9
Short Term Mobility 2016 Cefarin Nicola 1 POROUS PEROVSKITE NANOCRYSTALS FOR PHOTOVOLTAIC APPLICATION Cefarin Nicola, PhD student DIPARTIMENTO DI SCIENZE FISICHE E TECNOLOGIA DELLA MATERIA CNR-IOM - Istituto Officina dei Materiali Headquarters (Trieste, TASC) c/o Area Science Park - Basovizza Strada Statale 14 km 163,5 - 34149 Trieste Final report Thanks to the support of the Short Term Mobility (STM), I have performed my research activity in the group of Francesca Toma at the Joint Center for Artificial Photosynthesis (JCAP),in the Chemical Sciences Division at the Lawrence Berkeley National Laboratories (LBNL). My project has focused on the synthesis and characterization of i) a new deposition process called Low Pressure Vapor Assisted Solution Process (LP-VASP), previously developed at LBNL 20 , and ii) of porous polycrystalline perovskites synthesized at our laboratories (TASC, Trieste). Introduction: Hybrid organic-inorganic lead halide perovskites (CH 3 NH 3 PbX 3 , X = I, Br, Cl) are a new class of semiconductors that has emerged rapidly within the last few years. This material class shows excellent semiconductor properties, such as high absorption coefficient 1 , tunable bandgap 2 , long charge carrier diffusion length 3 , high defect tolerance 4 , and high photoluminescence quantum yield 5,6 . The unique combination of these characteristics makes lead halide perovskites very attractive for application in optoelectronic devices, such as single junction 7,8 and multijunction photovoltaics 9,10 , lasers 5,11 , and LEDs 12 . CH 3 NH 3 PbX 3 films can be fabricated by a variety of synthetic methods 13 , which aim at improving the efficiency of this semiconducting material for energy applications 14 . However, optimization of photovoltaic devices relies on the quality of the halide perovskite active layer, as well as its interfaces with charge selective contacts (i.e. electron and hole transport layers), which facilitate photocarrier collection in these devices. Specifically, continuous, pinhole-free active layers are necessary to minimize shunt resistance, thereby improving device performance.

POROUS PEROVSKITE NANOCRYSTALS FOR PHOTOVOLTAIC APPLICATION · 2021. 1. 13. · demonstrated to yield dense and extremely uniform films.16 In this technique, a non-solvent (toluene)

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Short Term Mobility 2016 Cefarin Nicola

    1

    POROUS PEROVSKITE NANOCRYSTALS FOR

    PHOTOVOLTAIC APPLICATION

    Cefarin Nicola, PhD student

    DIPARTIMENTO DI SCIENZE FISICHE E TECNOLOGIA DELLA MATERIA

    CNR-IOM - Istituto Officina dei Materiali

    Headquarters (Trieste, TASC)

    c/o Area Science Park - Basovizza

    Strada Statale 14 km 163,5 - 34149 Trieste

    Final report

    Thanks to the support of the Short Term Mobility (STM), I have performed my research activity in the

    group of Francesca Toma at the Joint Center for Artificial Photosynthesis (JCAP),in the Chemical Sciences

    Division at the Lawrence Berkeley National Laboratories (LBNL). My project has focused on the synthesis

    and characterization of i) a new deposition process called Low Pressure Vapor Assisted Solution Process

    (LP-VASP), previously developed at LBNL20, and ii) of porous polycrystalline perovskites synthesized at

    our laboratories (TASC, Trieste).

    Introduction:

    Hybrid organic-inorganic lead halide perovskites (CH3NH3PbX3, X = I, Br, Cl) are a new class of

    semiconductors that has emerged rapidly within the last few years. This material class shows excellent

    semiconductor properties, such as high absorption coefficient1, tunable bandgap2, long charge carrier

    diffusion length3, high defect tolerance4, and high photoluminescence quantum yield5,6. The unique

    combination of these characteristics makes lead halide perovskites very attractive for application in

    optoelectronic devices, such as single junction7,8 and multijunction photovoltaics9,10, lasers5,11, and

    LEDs12.

    CH3NH3PbX3 films can be fabricated by a variety of synthetic methods13, which aim at improving the

    efficiency of this semiconducting material for energy applications14. However, optimization of

    photovoltaic devices relies on the quality of the halide perovskite active layer, as well as its interfaces

    with charge selective contacts (i.e. electron and hole transport layers), which facilitate photocarrier

    collection in these devices. Specifically, continuous, pinhole-free active layers are necessary to minimize

    shunt resistance, thereby improving device performance.

