13

Click here to load reader

Plasma Arc Cutting

  • Upload
    sarah

  • View
    135

  • Download
    1

Embed Size (px)

DESCRIPTION

Introduction to Plasma Arc Cutting from ASM Handbook

Citation preview

Page 1: Plasma Arc Cutting

cutting oxygen. When the flux strikes the refractory oxides that are formed when the cutting oxygen is turned on, it reactswith them to form a slag of lower melting temperature compounds. This slag is driven out, enabling oxidation of themetal to proceed.

Chemical fluxing methods are used to cut stainless steel. The operator should have an approved respirator for protectionfrom toxic fumes generated by the process.

Thermal Cutting

Revised by Ed Craig, AGA Gas, Inc.

Plasma Arc Cutting

Plasma arc cutting employs an extremely high-temperature, high-velocity, constricted arc between an electrode containedwithin the torch and the piece to be cut. The arc is concentrated by a nozzle onto a small area of the workpiece. The metalis continuously melted by the intense heat of the arc and then removed by the jetlike gas stream issuing from the torchnozzle. Because plasma arc cutting does not depend on a chemical reaction between the gas and the work metal, becausethe process relies on heat generated from an arc between the torch electrode and the workpiece, and because it generatesvery high temperatures (28,000 °C, or 50,000 °F, compared to 3000 °C, or 5500 °F, for oxyfuel), the transferred arccutting mode can be used on almost any material that conducts electricity, including those that are resistant to oxyfuel gascutting. Using the nontransferred arc method, nonmetallic objects such as rubber, plastic, styrofoam, and wood can be cutwith a good quality surface to within 0.50 to 0.75 mm (0.020 to 0.030 in.) tolerances.

The past decade has seen a great increase in use of plasma arc cutting, because of its high cutting speed (Fig. 11). Theprocess increases the productivity of cutting machines over oxyfuel gas cutting without increasing space or machineryrequirements.

Fig. 11 Typical cutting speeds for plasma arc cutting of carbon steel or stainless using 6.8 m3/h (240 ft3/h) ofair at 345 kPa (50 psi) from a single source. This information represents realistic expectations usingrecommended practices and well maintained systems. Other factors such as parts wear, air quality, line voltagefluctuations, and operator experience may also affect system performance.

Operating Principles and Parameters (Ref 1)

The basic plasma arc cutting torch is similar in design to that of a plasma arc welding torch. For welding, a plasma gas jetof low velocity is used to melt base and filler metals together in the joint (see the article "Plasma Arc Welding" inWelding, Brazing, and Soldering, Volume 6 of the ASM Handbook). For the cutting of metals, increased gas flows create

Page 2: Plasma Arc Cutting

a high-velocity plasma gas jet that is used to melt the metal and blow it away to form a kerf. The basic design andterminology for a plasma arc cutting torch are shown in Fig. 12.

Fig. 12 Components of a plasma arc cutting torch.

All plasma arc torches constrict the arc by passing it through an orifice as it travels away from the electrode and towardthe workpiece. As the orifice gas passes through the arc, it is heated rapidly to high temperature, expands, and acceleratesas it passes through the constricting orifice. The intensity and velocity of the arc plasma gas are determined by suchvariables as the type of orifice gas and its entrance pressure, constricting orifice shape and diameter, and the plasmaenergy density on the work.

The basic plasma arc cutting circuitry is shown in Fig. 13. The process operates on direct current, straight polarity (dcsp),electrode negative, with a constricted transferred arc. In the transferred arc mode, an arc is struck between the electrode inthe torch and the workpiece. The arc is initiated by a pilot arc between the electrode and the constricting nozzle. Thenozzle is connected to ground (positive) through a current-limiting resistor and a pilot arc relay contact. The pilot arc isinitiated by a high-frequency generator connected to the electrode and nozzle. The welding power supply then maintainsthis low current arc inside the torch. Ionized orifice gas from the pilot arc is blown through the constricting nozzle orifice.This forms a low-resistance path to ignite the main arc between the electrode and the workpiece. When the main arcignites, the pilot arc relay may be opened automatically to avoid unnecessary heating of the constricting nozzle.

