43
Positive Semidefinite matri x n H A n C z Az z 0 * A is a positive semidefinite matrix (also called nonnegative definite matrix)

Positive Semidefinite matrix

  • Upload
    peri

  • View
    45

  • Download
    0

Embed Size (px)

DESCRIPTION

Positive Semidefinite matrix. A is a positive semidefinite matrix. (also called nonnegative definite matrix). Positive definite matrix. A is a positive definite matrix. Negative semidefinite matrix. A is a negative semidefinite matrix. Negative definite matrix. - PowerPoint PPT Presentation

Citation preview

Page 1: Positive Semidefinite matrix

Positive Semidefinite matrix nHA

nCzAzz 0*

A is a positive semidefinite matrix(also called nonnegative definite matrix)

Page 2: Positive Semidefinite matrix

Positive definite matrix

nHA

nCzAzz 0*

A is a positive definite matrix

Page 3: Positive Semidefinite matrix

Negative semidefinite matrix nHA

nCzAzz 0*

A is a negative semidefinite matrix

Page 4: Positive Semidefinite matrix

Negative definite matrix

nHA

nCzAzz 0*

A is a negative definite matrix

Page 5: Positive Semidefinite matrix

Positive semidefinite matrix

nT RxAxx 0

A is a positive semidefinite matrix

A is real symmetric matrix

Page 6: Positive Semidefinite matrix

Positive definite matrix

nT RxAxx 0

A is a positive definite matrix

A is real symmetric matrix

Page 7: Positive Semidefinite matrix

Question

nT RxAxx 0nCzAzz 0*

Yes

Is It true that)(RMALet n

?

Page 8: Positive Semidefinite matrix

Proof of Question

)(

)()()()(

))(()()(

)(

,,,

0)()(

***

*

yAxAxyiAyyAxxAxiyyAxiAyyAxx

yAxixAyiyAyxAxyAyyAixxAiyxAx

yiAxAiyxiyxAiyx

zAzAzziyxz

RyxwhereiyxzwritecanweCzanyForRxAxxthatAssume

clearisIt

TTTT

TTTT

TTTTTTTTTTTT

TTTTTTTT

TTTT

TTT

T

TT

n

n

nT

?

Page 9: Positive Semidefinite matrix

Proof of Question

)(

))(()()(*

AxyyAxiAyyAxxAxiyyAxiAyyAxxAyyyAixAxiyAxx

iAyxAiyxiyxAiyxAzz

TTTT

TTTT

TTTT

TT

TT

?

Page 10: Positive Semidefinite matrix

Fact 1.1.6 The eigenvalues of a Hermitian (resp. positive semidefinite , positive definite) matrix are all real (resp. nonnegative, positive)

Page 11: Positive Semidefinite matrix

Proof of Fact 1.1.6

edeifnegativeisAifesemideifnegativeisAif

edeifpositiveisAifesemideifpositiveisAif

andRzAzz

numberrealaisAzzAzzzAzAzzSince

zwherezAzz

zzzAzz

CzzAzthenreigenvectongcorresponithebez

andAofeigenvalueanbeLetHALet

n

n

int0int0

int0int0

,

.,)(

0,

0,,

.

2

*

*

*****

2

2

*

2**

Page 12: Positive Semidefinite matrix

Exercise n

n CzRAzzHA *

)(CMH n

nCzHzz 0*

From this exercise we can redefinite:

H is a positive semidefinite

Page 13: Positive Semidefinite matrix

注意 )(RMA n

nT RxAxx 0

A is symmetric

Page 14: Positive Semidefinite matrix

注意 之反例 2

2

1

1

2

21

2

1

21 00110

R

01

10But is not

symmetric

Page 15: Positive Semidefinite matrix

Proof of Exercise

n

n

n

n

n

n

n

HAHenceAAAA

CzzAAzCzAzzzAzCzAzzAzzthen

CzRAzzthatAssumenumberrealaisAzz

thenAzzzAzAzz

CzanyForHAthatAssume

00

0)(

)(

)(.

,)(

.)(

*

*

**

***

***

*

*

*****

Page 16: Positive Semidefinite matrix

RemarkLet A be an nxn real matrix.

If λ is a real eigenvalue of A, then there must exist a corresponding real eigenvector.

However, if λ is a nonreal eigenvalue of A, then it cannot have a real eigenvector.

Page 17: Positive Semidefinite matrix

Explain of Remark p.1A, λ : real

Az= λz, 0≠z (A- λI)z=0 By Gauss method, we obtain that z is a real vector.

