59
Heavy Construction Heavy Construction Lecture #20 Lecture #20 Post Post-tensioned Concrete: tensioned Concrete: Design Principles Design Principles Design Principles Design Principles courtesy of ourtesy of Carlos Palomino (Suncoast Post Carlos Palomino (Suncoast Post-tension) tension)

Post Tension Ing Design

Embed Size (px)

Citation preview

Page 1: Post Tension Ing Design

Heavy ConstructionHeavy Construction

Lecture #20Lecture #20

PostPost--tensioned Concrete:tensioned Concrete:

Design PrinciplesDesign PrinciplesDesign PrinciplesDesign Principlesccourtesy ofourtesy of

Carlos Palomino (Suncoast PostCarlos Palomino (Suncoast Post--tension)tension)

Page 2: Post Tension Ing Design

SUNCOAST POST-TENSION

• Suncoast was founded in 1983, and today we are the largest supplier of fabricated, un-bonded post-tensioning materials and services in the United States for buildings and foundations.

• We provide the specialty fabricated materials, equipment, engineering support, and technical field services necessary to meet any post-tensioned concrete structural job requirements.

• Suncoast currently operates 16 branch offices in the United States. SCPT has the presence and capabilities to serve projects in North, Central, and South America.

Page 3: Post Tension Ing Design

SAMPLES OF POST-TENSIONED CONCRETE STRUCTURESCONCRETE STRUCTURES

Page 4: Post Tension Ing Design

This structure is a cylinder, square in plan. The rear rib is supported by columns, and the front rib is essentially an arch

supported at the abutments, and at the crown, laterally, by prestressing cables running across the top of the shell.

Page 5: Post Tension Ing Design

Pre-stressed arches at the Moscone Center - San Francisco –1981. Demonstrated effective use of prestressing to meet strict

architectural guidelines (spans of 275 ft)

Page 6: Post Tension Ing Design

THRUST RESISTED BY PRESTRESSED CABLES

Arch under gravity loads

Thrust forces at base Prestressed cables added at

foundation level

Page 7: Post Tension Ing Design

The Normandy Bridge - 1995. Built on the river Seine, near Le Havre (FR). At the inauguration date, it was the world’s record of cable-stayed bridges with a

856-m span and a total length of 2141-m. The two towers are the world bridge's highest ones in prestressed concrete. Also prestressed concrete main span

deck was utilized.

Page 8: Post Tension Ing Design

Falconhead Golf Course, Golf Green Cantilevered Slab (Bee Cave, TX). Bonded, encapsulated post-tensioned slab (thickness: 32" at cantilever support. 18" at cantilever tip). The main cantilevered slab spans 20 feet and is completed by a tip-cantilever which adds an

additional 8-foot span to the cantilevered slab

Page 9: Post Tension Ing Design

Pike at Rainbow Harbor Parking Building – Long

Beach California shows long Beach California shows long cantilevered spiral ramps built using post-tensioned

concrete

Page 10: Post Tension Ing Design
Page 11: Post Tension Ing Design

Calgary Olympic Oval-1988. First 400m covered speed skating oval. Roof consists of a series of post-tensioned concrete arches

Page 12: Post Tension Ing Design

��������������� ����������� � ������������� �������������������������� ���������������������������� !"����#$����������������

Page 13: Post Tension Ing Design

������������������������������������������������

�������������������� ��������������������

����������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������

����������� ������������ ������������ ������������ �

���� �!"�����#������ �!"�����#������ �!"�����#������ �!"�����#��

Page 14: Post Tension Ing Design

PT PROJECTS

• Largest developments in the U.S.A. are using post-tensioned concrete slabs in commercial buildings.

