210
Chapter 1 Introduction and Analysis Methods 1.1 Switching Power Electronics Read Chapter 1 of “Principles of Power Electronics” (KSV) by J. G. Kassakian, M. F. Schlecht, and G. C. Verghese, Addison-Wesley, 1991. Linear Regulator io + Vx + + Vin Vo Figure 1.1: Linear Regulator Control v x such that V o = V o,REF : Simple, accurate, high-bandwidth, but 1

Power Electronics - MIT

Embed Size (px)

Citation preview

Page 1: Power Electronics - MIT

Chapter 1

Introduction and Analysis Methods

1.1 Switching Power Electronics

Read Chapter 1 of “Principles of Power Electronics” (KSV) by J. G. Kassakian, M.

F. Schlecht, and G. C. Verghese, Addison-Wesley, 1991.

Linear Regulator

io + Vx −

+

+

Vin Vo

Figure 1.1: Linear Regulator

Control vx such that Vo = Vo,REF : Simple, accurate, high-bandwidth, but

1

Page 2: Power Electronics - MIT

2 CHAPTER 1. INTRODUCTION AND ANALYSIS METHODS

Pdiss = < vxio > > 0 (1.1)

Pout η =

Pin

Voio =

Vinio

Vo = (1.2)

Vin

@ Vin = 15v, Vo = 5v η = 33% (1.3) →

For efficiency we will consider switching power converters:

q(t)

+ VoVin 0

1 q(t)

+ DT T

v(t)

<Vo> = dVin

Figure 1.2: Considering Switching Power Convertor

Add filtering:

NOTE: Only lossless elements. L, C (energy storage).

Use semiconductors as switches. Switches: Block V, carry I, but NOT at the same

time!

Page 3: Power Electronics - MIT

1.2. ANALYSIS TECHNIQUES 3

+ +

+

+Vin Vo

Vx − v(t)

− Vx

<Vo> ~ dVin

+

+

Vin Vo

Figure 1.3: Add Filtering

1.2 Analysis Techniques

1.2.1 Methods of Assumed States

Semiconductor switches are typically not fully controllable. Let’s consider how to

analyze a switching circuit in time domain:

Simple Rectifier

Example: (trivial but fundamental)

Vd + −

id +

VoVsSin(ωt) −

Figure 1.4: Simple Rectifier

Diodes: Uncontrolled

• Cannot sustain positive voltage (will turn on)

Page 4: Power Electronics - MIT

4 CHAPTER 1. INTRODUCTION AND ANALYSIS METHODS

• Cannot sustain negative Current (will turn off)

id

Vd

Figure 1.5: Diode

The method of assumed states allows us to figure out which un/semi-controlled

switches are on as a function of time.

1. Assume a state (on/off) for all un/semi-controlled switches.

2. Calculate voltages and currents in the system (linear circuit theory).

3. See if any switch conditions are violated (e.g., “on” diode has negative current

and “off” diode has positive voltage.)

4. If no violations, then done, else if violation assume a new set of states go back

to step 1.

Vd + −

id +

VoVsSin(ωt) −

Figure 1.6: Simple Rectifier

Page 5: Power Electronics - MIT

1.2. ANALYSIS TECHNIQUES 5

• If Vs sin(ωt) > 0 and we assume diode off: vd > 0, since this is not possible

diode must be on during this condition.

• If Vs sin(ωt) < 0 and we assume diode on: id < 0, since this is not possible

diode must be off during this condition.

Vs sin(ωt) > 0 diode on: →

+

VoVsSin(ωt) −

Figure 1.7: Simple Rectifier with Diode On

Vs sin(ωt) < 0 diode off: →

+

VoVsSin(ωt) −

Figure 1.8: Simple Rectifier with Diode Off

Vs π

Vo

VsSin( t)

<Vo> =

ωω

π π2

i=(VsSin( t))/R

Figure 1.9: Rectifier Waveform

Very simple example but principle works in general.

Page 6: Power Electronics - MIT

6 CHAPTER 1. INTRODUCTION AND ANALYSIS METHODS

1.2.2 Periodic Steady State

In power electronics we are often interested in the periodic steady state. In periodic

steady state the system returns to the same point at the end of cycle (beginning

matches end), so things are operating cyclicly.

In periodic steady state (P.S.S.):

di V = L

dt di

< V > = < L > dt di

= L < > dt

di since < >= 0 < V > = 0 (1.4)

dt →

Therefore, in P.S.S.:

Inductor < VL >= 0 average diL = 0• → dt

Capacitor < VC >= 0 average dV dt

C = 0 • →

The P.S.S. conditions are useful for analysis. Consider adding a filter to smooth

the ripple current in our simple rectifier:

VsSin( t)

+

Vo

VL ++

Vd

+

Vxω −

−−

Figure 1.10: Simple Rectifier with Filter

If we assume diode is always on in P.S.S., then:

Page 7: Power Electronics - MIT

1.2. ANALYSIS TECHNIQUES 7

VL + −

+

VoVsSin(ωt) −

Figure 1.11: Simple Rectifier with Filter and Diode On

Vs sin(ωt) − VL − vo = 0

< Vs sin(ωt) > = 0 in P.S.S.

< VL > = 0 in P.S.S.

vo = 0 (1.5)

If diode were always on < Vo >= 0 and io must be < 0 part of the time. We know

diode must turn off during part of cycle by the method of assumed states. What

happens:

ωVsSin( t)

ω

π2π

t

io

Vx

Figure 1.12: Rectifier with Filter Waveform

Negative voltage for part of cycle drives i 0. Exact analysis in KSV, Section →

3.2.2. Good for review of time-domain analysis.

Main point: Method of assumed states and P.S.S. condition are useful tools to

determine system behavior.

Page 8: Power Electronics - MIT

8 CHAPTER 1. INTRODUCTION AND ANALYSIS METHODS

Now, in P.S.S. < Vx >=< Vo >, since < VL >= 0. < Vx > is pos 1

2 sin plus some

neg 1

2 sin, so we lose some voltage as compared to a pos 1

2 sin.

Solution: Free-wheeling diode Half-wave Rectifier. →

Vd VL + - + ­

D1 io+ +

VoVsSin(ωt) D2 Vx

--

Figure 1.13: Simple Rectifier with Free Wheeling Diode

D2 clamps so that Vx never goes negative. io “free-wheels”.

Using method of assumed states:

• D1 conducts when Vs sin ωt > 0.

• D2 conducts when Vs sin ωt < 0.

