-flowering

plants– Marsupials

Page 93: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Biological effects

• Who lives?– Bottom communities:

clams, snails, crustaceans, etc.

– Placental mammals

– Angiosperms

– Amphibians

– Turtles

– Insects

Page 94: Precambrian Eukaryotes Acritarchs Ediacaran Vendian

Volcanic hypothesis

• Huge volcanic eruption produces climatic change, acid rain

• Volcanoes bring up iridium• BUT:

– Problems demonstrating that the eruption is the right age

– Basaltic eruptions produce little ash, so little climate change