• High Rise Commercial • High Rise Commercial (Condo units)

• Office Buildings• Began in 1950 with pre-cast

lift-slabs• PT cast in place slabs

started in 1960’s

Page 15: Post Tension Ing Design

�$��%��&����$��%��&����$��%��&����$��%��&���

�����'�������'�������'�������'�������'�������'�������'�������'��

Page 16: Post Tension Ing Design

�(���)�&��(���)�&��(���)�&��(���)�&�

AXIS CONDO

Page 17: Post Tension Ing Design

������&���������$��������&���������$��������&���������$��������&���������$��

AXIS CONDO

Courtesy of Brokers Cervera Real Estate

Page 18: Post Tension Ing Design

*++�*++�*++�*++�

'��),���'��),���'��),���'��),���

AXIS CONDO

'��),���'��),���'��),���'��),���

Page 19: Post Tension Ing Design

�-�����-�����-�����-����

��. ����. ����. ����. ��

Courtesy of Florida East Coast Realty

Page 20: Post Tension Ing Design

Behavior of concrete member

Concrete beam or slab

Span between supports

Page 21: Post Tension Ing Design

Loaded member

Deflection issue

Page 22: Post Tension Ing Design

Effect of the loading

Top face feels compressionTop length shortens

∆∆∆∆top

∆∆∆∆bot

Original member length

Bottom face feels tension

Bottom length increased

∆∆∆∆bot

Page 23: Post Tension Ing Design

Response of member

Top face feels compression

Bottom face feels tension•Concrete weak in tension•Starts cracking soon

Page 24: Post Tension Ing Design

If member is notreinforced with steel

Cracks will continue to openuntil……

Page 25: Post Tension Ing Design

If member is notreinforced with steel

Collapse is imminent

Page 26: Post Tension Ing Design

Now if member has rebar

Bottom reinforcement added

Bottom face feels tension•Cracks will still develop•Cracks will be smaller and “controlled”•Collapse is prevented

Page 27: Post Tension Ing Design

NOW IF THE MEMBER HAS POST-TENSIONING

Top face feels compression

Bottom face feels tension

EFFECT OF THE LOADS

Page 28: Post Tension Ing Design

NOW IF THE MEMBER HAS POST-TENSIONING

Possible TENSION at top faceDeflected shape

EFFECT OF THE POST-TENSIONING

OPPOSITE EFFECT FROM THE LOADS

Bottom face feels COMPRESSION

Cracks, deflections, loadings, behavior is controlledby active reinforcement called post-tensioning.

Page 29: Post Tension Ing Design

Wpreca

P P

Wload

T T

Forces in the member after tendons are stressed and anchored

T

Page 30: Post Tension Ing Design

aP P

Wload

Reduced load

Final effective forces in the member after tendons are stressed and anchored

Page 31: Post Tension Ing Design

ADVANTAGES

• In summary, designer of a post-tensioned structure has a great flexibility in choosing the amount and location of in choosing the amount and location of the prestressing steel to best resist the anticipated loads and deflection.

• Active reinforcement

Page 32: Post Tension Ing Design

POST-TENSIONED CONCRETE

Main Advantages:– Reduction of slab thickness (material savings).– Thinner slabs mean savings in time and labor.– Reduction of deflections.– Reduction of building height (cladding, mechanical, etc.)– Reduction of building weight (foundation savings).– Reduction of building weight (foundation savings).– Because prestressing steel has higher strength than mild steel,

PT slabs are built with approximately 60 to 70% less steel (more space for MEP installations).

– Reduction of cracking due to permanent pre-compression, better corrosion resistant

– Architectural freedom of larger spans and irregular slab geometries

– Reduction in construction time since early stripping of formwork is permitted

Page 33: Post Tension Ing Design
Page 34: Post Tension Ing Design
Page 35: Post Tension Ing Design
Page 36: Post Tension Ing Design

������������������������������������� �� ���

% �������&���� �'�����

% (������'���)��������“���”% (������'���)��������“���”% ������*���+��&�������

% ,� +�-.�)���/�������0

% �������������*��

% 1����'�����'���)�

% &�������������*������ �����������������������������2��)���

Page 37: Post Tension Ing Design

(3�,�44��&�&�56&7

&������ ��������������8��������������&������ ��������������8�������������������� ���� ��������7

%��������/���9������ ��)��0�������+��"$�

Page 38: Post Tension Ing Design

�� �!��� ������������������������ 7

%:�� �&���� �'�����%:�� �&���� �'�����

%:�� �&���� �&������/����0%,�+�";.�)��

•“1����” ������*��%(�����“<�����” ���������������%5������������

Page 39: Post Tension Ing Design

-����)�)��������'��-����)�)��������'��-����)�)��������'��-����)�)��������'��

Page 40: Post Tension Ing Design

������)�&�)�)��������'��������)�&�)�)��������'��������)�&�)�)��������'��������)�&�)�)��������'��

