Polymer microstructured optical fibers for terahertz .Polymer microstructured optical fibers for

  • View
    214

  • Download
    0

Embed Size (px)

Text of Polymer microstructured optical fibers for terahertz .Polymer microstructured optical fibers for

  • Polymer microstructured optical fibers for terahertz wave guiding

    Bora Ung, Anna Mazhorova, Alexandre Dupuis, Mathieu Roz, and Maksim

    Skorobogatiy*

    Department of Engineering Physics, Ecole Polytechnique de Montral, C.P 6079, succ. Centre-Ville, Montreal,

    Quebec, H3C 3A,7 Canada * maksim.skorobogatiy@polymtl.ca

    www.photonics.phys.polymtl.ca

    Abstract: We outline the most recent technological advancements in the design, fabrication and characterization of polymer microstructured optical

    fibers (MOFs) for applications in the terahertz waveband. Focusing on

    specific experimental demonstrations, we show that polymer optical fibers

    provide a very flexible route towards THz wave guiding. Crucial incentives

    include the large variety of the low-cost and relatively low absorption loss

    polymers, the facile fiber preform fabrication by molding, drilling, stacking

    and extrusion, and finally, the simple fabrication through fiber drawing at

    low forming temperatures.

    2011 Optical Society of America

    OCIS codes: (060.2280) Fiber design and fabrication; (060.4005) Microstructured fibers;

    (160.5470) Polymers; (110.6795) Terahertz imaging; (300.6495) Spectroscopy, terahertz.

    References and links

    1. G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, High-

    power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser, Opt. Express

    14(10), 44394444 (2006).

    2. M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, Dual-wavelength single-crystal double-pass

    KTP optical parametric oscillator and its application in terahertz wave generation, Opt. Lett. 35(10), 16981700

    (2010).

    3. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, Coherent

    terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna

    detection, Appl. Phys. Lett. 73(4), 444446 (1998).

    4. N. Karpowicz, J. Chen, T. Tongue, and X.-C. Zhang, Coherent millimetre wave to mid-infrared measurements

    with continuous bandwidth reaching 40 THz, Electron. Lett. 44(8), 544545 (2008).

    5. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jrdens, T. Hochrein, and

    M. Koch, Terahertz imaging: applications and perspectives, Appl. Opt. 49(19), E48E57 (2010).

    6. S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C.

    Gordon, R. Mller, and P. Kleinebudde, Non-destructive quantification of pharmaceutical tablet coatings using

    terahertz pulsed imaging and optical coherence tomography, Opt. Lasers Eng. 49(3), 361365 (2011).

    7. G. J. Wilmink, B. L. Ibey, T. Tongue, B. Schulkin, N. Laman, X. G. Peralta, C. C. Roth, C. Z. Cerna, B. D.

    Rivest, J. E. Grundt, and W. P. Roach, Development of a compact terahertz time-domain spectrometer for the

    measurement of the optical properties of biological tissues, J. Biomed. Opt. 16(4), 047006 (2011).

    8. Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, Terahertz dielectric properties of polymers, J. Korean Phys. Soc. 49, 513

    517 (2006).

    9. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, Transmission measurements of hollow-core

    THz Bragg Fibers, J. Opt. Soc. Am. B 28(4), 896907 (2011).

    10. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K. Jen, J. C.

    Williams, and R. J. Twieg, Broadband terahertz characterization of the refractive index and absorption of some

    important polymeric and organic electro-optic materials, J. Appl. Phys. 109(4), 043505 (2011).

    11. M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University Press, 2009).

    12. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, Low-loss subwavelength plastic fiber for terahertz

    waveguiding, Opt. Lett. 31(3), 308310 (2006).

    13. J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, THz interferometric

    imaging using subwavelength plastic fiber based THz endoscopes, Opt. Express 16(4), 24942501 (2008).

    14. C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, and C.-K. Sun, All-terahertz

    fiber-scanning near-field microscopy, Opt. Lett. 34(7), 10841086 (2009).

    #155808 - $15.00 USD Received 30 Sep 2011; revised 18 Nov 2011; accepted 22 Nov 2011; published 7 Dec 2011(C) 2011 OSA 12 December 2011 / Vol. 19, No. 26 / OPTICS EXPRESS B848

  • 15. M. Nagel, A. Marchewka, and H. Kurz, Low-index discontinuity terahertz waveguides, Opt. Express 14(21),

    99449954 (2006).