2ππ

Io =

ω t

ω

Vx

VsSin( t)

R

V0

Figure 1.14: Rectifier with Free Wheeling Diode Waveform

< VL > = 0 in P.S.S.

< Vo > = < Vx >

= 1 2π

∫ π

0 Vs sin(φ)dφ

Page 9: Power Electronics - MIT

1.2. ANALYSIS TECHNIQUES 9

Vs = (1.6)

π

NOTE: This circuit is rarely used in line applications today for several reasons,

but the analysis technique is the key point. Full-wave rectifier is more common.

NOTE: For analyzing output current, output voltage, etc., we can do an equivalent-

source replacement. Linear circuit with sum of fourier sources.

io

Veq(t)

+

VoVeq(t) -

t

Figure 1.15: Linear Circuit with Sum of Fourier Sources

Veq = Bn cos(nωt + φn) (1.7) n=0

vo(ω) ∑ If H(ω) = Vo = H(nω) Bn cos(nωt + φn+ < H(nω)) (1.8)

vx(ω) ⇒

n | |

Main point: We can replace difficult to handle part of circuit with an equivalent

voltage source, then use linear circuit theory to analyze from there.

Summary of analysis thechniques:

Method of assumed states •

• Periodic Steady State

• Equivalent source replacement

Page 10: Power Electronics - MIT

Chapter 2

Introduction to Rectifiers

Read Chapter 3 of “Principles of Power Electronics” (KSV) by J. G. Kassakian, M.

F. Schlecht, and G. C. Verghese, Addison-Wesley, 1991.

Start with simple half-wave rectifier (full-bridge rectifier directly follows).

Ld + −

Id VxD1 id+ + ω t

VoVsSin(ωt) D2 Vx π 2π −− VsSin(ωt)

D1 ON D2 ON

Figure 2.1: Simple Half-wave Rectifier

In P.S.S.:

< vo > = < vx >

vs = (2.1)

π

10

Page 11: Power Electronics - MIT

2.1. LOAD REGULATION 11

vsIf Ld Big → id ≃ Id =

πR (2.2)

If LR d ≫ 2

ωπ ⇒ we can approximate load as a constant current.

2.1 Load Regulation

.Now consider adding some ac-side inductance Lc (reactance Xc = ωLc).

• Common situation: Transformer leakage or line inductance, machine winding

inductance, etc.

• Lc is typically ≪ Ld (filter inductance) as it is a parasitic element.

Lc Ld

D1 +

RVsSin(ωt) D2 Vx

Figure 2.2: Adding Some AC-Side Inductance

Assume Ld ∼ ∞ (so ripple current is small). Therefore, we can approximate load

as a “special” current source.

vx“Special” since < vL >= 0 in P.S.S. Id =< > (2.3) ⇒

R

Assume we start with D2 conducting, D1 off (V sin(ωt) < 0). What happens when

V sin(ωt) crosses zero?

Page 12: Power Electronics - MIT

12 CHAPTER 2. INTRODUCTION TO RECTIFIERS

i1 Lc

D1

VsSin(ωt) D2 i2 Id

Figure 2.3: Special Current

• D1 off no longer valid.

But just after turn on i1 still = 0.•

Therefore, D1

switches from D2

and D2

to D1.

are both on d

Lc

uring a commutation period, where current

i1

D1

+

VsSin( ω t) D2 Vx Id _

i2

Figure 2.4: Commutation Period

D2 will stay on as long as i2 > 0 (i1 < Id).

Analyze:

di1 1 = Vs sin(ωt)

dt Lc ∫ ωt Vs

i1(t) = sin(ωt)d(ωt) 0 ωLc

Vs 0 = ωLc

cos(Φ)|ωt

Vs = [1 − cos(ωt)] (2.4)

ωLc

Page 13: Power Electronics - MIT

2.1. LOAD REGULATION 13

i1

u

Id

Figure 2.5: Analyze Waveform

Commutation ends at ωt = u, when i1 = Id.

Commutation Period:

Vs ωLcIdId =

ωLc [1 − cos u] ⇒ cos u = 1 −

Vs (2.5)

As compared to the case of no commutating inductance, we lose a piece of output

voltage during commutation. We can calculate the average output voltage in P.S.S.

from < Vx >:

1 ∫ π < Vx > = Vs sin(Φ)dΦ

2π u

Vs = [cos(u) + 1]

2π ωLcId

from before cos(u) = 1 − Vs

XcId = 1 −

Vs

Vs ωLcId< Vx > = [1 − ] (2.6)

π Vs

So average output voltage drops with:

1. Increased current

Page 14: Power Electronics - MIT

14 CHAPTER 2. INTRODUCTION TO RECTIFIERS

πu VsSin(wt)

Vx

ω t

π+u2π2

i1

Id

ω t

u +u 2 +u

D1 D2

π π π2π

D1+D2

Figure 2.6: Commutation Period

2. Increased frequency

3. Decreased source voltage

We get the “Ideal” no Lc case at no load.

We can make a dc-side thevenin model for such a system as shown in Figure 2.7.

No actual dissipation in box: “resistance” appears because output voltage drops

when current increases.

This Load Regulation is a major consideration in most rectifier systems.

• Voltage changes with load.

• Max output power limitation

Page 15: Power Electronics - MIT

2.1. LOAD REGULATION 15

Id

+

<Vx>

<Vx>

Id

2 π slope

2 π Lcω

ω Lc

2Vs Lcω

− +

π Vs

π Vs

Figure 2.7: DC-Side Thevenin Model

All due to non-zero commutation time because of ac-side reactance.

occurs in most rectifier types (full-wave, multi-phase, thyristor, etc.).

rectifier has similar problem (similar analysis).

Read Chapter 4 of KSV.

This effect

Full-bridge

+ <Vx>

D3

D2

D1

D4 ωVsSin( t)

Lc

2Vs π Full−Bridge

Vs Vx Id π 1/2−Bridge

Id

Vs 2Vs ω Lc ω Lc−

Figure 2.8: Full-Bridge Rectifier

Page 16: Power Electronics - MIT

Chapter 3

Power Factor and Measures of

Distortion

Read Chapter 3 of “Principles of Power Electronics” (KSV) by J. G. Kassakian, M.

F. Schlecht, and G. C. Verghese, Addison-Wesley, 1991. Look at the AC side.

Definitions and Identities

Two functions X and Y are orthogonal over [a, b] if:

∫ b X(t)Y (t)dt = 0 (3.1)

a

Now:

∫ 2π sin(mωt) sin(nωt + φ)dωt = 0, if n = m sinusoids of different frequencies 0• 6 ⇒

are orthogonal.

