46
Pot-Economy in Total Synthesis Tohoku University Yujiro Hayashi O CO 2 Et AcHN NH 2 (-)-oseltamivir N H OTMS Prostaglandin E 1 (PGE 1 ) HO OH O CO 2 H N H OH F 3 C CF 3 CF 3 CF 3

Pot-Economy in Total Synthesis - Maggi Churchouse Events · 2020. 1. 8. · H2 ClO4 water decantation then water distillation 2.64 g 4.7 mL 10 mL 5 mol% exo:endo 82:18 97% ee 3.2

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Pot-Economy in Total Synthesis

    Tohoku University Yujiro Hayashi

    O CO2Et

    AcHNNH2

    (-)-oseltamivir

    NH

    OTMS

    Prostaglandin E1 (PGE1)

    HO OH

    OCO2H

    NH OH

    F3C CF3

    CF3

    CF3

  • Organocatalysis 

    Product is free from the contamination of metal. Exclusion of water and air is not necessary. Most of the ligands are non-toxic.

    NH

    Ph

    OTMSPh

    NH OH

    O

    NH OH

    O

    TBDPSO

    NH OH

    F3C CF3

    CF3

    CF3

    NH

    O

    O

    8

    OH

    O

  • Jorgensen-Hayashi Catalyst

    PhNO2

    MeH

    O

    +

    10 mol%

    hexane, 23 °C, 1 hH

    O2NOPh

    Me85%, 99% ee, syn : anti = 5.7 : 1

    NH

    PhPh

    OTMS

    NH OTMS

    +

    1)

    2) NaBH4 60%, 95% eeK. A. Jorgensen, et al., Angew. Chem. Int. Ed., 44, 794 (2005).

    NH OTMS

    F3C CF3CF3

    CF3

    MeH

    O

    BnS OH

    Y. Hayashi, et al., Angew. Chem. Int. Ed., 44, 4112 (2005).

    TMS = Me3Si-

    NN

    NBnS

  • Jorgensen-Hayashi Catalyst

    R

    O

    H

    R

    NOSiMe

    MeMe

    +

    NH OTMS

    E+

    R

    O

    HE

    R

    H

    ON

    OSiMe

    MeMe

    +

    R

    NH OTMS

    Nu−

    R

    H

    O

    Nu

    NH

    N

    HN NNN

    H HN

    ONH HN

    ONH

    HO CO2Et

    CO2EtHN S

    O

    OCF3

    NHSO2CF3

    NH2 NX NH

    MeNO

    BntBuNHNHS

    O

    OO

    OH NH

    CO2H

    Me

  • Conformation of Enamine

    Y. Hayashi, D. Seebach, T. Uchimaru; Chem. Eur. J., ASAP.

    NOSi

  • Conformation of Iminium ion

    Y. Hayashi, D. Seebach, T. Uchimaru; Chem. Eur. J., ASAP.

    NOSi

  • Reactions developed by our group

    O2NPh O

    HO

    H

    PhO2N

    NO2OH

    OHC

    Ph

    Ph

    Ph

    OHC

    OPh

    O MeH

    O

    OH

    Ph

    NBoc

    PhPh O

    OMeO

    O

    OMe

    H

    O

    MeMe

    O

    NPh

    O

    O

    Ph

    OH

    NO2

    N

    Ph Ph

    Me

    NO2

    NsO

    Ph Ph

    Me

    NO2

    O

    HC7H15

    O

    NH

    ArAr

    OTMS

    Ph

    NHBz

    O

    H

    99% ee 96% ee 92% ee99% ee

    97% ee 94% ee 97% ee 95% ee

    92% ee 95% ee 95% ee 94% ee 99% ee 99% ee

    98% ee

    Michael Michael Michael

    Michael

    Michael

    Mannich Domino

    Domino Domino Domino

    Diels-Alder Aza [3+3] Carbo [3+3]

    Oxidation Epoxidation

    Ph O

    HPh

    H

    O

    NO2

    Michael

    95% ee

  • There is a large effect of the substituent of silyl group on the enantioselectivity.

