33
Post-resuscitation care Jerry Nolan Royal United Hospital Bath, UK [email protected]

Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Post-resuscitation care

Jerry NolanRoyal United HospitalBath, [email protected]

Page 2: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction
Page 3: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Intensive Care Med 2015;41:2039–56

Resuscitation 2015;95:202–222

Page 4: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Post-cardiac arrest syndrome

◼ Persistent precipitating pathology

◼ Systemic ischaemia/reperfusion response

◼ Post-cardiac myocardial dysfunction

◼ Post-cardiac arrest brain injury

Nolan JP, Neumar RW. Resuscitation 2008;79:350-79

Page 5: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction
Page 6: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

2000 – 2009 (OHCA)N = 768 (mortality = 66%)

Page 7: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Improving neurological outcome after

cardiac arrest

◼ Oxygenation and ventilation

◼ Cerebral perfusion (mean

arterial pressure)

◼ Sedation

◼ Control of seizures

◼ Glucose control

◼ Temperature control

Page 8: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction
Page 9: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Wang C-H. Resuscitation 2014;85:1142–8

Page 10: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Roberts BW. Circulation 2018;137:2114–24

No hyperoxia (n = 175)

Hyperoxia (n = 105)

PaO2 measured at 1 and 6 hours after ROSC

Hyperoxia =PaO2 > 300 mmHg (= 38% of cohort)

Hyperoxia associated with poor outcome

RR 1.23 (95% CI 1.11–1.35)

1 hour longer duration of hyperoxia

associated with 3% increased risk of poor

outcome (RR 1.03 (95% CI 1.02–1.05)

Page 11: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Ebner F. Crit Care 2019;23:30

Adjusted ORs for a poor neurological outcome

◼ Post hoc analysis of the TTM

Trial

◼ N = 869; 23% hyperoxaemia

◼ No association between

hyperoxemia, hypoxemia,

time-weighted mean PaO2

and poor outcome

Page 12: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Intensive care registry studies of hyperoxaemia

◼ Conflicting results: some show association between

hyperoxaemia and mortality

◼ High FiO2 probably unmeasured surrogate marker of

illness severity

◼ First 60 min post ROSC is missed

◼ Duration and timing of hyperoxia unknown

◼ Impact of therapeutic hypothermia?

Page 13: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Resuscitation 2018; 128: 211–215

Page 14: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

• 1460 post-cardiac arrests with tracheal tube or SGA

• After ROSC – 100% oxygen or ≥10L/min until a satisfactory

SpO2 trace and reading is achieved

• 4 L/min O2 then 2 L/min (target 90–94%) or air-mix on

ventilator … versus:

• 10 L/min(target 100%) or 100% O2 on ventilator

• ED/Cath lab continues allocated target

• Study stops in ICU

• Survival to discharge

NCT02499042

Bray JE Resuscitation

2019:139:208–231

Page 15: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

PROXY: Post ROSC

OXYgenationStudy

Thomas M.

BMC Emerg Med 2019;19:16

• 46 paramedics

randomised

• 35 patients recruited

• ‘Reliable’ SpO2

documented in 65–

70% of cases.

Page 16: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

◼ “…as soon as arterial blood oxygen saturation can be monitored reliably… titrate the FiO2 to maintain the arterial blood oxygen saturation in the range of 94–98%.”

Nolan JP. Resuscitation 2015;95:202–22

Page 17: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Curley G. Crit Care Med 2010;38:1348-59

Hypocapnia is harmful to the injured brain

Page 18: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Resuscitation 2013;84:1540-5

PaCO2

40 mmHgPaCO2

30 mmHg

• 10 OHCA patients

• All treated with hypothermia

• Cerebral tissue oxygenation (SctO2)

• Monitored with NIRS

• Hyperventilation for 30 min

Page 19: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Eastwood GM Resuscitation 2016;104:83–90

◼ 86 post-arrest patients

◼ PaCO2 50–55 mmHg (TTMH)

versus PaCO2 35–45 mmHg (TN)

◼ Greater increase in NSE in TN

group (p = 0.04)