16

Page 17: Power Electronics - MIT

17

∫ 2π • 0 sin(ωt) cos(ωt)dωt = 0 ⇒ sine and cosine are orthogonal.

In general:

1 ∫ 2π 1 sin(ωt) sin(ωt + φ) = cos φ (3.2)

2π 0 2

These definitions will be useful for calculating power, etc.

Suppose we plug a resistor into the wall.

Rwire Fuse i

+

V RLVsSin(ωt)

Figure 3.1: Resistor

P = < V i >

= VRMS iRMS

= i2 R (3.3) RMS

The fuse is rated for a specific RMS current. Above that, it will blow so that

dissipation in Rwire does not start a fire. Neglecting Rwire, for 115VAC,RMS , 15ARMS

fuse, we get ∼ 1.7kW max from wall.

Suppose instead we plug an inductor into the wall.

Neglecting Rwire:

Page 18: Power Electronics - MIT

√ ∫

18 CHAPTER 3. POWER FACTOR AND MEASURES OF DISTORTION

Rwire Fuse i

+

V LVsSin(ωt)

Figure 3.2: Inductor

Vsi = −

ωL cos(ωt) (3.4)

1 < P > = V (t)i(t)d(ωt)

2π V 2

= s sin(ωt) cos(ωt)d(ωt)−2πωL

= 0 (of course) (3.5)

Mathematically, it is because V and i are orthogonal. While we draw no real

power, we still draw current.

1 2π iRMS = i2(ωt)d(ωt)

2π 0

Vs = (3.6) √

2ωL

@115V, 60Hz, L ≤ 20mH iRMS ≥ 15A (3.7) →

So we still will blow the fuse (to protect the wall wiring), even though we do not

Page 19: Power Electronics - MIT

19

draw any real power at the output! (some power dissipated in Rwire). In this case we

are not utilizing the source well.

Power Factor

To provide a measure of the utilization of the source we define Power Factor.

. < P > Real Power P.F. = = (3.8)

VRMS iRMS Apparent Power

For a resistor < P >= VRMS iRMS P.F. = 1 best utilization. For a inductor →

< P >= 0 P.F. = 0 worst utilization. →

Consider a rectifier drawing some current waveform,

VsSin( t)ω V(t)

+ Rectifier

i(t)

Figure 3.3: Rectifier

Express i(t) as a Fourier series:

i(t) = in sin(nωt + φn) Sum of weighted shifted sinusoids (3.9) n=0

1 1 1 Note: iRMS = i1

2 + i22 + + i2 +

2 2 · · ·

2 n · · · 1

< P > = V (t)i(t)d(ωt)2π 2π

Page 20: Power Electronics - MIT

20 CHAPTER 3. POWER FACTOR AND MEASURES OF DISTORTION

1 ∑ = Vs sin(ωt) in sin(nωt + φn)

2π 2π n ∞ ∑ 1

= Vsin sin(ωt) sin(nωt + φn) (3.10) 2 2π n=0

By orthogonality all terms except fundamental drop out.

1 < P > = Vsi1 sin(ωt) sin(ωt + φ1)

2 2π

Vsi1 = cos φ1

2

= Vs,RMS i1,RMS cos φ1 (3.11)

So the only current that contributes to real power is the fundamental component

in phase with the voltage.

VRMS i1,RMS P.F. = cos φ1

VRMS iRMS i1,RMS

= cos φ1 (3.12) iRMS

We can break down into two factors:

i1,RMS P.F. = ( ) cos φ1

iRMS ·

= kd(distortion factor) kθ(displacement factor) ·

(3.13)

• kd, distortion factor (≤ 1) tells us how much the utilization of the source is

reduced because of harmonic currents that do not contribute to power.

Page 21: Power Electronics - MIT

√ √

√ √ ∑

√ √ √

√ ∑

21

• kθ, displacement factor (≤ 1) tells us how much utilization is reduced due to

phase shift between the voltage and fundamental current.

Total Harmonic Distortion (THD)

Consider another measure of distortion: Total Harmonic Distortion (THD).

. n=1 in 2

THD = √ 6 (3.14) i21

This measure the RMS of the harmonics normalized to the RMS of the funda­

mental (square root of the power ratio). Distortion factor and THD are related:

√ n=1 i2

THD = √ 6 n

i2 1

√ i2 RMS − i21,RMS =

i2 1,RMS

i2

THD2 = i2

RMS − 1 1,RMS

i2 RMS = 1 + THD2

i2 1,RMS

iRMS =

√1 + THD2

i1,RMS

1 kd = (3.15)

1 + THD2

Example:

V = Vs sin(ωt)

Page 22: Power Electronics - MIT

( )

22 CHAPTER 3. POWER FACTOR AND MEASURES OF DISTORTION

4 ipk in =

πn 2i(t) = square wave

i0 = iave = 1

2 ipk

THD = 121% ipk 4 1 2 · π · √2kd =

ipk√2

2 =

π

P.F. = 0.63 (3.16)

i(t)

Ipk

ω t π 2π

Figure 3.4: Example

(Passive) Power Factor Compensation (KSV: Section 3.4.1)

Lets focus on the displacement factor component of power factor. For simplicity,

lets assume a linear load (e.g. R-L) so that voltages and currents are sinusoidal.

For sinusoidal V and i:

< P > P.F. = = cos φ (3.17)

VRMS iRMS

φ is the power factor angle:

Leading φ < 0 Capacitive •

Lagging φ > 0 Inductive •

Page 23: Power Electronics - MIT

23

Real power:

P = VRMS IRMS cos φ (3.18)

Define reactive power as:

.Q = VRMS IRMS sin φ (3.19)

Q

S

P

Figure 3.5: Reactive Power

In vector form S~ = P + jQ. In phaser form V ,~ ~i S~ =< V I∗ >→

units

Apparent Power S =‖ S~ ‖= VRMS IRMS V A

Average Power Re{S} = P = VRMSIRMS cos φ W

Reactive Power Im{S} = Q = VRMS IRMS sin φ V AR

We can use these results to help adjust the displacement factor of a system. (make

Qnet 0). →

Page 24: Power Electronics - MIT

24 CHAPTER 3. POWER FACTOR AND MEASURES OF DISTORTION

i

θ

2 2 R +(ω L)

ω L L

VsCos(ω t) R Im S

i*R v Re

i

Figure 3.6: R-L Load

Suppose we have an R-L load (e.g. an induction machine):

Vs ωL i(t) = √

ω2L2 + R2 cos(ωt − arctan(

R ))

since S = .

