84
Food and Agriculture Organization of the United Nations and the International Plant Genetic Resources Institute Organisation des Nations Unies pour l'alimentation et l'agriculture et l'institut international des ressources phytogénétiques Organización de las Naciones Unidas para la Agricultura y la Alimentación y el Instituto Internacional de Recursos Fitogenéticos Noticiario de Recursos Fitogenéticos Bulletin de Ressources Phytogénétiques Plant Genetic Resources Newsletter No. 123, 2000 Bulletin de Ressources Phytogénétiques Plant Genetic Resources Newsletter Noticiario de Recursos Fitogenéticos ISSN 1020-3362

Plant Genetic Resources newsletter

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Plant Genetic Resources newsletter

Food and Agriculture Organization of the United Nations and theInternational Plant Genetic Resources InstituteOrganisation des Nations Unies pour l'alimentation et l'agriculture etl'institut international des ressources phytogénétiquesOrganización de las Naciones Unidas para la Agricultura y la Alimentación yel Instituto Internacional de Recursos Fitogenéticos

Noticiario de Recursos Fitogenéticos

Bulletin de Ressources Phytogénétiques

Plant Genetic Resources Newsletter

No. 123, 2000

Bulletin de Ressources Phytogénétiques

Plant Genetic Resources Newsletter

Noticiario de Recursos Fitogenéticos

ISSN 1020-3362

Page 2: Plant Genetic Resources newsletter

Managing EditorPlant Genetic Resources NewsletterIPGRIVia delle Sette Chiese 14200145 Rome, ItalyTel.: +39-0651892233Email: [email protected]: +39-065750309Web: http://www.ipgri.cgiar.org

EditorialOffice

© IPGRI/FAO 2000

Bureau derédaction

Oficina deRedacción

The designations employed, and thepresentation of material in the period-ical, and in maps which appear here-in, do not imply the expression of anyopinion whatsoever on the part ofIPGRI or FAO concerning the legalstatus of any country, territory, cityor area or its authorities, or concern-ing the delimitation of its frontiers orboundaries. Similarly, the views ex-pressed are those of the authors anddo not necessarily reflect the viewsof IPGRI or FAO.

Les appellations employées danscette publication et la présentationdes données et cartes qui y figurentn’impliquent de la part de l’IPGRI etde la FAO aucune prise de positionquant au statut juridique des pays,territoires, villes ou zones, ou deleurs autorités, ni quant au tracé deleurs frontières ou limites. Les opin-ions exprimées sont celles des au-teurs et ne reflètent pas nécessaire-ment celles de l’IPGRI ou de la FAO.

Las denominaciones empleadas, yla forma en que aparecen presenta-dos los datos en esta publicación,no implican, de parte del IPGRI o laFAO, juicio alguno sobre la condi-ción jurídica de países, territorios,ciudades o zonas, o de sus autori-dades, ni respecto de la delimitaciónde sus fronteras o límites. Asimis-mo, las opiniones expresadas sonlas de sus autores y no reflejan nec-esariamente la opinión del IPGRI ola FAO.

Cover: Close-up of part of a wildcassava plant in the field. This cropis discussed in the paper by Allem(pp. 19-22). Photo by IPGRI.

Couverture: Gros plan d'une plantesauvage de manioc sur le terrain.Cette culture est commentée dansle document de Allem (pp. 19-22).Photo IPGRI.

Portada: Primer plano de una partede la planta silvestre de mandiocaen el campo. Se habla de este culti-vo en el documento escrito por Al-lem (pp. 19-22). Foto del IPGRI.

Page 3: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 1Plant Genetic Resources Newsletter, 2000, No. 123: 1- 8

Utilization of germplasm conserved in Chinesenational genebanks – a surveyGao Weidong¹�, Jiahe Fang¹, Diansheng Zheng¹, Yu Li¹, Xinxiong Lu¹,Ramanatha V. Rao², Toby Hodgkin³ and Zhang Zongwen4

¹ Institute of Crop Germplasm Resources of the Chinese Academy of Agricultural Sciences, Beijing 100081, China.Email: [email protected]² IPGRI Regional Office for Asia, the Pacific and Oceania, Serdang, Malaysia³ IPGRI, Rome, Italy4 IPGRI Office for East Asia, Beijing, China