TTMH Targeted therapeutic mild hypercapniaTN Targeted normocapnia

Page 20: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

TARGETED THERAPEUTIC MILD HYPERCAPNIA AFTER

RESUSCITATED CARDIAC ARREST: A PHASE III MULTI-CENTRE RANDOMISED CONTROLLED TRIAL

The TAME Cardiac Arrest TrialA/Prof Glenn Eastwood & Prof Rinaldo Bellomo

on behalf of the TAME Cardiac Arrest Trial Investigators

Department of Intensive Care

Austin Hospital

Melbourne, Victoria

Australia

Page 21: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

COMACARE Study Group

Jakkula P. Trials 2017;18:507

NCT02698917

• 120 patients randomised to one of 8 groups

• Primary outcome = NSE value at 48 h

• Targeting low or high-norm PaCO2, PaO2, MAP for 36 h

• PaCO2: low-norm = 4.5–4.7 kPa; high-norm = 5.8–6.0 kPa

• PaO2: low-norm =10–15 kPa; high-norm = 20–25 kPa

• MAP: low-norm = 65–75 mmHg; high-norm 80–100 mmHg

Page 22: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

COMACARE Study GroupJakkula P. Intensive Care Med 2018;44:2112–2121

Page 23: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

COMACARE Study GroupJakkula P. Intensive Care Med 2018;44:2112–2121

Page 24: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

◼ Retrospective cohort study 256

OHCA patients IPPV for ≥ 48 h

◼ Primary outcome CPC 1–2 discharge

◼ Time-weighted average over the first

48 hours, in mL/kg predicted body

weight (PBW)

◼ 38% – time-weighted VT > 8 mL/kg

◼ 194 patients propensity matched

Beitler JR. AJRCCM 2017;195:1198–1206

OR 1.61 (95% CI 1.13 – 2.28) per 1 mL/kg PBW decrease in VT

Page 25: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

◼ Aim for normocarbia

◼ Protective lung ventilation strategies

not studied (in prospective trials) in

cardiac arrest.

◼ Post-cardiac arrest patients develop

marked inflammatory response

◼ Aim: tidal volume 6–8 mL kg-1

Nolan JP. Resuscitation 2015;95:202–22

Page 26: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Ameloot K. Resuscitation 2015;90:121–6

Patient with autoregulation

preserved

Patient with right-shifted

autoregulation

• 15/51 (35%) had disturbed autoregulation (majority chronic ↑ BP)

• Index of autoregulation (COX) to determine optimal BP

• Optimal MAP 85 mmHg if preserved and 100 mmHg if disturbed

Page 27: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Ameloot K. EHJ 2019; in press

• 112 OHCA patients

• MAP 85–100 mmHg + SVO2 65–75% versus

MAP 65 mmHg

• End point = MRI % apparent diffusion

coefficient (ADC) score < 650 at day 5

• % Voxels < 650.10-6 mm2/s 16% versus 12%;

OR 1.37 (95% CI 0.95–1.98); P=0.09

Page 28: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Jakkula P. Intensive Care Med 2018;44:2091–2101

Page 29: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Paul M. Resuscitation 2018;128:204–210

Period 1. Mar 2008 – Feb 2013

Midazolam and fentanyl (n – 326)

Median time to awakening 17 h

Delayed awakening 29%

Period 2. Dec 2014 – Oct 2016

Propofol and remifentanil (n = 134)

Median time to awakening 2.5 h

Delayed awakening 6%

Page 30: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Post-resuscitation care

Summary

◼ Until further data are available titrate FiO2 post ROSC

◼ Optimal PaCO2 to be determined - aim normocarbia?

◼ Use lung protective ventilation

◼ Optimal MAP is probably patient specific but generally

higher than previously accepted

◼ Use short-acting sedation… why wouldn’t you?

Page 31: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction
Page 32: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction

Blood pressure and OXygenation

targets after OHCA (BOX)

◼ 800 OHCA to be randomized;

◼ Primary endpoint death or CPC 3 or 4 at discharge

◼ Factorial design (during ICU stay):

◼ Low normal MAP (63 mmHg)

◼ Low normal PaO2 (9-10 kPa)

◼ High normal MAP (77 mmHg)

◼ High normal PaO2 (13–14 kPa)

◼ MAP blinded by offsetting BP monitor by +/- 10%

◼ Sub-study of fever control for 36 or 72 hours

◼ Assessment of pupillometryKjaergaard J, Rigshospitalet, Denmark. NCT03141099

Page 33: Post-resuscitation care · 2020-05-18 · Post-cardiac arrest syndrome Persistent precipitating pathology Systemic ischaemia/reperfusion response Post-cardiac myocardial dysfunction