  • Short Term Mobility 2016 Cefarin Nicola

    2

    Among the most widespread methods for fabricating halide perovskite thin films are solution-based and

    vacuum-based processes. The most common solution process uses equimolar ratios of lead halide and

    methylammonium halide dissolved in dimethylformamide (DMF), dimethylsulfoxide (DMSO), or γ-

    butyrolactone (GBL), or mixtures of these solvents.2,15,16 Precursor molarity and solvent type, as well as

    annealing temperature, time and atmosphere, must be precisely controlled to obtain continuous and

    pinhole-free films.15 For example, to improve surface coverage, a solvent-engineering technique was

    demonstrated to yield dense and extremely uniform films.16 In this technique, a non-solvent (toluene) is

    dripped onto the perovskite layer during the spinning of the perovskite solution.16 These approaches are

    usually well suited for mesoscopic heterojunctions, which employ mesoporous TiO2 as an electron

    selective contact with increased contact area and reduced carrier transport length.

    However, planar heterojunctions, which use selective contacts based on thin (usually TiO2) films, are

    more desirable because they provide a simple and scalable configuration that can be more easily

    adopted in solar cell technology. Therefore, the development of halide perovskite active layers that

    show high efficiency and stability under operation for planar heterojunctions may lead to technological

    advancements in this field. However, one of the main challenges to fabricate planar heterojunctions is

    still represented by the homogeneity of the active layer. A few attempts, based on vacuum processes,

    have been made to prepare uniform layers on thin TiO2 films. For example, Snaith and collaborators

    have demonstrated a dual evaporation process, which yield highly homogenous perovskite layers with

    high power conversion efficiencies for photovoltaic applications.17 While this work represents a

    significant advancement in the field, the use of high vacuum systems and the lack of tunability of the

    composition of the active layer limit the applicability of this method.

    i) Synthesis and characterization of low pressure vapor-assisted solution process (LP-VASP)

    Motivation: Interestingly, extremely high uniformity has been achieved with the vapor-assisted solution

    process (VASP)18 and modified low pressure VASP (LP-VASP)6,19. While the VASP, proposed by Yang and

    collaborators18, requires higher temperatures and the use of a glove box, the LP-VASP is based on the

    annealing of a lead halide precursor layer in the presence of methyl ammonium halide vapor, at reduce

    pressure and relatively low temperature in a fume hood. These specific conditions enable access mixed

    perovskite compositions, and fabrication of pure MAPbI3, MAPbI3-xClx, MAPbI3-xBrx, and MAPbBr3 can be

    easily achieved. Specifically, CH3NH3PbI3-xBrx films over the full composition space can be synthesized

    with high optoelectronic quality and reproducibility6,19. In the LP-VASP, formation of CH3NH3PbX3 films

    consists of a two-step procedure that comprises i) the spin-coating of the PbI2/PbBr2 (or PbI2, or

    PbI2/PbCl2) precursor on glass substrate or fluorine-doped tin oxide (FTO) coated glass substrate with

    planar TiO2, as electron transport layer, and ii) the low pressure vapor-assisted annealing in mixtures of

    CH3NH3I and CH3NH3Br that can be finely adjusted depending on the desired optical band gap (1.6 eV

    Eg 2.3 eV). Under these conditions, the methylammonium halide molecules present in the vapor phase

    slowly diffuse into the lead halide thin film yielding continuous, pinhole-free halide perovskite films. This

    process yields a two-fold volume expansion from the starting lead halide precursor layer to the

    completed organic-inorganic lead halide perovskite. The standard thickness of the perovskite film is

    about 400 nm. It is possible to vary this thickness between 100-500 nm by changing the speed of the

    second spin coating step. The presented technique results in films of high optoelectronic quality, which

    translates to photovoltaic devices with power conversion efficiencies of up to 19% using a Au/spiro-