Page 41: Post Tension Ing Design

-���������&����'��-���������&����'��-���������&����'��-���������&����'��

Page 42: Post Tension Ing Design

�� �"��������� #

%&�����������7%'���)�

%���������

%6��*�*�������=���*��%6��*�*�������=���*��

%&����7%'�������

%&���� 7

�,�>�����

�& ���

Page 43: Post Tension Ing Design

$� �����������%������� #

�������������.������?�.������?���.$����&�������

�&������������.������?���.������?���.����&�������&������������.������?���.������?���.����&������

�&��������������"������?���-������?���.����&�������4��������6���������������7

�������*��#�.������?���.������?�#�.����&��������������������*�������� ������������2���������������� ��)����������*���������>��������…�

Page 44: Post Tension Ing Design

���&��������' �$(����)*+,�-���.����+,/#

%6�>�*�*�������������������7%-�����’����/�2��@��0%�"����’����/4�2��0�%�"����’����/4�2��0�

�(��6�>�*�*�&��������A������ ��"����’�������<����������*������=����������������*�*�

�6��*�*�������*��/���������������������������)�2��� ����������0

Page 45: Post Tension Ing Design

0�������$����������1�����������2������

% ���������B��������������1�+�.�...!;�1��% 4�@���&���������6��������+.�..C�1% 4�@���&���������6��������+.�..C�1

Page 46: Post Tension Ing Design

�����"����� �"��-��������/#

MDemand MResisting

vDemand

Results of structuralanalysis

vProvided

EQUILIBRIUM EQUATIONSSTRAIN COMPATIBILITYMATERIAL STRENGTH

Page 47: Post Tension Ing Design
Page 48: Post Tension Ing Design
Page 49: Post Tension Ing Design

$�����������������������

Page 50: Post Tension Ing Design
Page 51: Post Tension Ing Design

������$ ���������������������

Page 52: Post Tension Ing Design

��������������������!�������������$

Page 53: Post Tension Ing Design

4�2������������*�����2���� ,��������

��-������-���/������&����'�

&����2�� �2���� ����2���*� &����2�� �����*����������������������

@��������� �2��2������������*�

Page 54: Post Tension Ing Design

��-������-���/������&����'��0��1��2

4�2��������2�� �8�����

General framing layout of pan joist system.

Page 55: Post Tension Ing Design

��-������-���/������&����'��0��1��2

Mat foundations

Page 56: Post Tension Ing Design
Page 57: Post Tension Ing Design

��-������-���/������&����'��0��1��2

Slabs on grade

Page 58: Post Tension Ing Design

STANDARD SYSTEM:Usually utilized in non-aggressive environments. Tendon is coated with corrosion inhibiting grease within a plastic sheathing by the process of extrusion.

ENCAPSULATED SYSTEM:

TYPES OF UNBONDED P.T. SYSTEMS

System that provides watertight connection at all stressing and dead ends and has the anchor cavity of the anchorage covered by a watertight cap. Provides better corrosion resistance. Tendon is still coated with corrosion inhibiting grease within a plastic sheathing by the process of extrusion.

Note:Even though codes do not strictly mandate for one or another, we recommend encapsulated, especially for parking structures (exposure condition, wide temperature variations)

Page 59: Post Tension Ing Design

What does the code define as aggressive environment?

One in which structures are subject to direct or indirect applications of deicing chemicals, seawater, brackish water, or spray from these sources; structures in the immediate vicinity of seacoasts, and structures where anchorage areas are in direct contact with soils.

TYPES OF UNBONDED P.T. SYSTEMS

With the exception of those building located near the coast, nearly all enclosed buildings (office, condos, apartments) are considered to be non-aggressive environments.

As per PTI recommendations for Construction and Maintenance of Concrete Parking Structures, and also as per ACI-362-Guide for Design of Durable Parking Structures, “Aggressive environments” are defined as areas within 5 miles of the Atlantic Ocean (Coastal Chloride Zone I) and the Encapsulated System is recommended.