    Type A: Iminium ion as an intermediate/ Michael type reaction

    SO2PhPhO2S

    Me

    H

    O

    +Me

    H

    O

    SO2Ph

    SO2Phtoluene, rt, 20 h

    10 mol%catalyst

    NH OR

    PhPh

    1: R = Me3Si2: R = Ph2MeSi

    1 90 712 88 83

    2323

    2 94 900

    Ph H

    O

    MeO OMe

    OO O

    OMe

    O

    O

    OMeO

    Ph+

    10mol% catalyst20 mol% PhCO2H

    CH2Cl2, rt

    NaBH4

    MeOH, 0 °C

    OMe

    O

    OH

    OMeO

    Ph

    1 79 912 76 95

    5080

    Catalyst Yield/% ee/%Temperature/ °C

    Catalyst Time/min Yield/% ee/%

    N

    Phα β

    Nu-

    Type A

  • There is small effect of the substituent of silyl group on the enantioselectivity.

    Type B: Iminium ion intermediate/ Diels-Alder reaction

    NH OR

    PhPh

    1: R = Me3Si2: R = Ph2MeSi

    1 14 832 16 83

    Ph H

    O+

    10mol% catalyst20 mol% CF3CO2H

    toluene, rt, 20 h Ph

    OHC

    CHO

    Ph+

    exo endo

    80:2077:23

    NH OR

    F3C CF3

    CF3

    CF3

    3 86 9584:16

    3: R = Me3Si4: R = Et3Si

    4 80 9785:15

    Catalyst Yield/% exo:endo ee/%

    N

    Phα β

    Type B

  • There is no effect of the substituent of silyl group on the enantioselectivity.

    Type C: Enamine intermediate

    H

    O+

    10 mol% catalyst

    NO2Ph

    hexane, 0 °CPh NO2 H

    O

    cat 1 5 h syn:anti = 16:1 85% 99% eecat 2 24 h syn:anti = >20:1 89% 99% ee

    H

    O+

    CHCl3, rtN

    O

    O

    Ph N

    O

    O

    PhH

    O10 mol% catalyst H

    cat 1 24 h anti:syn = 8:1 70% 99% eecat 2 24 h syn:anti = 5:1 38% 99% ee

    NH OR

    PhPh

    1: R = Me3Si2: R = Ph2MeSi

    E

    NPh

    Type C

  • Three types of the reaction

    E

    N

    Phα β N Ph

    N

    Phα β

    Nu-

    Type A Type B Type C

    Type A: Bulkier silyl substituent affords higher enantioselectivity.!Type B and C: Small TMS affords excellent enantioselectivity.!!In the bulky silyl substituent, the reactivity decreases because of the slow formation of iminium ion, which is accelerated by acid.

    Y. Hayashi, D. Seebach, T. Uchimaru; Chem. Eur. J., ASAP.

  • Michael reaction ?

    PhNO2

    MeH

    O

    +

    5 mol%

    HO2N

    OPh

    Me98%, 99% ee, syn : anti = 14 : 1

    NH

    PhPh

    OTMSadditive time

    none 6 hp-NO2C6H4OH 15 min

    NO

    O2NPh

    88%, syn:anti=99:1D. Seebach, et al., Helv. Chim. Acta., 64, 1413 (1981).

    PhNO2 +

    O

  • D. Seebach, Y. Hayashi, et al., Helv. Chim. Acta, 2013, 96, 799.

    Michael reaction ?

    H

    O

    NOTMS

    PhPh

    NO2

    PhH

    N

    NPh

    Ph

    OTMSPh

    OO

    NO2

    N

    Ph

    Ph

    OTMSPh

    H

    N

    NO2Ph

    Ph

    OTMSPh

    H

    O

    NO2Ph

    NH OTMS

    PhPh

    NOTMS

    PhPh

    NO

    Ph O

    N

    NO2Ph

    OTMS

    PhPh

    H2O

    H2O

    Zwitter ion

    PhNO2

    MeH

    O

    +

    5 mol%

    HO2N

    OPh

    Me98%, 99% ee, syn : anti = 14 : 1

    NH

    PhPh

    OTMSadditive time

    none 6 hp-NO2C6H4OH 15 min

  • Novartis’ synthesis of Aliskiren�

    NH

    Ph

    OTMSPh

    N-methyl morpholine

    NaBH4

    EtOH 70% ee

    10 mol%

    H

    O

    NO2

    NO2BzO OHO2N

    NH2MeO

    O

    OMe

    OH HN

    O

    NH2

    O

    • [(HO2CCH)2]1/2

    Aliskiren / Tektuma®Novartis / hypertention medicationWO2008119804

  • exo Selective Diels-Alder reaction in the presence of water�

    Angew. Chem. Int. Ed., 47, 6634 (2008).