    16. A. Hassani, A. Dupuis, and M. Skorobogatiy, Low loss porous terahertz fibers containing multiple

    subwavelength holes, Appl. Phys. Lett. 92(7), 071101 (2008).

    17. A. Hassani, A. Dupuis, and M. Skorobogatiy, Porous polymer fibers for low-loss Terahertz guiding, Opt.

    Express 16(9), 63406351 (2008).

    18. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, Fabrication and THz loss

    measurements of porous subwavelength fibers using a directional coupler method, Opt. Express 17(10), 80128028 (2009).

    19. A. Dupuis, A. Mazhorova, F. Dsvdavy, M. Roz, and M. Skorobogatiy, Spectral characterization of porous

    dielectric subwavelength THz fibers fabricated using a microstructured molding technique, Opt. Express

    18(13), 1381313828 (2010).

    20. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro,

    THz porous fibers: design, fabrication and experimental characterization, Opt. Express 17(16), 1405315062 (2009).

    21. H. Ebendorff-Heidepriem and T. M. Monro, Extrusion of complex preforms for microstructured optical fibers,

    Opt. Express 15(23), 1508615092 (2007). 22. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, Bendable, low-loss

    Topas fibers for the terahertz frequency range, Opt. Express 17(10), 85928601 (2009).

    23. O. Mitrofanov and J. A. Harrington, Dielectric-lined cylindrical metallic THz waveguides: mode structure and

    dispersion, Opt. Express 18(3), 18981903 (2010).

    24. M. Roz, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, Suspended core subwavelength fibers:

    towards practical designs for low-loss terahertz guidance, Opt. Express 19(10), 91279138 (2011). 25. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, Modal characteristics of

    antiresonant reflecting pipe waveguides for terahertz waveguiding, Opt. Express 18(1), 309322 (2010).

    26. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos,

    and Y. Fink, Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers, Opt. Express

    9(13), 748779 (2001). 27. M. Skorobogatiy and A. Dupuis, Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance, Appl.

    Phys. Lett. 90(11), 113514 (2007).

    28. B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, High-refractive-index composite materials

    for terahertz waveguides: trade-off between index contrast and absorption loss, J. Opt. Soc. Am. B 28(4), 917

    921 (2011).

    29. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, Porous-core honeycomb bandgap THz fiber, Opt.

    Lett. 36(5), 666668 (2011).

    30. S. Atakaramians, S. V. Afshar, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, Direct

    probing of evanescent fields for characterization of porous terahertz fibers, Appl. Phys. Lett. 98, 121104 (2011). 31. A. Dupuis, Dielectric THz waveguides (PhD thesis, Ecole Polytechnique de Montral, 2010).

    32. O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, Waveguide mode imaging and dispersion

    analysis with terahertz near-field microscopy, Appl. Phys. Lett. 94(17), 171104 (2009). 33. J. R. Knab, A. J. L. Adam, R. Chakkittakandy, and P. C. M. Planken, Terahertz near-field microspectroscopy,

    Appl. Phys. Lett. 97(3), 031115 (2010).

    34. A. Bitzer, A. Ortner, and M. Walther, Terahertz near-field microscopy with subwavelength spatial resolution

    based on photoconductive antennas, Appl. Opt. 49(19), E1E6 (2010).

    35. M. Walther and A. Bitzer, Electromagnetic Wave Propagation Close to Microstructures Studied by Time and

    Phase-Resolved THz Near-Field Imaging, J. Infrared Millim. Terahz. Waves 32(8-9), 10201030 (2011).

    1. Introduction

    The last decade has seen significant technical advances in the generation [1,2] and detection

    [3,4] of terahertz waves. Robust and compact pulsed and continuous-wave terahertz sources

    are now commercially available, and complete THz spectroscopy and imaging setups are now

    seeing market introduction [57]. However most of these THz systems are based on the bulky

    free-space-optics that require expert alignment and servicing, thus restricting the end-user

    appeal of these systems. One part of the solution, as distinctly demonstrated at telecom

    wavelengths, is to replace the free-space optical components with flexible optical fibers as the

    links between the individual optical components. The latter approach should result in a

    dramatic increase of the system performance and reliability, and a high level of integration for

    THz systems. Therefore, the development of the low-loss, low-dispersion, broadband THz

    fibers constitutes a key enabling component towards a new generation of applicati