33
PROBLEM SOLVING Carranza, Joem Q. de la Fuente, Ceasar D. Marcos, Ian Mark P.

Power Plant Technology, El Wakil, Problem 8.14

Embed Size (px)

Citation preview

Page 1: Power Plant Technology, El Wakil, Problem 8.14

PROBLEM SOLVING

Carranza, Joem Q.

de la Fuente, Ceasar D.

Marcos, Ian Mark P.

Page 2: Power Plant Technology, El Wakil, Problem 8.14

PROBLEM 8.14 A combined gas-steam turbine powerplant is designed with four 50-

MW gas turbines and one 120-MW steam turbine. Each gas turbine

operates with compressor inlet temperature 505 R, turbine inlet

temperature 2450 R, pressure ratio for both compressor and turbine

5, and compressor and turbine polytropic efficiencies 0.87 and 0.96.

The gases leaving the turbine go to a heat-recovery boiler then to a

regenerator with an effectiveness of 0.87. The turbine gases

correspond to 200 percent of theoretical air. The steam cycle has a

turbine steam inlet at 1200 psia and 1460R, one open-type feedwater

heater (not optimally placed) with feedwater temperature to heat

recovery boiler at 920 R, condenser pressure at 1 psia, and polytropic

and mechanical efficiencies 0.87 and 0.96. all generator efficiencies

are 0.96. supplementary firing at full load raises the gas temperature

to 2000 R.

Page 3: Power Plant Technology, El Wakil, Problem 8.14

REQUIRED:

Draw the cycle flow ang T-s diagram and find (a) the required

steam mass flow rate in the steam turbine in pound mass per

hour, (b) the required air mass flow rate in each gas turbine in

pound mass per hour, (c) the heat added in the gas cycle and in

supplementary firing at full load, (d) the stack gas temperature in

degrees Fahrenheit, (e) the cycle efficiency at full load, and (f) the

efficiency at startup when only one gas turbine is used at its full

load with no supplementary firing or regeneration. (Ignore the

steam cycle pump work.)

Page 4: Power Plant Technology, El Wakil, Problem 8.14

AC

ST G

CFWH

Air in

1

2

8

9

10

12

13

14

11

SCHEMATIC

DIAGRAM 8.14

8

2 ‘

6 ‘

CC

GGT

SF

3

4

5

6

Page 5: Power Plant Technology, El Wakil, Problem 8.14

T-S DIAGRAM

T

s

1

2

2’

3

4

5

6

6’

6”

8

9

1011

12

13

14

B

Page 6: Power Plant Technology, El Wakil, Problem 8.14

CC

AC GGT

SFair

1

22 ‘ 3

4

5

6

6 ‘

6’

SCHEMATIC & T-s DIAGRAM (Brayton Cycle)

T

s

1

2

2’

3

4

5

6

6’

6”

Page 7: Power Plant Technology, El Wakil, Problem 8.14

ST G

CFWH

8

910

12

13

14

11

SCHEMATIC &

T-s DIAGRAM

(Rankine Cycle)

T

s

8

9

1011

12

13

14

B

9m

Page 8: Power Plant Technology, El Wakil, Problem 8.14

GIVEN: Gas Cycle

Working fluid: air

Four 50 MW gas turbine

Tcomp,inlet = 505 0R

Tturbine,inlet= 2450 0R

rPc=rPT= 5

ηc = 0.87

ηT =0.87

ηmech =0.96

εR = 0.87

Supplementary firing at 2000 0R

ηgen =0.96

The turbine gases correspond to

200 percent of theoretical air.

cp= cp,equiv =0.24 Btu/lbm 0F

Steam cycle

Working fluid: water

120 MW steam turbine

Pturbine,inlet = 1200 psia, Tturbine,inlet =1460 0R

One open-type feedwaterheater operating at 9200R

Pcond,inlet = 1 psia

ηT =0.87

ηmech =0.96

ηgen =0.96

Non ideal

Assume

Ignore pump work

Wn = 120MW

Page 9: Power Plant Technology, El Wakil, Problem 8.14

(A). FIND: REQUIRED STEAM MASS FLOW

RATE IN THE STEAM TURBINE (LBM/HR)