    N

    PhCHO

    OHC

    Ph

    TESO

    CF3

    CF3

    CF3

    F3C

    H2ClO4 water

    decantation thendistillationwater

    2.64 g 4.7 mL

    10 mL

    5 mol%

    exo:endo 82:18

    97% ee3.2 g, 81%

    RT, 8 h

    No organic solvent = Green chemistry Unusual exo-selectivity Low temperature is not necessary

  • C. Fehr et al.,(Firmenich), Angew. Chem., Int. Ed., 2009, 48, 7221.

    Synthesis of (-)-β-Santalol by Firmenich

    H

    O

    1.5 mol%

    H2O

    ClO4

    NH2

    TESO

    F3CCF3

    CF3

    CF3

    OHC

    CHO

    exo : endo = 70 : 30exo 95% ee, endo 78% ee

    61%

    OH

    (−)-β-Santalol

  • MeOH, RT

    71%, 93% ee

    +

    2 mol%

    H

    O

    CH3NO2

    1) NaH2PO3・2H2O NaClO2 2-methyl-2-butene

    2) Pd/C, H280%

    H

    O

    NO2

    OH

    O

    NH2

    Pregabalin: anticonvulsant

    NH

    PhOTMS

    Ph

    p-Cl-Ph

    OH

    O

    NH2

    Baclofen: GABAB receptor agonist

    +

    2 mol%

    4 mol%

    p-Cl-Ph

    80%, 92% ee

    H

    O

    NO2CH3NO2

    PhCOOHMeOH, RTp-Cl-Ph

    O

    H 2 steps

    87%

    NH

    PhOTMS

    Ph

    Org. Lett., 9, 5307 (2007).

  • Synthesis of Telcagepant by Merck

    H

    OFF CH3NO2

    NH

    PhPh

    OTMS

    5 mol%

    5 mol% tBuCO2H50 mol% B(OH)3

    THF-H2O

    FF CHO

    NO2

    73%, 95% ee >100 kg

    NO

    CF3

    ON N

    NH

    N

    O

    FF

    Telcagepant

    F. Xu et al.,(Merck), J. Org. Chem., 75, 7829 (2010).

    CGRP receptors antagonist for treatment of Migraine

  • Generation of quaternary stereocenters

    NH

    PhOTMS

    Ph

    neatR

    H

    O

    +R

    NO2

    H

    O

    10~20 mol%

    NO2

    H

    O

    O NO2

    H

    O

    EtO

    EtO NO2

    H

    O

    NO2

    H

    O

    TsO

    88%, 89% eeE : Z = 90 : 10 (SM)

    76%, 91% eeE : Z = 68 : 32 (SM)

    63%, 87% eeE : Z = 89 : 11 (SM)

    89%, 90% eeE : Z = > 99 : 1 (SM)

    MeNO2

    SM : Starting Material

    NO2

    H

    O

    Br81%, 88% ee

    E : Z = > 99 : 1 (SM)

    NO2

    H

    O

    Ph

    74%, 72% eeE : Z = 80 : 20 (SM)

    NO2

    H

    O

    EtO

    O

    67%, 80% eeE : Z = > 99 : 1 (SM)

    NO2

    H

    O

    49%, 88% eeE : Z = > 99 : 1 (SM)

    Chem. Eur. J., 2014, 20, 12072.

  • Total synthesis of (R)-Horsfiline

    NBn

    O

    H

    O

    MeNO2, H2O

    NH

    O

    N

    NBn

    O

    OO2N

    HMeO MeO

    MeO

    (R)-Horsfiline

    95% ee

    NH

    Ar

    OTMSAr

    iPrOH

    20 mol %

    E/Z = 1/2

    Ar = 3,5-CF3-C6H3-

    NBn

    O

    N

    NBn

    O

    HN

    4 reactions in "one-pot"

    MeO

    MeO

    46% (4 steps yield)

    ZnAcOH

    H2O

    aq. H2CO Na, NH3

    THF, –78 oC80%

    Total yield, 33%Isolation from Horsfieldia superba:B. Bode et al., J. Org. Chem., 1991, 56, 6527.

    Chem. Eur. J., 2014, 20, 13583.