V I∗

ωL voltage-current phase φ = arctan( )

R ωL

P.F. = cos(arctan( )) R

R = √

R2 + ω2L2 < 1 (3.20)

We can add some additional reactive load to balance out and give net unity power

factor.

S = VRMS IRM S

= V 2

2√

ω2L s 2 + R2

(3.21)

P = S cos φ

= VRMS IRMS cos φ

Page 25: Power Electronics - MIT

25

V 2R = s (3.22)

2(ω2L2 + R2)

jQ = jS sin φ

= jVRMS IRMS sin φ

ωLV 2

= j s (3.23) 2(ω2L2 + R2)

So we have real and reactive power.

Suppose we add a capacitor in parallel:

i’

CVsSin(ωt)

Figure 3.7: Capacitor

Zc

1

Zc

Vphase − iphase

i′

S ′

P ′

1 =

jωC

=1

e−j π 2

ωC

= ωCej π (3.24) 2

= −90◦

π = VsωC sin(ωt + ) (3.25)

2

= VRMS IRMS

1 = V s

2ωC (3.26) 2

= 0 (3.27)

Page 26: Power Electronics - MIT

26 CHAPTER 3. POWER FACTOR AND MEASURES OF DISTORTION

1 Q′ = −j

2 V s

2ωC (3.28)

So by placing the capacitor in parallel:

t)VsCos(ω L

R

P, Q Q’

C

Figure 3.8: Parallel Capacitor

S = P + jQ + jQ′

make jQ and jQ′ cancel: Q + Q′ = 0

ωLV 2 1sj 2(ω2L2 + R2)

− j 2 V 2ωC = 0 s

L C = (3.29)

ω2L2 + R2

Example:

ω = 377RAD/sec (ωHZ)

R = 1Ω

L = 2.7mH

C = 1.32mF ⇒

Page 27: Power Electronics - MIT

27

If we know our load, we can add reactive elements to compensate so that no dis­

placement factor reduction of line utilization occurs. Real, reactive power definitions

are useful to help us do this. This does not help with distortion factor.

Page 28: Power Electronics - MIT

Chapter 4

Phase-controlled Rectifiers

Read Chapter 5 of "Principles of Power Electronics" (KSV) by J . G. Kassakian, M.

F. Schlecht, and G. C. Verghese, Addison-Wesley, 1991.

Thyristor Devices: SCR (Silicon Controlled Rectifier)

K

Figure 4.1: Thyristor

SCR: Acts like a diode where you can select when conduction will start , but not

when it stops.

Stay off until a gate pulse is applied while VAK> 0.

Page 29: Power Electronics - MIT

Once on, behaves like a diode and does not turn off until i + 0.

To stay off (after VaK > 0 again) must have i stay at 0 for a short time t, (10 -

loops)

So the device is semi-controlled: we control the turn on point, but only turns off

when circuit conditions force it to.

Simple example:

Figure 4.2: Example

Phase of thyristor turn on (with respect t o line voltage) is termed firing angle a.

Consider a full-bridge converter (inductive/current load).

Diode version:

Page 30: Power Electronics - MIT

CHAPTER 4. PHASE-CONTROLLED RECTIFIERS

A

o t 2-

Dl, D2 ./D3, D4 /

- Conduct - - Conduct

Figure 4.3: Diode Version

Thyristor (phase-cont rolled) version (firing angle a):

Ql,Q2 == Q3,Q4 Con uct ( Conduct Conduct

Figure 4.4: Thyristor Version

Lets analyze the output voltage < v, >:

Page 31: Power Electronics - MIT

Id >0 by necessity(conducbon of thyristor)

A <Vx> Rectification

a z>

Rectification Inversion ( <vx>>o

\ /- - <vx><o > Power Flows Power Flows .....................

AC -> DC DC -> AC Quadrants of 0 ration in ol,17

Figure 4.5: Output Voltage

So with a phase controlled converter, we can regulate the output voltage by varying

firing angle a. We can even cause power flow from dc-side to ac-side as long as Id > 0

(e.g., pull power out of inductor and put into line).

Consider the power factor of a phase-controlled converter:

V,i

Figure 4.6: Power Factor

Page 32: Power Electronics - MIT

CHAPTER 4. PHASE-CONTROLLED RECTIFIERS

Phase shift of fundamental of square wave in phase with square wave, therefore,

= a. So the power factor of a phase-controlled converter varies with firing angle

a.

Consider the effect of ac-side reactance:

No LC

+ r

Ql

rQ ~ A

LC

- il A

4 4 il VsSin@t)

Qz r

-

+~d No LC \

a+u o t >

a n

-Id QLQZ Q3,Q4

All- All-+?-= e +?-= e

+ e Q3,Q4

Figure 4.7: AC-S ide Reactance

Similar t o the diode rectifier case, a commutation period exists during which all

devices are on, while current in LC switches between +Id and -Id (between Q1/Q2

and Q 3 I Q 4 .

Page 33: Power Electronics - MIT

A similar analyze to the diode case shows tha t for the full-bridge thyristor con-

verter:

2K< v, >= - X c I d -1-a[cos Kn-

Note tha t the need to commutate devices places a limit on how negative the output

voltage can be made as a function of X$-d and a. This is analyzed in KSV, Chapter

5. (require a + u < n-) .

Summary:

VdO

!

Commutation Limit

Figure 4.8: Summary

Page 34: Power Electronics - MIT

Chapter 5

Introduction to DC/DC

Converters

Analysis techniques: Average KVL, KCL, P.S.S. Conditions.

KCL

I1

i2

in

Figure 5.1: KCL

ij = 0 (5.1)

34

Page 35: Power Electronics - MIT

35

Average over time:

1 ∑ ij = 0

T T ∑ 1 ∫

T T ij = 0

∑ < ij > = 0 (5.2)

KCL applies to average current as well as instantaneous currents. (Derives from

conservation of charge).

KVL

V2

Vn

V1

+

+

+ −

Figure 5.2: KVL

Vk = 0 (5.3)

Average over time:

1 ∑ Vk = 0

T T ∑ 1

Vk = 0 T T

< Vk > = 0 (5.4)

Page 36: Power Electronics - MIT

36 CHAPTER 5. INTRODUCTION TO DC/DC CONVERTERS

KVL applies to averaged variables.

P.S.S.