Page 3: Plasma Arc Cutting

Fig. 13 Plasma arc cutting circuit. The process operates on direct current electrode negative (straight polarity).The arc is initiated by a pilot arc between the electrode and torch nozzle. Pilot arc is initiated by the high-frequency generator, which is connected to the electrode nozzle.

Plasma arc cutting was originally developed for severing nonferrous metals using inert gases. Modifications of theprocess and equipment to allow the use of oxygen or compressed air in the orifice gas permitted the cutting of carbon andalloy steel with improved cutting speeds and a cut quality similar to that obtained with oxyfuel cutting.

Because the plasma constricting nozzle is exposed to the high plasma flame temperatures (estimated at 10,000 to 14,000°C, or 18,000 to 25,000 °F), the nozzle is sometimes made of water-cooled copper. In addition, the torch should bedesigned to produce a boundary layer of gas between the plasma and the nozzle.

Several process variations are used to improve the plasma arc cutting quality for particular applications. They are

generally applicable to materials in the 3 to 38 mm ( to 1 in.) thickness range, depending on the current rating of theplasma machine. Auxiliary shielding in the form of gas or water is used to improve cutting quality.

Dual-flow plasma cutting provides a secondary gas blanket around the arc plasma, as shown in Fig. 14. The usualorifice gas is nitrogen or compressed air. The shielding gas is selected for the material to be cut. It may be compressed airfor mild steel, CO2 for stainless steels, and an argon-hydrogen mixture for aluminum.

Page 4: Plasma Arc Cutting

Fig. 14 Dual-flow plasma arc cutting.

Water Shield Plasma Cutting. This technique is similar to dual-flow plasma cutting. Water is used in place of theauxiliary shielding gas.

Water Injection Plasma Cutting. This modification of the plasma arc cutting process uses a symmetrical impingingwater jet near the constricting nozzle orifice to further constrict the plasma flame. The arrangement is shown in Fig. 15.The waterjet also shields the plasma from turbulent mixing with the surrounding atmosphere.

Fig. 15 Water injection plasma arc cutting arrangement.

Page 5: Plasma Arc Cutting

Selection of Gas. Any gas or gas mixture that does not degrade the properties of the tungsten electrode or theworkpiece can serve as a plasma gas. The gas mixture varies according to the plasma equipment design criteria. The mostcommonly used gas is compressed air; all common metals, such as carbon and alloy steels, stainless steels, and aluminum,can be cut with compressed air. As the metal thickness increases (over 25 mm, or 1 in., with steels and stainless steels),benefits are derived from the use of nitrogen plasma with CO2 shielding. Aluminum cut quality is improved using argon-hydrogen plasma and nitrogen as the secondary gas blanket. When high-duty cycles are used, a change from compressedair to nitrogen/CO2 prolongs the consumable life.

Machine Ratings. In selecting a plasma cutting unit, the thickness of plate to be cut and the required cutting speedshould be considered. Table 4 shows thickness capacity and midrange cutting speeds of four plasma units. These ratingsare an average of speeds quoted by two manufacturers of plasma arc cutting equipment.

Table 4 Cutting speed of plasma arc cutting machines for stainless steel

Cutting speed, m/min (in./min)

Plate thickness, mm (in.)

Machinerating,A

1.5 ( ) 3 ( ) 6 ( ) 9 ( ) 13 ( )25 (1.0) 50 (2.0) 75 (3.0)

30 0.75-1.5(30-60)

0.5-0.75(20-30)

0.13-0.25(5-10)

. . . . . . . . . . . . . . .

50 1.5-3.0(60-120)

1.3-2.5(50-100)

0.6-1.3(25-50)

0.13-0.25(5-10)

0.025-0.13(1-5)

. . . . . . . . .

100 . . . 1.5-2.8(60-110)

0.75-1.5(30-60)

0.5-1.0(20-40)

0.4-0.5(15-20)

0.13-0.25(5-10)

. . . . . .