  • Total synthesis of biologically active compounds

    OO

    O

    HO

    O

    OOH

    O

    HMe

    MeO

    O

    O

    HO

    O

    OOH

    O

    HMe

    Me

    epoxyquinol A epoxyquinol B

    OO

    O

    HO

    O

    OOH

    O

    HMe

    Me

    epoxyquinol C

    O O

    O

    OH

    OMe

    OH

    O

    O Me

    epoxytwinol A

    O

    OOMe

    H

    O

    Me

    Me

    Me

    RK-805 FR-65814

    O

    OOMe

    OH

    O

    Me

    Me

    Me

    ovalicin 5-demethylovalicinfumagillol

    O

    OHOMe

    H

    O

    Me

    Me

    Me O

    OHOMe

    H

    O

    Me

    Me

    Me O

    OOH

    OH

    O

    Me

    Me

    Me

    OO

    OHO

    OH

    OMeMe

    OH

    H

    H

    MeMe OH

    panepophenanthrin

    OH

    OH

    Me

    +NH3HN

    OCO2-ON

    nikkomycin B

    HN

    O

    OHO OH

    O

    O

    HO

    nPr

    O

    OH

    EI-1941-1

    O

    O

    HO

    nPr

    O

    O

    EI-1941-2

    O

    HO

    nPr

    O

    O

    EI-1941-3

    HO

    Me

    OMeO Me

    O

    NH

    O

    OHMe

    O

    Me

    OMeOMe

    O

    NH

    O

    OH

    OHO

    Me

    OMeOMe

    O

    NH

    OH

    O

    HOH

    epolactaeneNG-391 lucilactaene

    OOOH

    NaHO3PO OH

    Me OHfostriecin

    HNO

    MeO

    OH

    O

    OMePh

    OOH

    HOEt

    HNO

    Me

    Et

    OOH

    O

    OHPh

    HNO

    MeO OH

    OPh

    O

    OMeEt

    O

    azaspirene pseurotin A synerazol

    HNO

    MeO OH

    OPh

    O

    OMe

    FD-838

    OEt

    ent-convolutamydine E

    NO

    HO

    H

    madindoline A

    NMe

    NMe

    MeO

    H

    CPC-1

    Br

    Br NH

    O

    HO OH

    MeO O

    Me nBu

    NH

    HO

    HO

    Me

    HOMe

    O

    O

    OMeHN

    OO

    (+) - cytotrienin A

    AcHNNH2

    O CO2Et

    (-)-oseltamivir

    O

    OMeC14H29

    O

    (R)-Methyl Palmoxirate

    OH

    O

    NH2

    pregabalin

    OH

    O

    NH2

    Cl

    baclofen

    F

    FF

    NH2

    O

    NN

    NN

    CF3

    ABT-341

    CO2Me

    HO

    O

    OHProstaglandin E1 methyl ester

  • O

    AcHNNH2

    CO2Et

    (–)-oseltamivir phosphate (Tamiflu)

    ·H3PO4

    Tamiflu: Orally administrated anti-Influenza drug developed by Gilead Sciences, Inc. and RocheTotal Synthesis: Corey (2006), Shibasaki (2006),Yao (2006), Wong (2007) Fukuyama (2007), Fang (2007), Kann (2007), Trost (2008) Banwell (2008), Mandai (2009), Ma (2010) et al.,

    Synthetic Challenge: Control of three continuous chiral center Selectivity (enantio- and diastereo-)

    62 total syntheses

  • Angew. Chem. Int. Ed., 2009, 48, 1304; Chem. Eur. J., 2010, 16, 12616.

    2 “one-pot” synthesis of (-)-oseltamivir

    CO2EtO

    t-BuO2CNO2

    Stol

    t-BuO2CNO2+

    NH

    PhPh

    OTMS

    1 mol%

    20 mol% ClCH2CO2H

    toluene, rt

    PO

    OEt

    O

    EtOEtO

    Cs2CO3

    toluene, 0 °C;evaporation;

    EtOH, rt

    tolSH

    –15 °C

    5S

    CO2EtO

    AcHNNH2

    (–)-Oseltamivir70% (single diastereomer)

    1) TFA; evaporation2) (COCl)2; evaporation3) TMSN3

    4) AcOH, Ac2O; evaporation5) Zn, TMSCl6) NH3; K2CO3

    O

    t-BuO2CNO2

    H

    O CO2EtO

    t-BuO2CNO2

    5R

    R : S = 4.6 : 1

    H

    OO

    82% (6 steps)

  • Angew. Chem. Int. Ed., 2009, 48, 1304; Chem. Eur. J., 2010, 16, 12616.