Assume

,

ns

total ST

Wm

w

, 8 9 9 9 10

9 9 13 9 13 12

( ) (1 )( )

( ) (1 )( )

total STw h h m h h

m h h m h h

8 1m

, Wn = 120MW

s

T

10

8

9

11

12

13

14

B

9m

ST G

8

9 10

Energy Balance on Feedwater Heater :

9m91 m

FWH

1213

9

9m

91 m

Page 10: Power Plant Technology, El Wakil, Problem 8.14

STEAM CYCLE

Finding the states starting from point 8.

State 8

P8 = 1200 psia, T8 = 1460 0R = 1000 0F,

(superheated)

h8=1499.4 Btu/lbm

s8=1.6298

State 9s (ideal)

T9s = 920 OR = 4600F, s8=s9=1.6298

(superheated)

P9s=162.5676 psia

h9s=1272.5916 Btu/lbm

s

T

10

8

9

11

12

13

14

B

Double interpolation, Table A-3:

Page 11: Power Plant Technology, El Wakil, Problem 8.14

STEAM CYCLE

State 9

P9=P9s=162.5676 psia

8 9

8 9

9

9

1499.40.87

1499.4 1272.5196

1302.014

T

s

h h

h h

h

h

s

T

10

8

9

11

12

13

14

B

Page 12: Power Plant Technology, El Wakil, Problem 8.14

STEAM CYCLE

State 10s

P10s=1 psia

s10s=s9s=s8=1.6298, mixed phase

T10s=Tsat=101.740F

10 ,10 10 ,10

10 ,10

10

,10

10 ,10 10 ,10

10

10

( )

1.6298 0.13260.81127

1.8455

( )

69.73 (0.81127)(1036.1)

910.28753 /

s f s s fg s

s f s

s

fg s

s f s s fg s

s

s m

s s x s

s sx

s

h h x h

h

h Btu lb

s

T

10

8

9

11

12

13

14

B

Page 13: Power Plant Technology, El Wakil, Problem 8.14

STEAM CYCLE

State 10

P10=P10s=1 psia

9 10

9 10

10

10

1302.0140.87

1302.014 910.28573

961.22

T

s

h h

h h

h

h

T

s

8

9

11

12

13

14

B

Page 14: Power Plant Technology, El Wakil, Problem 8.14

STEAM CYCLE

State 11

P11=P10=P10s=1 psia, saturated liquid

T11=101.740F

v11= 0.01614 ft3/lbm

h11=hf =69.73 Btu/lbm

s

T

10

8

9

11

12

13

14

B

Page 15: Power Plant Technology, El Wakil, Problem 8.14

STEAM CYCLE

State 12

P12=P9=162.5676 psia

11 12 1112 11

12

12

( )

0.01614(162.5676 1)*14469.73

788.16

70.2123

v P Ph h

J

h

h

s

T

10

8

9

11

12

13

14

B

Page 16: Power Plant Technology, El Wakil, Problem 8.14

STEAM CYCLE

State 13

P13=P12=P9=162.5676psia

T13=364.8 0F

v13=vf=0.01816 ft3/lbm

h13=hf=337.409 Btu/lbm

s

T

10

8

9

11

12

13

14

B

Interpolation, Table A-1:

Page 17: Power Plant Technology, El Wakil, Problem 8.14

STEAM CYCLE

State 14

P14= P8 = 1200 psia

13 13 1414 13

14

14

( )

0.01816(1200 162.5676)*144337.409

788.16

340.851 / m

v P Ph h

J

h

h Btu lb

s

T

10

8

9

11

12

13

14

B

Page 18: Power Plant Technology, El Wakil, Problem 8.14

(a) Steam mass flow rate

9 9 13 9 13 12

9 9

9

( ) (1 )( )