To analyze converters in Periodic Steady State (P.S.S.):

Average KCL < ij > = 0 (5.5)

Average KVL < Vk > = 0 (5.6)

diLfrom < VL > = L < >

dt diL

in P.S.S. < > = 0 dt

Inductor in P.S.S. < VL > = 0 (5.7)

dVLfrom < iC > = C < >

dt dVL

in P.S.S. < > = 0 dt

Capacitor in P.S.S. < iC > = 0 (5.8)

If Circuit is Lossless: Pin = Pout (5.9)

Consider the DC/DC converter from before (see Figure 5.3):

q(t)

iL I2 1

Pulse Width Modulation (PWM)

+−

I1 q(t) = 1

+ t +q(t) = 0

+ VL − dT T T+dT 2T

Duty Ratio dVx C2 V2 Vx(t)V1 C1

V1−(V1>0) <Vx> = dV1

− t

dT T T+dT 2T

Figure 5.3: DC/DC Converter

Page 37: Power Electronics - MIT

37

Assume L’s and C’s are very big, therefore:

vC (t) VC (5.10) ≃

iL(t) IL (5.11) ≃

Analyze (using average relations) in P.S.S.:

< VL > = 0

< VL > = dT (V1 − V2) + (1 − d)T (−V2)

dV1T − V2T = 0

V2 = dV1 (5.12)

(Since < VL >= 0, < V2 >=< Vx >= dV1.)

Consider currents:

< iC2 > = 0

I1 = I2 (5.13)

< iC1 > = 0

IC1 = (I1 − I2dT ) + I1(1 − d)T = 0

I1 = dI2 (5.14)

Combining:

I1 = dI2

dV1 = V2

dV1I1 = dI2V2

V1I1 = I2V2 (5.15)

Page 38: Power Electronics - MIT

38 CHAPTER 5. INTRODUCTION TO DC/DC CONVERTERS

Therefore, power is (ideally) conserved.

Note: Trick in this type of “average” analysis is to be careful when one can use

an average value and when one must consider instantaneous quantities.

With the following type of external network and V1, V2 > 0, power flows from

1 2. →

Switch implementation: “buck” or “down” converter (see Figure 5.4).

+V1 C2

+

V2C1 −

Figure 5.4: Buck (down) Converter

Type of “direct” converter because a DC path exists between input and output

in one switch state.

Suppose we change the location of source and load: Refine switching function so

q(t) = 1 when switch is in down position (see Figure 5.5).

Similar analysis:

< VL > = 0

(V1 − V2)(1 − d)T + V1dT = 0

1 V2 = V1 (5.16)

1 − d

By conservation of power:

I2 = (1 − d)I1 (5.17)

Page 39: Power Electronics - MIT

39

q(t)

1

iL t I2I1 q(t) = 0 dT T T+dT 2T

+

-+

Vx(t)- ++ q(t) = 1 VL V2

V2 C1 Vx C2 V1

t - dT T T+dT 2T

-VL

dT T

V1

V1-V2

Figure 5.5: Change the Location of Source and Load

In this case, energy flows from 2 1 and the P.S.S. output voltage (V2) is higher ←

than input voltage (V1).

With the following switch implementation: “boost” or “up” converter. Another

type of “direct” converter (see Figure 5.6).

C2C1V2

+

+ V1

Figure 5.6: Boost (up) Converter

In general power flows direction depends on:

1. External network

2. Switch implementation

Page 40: Power Electronics - MIT

40 CHAPTER 5. INTRODUCTION TO DC/DC CONVERTERS

3. Control

We may need to know all of these to determine behavior.

The boost converter is often drawn with power flowing left to right. However,

there is nothing fundamental about this (see Figure 5.7).

C1C2+V1 V2

+

− −

Figure 5.7: Boost (up) Converter Drawn Left to Right

Boost: Switch turns on and incrementally stores energy from V1 in L. Switch

truns off and this energy and additional energy from input is transferred to output.

Therefore, L used as a temporary storage element.

Either the buck or boost can be seen as the appropriate connection of a canonical

cell (see Figure 5.8).

A

B

C

Figure 5.8: Direct Canonical Cell

The “direct” connection has B as the common node. The rest of operation is

determined by external network, switch implementation and control.

Switch implementation: Different switches can carry current and block voltage

only in certain directions.

Page 41: Power Electronics - MIT

41

MOSFET can block positive V and can carry positive or negative i (see Figure 5.9).

D

D

i

+G V

− Body Diode

G

S

S

Figure 5.9: MOSFET

BJT (or darlington) is similar, but negative V blows up device (see Figure 5.10).

i i

+ +Same for V V − IGBT −

Figure 5.10: BJT

Combine elements:

1. Block positive V and carry positive and negative i (see Figure 5.11).

+

V

i

Figure 5.11: Combine Elements 1

2. Block positive and negative V and carry positive i (see Figure 5.12).

Page 42: Power Electronics - MIT

42 CHAPTER 5. INTRODUCTION TO DC/DC CONVERTERS

i

+

V

Figure 5.12: Combine Elements 2

3. Block positive and negative V and carry positive and negative i (see Fig­

ure 5.13).

i

+

V

Figure 5.13: Combine Elements 3

We can also construct indirect DC/DC converters. Store energy from input, trans­

fer energy to output, never a DC path from input to output (see Figure 5.14).

++ BA

V1 V2

−−

C

Figure 5.14: Canonical Cell

Split capacitor (see Figure 5.15):

Page 43: Power Electronics - MIT

43

q(t) = 1 q(t) = 0

+ −

q(t) +

V1 V2 1

t− dT T T+dT 2T

q(t) = 0 q(t) = 1

V2

V1

VL

TdT C2

+

V2 −

− C1V1 +

Split Capacitor

Figure 5.15: Indirect DC/DC Converter

< VL > = 0

< VL > = V1dT + (1 − d)TV2

d V2 = V1 (5.18) −

1 − d

V2for 0 < d < 1 → −∞ < < 0 (5.19)

V1

• Store energy in L(dT ) from V1.

• Discharge it (the other way) in V2. (must have voltage inversion).

“Buck/Boost” or “up/down” converter (see Figure 5.16):

Page 44: Power Electronics - MIT

44 CHAPTER 5. INTRODUCTION TO DC/DC CONVERTERS

V1 + +

V2

I2I1

Figure 5.16: “Buck/Boost” or “up/down” converter

V1 > 0

I1 > 0

V2 < 0

I2 > 0

Other indirect converters include CUK and SEPIC variants.

Given conversion range −∞ < V2 < 0, why not always use indirect vs. direct?V1

1. Sign inversion (can fix)

2. Device and component stresses

Look at averaged circuit variables (see Figure 5.17): Assume C, L are very large.

IL = I1 + I2

|IL| = |I1| + |I2| (5.20)

By averaged KCL into dotted box: Maybe counter intuitive: I1 = average tran­

sistor current. I1 + I2 = peak transistor current.