    2 “one-pot” synthesis of (-)-oseltamivir

    CO2EtO

    t-BuO2CNO2

    Stol

    t-BuO2CNO2+

    NH

    PhPh

    OTMS

    1 mol%

    20 mol% ClCH2CO2H

    toluene, rt

    PO

    OEt

    O

    EtOEtO

    Cs2CO3

    toluene, 0 °C;evaporation;

    EtOH, rt

    tolSH

    –15 °C

    5S

    CO2EtO

    AcHNNH2

    (–)-Oseltamivir70% (single diastereomer)

    1) TFA; evaporation2) (COCl)2; evaporation3) TMSN3

    4) AcOH, Ac2O; evaporation5) Zn, TMSCl6) NH3; K2CO3

    O

    t-BuO2CNO2

    H

    O CO2EtO

    t-BuO2CNO2

    5R

    R : S = 4.6 : 1

    H

    OO

    82% (6 steps)

  • R1NO2

    NH

    PhPh

    OTMSH

    R2

    OH

    O

    NO2R1

    R2 H R3

    O

    O

    O

    R1

    R2

    NO2R3

    O

    OHR2

    R1NO2

    R3

    TMSO

    R2

    R1NO2

    R3

    DBU

    TiCl4

    Highly diastereo- and enantio-selective

    R1NO2

    NH

    PhPh

    OTMSH

    R2

    OH R3

    OTMS

    OR2

    R1NO2

    R3DBU

    5 mol%

    TiCl4

    up to 99% eeY. Hayashi et al., Angew. Chem. Int. Ed., 2011, 50, 3774.

    One-pot and cascade synthesis of substituted chiral pyran

  • R1NO2

    NH

    PhPh

    OTMSH

    R2

    OH R3

    OTMS

    OR2

    R1NO2

    R3DBU

    5 mol%

    TiCl4

    up to 99% eeY. Hayashi et al., Angew. Chem. Int. Ed., 2011, 50, 3774.

    One-pot and cascade synthesis of substituted chiral pyran

    One-pot and cascade synthesis of substituted chiral pyperidine

    R1NO2

    NH

    PhPh

    OTMSH

    R2

    OH R3

    NRTMS

    NRR2

    R1NO2

    R3DBU

    5 mol%

    TiCl4

    up to 99% eeY. Hayashi et al., Org. Lett., 2010, 12 , 4588.

    One-pot reaction is powerful for the library synthesis. One-pot reaction is useful for the medicinal chemistry.

  • Angew. Chem. Int. Ed., 2009, 48, 1304; Chem. Eur. J., 2010, 16, 12616.

    2 “one-pot” synthesis of (-)-oseltamivir

    CO2EtO

    t-BuO2CNO2

    Stol

    t-BuO2CNO2+

    NH

    PhPh

    OTMS

    1 mol%

    20 mol% ClCH2CO2H

    toluene, rt

    PO

    OEt

    O

    EtOEtO

    Cs2CO3

    toluene, 0 °C;evaporation;

    EtOH, rt

    tolSH

    –15 °C

    5S

    CO2EtO

    AcHNNH2

    (–)-Oseltamivir70% (single diastereomer)

    1) TFA; evaporation2) (COCl)2; evaporation3) TMSN3

    4) AcOH, Ac2O; evaporation5) Zn, TMSCl6) NH3; K2CO3

    O

    t-BuO2CNO2

    H

    O CO2EtO

    t-BuO2CNO2

    5R

    R : S = 4.6 : 1

    H

    OO

    82% (6 steps)Total Yield 60%

  • Tandem Michael/HWE reaction

    CO2EtO

    t-BuO2CNO2

    CO2EtO

    t-BuO2CO2N

    PEtO2CO

    OEtOEt

    CO2EtO

    t-BuO2CNO2

    OHPO

    OEtOEt ++O

    t-BuO2CNO2

    H

    O

    CO2EtPEtO

    OEtO

    Cs2CO3CH2Cl2

    0 °C, 3 h

    ~30% ~30% ~30%

    CsCO3, EtOHCsCO3, EtOH, quant.~90%

    O

    t-BuO2CNO2

    H

    O CO2EtPO

    EtOEtO

    CH2Cl2, 0 °C, 3 h

    CO2EtO

    t-BuO2CNO2

    5R

    ~80%, 5R : 5S = 4.6 : 1

    1.5 eqCs2CO3 EtOH

    rt, 15 min

    One-pot Reaction: purification economy, chemical waste economy, time econony, increase yield