    OMeTAD /CH3NH3PbI3-xBrx/compact TiO2/FTO/glass solar cell architecture.19

  • Short Term Mobility 2016 Cefarin Nicola

    3

    Methodology and results: In detail, before the perovskite deposition several conducting and

    semiconducting materials need to be processed and deposited for the fabrication of a complete solar

    cell. On cleaned glass coated with fluorine-doped tin oxide (FTO),a compact TiO2 layer is deposited by e-

    beam evaporation while the substrate is kept at the temperature of 350°C.E-beam deposited TiO2 layers

    have native defects due to the presence of an oxygen-deficient environment during the electron beam

    evaporation. Therefore, the deep-level hole traps introduced in the TiO2 layer contribute to a high

    power conversion efficiencies of and enhanced long-term stability.19

    Once the TiO2 layer is deposited on the glass/FTO substrate it is possible to start with the LP-VASP

    process which could be divided in two sequential steps:

    1. Deposition of the lead halide (PbX2)precursor;

    2. Conversion of the PbX2layer into perovskite with methylammonium halideCH3NH3X(also called

    MAX).

    The lead halide precursor (PbI2 or PbBr2 or a mix of both) dissolved in N,N-dimethylformamide (DMF) is

    spin coated on the glass/FTO/TiO2substrateand dried on a hot plate for 15’ at 110ᵒC. The setup (fig 1a)

    for the second step comprises a Schlenk line equipped with a vacuum pump and with Schlenk tubes. In

    these tubes, we place the MAX powder on the bottom, and the glass/FTO/TiO2/PbX2 substrates slightly

    above the MAX precursor powder. The tubes (fig 1b) are immersed in an oil bath at 120°C and kept at a

    reduced pressure (0.185 torr) for 2 hours. The lead halide precursor thin film starts converting into the

    perovskite material due to the MAX incorporation: at this temperature and pressure the MAX powder

    sublimates and saturates the atmosphere inside the tube and slowly diffuses in the lead halide film.

    Figure 1 a) LP-VASP setup

  • Short Term Mobility 2016 Cefarin Nicola

    4

    Figure 1 b) Tube immersed in oil bath at 120ᵒC; c) Tube with sample during the process.

    During this time, it is possible to observe the color change of the sample from yellow due to

    PbI2/PbBr2layer to dark brown for CH3NH3PbI3 and again from yellow to orange

    forCH3NH3PbBr3perovskite.After 2h the sample is carefully removed from the tube, rinsed in isopropyl

    alcohol (IPA) to wash away the non-reacted MAX form the surface and finally dried with the N2 flow. By

    using different PbX2 (PbI2 or PbBr2) precursors and MAX (CH3NH3I or CH3NH3Br) for the conversion, it is

    possible to tune the final composition of the perovskite from pure CH3NH3PbI3 (through several

    CH3NH3PbI3-XBrX mixed perovskites) to pure CH3NH3PbBr3. Accessing different perovskite composition is

    key to tune the band gap of this material.

    After this step ,the Spiro-OMeTAD hole transport material (HTM) and the gold back electrode are

    sequentially deposited through spin coating and thermal evaporation, respectively. Figure 2shows an

    example of a complete solar cell that I fabricated during my stay at LBNL.

    Figure 2: LP-VASP perovskite based solar cells with different photoactive layers:

    on leftCH3NH3PbBr3 while on the right CH3NH3PbI3.

    Once the solar cell is complete, it is possible to characterize the device with JV curve measurements

    (Plot1). In this type of measurement, the current density (J) is measured as a function of the applied

    voltage (V). From this data, the relevant figures of merit of the solar cell (VOC, ISC and FF) can be extracted

    and used to calculate the power conversion efficiency (η).

    Substrate

    Powder

  • Short Term Mobility 2016 Cefarin Nicola

    5

    Plot 1: I-V curve of one of the solar cells with CH3NH3PbI3 as perovksite photoactive layer.

    This device shows η= 9.02% that is a good value compared with the best efficiencies reached at the IOM-

    CNR laboratories (around 6%). The characterization reported represents my first attempt of synthesizing

    and characterizing a solar cell with this new technique. This measurement proves that LP-VASP is easy to

    manage also for non-expert users. Once the same setup will be reproduced at the IOM-CNR

    laboratories, I will acquire more experience with it and it will be possible to obtain high efficient devices.

    ii) Synthesis and characterization of porous polycrystalline perovskites

    Motivation: Through the LP-VASP, it has been demonstrated that thin film crystallographic texture (i.e.

    preferential grain orientation) can have a significant impact on photovoltaic performance.6By probing

    the photovoltaic properties at the nanoscale, it has been found that there exists facet-dependent defect

    concentrations that lead to significant photovoltage inhomogeneity within.20 This research points to new

    ways to engineer interfaces and synthesis conditions of halide perovskites to obtain higher efficiency.