400 . . . 3-4(120-150)

4-4.3(150-170)

3-3.5(120-140)

2.5-3(100-120)

1.0-1.5(40-60)

0.25-0.5(10-20)

0.08-0.2(3-8)

The thickness capacity of a cutting unit should first be examined to determine the cutting speed it can achieve for a givenapplication. Next the speeds quoted for the next-larger unit should be studied to see whether the greater speed justifies its

higher cost. For example, a 30 A unit cuts 6 mm ( in.) stainless steel plate at 125 to 250 mm/min (5 to 10 in./min); the

50 A unit cuts 6 mm ( in.) plate at 635 to 1270 mm/min (25 to 50 in./min), a significant increase. If the average requiredcutting thickness exceeds 75% of the maximum thickness capacity of a unit, the next larger size should be considered.

Pierce capacity is usually half the cutting thickness capacity, an important consideration in selection of plasma equipment.To cut plate thicker than 75 mm (3 in.), connecting 400 A or 500 A units in parallel extends thickness capacity.

Technique. With a machine-operated plasma arc torch, standoff distance from the work metal is about 5 to 20 mm (

to in.). In manual operation, the current and rate of gas flow are set, and the arc is struck by pressing a button on thetorch, which is guided manually over the work. At the end of the cut, the arc is automatically extinguished, and thecontrol opens the contactor and closes the gas valves. The operator can extinguish the arc at any time by moving the torchaway from the work metal.

Quality of Cut. Most plasma cutting torches impose a swirl on the orifice gas flow pattern by injecting gas throughtangential holes or slots (Fig. 14 and 15). As a result of the swirl of the plasma gas, walls of plasma arc cuts have a V-shaped included angle of 2 to 4° on one of the cut edges. When a straight edge is required on the cut part, the operator

Page 6: Plasma Arc Cutting

must operate the torch carefully so that the bevel is on the scrap side of the cut. When the operator is facing the directionof torch travel, if the gas swirls clockwise, the bevel will be on the left side of the cut. In many cases, a small bevel isacceptable; it may even be used as a weld preparation. The relationship of torch travel direction to the part with clockwiseswirl of the orifice as is illustrated in Fig. 16.

Fig. 16 Relationship of torch travel direction to the part with clockwise swirl of the orifice gas. With theclockwise swirling plasma gas, the bevel side of the cut is on the left when the operator is looking in thedirection of the torch travel. To achieve straight cuts on the inner diameter and the outer diameter of the ring,torch directions must reverse to keep the right side of the cut on the part edge.

Quality of cut includes surface smoothness, kerf width, degree of parallelism of the cut faces, dross adhesion on thebottom of the cut, and sharpness of top and bottom faces. Table 5 provides data on the causes of imperfections in plasmaarc cutting of low-carbon steel, stainless steel, and aluminum.

Table 5 Causes of imperfections in plasma arc cuts

Cause of imperfectionType ofimperfection

Low-carbon steel Stainless steel Aluminum

Top edge rounding Excessive speed, excessive standoff Excessive speed, excessive standoff Seldom occurs

Top edge dross Excessive standoff, dross easilyremoved

Excessive standoff, excessivehydrogen

Excessive standoff, dross easilyremoved

Top side roughness Seldom occurs Excessive hydrogen or standoff,insufficient speed

Insufficient hydrogen

Side bevel--positive Excessive speed, excessive standoff Excessive speed, excessive standoff Excessive speed, insufficienthydrogen

Side bevel--negative Seldom occurs Seldom occurs Excessive hydrogen

Page 7: Plasma Arc Cutting

Top side undercut Excessive hydrogen Excessive hydrogen Insufficient speed, insufficienthydrogen

Bottom sideundercut

Seldom occurs Slight effect at near-optimumconditions

Seldom occurs

Concave surface Seldom occurs Excessive hydrogen Excessive hydrogen,insufficient speed

Convex surface Excessive speed Insufficient hydrogen, excessivespeed

Seldom occurs

Bottom edgerounding

Excessive speed Seldom occurs Seldom occurs

Bottom dross Excessive hydrogen or speed,insufficient standoff

Insufficient speed, excessivehydrogen

Excessive speed

Bottom sideroughness

Insufficient standoff Seldom occurs Insufficient hydrogen

Width of kerf is 1 to 2 times the kerf of conventional oxyfuel gas cutting. The range is usually 5 to 10 mm ( to

in.), although some users achieve 0.8 mm ( in.). For thick work metal, width of kerf may exceed 9 mm ( in.).