Page 45: Power Electronics - MIT

45

V1 + +

V2

I2I1

+

IL iq

VC

iq

I1+I2

I1

dT T

Figure 5.17: Averaged Circuit Variables

By averaged KVL around loop:

VC = V1 − V2

|VC | = |V1| + |V2| (5.21)

Therefore, for big L, C (see Figure 5.18):

V1 + +

V2

I2I1

Q D

V1−V2

I1+I2−

−+

Figure 5.18: Big L, C

Indirect converter:

So Q, D, L see peak current I = I1 + I2,

Q, D, C block peak voltage V = V1 + V2 .| | | |

Consider direct converters (see Figure 5.19):

Page 46: Power Electronics - MIT

46 CHAPTER 5. INTRODUCTION TO DC/DC CONVERTERS

+

I1 Boost D

Q Vq

Buck

+

Vq+ I2

Vd

Q

DC V2

+

V1 +

+

− V1 +

− −−

− −

V2C

Figure 5.19: Direct Converters

Buck:

VC = Vq,max = Vd,max = V1 (5.22)

IL = iq,max = id,max = I2 (5.23)

Boost:

VC = Vq,max = Vd,max = V2 (5.24)

IL = iq,max = id,max = I1 (5.25)

Direct converters (either type):

VC = Vq,max = Vd,max = max(V1, V2) (5.26)

IL = iq,max = id,max = max(I1, I2) (5.27)

Device voltage and current stresses are higher for indirect converters than for

direct converters with same power. Inductor current and capacitor voltage are also

higher.

Summary:

For indirect converters (neglecting ripple) (see Figure 5.20):

Page 47: Power Electronics - MIT

47

VC+ −

V1 + +

V2

I2I1

iL−

iq

I1+I2

I1

dT T

Figure 5.20: Indirect Converters (neglecting ripple)

IL = isw,pk = id,pk = I1 + I2 (5.28) | | | |

VC = Vsw,pk = Vd,pk = V1 + V2 (5.29) | | | |

For direct converters (neglecting ripple) (see Figure 5.21):

IL

+

Boost

Vq

+

V2

IL Buck

+

Vq+

Vd V2

+

V1 +

− V1 +

− −−

− −

Figure 5.21: Direct Converters (neglecting ripple)

IL = isw,pk = id,pk = max(I1, I2) (5.30)

VC = Vsw,pk = Vd,pk = max(V1, V2) (5.31)

Based on device stresses we would not choose an indirect converter unless we

needed to, since direct converters have lower stress.

Page 48: Power Electronics - MIT

48 CHAPTER 5. INTRODUCTION TO DC/DC CONVERTERS

5.1 Ripple Components and Filter Sizing

Now, selecting filter component sizes does depend on ripple, which we have previously

neglected. Lets see how to approximately calculate ripple components. To eliminate

2nd order effects on capacitor voltage ripple:

1. Assume inductor is ∞(Δipp 0). →

2. Assume all ripple current goes into capacitor.

Similarly, to eliminate 2nd order effects in inductor current ripple:

1. Assume capacitors are ∞(ΔVC,pp 0). →

2. Assume all ripple voltage is across the inductor.

We can verify assumptions afterwards.

Example: Boost Converter Ripple (see Figure 5.22)

+

V2id

idI1

V1 + −

− −

+

V2

Figure 5.22: Boost Converter Ripple

Find capacitor (output) voltage ripple (see Figure 5.23):

Assume L → ∞, therefore, i1(t) I1.→

So a ripple model for the output voltage is (see Figure 5.24):

Page 49: Power Electronics - MIT

~

49 5.1. RIPPLE COMPONENTS AND FILTER SIZING

Figure 5.23: Capacitor Voltage Ripple

id

Including RippleDActual Waveform i

Id=<id>=(1-D)I1

T

I1

id

t

DT

DI1

t

DT T

C R

−(1−D)I1 +

~ ~ ~ id V VC

− ΔVCpp

2

t

T

− ΔVCpp 2

DT

Figure 5.24: Ripple Model with Capacitor

If we assume all ripple current into capacitor 1 2πfsw C ≪ R or V2 is small recpect

to V2.

Let us calculate the ripple:

i = C dVC

dt

ΔVC,pp = ∫ DT

0

1 − D C

I1dt

= (1 − D)DT

C I1 (5.32)

Therefore, to limit ripple:

Page 50: Power Electronics - MIT

~

50 CHAPTER 5. INTRODUCTION TO DC/DC CONVERTERS

(1 − D)DT C ≥ I1 (5.33)

ΔVC,pp

Now let us find the capacitor voltage ripple (see Figure 5.25):

<Vx>=(1−D)V2

T

V2

Vx

+

Vx

Source Impedance

Zi

V1 +

+

V2C1

Actual Vx Including Ripple

t

DT

− −

Figure 5.25: Ripple

Replace Vx with equivalent source and eliminate DC quantities (see Figure 5.26).

Vx

DV2

t

DT T

−(1−D)V2 +

~ ~ ~ i1 Vx i1

− Δ ipp

2

t

T

− Δ ipp 2

DT

Figure 5.26: Ripple Model with Inductor

Neglecting the drop on any source impedance (|Zi| ≪ 2πfswL).

1 DT ΔiL,pp = (1 − D)V2dt

L 0

D(1 − D)T = V2 (5.34)

L

Page 51: Power Electronics - MIT

51 5.1. RIPPLE COMPONENTS AND FILTER SIZING

Therefore, we need:

L ≥ D(1

Δ

− ipp

D)TV2 (5.35)

Energy storage is one metric for sizing L’s and C’s. Physical size may actually be

determined by one or more of: energy storage, losses, packing constraints, material

properties. To determine peak energy storage requirements we must consider the

ripple in the waveforms.

Define ripple ratios (see Figure 5.27):

ΔVC,pp RC =2VC

(5.36)

ΔiL,pp RL =2I − L

(5.37)

This is essentially % ripple: peak ripple magnitude normalized to DC value.

X

Xpk

− Xpp 2

Δ

Xpp 2

Δ

Figure 5.27: Ripple Ratios

Specification of allowed ripple and converter operating parameters determines

capacitor and inductor size requirements.

Therefore:

VC,pk = VC (1 + RC ) (5.38)

iL,pk = IL(1 + RL) (5.39)

Page 52: Power Electronics - MIT

52 CHAPTER 5. INTRODUCTION TO DC/DC CONVERTERS

So from our previous results (boost converter):

(1 − D)DT I1 (5.40) C ≥

2RC VC

D(1 − D)TV2 (5.41) L ≥

2RLI1

The ripple ratios also determine passive component energy storage requirements

and semiconductor device stresses.

