21
Post-Combustion Processes Employing Polymeric Membranes 21. 06. 2011 / Frankfurt Torsten Brinkmann a , Thorsten Wolff a , Jan-Roman Pauls b a: Institute of Polymer Research b: Institute of Materials Research 2 nd International Conference on Energy Process Engineering Efficient Carbon Capture for Coal Power Plants June 20 - 22, 2011 in Frankfurt/Main, Germany

Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

Embed Size (px)

Citation preview

Page 1: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

Post-Combustion Processes Employing Polymeric Membranes

21. 06. 2011 / Frankfurt

Torsten Brinkmanna, Thorsten Wolffa, Jan-Roman Paulsb

a: Institute of Polymer Researchb: Institute of Materials Research

2nd International Conference on Energy Process EngineeringEfficient Carbon Capture for Coal Power PlantsJune 20 - 22, 2011 in Frankfurt/Main, Germany

Page 2: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

2

Contents

Introduction Permeation data and membrane production Membrane module model Pilot plant experiments Process simulation Upscaling aspects Conclusions

Page 3: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

3

Membrane Process Development

Lab. scale investigations Polymer synthesis Polymer modification Permeation behaviour

Pilot scale membraneproduction

Pilot plants

Module design

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

Membrane area Az [m2]

n-C

4H10

Mol

e fr

actio

n y R

,C4 [

-]

Lines: SimulationSymbols: Experiment

hm44.46V

hm34.20V

hm29.05V

3(STP)F

3(STP)F

3(STP)F

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

Membrane area Az [m2]

n-C

4H10

Mol

e fr

actio

n y R

,C4 [

-]

Lines: SimulationSymbols: Experiment

hm44.46V

hm34.20V

hm29.05V

3(STP)F

3(STP)F

3(STP)F

Comp. pilot plant/simulationProcess simulation/design

Page 4: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

4

Contents

Introduction Permeation data and membrane production Membrane module model Pilot plant experiments Process simulation Upscaling aspects Conclusions

Page 5: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

5

Membrane Data - Laboratory Scale

1. A. Car er al., Adv. Funct. Mater. 18 (2008) 2815-2823 2. S. Kipp, Diploma Thesis, TUHH/HZG, 20103. C. Naderipour, Diploma Thesis, HAW Hamburg/HZG, 20094. T. Merkel et al., Selecting Membranes for Carbon Dioxide Capture from Power Plant Flue Gases

In Book of Abstracts XXVI EMS Summer School 29 September – 2. Oktober 2009 Geesthacht/Ratzeburg, 2009.

25 (?)

20.0

20.0

20.0

20.0

[°C]

50.0

33.7

48.3

61.1

46.5

CO2/N2

-2.71,3POLYACTIVE®

-0.6653PEBAX®

-0.3633Cellulose Acetate

POLARIS™ 1

POLYACTIVE®

MembraneL [Nm3/(m2 h bar]

-2.744

40.63.61,2

H2OCO2Ref.

-5

-4

-3

-2

-1

0

1

2

3

4

5

0.0028 0.0029 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036

1/T [K-1]ln

(L)

H2O

CO2

H2

CH4O2

N2

Multilayer composite membranes Single gas permeation data HZG data determined using pressure increase apparatus Temperature dependency can be described by Arrhenius type relationship

POLYACTIVE® composite membrane [1]

73°C 14°C

Page 6: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

6

Membrane Production in m2 Scale

2.00

2.20

2.40

2.60

2.80

3.00

0.0 40.0 80.0 120.0

Production Batch Length L [m]

O2/N

2 Sel

ectiv

ity

O2/

N2

[-]

Average

POLYACTIVE® multilayer composite membrane

O2/N2 permeation data for quality control

Casting of porous support

Coating of selective/ protection layers

Page 7: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

7

Contents

Introduction Permeation data and membrane production Membrane module model Pilot plant experiments Process simulation Upscaling aspects Conclusions

Page 8: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

8

Permeatetube

Membraneenvelope

PressurevesselFeed

Retentate

Permeate Permeate

Top view of a membrane envelope

Feed

Per-meate

Baffle plateO-ring

Feed Permeate

Retentate

FeedRetentate

Permeate

Simulation Model GS Module Boundary conditions

- Module geometry and feed definition Flow patterns: differential balances

- Material- Energy- Pressure drop

Equation of state- Fugacities- Enthalpies- Densities …

Permeation- Arrhenius- Free Volume model

Concentration polarisation- Mass transfer coefficients- Stefan-Maxwell

iP,iR,imolar,iM, ffLn

0naz

niM,

iR,

z

RyR,CH4

vR

Page 9: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

9

Equation oriented process simulator- Parameterised models- Numerical mathematics- Physical properties- Dynamic simulation- PDE support- Integrated development environment