Page 18: Positive Semidefinite matrix

Explain of Remark p.2A: real, λ is non-real

Az= λz, 0≠z z is real, which is impossible

Page 19: Positive Semidefinite matrix

Elementary symmetric function

nnS 21211 ),,,(

21211

212 ),,,( iinii

nS

kiii

nkiiinkS

21

21121 ),,,(

kth elementary symmetric function

Page 20: Positive Semidefinite matrix

KxK Principal Minor

nxnijaALet niiianyFor k 211

kikiikiiki

kiiiiii

kiiiiii

aaa

aaaaaa

21

22212

12111

det

kxk principal minor of A

Page 21: Positive Semidefinite matrix

Lemma p.1nMALet

AofvectorcolumnithbeaLet i

niiianyFor k 211

kj

kj

j iiijifeiiijifa

bLet,,,,,,

21

21

vectordardsithbeeLet i tan

Page 22: Positive Semidefinite matrix

Lemma p.2 nbbbThen 21det

kiiibyindexedcolumnsand

rowswithorprincipalthe

,,,

min

21

Page 23: Positive Semidefinite matrix

Explain Lemma

4442

3432

2422

4442

3432

2422

1412

010

det

00100001

detaaaaaa

aaaaaaaa

4442

2422detaaaa

Page 24: Positive Semidefinite matrix

The Sum of KxK Principal Minors

AoforsprincipalkxkallofsumthebeAELet k

min)(

Page 25: Positive Semidefinite matrix

Theorem nMALet

AofpolynomialsticcharacterithebexcLet A )(

in

n

n

ii

in

A tSttcThen

),,,()1()( 211

AofseigenvaluethebeLet n ,,, 21

inn

ii

in tAEt

)()1(1

Page 26: Positive Semidefinite matrix

Proof of Theorem p.1

inn

ini

in

in

ijjj

n

i nijjj

n

nA

tSt

tt

ttttc

121

211 211

21

),,,()1(

)())((

)())(()()1(

Page 27: Positive Semidefinite matrix

Proof of Theorem p.2

LemmapreviousbytAEt

jjjkiftejjjkifa

bwhere

bbbt

ateateateAtItc

eeeILetAofvectorcolumnithisawhere

aaaALet

inn

ii

in

ik

ik

k

n

n

i nijjj

n

nn

A

n

i

n

,)()1(

,,,,,,

det

det)det()(

,)2(

1

21

21

211 211

2211

21

21

Page 28: Positive Semidefinite matrix

Rank P.1 rankA:=the maximun number of linear independent column vectors =the dimension of the column space = the maximun number of linear independent row vectors =the dimension of the row space

result

result

Page 29: Positive Semidefinite matrix

Rank P.2 rankA:=the number of nonzero rows in a row-echelon (or the reduced row echlon form of A)

Page 30: Positive Semidefinite matrix

Rank P.3

rankA:=the size of its largest nonvanishing minor (not necessary a principal minor) =the order of its largest nonsigular submatrix.

See next page

Page 31: Positive Semidefinite matrix

Rank P.4

0010

A

1x1 minorNot principal

minor

rankA=1

Page 32: Positive Semidefinite matrix

Theorem Let A be an nxn sigular matrix.Let s be the algebraic multiple of eigenvalue 0 of A.Then A has at least one nonsingular(nonzero)principal submatrix(minor) oforder n-s.

Page 33: Positive Semidefinite matrix

Proof of Theorem p.1

snorderoforprincipalnonzerooneleastathasA

AEtAEtAEt

formtheofistcsmultipleoftcofzeroaisSince

tAEttc

sn

s

sn

snnn

A

A

n

i

in

i

in

A

min

0)()()1()(

)(,)(0

)()1()(

1

1

1

Page 34: Positive Semidefinite matrix

Geometric multiple Let A be a square matrix and λ be aneigenvalue of A, then the geometric multiple of λ=dimN(λI-A) the eigenspace of A corresponding to λ

Page 35: Positive Semidefinite matrix

Diagonalizable

matrixdiagonalaisAPP

tsPgularnon

ifablediagonalizisA

1

.sin

Page 36: Positive Semidefinite matrix

Exercise A and have the same characteristic polynomial and moreover the geometric multiple and algebraic multiple are similarily invariants.

APP 1

Page 37: Positive Semidefinite matrix

Proof of Exercise p.1

)()det(

det)det(det))(det()det(

)det()()1(

1

1

11

1

1

xcAxI

PAxIPPAxIPAPPxPP

APPxIxc

A

APP

Page 38: Positive Semidefinite matrix

Proof of Exercise p.2 (2)Since A and have the same characteristic polynomial, they have the same eigenvalues and the algebraicmultiple of each eigenvalue is the same.

APP 1

Page 39: Positive Semidefinite matrix

Proof of Exercise p.3

)(dim)(dim)(dim)(dim

)(dim)(dim,,,,

)()(

)(,,2,1

)(,,,)(dim

)3(

1

1

1

21

1

1

21

1

1

APPEAEHenceAEAPPEhaveweSimilarly

APPEAEntindenpendelinearllyisPXPXPXSince

AEXPPXXPAXXAPP

riForAPPEforbasisabeXXXLet

APPErLetAPPandAofeigenvalueanbeLet

r

i

ii

ii

r

Page 40: Positive Semidefinite matrix

Explain: geom.mult=alge.mult in diagonal matrix

2lg325

))1,0,0,1,0((5))1,0,0,1,0((dim

))3,2,2,3,2()2,2,2,2,2((dim))3,2,2,3,2(2(dim2

32lg)3,2,2,3,2(2

ofmultipleebraicaThe

diagrankdiagN

diagdiagNdiagIN

ofmultiplegeometricTheofmultipleebraicaThediagofeigenvalueanis

Page 41: Positive Semidefinite matrix

Fact For a diagonalizable(square) matrix,the algebraic multiple and the geometric multiple of each of its eigenvalues areequal.

Page 42: Positive Semidefinite matrix

Corollary Let A be a diagonalizable(square) matrixand if r is the rank of A, then A has at least one nonsingular principalSubmatrix of order r.

Page 43: Positive Semidefinite matrix

Proof of Corollary p.1

rsnorderofsubmatrixprincipalnonsigularoneleastathasA

TheorempreviousBysn

ofmultipleebraicanofmultiplegeometricn

ANnrankArAofeigenvalueofmultiple

ebraicathebesLet

0lg0

)(dim0

lg