So lets calculate the required energy storage for the capacitor:

1 CV 2EC =

2 C,pk

1 (1 − D)DT I1V 2 =

2 2RC VC (1 + RC )

2 C

DI2V2 (1 + RC )2

= 4fsw RC

DPo (1 + RC )2

= (5.42) 4fsw RC

So required capacitor energy storage increases with:

1. Conversion ratio

2. Power level

and decreases with switching frequency.

Similar result for inductor energy storage:

(1 − D)Po (1 + RL)2

EL = (5.43) 4fsw RL

It can be shown that direct converters always require lower energy storage than

indirect converters.

Page 53: Power Electronics - MIT

53 5.2. DISCONTINUOUS CONDUCTION MODE

Table 5.1: Effect of Allowed Ripple on SwitchesConverter Type Value L, C → ∞ Finite L, C

Direct

Indirect

isw,pk, id,pk

Vsw,pk, Vd,pk

isw,pk, id,pk

Vsw,pk, Vd,pk

max(|I1|, |I2|) max(|V1|, |V2|)

|I1|, |I2||V1|, |V2|

max(|I1|, |I2|)(1 + RL) max(|V1|, |V2|)(1 + RC )

(|I1|, |I2|)(1 + RL) (|V1|, |V2|)(1 + RC )

Consider effect of allowed ripple on switches (see Table 5.1):

Define a metric for switch sizing (qualitative only):

.Switch Stress P arameter(SSP ) = Vsw,pkisw,pk (5.44)

For a boost converter:

SSP = max(V1, V2)(1 + RC )max(I1, I2)(1 + RL)

= V2(1 + RC )I1(1 + RL)

Po = (1 + RC )(1 + RL)

1 − D V2

= Po (1 + RC )(1 + RL) (5.45) V1

Therefore, SSP gets worse for:

• Large power

• Large conversion ratio

• Large ripple

5.2 Discontinuous Conduction Mode

Consider the waveform of the boost converter (see Figure 5.28):

Page 54: Power Electronics - MIT

54 CHAPTER 5. INTRODUCTION TO DC/DC CONVERTERS

q(t)

Switching Function for Diode qD(t)

tI1 DT T

VL

L R +

+ −

Cq(t) V2V1

− V1−V2

iL

TDT

t

V1

I1

t

DT T

Figure 5.28: Boost Converter Waveforms

V1DT ΔiL,pp = (5.46)

L

IL = I1

V2 = (5.47)

R(1 − D) ΔiL,pp

2RL = I1

V1D(1 − D)RT =

2V2L D(1 − D)2RT

= (5.48) 2L

RL ↑ as R ↑, L ↓ (5.49)

(see Figure 5.29 for an illustration)

Eventually peak ripple becomes greater than DC current: both switch and diode

off for part of cycle. This is known as Discontinuous Condition Mode (DCM). It

Page 55: Power Electronics - MIT

55 5.2. DISCONTINUOUS CONDUCTION MODE

t

iL As R Increases

t

iL

DT T DT T

As L Decreases

Figure 5.29: Changing R and L

happens when RL > 1.

D(1 − D)2RT RL = 2L

RL

R

>

1

2L (5.50)

D(1 − D)2T

At light load (big R and low power) we get DCM. Lighter load can be reached in

CCM for larger L. DCM occurs for:

L ≤ D(1 − D)2TR

(5.51) 2

The minimum inductance for CCM operation is sometimes called the “critical

inductance”.

D(1 − D)2TR LCRIT,BOOST = (5.52)

2

For some cases (e.g. we need to operate down to almost no load), this may be

unreasonably large.

Because of the new switch state, operating conditions are different (see Fig­

ure 5.30).

Page 56: Power Electronics - MIT

56 CHAPTER 5. INTRODUCTION TO DC/DC CONVERTERS

q(t), qD(t)

VL DT

t

DCM

(D+D2)T T

V1

(D+D2)T t DT T

V1-V2

iL Must Be Zero in Remaining Time

t

DT (D+D2)T T

Figure 5.30: Different Operating Conditions

Voltage conversion ratio:

< VL > = 0 in P.S.S.

V1DT + (V1 − V2)D2T = 0

V1(D + D2) = V2D2

V2 D + D2 =

V1 D2

D = 1 + (5.53)

D2

where D2 < 1 − D.

How does this compare to CCM? In CCM:

V2 1 =

V1 1 − D

Page 57: Power Electronics - MIT

57 5.2. DISCONTINUOUS CONDUCTION MODE

1 − D + D =

1 − D D

= 1 + (5.54) 1 − D

Since V2 = 1 + D and D2 < 1 − D, V2 is bigger in DCM. V1 D2 V1

Eliminating D2 from equations, can be shown for boost:

V2 1 1 2D2RT = + 1 + (5.55)

V1 2 2 L

Therefore, conversion ratio depends on R, fsw, L, ... unlike CCM. This makes

control tricky, as all of our characteristics change for part of the load range.

How do we model DCM operation? Consider diode current (see Figure 5.31).

IL id

id

ipk

+ −

+ +

V2 id(t) V2V1

− −

I2

t

DT (D+D2)T T

Figure 5.31: DCM Operation Model

V1DT ipk =

L

D2T = Δt

Page 58: Power Electronics - MIT

58 CHAPTER 5. INTRODUCTION TO DC/DC CONVERTERS

Δi = L

V V1DT

= L L

V2 − V1

V1D D2 = (5.56)

V2 − V1

< iout > = < id >

1 1 = (D2T )(ipk)

2 T 1 V1 V1DT 1

= ( DT )( )2 V2 − V1 L T V 2TD2

= 1 (5.57) 2(V2 − V1)

Model as controlled current source as a function of D.

So DCM sometimes occurs under light load, as dictated by sizing of L.

• Sometimes we can not practically make L big enough.

• Must handle control (changes from CCM to DCM).

• Also, we get parasitic ringing in both switches (see Figure 5.32).

Vx

+ −

Ideal L Rings with Parasitic C’sV2 ++

V2 V1VxV1 − − t

DT D2T T

Figure 5.32: Parasitic Ringing

Sometimes people design to always be in DCM. Inductor size becomes very small

and we can get fast di (see Figure 5.33). dt

Page 59: Power Electronics - MIT

59 5.2. DISCONTINUOUS CONDUCTION MODE

CCM DCM

Desired i

V2

di/dt limited so cannot respond fast.