(1302.01 337.409) (1 )(337.409 70.2123)

0.2169056

m h h m h h

m m

m

8 9 9 9 10

6

( ) (1 )( )

(1499.4 1302.01) (1 0.2169056)(1302.01 961.22)

464.26 /

( )( )

464.26(0.96)(0.96)

427.863 /

120(3.412)(10 )

427.863

9.5694(

T

T

T m

total T M G

total

total m

nw

Total

w

w h h m h h

w

w Btu lb

w w

w

w Btu lb

Wm

w

m

510 ) /mlb h

s

T

10

8

9

11

12

13

14

B

FWH

1213

9Energy Balance on

Feedwater Heater :

Page 19: Power Plant Technology, El Wakil, Problem 8.14

Steam cycle efficiency

, 8 14

427.863 /

(1499.4 340.851) 1158.549 /

427.8630.3693

1158.549

total m

a hrb m

totalTH

a

w Btu lb

q h h Btu lb

w

q

s

T

10

8

9

11

12

13

14

B

< Ignore steam cycle pump work

Page 20: Power Plant Technology, El Wakil, Problem 8.14

REQUIRED AIR MASS FLOW RATE IN EACH

GAS TURBINE(LBM/HR)

Note:

Wn = 50MW for each gas turbine

1MW = 3.412 (106) Btu/lbm

3 4 3 4

2 1 2 1

( )

( )( )

( ) ( )

( ) ( )

na

tot

tot GT AC gen M

GT P

AC P

Wm

w

w w w

w h h c T T

w h h c T T

s

T

1

2

2’

3

4

5

6

6’

6”

Page 21: Power Plant Technology, El Wakil, Problem 8.14

GAS CYCLE

State 1

T1 = 505 0R, dry air

Pr,1 = 1.09695

h1 = 120. 675 Btu/lbm.mol

State 2s

rpc = 5

Pr,2s=rpc(Pr,1)=5(1.09695)=5.48475

T2s = 798.2883817 0R

h2s= 191. 3940768 Btu/lbm.mol

s

T

1

2

2’

3

4

5

6

6’

6”

Interpolation, Table I-1:

Interpolation, Table I-1:

Page 22: Power Plant Technology, El Wakil, Problem 8.14

GAS CYCLE

State 2

2 1

2 1 2

2

191.3940768 120.6750.87

120.675

201.9612952 / .

sc

m

h h

h h h

h Btu lb mol

2 1

2 1

2

0

2

798.2883817 5050.87

505

842.113082

sc

T T

T T

T

T R

s

T

1

2

2’

3

4

5

6

6’

6”

Page 23: Power Plant Technology, El Wakil, Problem 8.14

GAS CYCLE

State 3

T3 = 2450 0R, 200 percent theoretical air

Pr3 = 511.9

h3= 19080.7 Btu/lbm.mol

State 4s

200 percent theoretical air

rPT = 5

,3

,4

4

4

511.9102.38

5

1683.083004

12539.51146 / .

r

r s

pt

o

s

s m

PP

r

T R

h Btu lb mol

s

T

1

2

2’

3

4

5

6

6’

6”

Interpolation, Table I-2: 4s

Page 24: Power Plant Technology, El Wakil, Problem 8.14

GAS CYCLE

State 4

200 percent theoretical air

3 4 4

3 4

4

19080.70.87

19080.7 12539.51146

13389.86597 / .

c

s

m

h h h

h h

h Btu lb mol

3 4

3 4

4

0

4

24500.87

2450 1683.083004

1782.782213

T

s

T T

T T

T

T R

s

T

1

2

2’

3

4

5

6

6’

6”

Page 25: Power Plant Technology, El Wakil, Problem 8.14

GAS CYCLE

State 5

5

5

5

2000

Pr 211.6

15189.3 / .

o

m

T R

h Btu lb mol

s

T

1

2

2’

3

4

5

6

6’

6”

200 percent theoretical air, Table I-2

Page 26: Power Plant Technology, El Wakil, Problem 8.14

(B) AIR MASS FLOW RATE

2 1

3 4

( )