SummaryUtilization of germplasmconserved in Chinese nationalgenebanks – a surveyA survey on the use of germplasm con-served in Chinese national genebankswas conducted jointly by the Institute ofCrop Germplasm Resources of the Chi-nese Academy of Agricultural Sciences(CAAS) and IPGRI in 1998-99. A studywas made of the distribution of acces-sions in the 15-year period from 1984 to1998, the 10 crops targeted being: rice,wheat, soyabean, maize, cotton, orang-es, tea, mulberry, cabbage and cucum-ber. The aim was to determine patternsof germplasm distribution and use, iden-tify constraints to the use of germplasmconserved in genebanks and suggesthow the situation could be improved.This investigation was conductedthrough a literature review, a question-naire, a workshop and site visits. Theresults showed that 178 495 accessions ofthe 10 target crops, including 448 speciesand 29 subspecies, have been collected inChina, of which 161 979 accessions werepreserved in seed genebanks and 16 516accessions in field genebanks. Over the15-year period, germplasm distributedby genebanks was used for screeningcrop germplasm resources (i.e. for char-acterization and evaluation for desiredtraits), for breeding, for basic researchand for other uses (including direct use inproduction). Some accessions were notused by recipients but only stored as partof a working collection. The researchidentified 24 factors limiting the effectiveuse of germplasm according to the re-spondents. For example, most thoughtthat present policies and systems werenot beneficial to the sharing of crop ger-mplasm resources and that this has led toinsufficient germplasm distribution anduse. Recommendations were made toincrease the use of germplasm in China.This research could also be considered amodel for surveying the use of germ-plasm in other countries or genebanks.

Key words: Cabbage, China, cotton,cucumber, genebanks, germplasm,maize, mulberry, oranges, rice,soyabean, tea, wheat

ResumenEstudio del uso degermoplasma conservado enbancos nacionales de ChinaEl Instituto de Recursos deGermoplasma Vegetal de la AcademiaChina de Ciencias Agrícolas y el IPGRIestudiaron conjuntamente en 1998-99 eluso de germoplasma conservado enbancos de germoplasma nacionales deChina. Se estudió la distribución deaccesiones durante 15 años (1984- 1998),de 10 cultivos: arroz, trigo, soja, maíz,algodón, naranjas, té, mora, col y pepino.Se pretendía determinar pautas dedistribución y uso de germoplasma,señalar las limitaciones en el uso delgermoplasma conservado en los bancosy sugerir formas de mejorar la situación.La investigación se realizó a través deuna revisión de la bibliografía, uncuestionario, una taller y visitas sobre elterreno. Se constató que se habíanrecogido en China 178 495 accesiones delas 10 plantas citadas, correspondientes a448 especies y 29 subespecies, de lascuales 161 979 accesiones se conservabanen bancos de semillas y 16 516 accesionesen bancos en el campo. Durante los 15años, el germoplasma distribuido por losbancos se utilizó para seleccionar recursosde germoplasma (o sea para caracterizary evaluar rasgos deseados), para mejoragenética, para investigación básica y paraotros usos (como el uso directo en laproducción). Los receptores no usabantodas las accesiones, sino que guardabanalgunas como parte de una colección detrabajo. Se enumeraron 24 factoreslimitativos del uso efectivo delgermoplasma según los encuestados.Por ejemplo, la mayoría pensaban quelas políticas y sistemas actuales nofavorecen el intercambio de recursos degermoplasma y que por ello soninsuficientes su distribución y su uso. Seformularon recomendaciones paraaumentar el uso de germoplasma enChina. Este trabajo puede servir demodelo para estudiar el uso degermoplasma en otros países o bancosde germoplasma.