Heat-Affected Zone. The high speeds possible with plasma arc cutting result in relatively low heat input to theworkpiece. Heat-affected zones are therefore narrow. The HAZ on stainless steel plate 25 mm (1 in.) thick cut at 1270mm/min (50 in./min) is 0.08 to 0.13 mm (0.003 to 0.005 in.). Sensitization is usually avoided.

Bevel cutting for weld preparation is an important application of plasma arc cutting. The intense heat of the processmakes it suitable for all types of beveling at a higher efficiency than oxyfuel gas cutting.

Applications

Plasma arc cutting can be used to cut any metal. Most applications are for carbon steel, aluminum, and stainless steel. Itcan be used for stack cutting, plate beveling, shape cutting, and piercing.

In stack cutting, the plates should be clamped together as closely as possible. However, plasma arc cutting can usuallytolerate wider gaps between carbon steel plates than can oxyfuel gas cutting. When high plasma arc cutting speeds are

used, there is less distortion of the top plate. Several plates of 1.5 to 6 mm ( to in.) thickness can be economicallystack cut.

For shape cutting, plasma arc cutting torches are used on shape cutting machines similar to those used for oxyfuel gascutting (Fig. 6). Generally, plasma arc shape cutting machines can operate at higher travel speeds than is possible withoxyfuel gas cutting machines. Because of the fumes and heat produced by the cutting action, water tables are sometimesused with plasma arc shape cutting machines. The water just touches the bottom of the plate, where it traps the fumes,slag, and dross as they emerge from the bottom of the kerf. It also helps reduce noise.

Plasma arc cutting of carbon steel plate can be done faster than with oxyfuel gas cutting processes in thicknesses below75 mm (3 in.) if the appropriate equipment is used. For thicknesses under 25 mm (1 in.), plasma arc cutting speed can be

up to five to eight times greater than that for oxyfuel gas cutting (Fig. 17). For thicknesses over 38 mm (1 in.), the

Page 8: Plasma Arc Cutting

choice of plasma arc or oxyfuel gas cutting depends on other factors such as equipment costs, load factor, andapplications for cutting thinner plates and nonferrous metals. Characteristics of plasma arc cutting and oxyfuel gas cuttingare compared in Table 6.

Table 6 Comparison of OFC and PAC processes

Oxyfuel Plasma arc

Flame temperature 3040 °C (5500 °F) 28,000 °C (50,000 °F)

Action Oxidation, melting, expulsion Melting, expulsion

Preheat Yes No

Kerf Narrow Wide

Cut Both sides square One side square

Speed Moderate High

Heat-affected zone Moderate Narrow

Cutting ability:

Carbon steel Yes Yes

Stainless steel Requires special process Yes

Aluminum No Yes

Copper No Yes

Special alloys Some Yes

Nonmetallics No Yes

Page 9: Plasma Arc Cutting

Fig. 17 Comparison of oxyfuel gas cutting and plasma arc cutting of plain carbon steel.

Reference cited in this section

1. W.H. Kearns, Ed., Welding Handbook, Vol 2, Welding Processes--Arc and Gas Welding and Cutting,Brazing, and Soldering, 7th ed., American Welding Society, 1978, p 499-507

Thermal Cutting

Revised by Ed Craig, AGA Gas, Inc.

Air Carbon Arc Cutting and Gouging

Air carbon arc cutting and gouging severs or removes metal by melting it with the heat of an arc struck between a carbon-graphite electrode and the base metal. A stream of compressed air blows the molten metal from the kerf or groove. Itsmost common uses are for weld joint preparation; removal of defective welds; removal of welds and attachments whendismantling tanks and steel structures; and removal of gates, risers, and defects from castings. The process cuts almostany metal, because it does not depend on oxidation to keep the cut going. A holder clamps the carbon-graphite electrodein position parallel to an air stream, which issues from orifices in the electrode holder to strike the molten metalimmediately behind the arc. The electrode holder contains an air flow control valve, an air hose, and a cable. The cableconnects to the welding machine; the air hose connects to a source of compressed air. Cutting action in the air carbon arcprocess is illustrated in Fig. 18.