  • “one-pot” synthesis of (-)-oseltamivir

    One-pot operation

    AcHN

    +

    OH

    O

    NH

    PhPh

    OSiPh2Me30 mol% HCOOH

    ClC6H5, rt, 1.5 h

    CO2EtPO

    EtOEtO

    Cs2CO3ClC6H5, 0 °C, 3 h

    ; EtOH, 0 °C, 30 min

    MeHS

    –15 °C, 36 h

    CO2EtO

    NH2AcHN

    S

    10 mol%

    NO2

    TMSCl , –15 °C; Zn, 70 °C, 2 h

    NH3 bubbling0 °C, 10 min

    ; K2CO3, rt, 14 h

    O

    AcHNNO2

    O

    H

    CO2EtO

    NO2AcHN

    Stol

    S

    CO2EtO

    NO2

    AcHNR

    CO2EtO

    NH2AcHN

    Stol

    S

    No evaporationNo solvent exchangeGram-scale synthesis

    (–)-Oseltamivir34% (34 mg)28% (1.02 g)

    D. Ma, Angew. Chem. Int. Ed., 2010, 49, 4656. R. Sebesta, Synthesis, 2012, 44, 2424. G. Lu, ChemCatChem, 2012, 4, 1007.

    Chem. Eur. J., 2013, 19 , 17789.

  • Pot economy

    •  Atom economy (Trost)�•  Step economy (Wender) •  Redox economy (Baran & Hoffmann)

    •  Purification step economy�•  Chemical waste economy�•  Time economy�•  Solvent economy

    Green Reaction

    Operational Economy

  • CO2EtO

    AcHNNH2·H3PO4

    Tamiflu (Roche) ABT-341 (Abbott laboratory)

    F

    F F NH2

    NN N

    N

    CF3

    O

    NN

    NN

    O

    CF3

    NH2

    F

    FF JanuviaTM (Merck)

    Dipeptidyl peptidase-4 (DPP-4) inhibitor

    Non-insulin dependant diabetes

  • NO2F

    F F

    TMSO

    toluene, 120 oC2 days

    TFA

    CH2Cl2rt, 10 min

    O

    NO2

    F

    F F(racemic)

    61%

    NO2

    F

    F F(racemic)

    Br

    H

    O

    PBr3, DMF

    CH2Cl20 oC to rt, 24 h

    34%

    NO2

    F

    F F(racemic)

    Br OH

    NaBH(OAc)3

    CH2Cl2, rt, 12 h

    78%

    Zn, AcOH

    MeOH80 oC, 2 h

    (Boc)2O

    THF NHBoc

    F

    F F(racemic)

    Br OH

    85% (2 steps)

    NHBoc

    F

    F F(racemic)

    OHHCO2H, nBu3NPd(PPh3)2Cl2

    DMF, 80 oC12 h

    70%

    NHBoc

    F

    F F(racemic)

    O

    HDMP

    CH2Cl2

    81%

    NaClO2isoprene

    NaH2PO4, buffer

    DMSO, 0 oC, 2 h

    quant.

    NHBoc

    F

    F F

    (racemic)

    O

    OH

    NHBoc

    F

    F F

    (racemic)

    O

    OMeTMSCHN2

    MeOH, CH2Cl2NHBoc

    F

    F F(chiral)

    O

    OMechiral prep.

    Yield (no data ) Yield (no data )

    NHBoc

    F

    F F(chiral)

    O

    OH2N NaOH aq.

    rt, 5 h

    Yield (no data )

    NH3 TFA

    F

    F F(chiral)

    O

    HNN

    NN

    CF3TBTU, TEA, DMF

    then TFA, CH2Cl2

    NN

    NN

    CF3

    Yield (no data )

    13 StepsTotal Yield :

  • Angew. Chem. Int. Ed. 2011, 50, 2824.