ARTICLE

RésuméEnquête sur l’utilisation dumatériel génétique conservédans les banques de gènesnationales en ChineUne enquête sur l’utilisation du matérielgénétique conservé dans les banques degènes nationales en Chine a été menéeconjointement par l’Institut des ressou-rces génétiques des plantes cultivées del’Académie chinoise des sciencesagronomiques et l’IPGRI en 1998-99. Ona étudié la distribution des accessions surune période de 15 ans (1984-1998), pour10 cultures cibles: riz, blé, soja, maïs,coton, orange, thé, mûre, chou et con-combre, afin de déterminer les modes dedistribution et d’utilisation du matérielgénétique, et d’identifier les obstacles àl’utilisation du matériel génétique con-servé dans les banques de gènes et lespossibilités d’amélioration de la situation.L’étude a consisté en une étude bib-liographique, un questionnaire, un ate-lier et des visites de sites. Les résultatsmontrent que 178 495 accessions des 10cultures cibles, comprenant 448 espèceset 29 sous-espèces, ont été collectées enChine : 161 979 ont été conservées dansdes banques de semences et 16 516 dansdes collections au champ. Au cours de lapériode considérée, le matériel génétiquedistribué par les banques de gènes a étéutilisé pour le criblage des ressourcesphytogénétiques (caractérisation et éval-uation), la sélection, la recherche fonda-mentale, l’utilisation directe (culture), etc.Certaines accessions n’ont pas été util-isées par les bénéficiaires, mais con-servées dans une collection de travail.L’enquête a permis d’identifier 24 fac-teurs qui, selon les personnes inter-rogées, limitent l’utilisation efficace dumatériel génétique. La plupart estimentque les politiques et systèmes actuels nefavorisent pas le partage des ressourcesphytogénétiques, d’où une distributionet une utilisation insuffisantes de ce maté-riel. Des recommandations sont for-mulées pour le développement del’utilisation du matériel génétique enChine. Cette enquête pourrait servir demodèle à des études similaires dansd’autres pays ou d’autres banques degènes.

Page 4: Plant Genetic Resources newsletter

2 Plant Genetic Resources Newsletter, 2000, No. 123

IntroductionOver the 15-year period under study, from 1984 to 1998, thecentral government in Beijing has established a modern long-term storage genebank, a duplicate genebank and a number ofmedium-term genebanks for germplasm exchange. In addition,32 national germplasm nurseries for perennial and vegetativelypropagated crops (including two in vitro banks), and 21 local andprovincial medium-term genebanks have been established na-tionwide. These provide basic facilities for the conservation andresearch of crop genetic resources. By September 1998, thegermplasm preserved in the national genebanks and nurserieshad reached 355 000 accessions. Of these, 318 000 accessions of161 crops, belonging to more than 600 species of 174 genera of30 families, are preserved in the long-term genebank and over 37000 accessions of more than 50 crops, belonging to 1026 speciesor subspecies, are preserved in the germplasm nurseries.Germplasm conserved in genebanks accounts for approximately85% of accessions collected in China. Much of this is endemic toChina and includes rare germplasm and wild relatives of crops,including elite material for crop improvement (Gao Weidongand Shumin Wang 1997).

In the same period genebanks have also distributed hun-dreds of thousands of germplasm to institutions and research-ers at home and abroad. However, the use being made of thedistributed germplasm is unclear. There still seems to exist inChina the belief that “crop germplasm resources are abundantbut breeding materials are scarce”. Although some factors limit-ing the effective use of germplasm are known, little has beendone to examine the extent of this or how to reduce the phenom-enon. The present project aimed to explore the use of germplasmin China from 1984 to 1998 in order to collect information ongermplasm utilization in agriculture, genetic research, characterevaluation, germplasm enhancement and exploitation; providea scientific basis for solving the problems mentioned above, andformulate strategies to increase the use of crop germplasm re-sources.

Materials and methodsTarget cropsThe target crops include rice, wheat, soyabean, maize, cotton,citrus, tea, mulberry, Peking cabbage and cucumber. Informa-tion on the distribution, exchange and utilization of thisgermplasm, which is preserved in the national medium-termgenebanks, nurseries and local genebanks, was collected for the15-year period 1984 to 1998.

Major activitiesSurvey by questionnaireA total of 676 questionnaires were sent to experts in China (580)and abroad (96) at the beginning of January 1999. By the end ofJune 1999, 249 questionnaires (36.8%) had been returned. Ap-proximately 41% of Chinese scientists responded and 11.5% ofscientists from other countries (Table 1).

Literature reviewMore than 120 papers and other documents on germplasmutilization in China were reviewed, such as Chinese Agricul-

tural Sciences, Acta Genetica Sinica, Acta Botanica Sinica, ActaPhytophysiologica Sinica, Acta Phytochemica Sinica, ActaAgronomica Sinica, Journal of Crops, Acta Entomologica Sinica,Crop Genetic Resources, Chinese Rice Sciences, Triticeae crops,Maize Sciences, Soybean Sciences, Fruit Sciences, ActaHorticulturae Sinica, Cotton in China, Citrus in China, Veg-etables in China, Tea Sciences, Mulberry Sciences and other localjournals.