Page 10: Plasma Arc Cutting

Fig. 18 (a) Air carbon arc cutting action. (b) Manual air carbon arc cutting.

The low heat input of air carbon arc gouging makes this process ideal for joint preparation and for weld removal on high-strength steels. Base-metal temperatures rise very little, about 80 °C (150 °F) in most applications.

Rough cutting is done manually. Accurate work calls for electrode holders mounted on motor-driven carriages.

Pipe Fabrication. Fabricators of structural steel, pressure vessels, tanks, and pipe use hand torches, semiautomatictorches, and fully automatic torches. A typical pipe fabrication plant uses two automatic air carbon arc torches. One,mounted on a large traveling manipulator, works with several sets of turning rolls and in tandem with submerged arcwelding units. Longitudinal and circumferential seams are square butted, welded on the inside, backgouged to sound weldmetal, then welded on the outside. The second torch, mounted on a pedestal, backgouges circumferential seams at anotherstation.

Power Supply. Constant-voltage direct current with a flat to slightly rising voltage characteristic is best for most aircarbon arc cutting applications. Direct current is preferred; copper alloys, however, cut better with alternating current.Table 7 provides data on power sources for air carbon arc cutting and gouging.

Table 7 Power sources for AAC and gouging

Equipment Polarity Use

Variable-voltage motor-generator, resistor, and resistorgrid

Direct current All electrode sizes

Constant-voltage motorgenerator, rectifier

Direct currentElectrodes > in. in diameter

Transformer Alternating current Alternating current electrodes only

Rectifier Alternating current,direct current

Direct current from three-phase transformer only; single-phase sourcenot recommended. Use alternating current with alternating currentelectrodes only.

Page 11: Plasma Arc Cutting

Air Supply. Compressed air from a shop line or a compressor at 550 to 700 kPa (80 to 100 psi) should be used; pressureas low as 275 kPa (40 psi) is suitable for light work. Deep grooves in thick metal require pressures up to 860 kPa (125

psi). Air hoses should have a minimum inside diameter of 6 mm ( in.) with no constrictions. Air pressure is not criticalin air carbon arc cutting; the process requires a sufficient volume of air to ensure a clean, slag-free surface. The amount ofair required depends on the type of work (0.08 to 0.9 m3/min, or 3 to 33 ft3/min, for manual operations and 0.7 to 1.4m3/min, or 25 to 50 ft3/min, for mechanized operations).

Air carbon arc cutting electrodes are made from mixtures of carbon and graphite. The three basic types of aircarbon arc cutting electrodes are:

• Direct current copper-coated electrodes, which are used most frequently because of long life, stable arccharacteristics, and groove uniformity. These electrodes are produced in diameters from 4 to 20 mm

( to in.)• Direct current uncoated electrodes, which have limited use. These electrodes, although generally

restricted to diameters of less than 9 mm ( in.), are available with diameters from 3 to 25 mm ( to 1in.)

• Alternating current copper-coated electrodes, which have additions of rare-earth metals to provide arc

stabilization with alternating current. These electrodes are produced in 5, 6, 9, and 13 mm ( , , ,

and in.) diameters

Cross sections vary; round electrode rods are most common. Electrodes also come in flat, half-round, and special shapesto produce specially designed groove shapes.

Technique. The angle of the electrode, speed of cut, and amount of current determine depth and contour of the cut orgroove. The electrode is held at an angle, and an arc is struck between the end of the electrode and the work metal. Theelectrode is then pushed forward. Data on groove depth, electrode size, current, and travel speed for air carbon arcgouging is available from various equipment manufacturers.

For through-cutting, the electrode is placed at a steeper angle, almost vertically inclined. Plate thicknesses greater than 13

mm ( in.) may require multiple passes.