Detailed model development Flowsheet and process development

Implementation: Aspen Custom Modeler®

Page 10: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

10

Contents

Introduction Permeation data and membrane production Membrane module model Pilot plant experiments Process simulation Upscaling aspects Conclusions

Page 11: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

11

Pilot Plant Operating Conditions

Operating data: Membrane area: 7.38 m2

Feed pressures: 1.4 to 3 bar Feed flowrates: 13 to 34 Nm3/h Feed CO2 mole fraction: 13.7 to 18.0 %

Feed temperatures: 20 to 25°C Permeate pressure: 200 mbarWater vapour saturation by employing liquid

ring compressor and vacuum pump

PDI

PI2

FI1 PI1 FI2

QI1 QI2

QI3

Gas-chroma-tograph

V1

V2

V3

moduleMembrane

Permeatevacuum pump

Feedvessel

FeedCompressor

Externalvacuum pump

Page 12: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

12

Pilot Plant Experimental Results

0

0.03

0.06

0.09

0.12

10 15 20 25 30 35 40

Volumetric Flowrate Feed VF [Nm3/h]

CO

2 Mol

e Fr

actio

n R

eten

tate

y R

,CO

2 [-]

pF = 3 barpF = 2 barpF = 1.4 barpF = 3 bar, SimpF = 2 bar, SimpF =1.4 bar, Sim

0

0.05

0.1

0.15

0.2

0.25

10 15 20 25 30 35 40

Volumetric Flowrate Feed VF [Nm3/h]

Stag

ecut

VF/

V P [-

]

pF = 3 barpF = 2 barpF = 1.4 barpF = 3 bar, SimpF = 2 bar, SimpF = 1.4 bar, Sim

0.5

0.55

0.6

0.65

0.7

0.75

10 15 20 25 30 35 40

Volumetric Flowrate Feed VF [Nm3/h]

CO

2 Mol

e Fr

actio

n Pe

rmea

te

y P,C

O2

[-]

pF = 3 barpF = 2 barpF = 1.4 barpF = 3 bar, SimpF = 2 bar, SimpF = 1.4 bar, Sim

Feed Retentate

Permeate

Gas permeationmodule

VF = 13 to 34 Nm3/hyF,CO2 = 13 to 18%pF = 1.4 to 3barF = 20 to 24 °C

yR,CO2

VPyP,CO2pP = 0.2 bar

A=7.4m2

Page 13: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

13

Pilot Plant Results Interpretation

Operating behaviour of module asexpected Module and membranes were used in

biogas pilot plant before Simulation model predicts performance

satisfactorily Single gas permeation data to predict

multicomponent mass transfer Deviations experiment – simulation

- Influence of water permeation on other components correctly considered?

Page 14: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

14

Contents

Introduction Permeation data and membrane production Membrane module model Pilot plant experiments Process simulation Upscaling aspects Conclusions

Page 15: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

15

Input Data

Power plant [1] Coal fired power plant Nominal power: 600 MW Efficiency: 45.9% Flue gas:

V = 1 704 000 Nm3/hp = 1.013 bar = 48°CyCO2 = 0.133yH2O = 0.113yN2 = 0.754

Process simulation Aspen Custom Modeler®

Membrane module model- Cross flow with free permeate withdrawal- Permeances as function of temperature,

pressure and composition based on single gas experiments

- Real gas and Joule Thomson effect considered

- No pressure drops and mass transfer resistances

Rotating equipment- Isentropic efficiency of 85 %- Assumed as adiabatic compressors or

turbines- No specific type assumed

1. Notz et al., Chem. Ing. Tech. 82 No.10 (2010) 1639-1653

Page 16: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

16

Performance of POLYACTIVE® Composite Membranes: Humid Flue Gas

FeedCooler_1 GLSep_2Blower

MembraneStage_1

VacuumPump_1

Cooler_2GLSep_3

MembraneStage_2

B5

Compressor

Cooler_3

GLSep_4

Expander

S1S2

Water_2

S4S5

Retentate_OffGas

Permeate_1

S8

S9

CO2Water_3

S3

RecycleS13

S6

S7

S12

Water_4

S15

GLSep_1

S10

Water_1

VF = 1 704 000 Nm3/h yF,CO2 = 0.133pF = 1.013 bar yF,H2O = 0.113F = 48°C yF,N2 = 0.754

yP,CO2 = 0.95

p = 1.1 bar = 30°C

p = 4 bar = 30°Cp = 0.1 bar

0

50

100

150

200

250

300

350

400

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

CO2 Recovery [-]