    Despite rapid progress in the field, a number of fundamental questions remain in order to understand

    the optoelectronic and transport properties of halide perovskite-based photovoltaic devices and to

    determine the role of local inhomogeneity on electronic properties correlated with specific

    crystallographic orientations.

    While in Trieste, I developed a synthetic methodology to obtain well-faceted perovskite cubes, which

    are particularly suitable for understanding how electronic properties correlate with crystallographic

    orientation through advance photoconductive atomic force microscopy characterization. The perovskite

    cubes I can produce show defined orientation and facets and allow to more precisely correlate local

    property variations with macroscopic characteristics. In addition, the achieved control over the structure

    and crystallographic orientation allow us to better understand roles of grain boundaries, local

    compositional disorder, and fundamental charge separation and transport mechanisms in this materials

    system.

    Methodology and results: Since the perovskite material is moisture sensitive it was necessary to prepare

    the samples at the hosting facility (LBNL). There I had to adapt my methodology to the infrastructure

  • Short Term Mobility 2016 Cefarin Nicola

    6

    and available equipment, as the perovskite crystal growth is heavily dependent on the conditions used

    for the process. I was eventually able to reproduce the synthesis and to achieve a better understanding

    of the process and on the parameters that determine the formation of the desired structure.

    For this experiment, I have first synthesized theCH3NH3I and CH3NH3Br precursors. These molecules have

    been characterized with 1H-NMR (Plot 2a and 2b)and 13C-NMR techniques.

    Plot 2: a) 1H-NMR of synthesized CH3NH3I and b)

    1H-NMR of synthesized CH3NH3Br.

    The porous polycrystalline perovskite film is obtained in N2filled glove bag by spin coating the PbI2 (1.0

    M in DMF) precursor and annealing it at 95ᵒC for 15 min. The sample is first dipped in isopropyl alcohol

    (IPA) for 10” to pre-wet the layer, then immersed in MABr solution (5 mg/mL in IPA) for 45”, and finally

    rinsed in IPA to wash the MABr excess from the top of the film. After this first step a layer of well shaped

    cubic crystals is obtained (fig3a). The samples is then immersed in MAI solution (8 mg/mL in IPA) for 90”,

    rinsed in IPA, and annealed at 95ᵒC for 15 min to yield the final porous material (fig 3b).In addition to

    understand and correlate electronic properties with crystal facets, this unique morphology could be

    exploited to increase the surface contact between the perovskite and the hole transporting material

    (HTM) such as Spiro-OMeTAD in order to enhance the holes extraction rate from the photoactive layer.

    Figure 3: a) SEM image of the polycrystalline perovskite after the first dipping in MABr/IPA solution;

    b) SEM image of the porous perovskite layer after the second dipping in MAI/IPA solution.

    Once I have obtained the layer, I have first characterized its morphology by SEM images.

  • Short Term Mobility 2016 Cefarin Nicola

    7

    Then, I have characterized these films by X-ray diffraction(XRD), after the first (Plot 3a) and the second

    dipping steps (Plot3b). In the XRD pattern in Plot3a, it is possible to notice that the peak at 2 Theta

    12.68°,assigned to PbI2, is intense as well as the perovskite peak at 14.58°, thereby showing that the

    perovskite formation is not still complete. In the second XRD pattern, while the perovskite peak

    increases, the PbI2 peak decreases in intensity, there by indicating the conversion is almost complete.

    Plot 3: a) XRD of the polycrystalline perovskite after the first dipping in MABr/IPA solution;

    b)XRD of the porous perovskite layer after the second dipping in MAI/IPA solution.

    In order to test the efficiency of this material, I have fabricated a solar cell with the porous

    polycrystalline perovskite.100 nm of TiO2 were e-beam evaporated on cleaned glass-FTO coated

    substrate. The perovskite layer was then deposited as described. To complete the device, Spiro-

    OMeTAD HTL was spin coated, then a gold back contact thermally evaporated. Unfortunately the so

    fabricated device was not working as expected, and more optimization is needed. From the J-V

    characterization, it was possible to observe that both series resistance (1.8E+7 Ω) and shunt resistance

    (8.1E+6Ω) are very high meaning that the device has shunt pathways due to the presence of pinholes.