WorkshopA workshop on the status of germplasm utilization, problemsand solutions at the national genebanks/nurseries in Chinawas held from 26 to 27 May 1999 and hosted by the Institute ofCrop Germplasm Resources of Chinese Academy of Agricul-tural Sciences (CAAS). Twenty-one scientists from differentinstitutions attended the workshop.

Case studiesExperts undertook on-the-spot investigations at 13 institutes:the Crop Cultivation and Breeding Institute, the Cotton Insti-tute, the Citrus Institute, the Vegetable and Flower Institute, theTea Institute, the Mulberry Institute and the Crop GermplasmResources Institute all of CAAS; the China Rice Research Insti-tute; the Jilin Academy of Agricultural Sciences; the ShanxiAcademy of Agricultural Sciences; the Hainan Academy ofAgricultural Sciences; the Northeast Agricultural University;and the Nanjing Agricultural University. The focus was oninvestigating the status of germplasm distribution and utiliza-tion for the 10 crops identified.

Results and discussionGermplasm preservationA total of 178 495 accessions of the target 10 crops, consisting of448 biological species and 29 subspecies, have been collected inChina (Table 2). Of these, 161 979 accessions are preserved ingenebanks and 16 516 accessions are preserved in nurseries.

Germplasm distributionGiven the information in the survey, it is evident that germplasmdistribution for the 10 crops made great progress in 15-year periodexamined (Table 3). A total of 184 743 accessions were distributedto 8635 institutions concerned with crop breeding, basic research,production and teaching. The material distributed included bredvarieties, breeding lines, landraces, wild relatives and geneticstock. The crops were rice, wheat, maize, soyabean, cotton, citrus,Peking cabbage, cucumber, tea tree and mulberry.

Germplasm utilizationThe current project investigated the status of germplasm utili-zation for the 10 target crops (Table 4). It was shown that theuse of germplasm could be divided into five areas: screening,breeding, basic research, other uses and no use made of thematerial. According to the survey, of the 136 802 accessionsreceived in the 15-year period, 21% of the total were used forscreening crop germplasm resources, 8.1% for breeding, 9.0%for basic research, 2.0% for other purposes and 59.9% were notused at all.

Page 5: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 3

From Table 4 it can be seen that mainly cultivars wereused for breeding, with the percentage of wild relatives usedbeing considerably lower (0.4%), although their potential isnoteworthy. Landraces and breeding lines were used mainlyfor screening useful characteristics and genetic stock wasused mainly for basic research. Wild relatives were used forscreening and basic research, and cultivars were mainlyused for screening. Further information on the use ofgermplasm in breeding, production and basic research isgiven below.

The use of germplasm in breedingThe 13 breeding institutes that received ac-cessions used 21.1% in crop improvement(Table 5). Altogether 1281 varieties were bredusing 1487 accessions. Of the 1487 acces-sions, 0.8% were from genebanks and nurs-eries. This indicates that the rate of effectiveuse was higher for cash crops than for fieldcrops. The total area planted with varietiesbred using germplasm received as parentshas been estimated at 37 481 720 ha for the15-year period. This is 25.2% of the totalarea planted with the target crops. Of thetotal area cultivated with germplasm re-ceived from genebanks or nurseries, 18 497400 ha was planted with rice, 10 207 400 ha

Table 4. Information on the use of the germplasm received for the target crops (1984-98)

Germplasm use Landraces Advanced Genetic Wild Cultivars Totallines stocks relatives

Germplasm received 40 701 54 114 1 348 6729 33 910 136 802Screening No. 9668 9562 160 634 8731 28 755

% 23.8 17.6 11.9 9.4 25.8 21Breeding No. 2390 4258 57 27 4345 11 077

% 5.9 7.9 4.2 0.4 12.8 8.1Basic research No. 3557 3028 769 638 4286 12 278

% 8.7 5.6 57.0 9.5 12.6 9.0Other (including No. 605 1305 50 35 712 2707direct use) % 1.5 2.4 3.7 0.5 2.1 2.0Not used No. 24 481 35 961 312 5395 15 836 81 985