    F

    F F

    NO2

    Me H

    O

    NH

    Ph

    OTMSPh

    10 mol% CO2tBuPO

    EtOEtO

    HNN

    NN

    CF3

    ABT-341

    iPr2EtN

    EtOH−40 oC to rt

    ; evaporation

    F

    F FNH2

    NN

    NN

    CF3

    O

    One-Pot Total Synthesis of ABT-341

    Cs2CO3

    CF3CO2H

    1.4-dioxane0 oC to rt

    ; evaporation

    CH2Cl2, 0 oC; EtOH, 0 oC to rt; TMSCl, −40 oC

    CH2Cl2−40 oC to rt

    ; evaporation

    TBTUiPr2EtN, THF

    0 oC to rt; nPrNH2, rt

    ZnAcOH

    EtOAc, 0 oC; NH4OH

    F

    F FNO2

    H

    O

    F

    F FNO2

    CO2tBu

    F

    F FNO2

    CO2tBu

    F

    F FNO2

    CO2H

    6 stepsOne-Pot OperationTotal yield : 63%

    1.0 equiv.

    2.0 equiv.1.2 equiv.

    1.1 equiv.

    5R

    5S

  • HO OH

    O

    PGE1

    CO2H

    HO OH

    O

    PGE2

    CO2H

    HO OH

    HO

    PGF2α

    CO2H

    OH

    O

    PGA1

    CO2H

    OH

    O

    PGB1

    CO2H

    OH

    HO

    PGF3α

    CO2H

    HO

    O

    HO

    CO2H

    OHPGI2

    OOH

    PGG2

    CO2HOO

    latanoprost

    HO OH

    PhCO2iPr

    HO

    Prostaglandins

    Total syntheses: Corey, Stork, Woodward, Noyori, Danishefsky etc.beraprost

    HO OH

    O

    OH

    PGH2

    CO2HOO

    O OH

    HO

    PGD2

    CO2H

    OHO

    OH

    CO2H

    OHTXB2

    O

    CO2H

    OH

    O

    TXA2

    HO

    CO2H

    OHCarbacyclin

    HO OH

    O

    limaprost

    CO2H

    HO

    CO2H

    OH

    iloprost

    HO OH

    O

    ornoprost

    CO2MeO

    CO2Na

    cloprostenol

    HO OH

    CO2H

    HO

    O

    Cl

    bimatoprost

    HO OH

    PhCONHEt

    HO

  • Corey’s Total Synthesis

    E. J. Corey et al., J. Am. Chem. Soc., 91, 5675 (1969).!E. J. Corey et al., J. Am. Chem. Soc., 92, 2586 (1970).!Cf. V. K. Aggarwal et al., Nature, 489, 278 (2012).

    MeO

    CN

    Cl

    2 steps 3 steps HO

    O

    HO

    KI3NaHCO3

    OO

    HO

    2 stepsO

    O

    AcOCorey lactone

    OMe OMe

    OMe

    PGE1

    HO OH

    OCO2H

    PGE2

    HO OH

    CO2H

    O

    PGF2α

    HO OH

    CO2H

    HO

    Total 19 steps

    I

    8 steps

    11 steps

  • NH OTMS

    PhPh10 mol%

    THF, rt

    OHO OH

    66%, 99% eeY. Hayashi et al., Angew. Chem. Int. Ed., 46, 4922 (2007).

    NO2HO R

    H

    O

    O2N R

    Our background: Formal 4+2 cycloaddition reaction

    N OTMSPh

    Ph

    N OTMSPh

    Ph

    NO2R

    H

    O

    HNH OTMS

    PhPh

    H2OH2O

    Michael type reaction

    Henry reaction

    H

    O

    CHO

    H

    O

    NO2O R

    H

    N OTMSPh

    Ph

    NO2HO R

    H

    OH2O

    -H2O

    OHO OH

    O2N R

  • Retrosynthetic analysis 1

    OH

    CO2MeO

    HO O

    O2NR

    H

    O2N

    HO

    O

    RO2N

    ON

    R'H

    H

    O

    O

    O2NCO2Me

    Formal 3+2 cycloaddition

    CO2Me

    OMeO OMe Amberlyst 15

    H2O, 90 °C

    H

    OH

    O

    TCI: 22 euro (25 g)75%

  • 10 mol% p-nitrophenol

    MeCN, rt

    (MeO)2PO O

    iPr2NEt

    0 oC

    LiCl, iPr2NEt

    THF, rt

    2 steps 87%

    NH

    PhOTMS

    Ph10 mol%

    H

    OH

    O

    O

    O2NCO2Me

    HO

    H

    O2NCO2Me

    HO

    O

    O2N CO2Me

    dr = 76:17:7

    Al2O3

    (ClCH2)2, 60 oC

    75%, 94% eecis : trans = 91 : 9

    -20 oC, 8 h

    68%, dr = 96:4 OH

    O2NCO2Me

    HO

    OH

    O2NCO2Me

    OH

    OCO2Me

    BCl2

    HO

    PGE1 methyl ester

  • OH

    O2NCO2Me

    OH

    OCO2Me

    HO

    R2

    R1O

    HOR2

    R1O

    O R2

    R1O

    R2

    R1O

    R2

    R1O2N

    Retrosynthetic analysis 2

    OH

    O2NCO2Me

    OH

    OCO2Me

    OH

    O2NCO2Me

    OH

    OCO2Me

    DABCO (X eq.)