Grooves as deep as 25 mm (1 in.) can be made in a single pass. A steep angle, approaching that used for through-cutting,and rapid advance produce a deep, narrow groove; a flatter angle and slower advance produce a wide, shallow groove.Electrode diameter directly influences groove width. Operators should use a wash or weave action to remove excess metalsuch as risers and pad stubs, or in surfacing. Smoothness of the gouged or cut surface depends on the stability of electrodepositioning, as well as on the steadiness of the electrode as it advances during the cutting operation. Mechanized gouging,with the electrode and holder traveling in a carriage on a track, produces smoother surfaces five times faster than doesmanual work.

Absorption of Carbon. Reverse polarity air carbon arc cutting removes metal faster than does straight polarity.However, the current carries carbon from the electrode to the base metal, increasing its carbon content. To minimizehardenability, the air stream must be adjusted to ensure removal of all molten metal.

Thermal Cutting

Revised by Ed Craig, AGA Gas, Inc.

Exo-Process

Page 12: Plasma Arc Cutting

A relatively new electric arc cutting process, called the Exo-Process, has been developed. Similar to flux-cored processes,it uses a consumable tubular electrode and a specially designed gun that feeds high-speed compressed air to the arc (Fig.19). The air flow functions to push molten metal from the gouge cavity, to constrict the arc for more precise control, andto cool the electrode. The system can be adapted to conventional gas metal arc welding equipment (it requires a directcurrent constant-voltage power source--150 A minimum--and a conventional wire feeder).

Fig. 19 The Exo-Process for gouging.

The velocity of the air flow at the arc is the key factor for straight cutting. A 1.5 mm ( in.) wire size can cut up to 6

mm ( in.) thick carbon steel. Speed and edge cut quality on most commercial metals and alloys is good, particularly forsheet metal thicknesses. Gouge quality on carbon steels is also good. The process would be well suited for automatedequipment, in that high travel speeds may be attained. An obvious benefit of the process is that it can be mounted on a gasmetal arc dual-wire feed system to provide the operator with a multifunctional welding and cutting unit.

Thermal Cutting

Revised by Ed Craig, AGA Gas, Inc.

Oxygen Arc Cutting

Oxygen arc cutting uses a flux-covered tubular steel electrode. The covering insulates the electrode from arcing betweenit and the sides of the cut. The arc raises the work material to combustion temperature; the oxygen stream burns thematerial away. Oxidation, or combustion, liberates additional heat to support continuing combustion of sidewall materialas the cut progresses. The electric arc supplies the preheat necessary to obtain and maintain ignition at the point where theoxygen jet strikes the surface of the work. The process finds greatest use in underwater cutting.

When cutting oxidation-resistant metals, melting action occurs. The covering on the electrode acts as a flux; it functionsin a manner similar to that of powdered flux or powdered metal injected into the gas flame in the flux-injection method ofoxyfuel gas cutting of stainless steel.

Page 13: Plasma Arc Cutting

Equipment. Oxygen arc cutting uses direct or alternating current, although direct current electrode negative (DCEN) ispreferred. The electrode and the electrode holder convey the electric current and oxygen to the arc. Electrode holdersmust be fully insulated; underwater cutting requires a flashback arrester, and the electrode must have a watertight plasticcoating. Components of an oxygen arc electrode are shown in Fig. 20.

Fig. 20 Components of an oxygen arc electrode.

Thermal Cutting

Revised by Ed Craig, AGA Gas, Inc.

Reference

1. W.H. Kearns, Ed., Welding Handbook, Vol 2, Welding Processes--Arc and Gas Welding and Cutting,Brazing, and Soldering, 7th ed., American Welding Society, 1978, p 499-507

Laser Cutting

Gregg P. Simpson, Peerless Laser Processors Division, Peerless Saw Company; Thomas J. Culkin, Lumonics Materials ProcessingCorporation

Introduction

INDUSTRIAL LASERS are being used in numerous material processing applications. They can weld microswitches andauto transmission gears, scribe and machine ceramic substrates, and drill jet engine turbine blades and baby bottle nipples.They are also used in heat treating, cladding, ablating, and marking. However, cutting represents their largest singleapplication.

The versatility of the laser in cutting operations is responsible for its widespread use. The same laser can be used to cutmen's suits, newspapers, circuit boards, motorcycle fenders, circular saw blades, stainless steel auto exhaust tubing and 13mm (0.5 in.) thick alloy steel for aircraft disc brakes.