(0.24)(842.113082 505) 80.907

( )

(0.24)(2450 1683.083004) 184.06

( )( )

(184.06 80.907)(0.96)(0.96) 95.0657

95.0657 95.0657

50(3.412)(10

AC P

GT P

total GT AC gen M

n na

W mc T T

m m

W mc T T

m m

W W W

m m

W Wm

66)

1.7945(10 ) /95.0657

mlb h

s

T

1

2

2’

3

4

5

6

6’

6”

Page 27: Power Plant Technology, El Wakil, Problem 8.14

GAS CYCLE

State 6

, , 8 14 5 6

5 6

6

0

6

( ) ( )

(1158.549)(9.5694)(10 ) (4)(1.7945)(10 )(0.24)(2000 )

1356.462

a hrb a hrb w w a PQ q m h h m m c T T

T

T R

s

T

1

2

2’

3

4

5

6

6’

6”

Page 28: Power Plant Technology, El Wakil, Problem 8.14

(D) STACK GAS TEMPERATURE

s

T

1

2

2’

3

4

5

6

6’6”

2”

2 ‘

6 ‘

6

2

0 0

6" 2

2' 2

6 2

2'

0 0

2'

842.113082 382.44 °

842.1130820.87

1362.587515 842.113082

1294.9258 835.26 °

R

Tstack T T R F

T T

T T

T

T R F

State T2’

Page 29: Power Plant Technology, El Wakil, Problem 8.14

(C) HEAT ADDED BY THE CC

, 3 2'

6

,

8

,

( )

(1.7945(10 ))(0.24)(2450 1294.9258)

4.923(10 ) /

a cc a P

a cc

a cc

Q m c T T

Q

Q Btu h

5 4

6

7

( )

(1.7945(10 ))(0.24)(2000 1782.782213)

9.355(10 ) /

SF a P

SF

SF

Q m c T T

Q

Q Btu h

(C) HEAT ADDED IN SUPPLEMENTARY

FIRING

s

T

1

2

2’

3

4

5

6

6’

6”

CC

GGT

SF

3

4

5

2’

Page 30: Power Plant Technology, El Wakil, Problem 8.14

(E) GAS CYCLE EFFICIENCY

6 6

8

,

7

6

8 7

,

50(3.412)(10 ) 170.6(10 )

4.923(10 ) /

9.355(10 ) /

170.6(10 )0.2912

4.923(10 ) 9.355(10 )

N

a cc

SF

totalTH

a cc SF

W

Q Btu h

Q Btu h

W

Q Q

Page 31: Power Plant Technology, El Wakil, Problem 8.14

OVERALL PLANT CYCLE EFFICIENCY

6 9

8 8

,

7 8

10

8 8

,

[(4*50) (120)](3.412)(10 )(0.96)(0.96) 1.006(10 ) /

4*4.923(10 ) 19.69(10 ) /

4*9.355(10 ) 3.74(10 ) /

1.006(10 ). 0.429

19.69(10 ) 3.74(10 )

total

a cc

SF

total

a cc SF

W Btu h

Q Btu h

Q Btu h

Wplant eff

Q Q

Page 32: Power Plant Technology, El Wakil, Problem 8.14

CC

AC GGT

SG G

CFWH

air

1

23

4

6

8

910

1112

13

14

SCHEMATIC DIAGRAM

(no SF and regeneration)

Page 33: Power Plant Technology, El Wakil, Problem 8.14

6

, 3 2

6 8

,

6

8

,

170.6(10 )

( )

1.7945(10 )(0.24)(2450 842.113082) 6.75(10 ) /

170.6(10 )0.253

6.75(10 )

total

a G a P

a G

netTH

a G

W

Q m c T T

Q Btu h

W

Q

(E) GAS CYCLE EFFICIENCY WHEN ONLY 1 GAS TURBINE

IS USED WITH NO SF AND REGENERATION

s

T

1

2

3

46