    MeCNtemp., time

    A

    C

    PGA1 methyl ester (B)

    +

    +

    time / hyield / %

    X eq.

    121

    temp. / oC

    23

    161 0

    301.5 0

    A B C

    0 42 19

    60 11 trace

    0 73 trace

  • NO2

    18O2 (1 atm)DABCO

    MeCN, rt, 8 h

    18O

    70%, 90% incorporation of 18O

    R'

    RNO

    O

    R'

    RODABCO

    CH3CN, 0 °C, 30 h73%

    RN

    R'

    OO

    RN

    R'

    OO base acid

    R

    N

    R'

    OHHO

    R

    N

    R'

    OHHO

    OH

    H

    R R'O

    Nef Reaction

    H2O

    N16O2 MeCN-H218Ort, 20 h

    16O

    71%

    DABCO

    N18O2

    DABCO

    MeCN, rt, 20 h

    16O

    74%

  • R'

    RNO

    O

    R'

    RODABCO

    CH3CN, 0 °C, 30 h73%

    RN

    R'

    OO

    RN

    R'

    OO base acid

    R

    N

    R'

    OHHO

    R

    N

    R'

    OHHO

    OH

    H

    R R'O

    Nef Reaction

    H2O

    R1 N

    R2O

    O

    NN

    R1 N

    R2O

    ONR3

    HNR3

    R1 O

    R2R1 N

    R2

    O

    OO2

    SET mechanism

    Chem. Eur. J. ASAP.

  • R1 R2

    NO2 base

    R1 R2

    NO O

    O O

    R1 R2

    NO O

    R1 R2

    NO O

    O O O O

    NO O

    R2R1 O O

    NO O

    R2R1 O

    ONO2R1 R2

    OOR1 R2

    NO O

    R1OOR2

    R1 R2

    NO O

    NO2

    R1 R2

    O2

    SET

    Chem. Eur. J. ASAP.

  • H2O2 aq.NaOH aq.

    MeOH, -45 oC

    MeOH-Et2O, rt

    NH4Cl aq.Zn

    2 steps 74%PGE1 methyl ester

    OH

    OCO2Me

    OH

    OCO2Me

    O

    HO OH

    OCO2Me

    1) E. J. Corey et al., J. Org. Chem., 38, 3187 (1973).

    1)

  • OH

    O2NCO2Me

    OH

    OCO2MeDABCO

    MeCN0 °C, 30 h

    PGA1 methyl ester73%

    H2O2 aq.NaOH aq.

    MeOH, -45 oC

    MeOH-Et2O, rt

    NH4Cl aq.Zn

    2 steps 74% PGE1 methyl esterOH

    OCO2Me

    O HO OH

    OCO2Me

    1) E. J. Corey et al., J. Org. Chem., 38, 3187 (1973).

    1)

    10 mol% p-nitrophenol

    MeCN, rt

    (MeO)2PO O

    iPr2NEt

    0 oC

    LiCl, iPr2NEt

    THF, rt2 steps 87%

    NH

    PhOTMS

    Ph10 mol%

    H

    OH

    O

    O

    O2NCO2Me

    HO

    O2N CO2Me

    dr = 76:17:7

    Al2O3

    (ClCH2)2, 60 oC-20 oC, 8 h

    BCl2

    68%

    Y. Hayashi, S. Umemiya, Angew. Chem. Int. Ed., 2013, 52, 3450.3 pot, Total yield 14%

    3 “One-pot” synthesis of PGE1 methyl ester

  • 2013, July

    Angew. Chem. Int. Ed., 2013, 52, 3450.

  • Summary

    O CO2Et

    AcHNNH2

    (-)-oseltamivir Prostaglandin E1 (PGE1)

    HO OH

    OCO2H

    ABT-341 (Abbott laboratory)

    F

    F F NH2

    NN N

    N

    CF3

    O

    One catalyst can change the synthesis.

    NH

    OTMS