    The total coverage of the perovskite layer is necessary to have high efficient solar cells.

    Plot 4: I-V curve porous polycrystalline perovksite based solar cell.

    However, these perovskite structure are now going to be characterized by PC-AFM, as a result of this

    collaboration.

    0,00

    200,00

    400,00

    600,00

    800,00

    10,00 12,00 14,00 16,00Inte

    nsi

    ty [

    arb

    un

    its]

    2 Theta [ᵒ]

    PbI2/MABr

    0,00

    400,00

    800,00

    1200,00

    10,00 12,00 14,00 16,00

    Inte

    nsi

    ty [

    arb

    . un

    its]

    2 Theta [ᵒ]

    PbI2/MABr/MAI

  • Short Term Mobility 2016 Cefarin Nicola

    8

    Summary and outcome: To summarize it was possible to learn the LP-VASP process that I will reproduce

    at the IOM-CNR laboratory. This process could be exploited to reach high efficient solar cell and to

    combine our know-how on nano-fabrication with the more specific perovskite experience of the Toma’s

    group.

    A secondary aspect that will be taken in consideration is the deposition of the TiO2 layer through the e-

    beam evaporation. It seems to be highly reproducible and allows to reach high VOC. At the IOM-CNR it is

    possible to deposit the layer with this technique but an upgrade is needed to keep the sample at the

    desired temperature (350ᵒ).

    The porous polycrystalline perovskite even if promising needs a further optimization if it would be used

    for a solar cell. The next steps will be focused on the improving of crystal size control and coverage

    uniformity in order to obtain a suitable layer for the photovoltaic device.

    This project has allowed me to start a new collaboration between my supervisor Dr. Massimo

    Tormen(IOM-CNR) and Francesca Toma (JCAP-LBNL), in order to merge our knowledge and fabricate

    high efficient solar cells.

    References

    1. De Wolf, S. et al. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its

    Relation to Photovoltaic Performance. J. Phys. Chem. Lett.5, 1035–1039 (2014).

    2. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical Management for Colorful,

    Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett.13, 1764–1769

    (2013).

    3. Stranks, S. D. et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal

    Trihalide Perovskite Absorber. Science342, 341–344 (2013).

    4. Oga, H., Saeki, A., Ogomi, Y., Hayase, S. & Seki, S. Improved Understanding of the Electronic and

    Energetic Landscapes of Perovskite Solar Cells: High Local Charge Carrier Mobility, Reduced

    Recombination, and Extremely Shallow Traps. J. Am. Chem. Soc.136, 13818−13825 (2014).

    5. Deschler, F. et al. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-

    Processed Mixed Halide Perovskite Semiconductors. J. Phys. Chem. Lett.5, 1421–1426 (2014).

    6. Sutter-Fella, C. M. et al. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide

    Containing Mixed Halide Perovskites. Nano Lett.16, 800–806 (2016).

    7. Chen, W. et al. Efficient and stable large-area perovskite solar cells with inorganic charge

    extraction layers. Science350, 944–948 (2015).

    8. Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci.

    Adv.2, e1501170 (2016).

  • Short Term Mobility 2016 Cefarin Nicola

    9

    9. Werner, J. et al. Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm2.

    J. Phys. Chem. Lett.7, 161–166 (2016).

    10. Kranz, L. et al. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. J. Phys. Chem. Lett.6,

    2676–2681 (2015).

    11. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing.

    Nat. Mater.13, 476–480 (2014).

    12. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat.

    Nanotechnol.9, 687–692 (2014).

    13. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices.

    Nat. Nanotechnol.10, 391–402 (2015).

    14. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability,

    reproducibility and high efficiency. Energy Environ. Sci.9, 1989–1997 (2016).

    15. Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A. & Snaith, H. J. Morphological Control for

    High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Adv. Funct.

    Mater.24, 151–157 (2014).

    16. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite

    solar cells. Nat. Mater.13, 897–903 (2014).

    17. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by

    vapour deposition. Nature501, 395–398 (2013).

    18. Chen, Q. et al. Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process.

    J. Am. Chem. Soc.136, 622–625 (2014).

    19. Li, Y. et al. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-

    Pressure Vapor Annealing. J. Phys. Chem. Lett.6, 493–499 (2015).

    20. Leblebici, S. Y. et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid

    halide perovskite. Nat. Energy 1, 16093 (2016).