Spec

ific

Ener

gy fo

r Cap

ture

[k

Wh/

t CO

2]

0

500000

1000000

1500000

2000000

2500000

3000000

Mem

bran

e A

rea

[m2 ]

Compression

Cooling

Permeation data (average values at 30°C): LCO2 = 4.3 Nm3/(m2 h bar)LH2O = 43.4 Nm3/(m2 h bar)CO2/N2 = 36

Flowsheet: Zhao et al., J. Membr. Sci. 359 (2010) 160-172

Page 17: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

17

Performance of POLYACTIVE® Composite Membranes: Operating Temperatures

0

50

100

150

200

250

300

350

400

450

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

CO2 Recovery [-]

Spec

ific

Ener

gy fo

r Cap

ture

[k

Wh/

t CO

2]

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

Mem

bran

e A

rea

[m2 ]

20°C

30°C

30°C

Compression

Membrane area

FeedCooler_1 GLSep_2Blower

MembraneStage_1

VacuumPump_1

Cooler_2

GLSep_3

MembraneStage_2

B5

VacuumPump_2

Cooler_3GLSep_4

S1S2

Water_2

S4S5

Retentate_OffGas

Permeate_1

S8

S9

Water_3

S3

Recycle

S13

S7CO2

Water_4

GLSep_1

S10

Water_1

VF = 1 704 000 Nm3/h yF,CO2 = 0.133pF = 1.013 bar yF,H2O = 0.113F = 48°C yF,N2 = 0.754

yP,CO2 = 0.95

p = 1.1 barp = 0.2 bar

p = 0.2 bar

L [Nm3/(m2 h bar]

36.043.24.230

46.540.63.620

CO2/N2

H2OCO2

[°C]

Page 18: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

18

Contents

Introduction Permeation data and membrane production Membrane module model Pilot plant experiments Process simulation Upscaling aspects Conclusions

Page 19: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

19

Possible Module Design

Envelope type modules allow for easy scale-up

Possible to minimise permeate side pressure drops: important for vacuum assisted operation

Membrane sheets are thermally welded: no additional components as e.g. adhesives

Proven technology for the manufacture of flat sheet membranes on industrial scale

Page 20: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

20

Vacuum Pumps

Steam ejector vacuum pumps [1] Max. capacity: 2 106 m3/h (about half of

the flowrate required for 1st stage) One stage vacuum: 100 mbar High motive steam demand

Liquid rings vacuum pumps [2] Sterling SIHI: 11 500 m3/h at 100 mbar ZM Engineering: 47 100 m3/h at 180 mbar

New vacuum pump concepts required

1 motive medium connection2 motive nozzle3 head4 diffuser inlet5 diffuser outlet

A pressurised motive mediumpRetentate > pd > pPermeate

B suction flow (permeate) at pressure pPermeate

C mixed flow at pressure pd

1. Körting Hannover AG, Arbeitsblätter für die Strahlpumpen-Anwendung, www.koerting.de

2. Sterling SIHI GmbH, www.sterlinsihi.com

Page 21: Post-Combustion Processes Employing Polymeric Membranesprocessnet.org/processnet_media/10_35h_Brinkmann-p-1720.pdf · Post-Combustion Processes Employing Polymeric Membranes 21. 06

21

Conclusions

POLYACTIVE® composite membrane- Permeance and selectivity are suitable- Can be produced on large scale

Accurate module models are required to develop efficient process designs Piloting is essential

- Process performance- Influence of various components- Determination of unknowns (level of filtration necessary,…)

Competitive process designs have been developed (Merkel et al., Zhao et al.) - Important to consider water- Cooling has to be accounted for- Integration with power plant process

New vacuum pump concepts required Novel module concepts would be advantageous