Figure 5.33: Design in DCM

In this case we get:

1. Very fast di capability. dt

2. Simple control model iout = f(D).

3. Small inductor size (EL minimized @ RL = 1)

But we must live with:

1. Parasitic ringing

2. High peak and RMS currents

3. Need additional filters

DCM is sometimes used when very fast response speed is needed (e.g. for voltage

regulator modules in microprocessors), especially if means are available to cancel

ripple (e.g. interleaving of multiple converters). In many other circumstances DCM

is avoided, though one may have to operate in DCM under light-load conditions to

keep component sizes acceptable.

Page 60: Power Electronics - MIT
Page 61: Power Electronics - MIT
Page 62: Power Electronics - MIT
Page 63: Power Electronics - MIT
Page 64: Power Electronics - MIT
Page 65: Power Electronics - MIT
Page 66: Power Electronics - MIT
Page 67: Power Electronics - MIT
Page 68: Power Electronics - MIT
Page 69: Power Electronics - MIT
Page 70: Power Electronics - MIT
Page 71: Power Electronics - MIT
Page 72: Power Electronics - MIT
Page 73: Power Electronics - MIT
Page 74: Power Electronics - MIT
Page 75: Power Electronics - MIT
Page 76: Power Electronics - MIT
Page 77: Power Electronics - MIT
Page 78: Power Electronics - MIT
Page 79: Power Electronics - MIT
Page 80: Power Electronics - MIT
Page 81: Power Electronics - MIT
Page 82: Power Electronics - MIT
Page 83: Power Electronics - MIT
Page 84: Power Electronics - MIT
Page 85: Power Electronics - MIT
Page 86: Power Electronics - MIT
Page 87: Power Electronics - MIT
Page 88: Power Electronics - MIT
Page 89: Power Electronics - MIT
Page 90: Power Electronics - MIT
Page 91: Power Electronics - MIT
Page 92: Power Electronics - MIT
Page 93: Power Electronics - MIT
Page 94: Power Electronics - MIT
Page 95: Power Electronics - MIT
Page 96: Power Electronics - MIT
Page 97: Power Electronics - MIT
Page 98: Power Electronics - MIT
Page 99: Power Electronics - MIT
Page 100: Power Electronics - MIT
Page 101: Power Electronics - MIT
Page 102: Power Electronics - MIT
Page 103: Power Electronics - MIT
Page 104: Power Electronics - MIT
Page 105: Power Electronics - MIT
Page 106: Power Electronics - MIT
Page 107: Power Electronics - MIT
Page 108: Power Electronics - MIT
Page 109: Power Electronics - MIT
Page 110: Power Electronics - MIT
Page 111: Power Electronics - MIT
Page 112: Power Electronics - MIT
Page 113: Power Electronics - MIT
Page 114: Power Electronics - MIT
Page 115: Power Electronics - MIT
Page 116: Power Electronics - MIT
Page 117: Power Electronics - MIT
Page 118: Power Electronics - MIT
Page 119: Power Electronics - MIT
Page 120: Power Electronics - MIT
Page 121: Power Electronics - MIT
Page 122: Power Electronics - MIT
Page 123: Power Electronics - MIT
Page 124: Power Electronics - MIT
Page 125: Power Electronics - MIT
Page 126: Power Electronics - MIT
Page 127: Power Electronics - MIT
Page 128: Power Electronics - MIT
Page 129: Power Electronics - MIT
Page 130: Power Electronics - MIT
Page 131: Power Electronics - MIT
Page 132: Power Electronics - MIT
Page 133: Power Electronics - MIT
Page 134: Power Electronics - MIT
Page 135: Power Electronics - MIT
Page 136: Power Electronics - MIT
Page 137: Power Electronics - MIT
Page 138: Power Electronics - MIT
Page 139: Power Electronics - MIT
Page 140: Power Electronics - MIT
Page 141: Power Electronics - MIT
Page 142: Power Electronics - MIT
Page 143: Power Electronics - MIT
Page 144: Power Electronics - MIT
Page 145: Power Electronics - MIT
Page 146: Power Electronics - MIT
Page 147: Power Electronics - MIT
Page 148: Power Electronics - MIT
Page 149: Power Electronics - MIT
Page 150: Power Electronics - MIT
Page 151: Power Electronics - MIT
Page 152: Power Electronics - MIT
Page 153: Power Electronics - MIT
Page 154: Power Electronics - MIT
Page 155: Power Electronics - MIT
Page 156: Power Electronics - MIT
Page 157: Power Electronics - MIT
Page 158: Power Electronics - MIT
Page 159: Power Electronics - MIT
Page 160: Power Electronics - MIT
Page 161: Power Electronics - MIT
Page 162: Power Electronics - MIT
Page 163: Power Electronics - MIT
Page 164: Power Electronics - MIT
Page 165: Power Electronics - MIT
Page 166: Power Electronics - MIT
Page 167: Power Electronics - MIT
Page 168: Power Electronics - MIT
Page 169: Power Electronics - MIT
Page 170: Power Electronics - MIT
Page 171: Power Electronics - MIT
Page 172: Power Electronics - MIT
Page 173: Power Electronics - MIT
Page 174: Power Electronics - MIT
Page 175: Power Electronics - MIT
Page 176: Power Electronics - MIT
Page 177: Power Electronics - MIT
Page 178: Power Electronics - MIT
Page 179: Power Electronics - MIT
Page 180: Power Electronics - MIT
Page 181: Power Electronics - MIT
Page 182: Power Electronics - MIT
Page 183: Power Electronics - MIT
Page 184: Power Electronics - MIT
Page 185: Power Electronics - MIT
Page 186: Power Electronics - MIT
Page 187: Power Electronics - MIT
Page 188: Power Electronics - MIT
Page 189: Power Electronics - MIT
Page 190: Power Electronics - MIT
Page 191: Power Electronics - MIT
Page 192: Power Electronics - MIT
Page 193: Power Electronics - MIT
Page 194: Power Electronics - MIT
Page 195: Power Electronics - MIT
Page 196: Power Electronics - MIT
Page 197: Power Electronics - MIT
Page 198: Power Electronics - MIT
Page 199: Power Electronics - MIT
Page 200: Power Electronics - MIT
Page 201: Power Electronics - MIT
Page 202: Power Electronics - MIT
Page 203: Power Electronics - MIT
Page 204: Power Electronics - MIT
Page 205: Power Electronics - MIT
Page 206: Power Electronics - MIT
Page 207: Power Electronics - MIT
Page 208: Power Electronics - MIT
Page 209: Power Electronics - MIT
Page 210: Power Electronics - MIT