% 60.1 66.5 23.2 80.2 46.7 59.9

Table 3. The status of germplasm distribution by germplasm holders for 10 target crops (1984-98)

Crop Landraces Advanced Genetic Wild Cultivars Total (%)lines stocks relatives

Rice 8586 26 700 450 949 21 065 57 750 (31.3)Wheat 2517 23 566 1989 1508 23 430 53 010 (28.7)Maize 800 1000 100 10 3000 4910 (2.7)Soyabean 8850 2500 250 1500 5000 18 100 (9.8)Cotton 31 4510 135 55 10 269 15 000 (8.1)Citrus 10 440 – 744 1417 7310 19 911(10.8)Peking cabbage 2500 900 45 – 60 3505 (1.9)Cucumber 2200 750 – – 30 2980 (1.6)Tea 4500 – 300 2175 910 7885 (4.3)Mulberry 1000 85 35 50 522 1692 (0.9)Total 41 424 (22.4%) 60 011 (32.5%) 4048 (2.2%) 7664 (4.1%) 71 596 (38.8%) 184 743

Table 1. General information concerning respondents

Respondents Respondents Totalfrom China from abroad

Activity No. % No. % No. %

Curator 43 18.1 2 18.2 45 18.1Breeder 88 37.0 1 9.1 89 35.7Curator 101 42.4 7 63.6 108 43.4and breederOther 6 2.5 1 9.1 7 2.8Total 238 41.0 11 11.5 249 36.8

Table 2. Conservation status of 10 target crops in China

Crop Species Subspecies Accessions conserved

Genebank Nursery Total

Rice 36 2 64 390 8933 73 323Wheat 297 18 41 013 1798 42 811Maize 1 – 15 967 – 15 967Soyabean 3 – 31 206 – 31 206Cotton 60 – 6264 460 6724Citrus 22 – – 1041 1041Peking cabbage – 1 1665 – 1665Cucumber 1 – 1474 – 1474Tea tree 17 5 – 2527 2527Mulberry 11 3 – 1757 1757Total 448 29 161 979 16 516 178 495

Page 6: Plant Genetic Resources newsletter

4 Plant Genetic Resources Newsletter, 2000, No. 123

with wheat, 6 609 090 ha with maize and 1 789 290 ha withvarieties of cotton.

Currently, 85% of the major crops in China are grown usingmodern varieties. This has resulted in annual rice yields risingfrom 5250 kg/ha in 1985 to 6319 kg/ha in 1997, wheat yieldsfrom 2490 kg/ha in 1985 to 4101 kg/ha in 1997, corn yields from3600 kg/ha in 1985 to 4387 kg/ha in 1997, soyabean from 1365kg/ha in 1985 to 1764 kg/ha in 1997 and cotton from 810 kg/hain 1985 to 1024 kg/ha in 1997. In addition, approximately 70-80% of maize is grown using maize hybrids. All of these achieve-ments are closely dependent upon the use of crop germplasm.

Direct use in productionThe survey showed that in the 15-year period under discussion,178 landraces were directly used in production on 12 722 000 ha,accounting for 0.9% of the cultivated area grown with the targetcrops (Table 6). In general, improved varieties of field crops havebeen in production for 3-7 years, tea trees and mulberry for 5-15years and vegetables for 2-4 years. Landraces, however, have beenin use for much longer. For example, the wheat landrace

Xiaohongmai has been grown for its drought tolerance in theInner Mongolian Region for at least 100 years and the ricelandraces Zhubao and Yabao have been grown in LingshuiCounty of Hainan Province (where the Li ethnic group lives) for atleast 30 years. The use of landraces has not only protectedbiodiversity but also helped to develop local economies.

However, new varieties with high yields, good quality andresistance to diseases and pests have replaced landraces in mostregions, although landraces are still used in some remote regionsand areas where minor ethnic groups live. Prof. Manmao Qian(Qian et al. 1996) has estimated that in the 1950s nearly 10 000wheat cultivars were still being used in China but that only 300improved varieties are currently in use.

The survey results showed that approximately 66 major ricelandraces, such as Laohudao and Hongkewan, are used in riceproduction on 77.5% of the total area grown with landraces inthe 15-year period. For soyabean, 13 major landraces are stillcurrently used in production including Shizhu Zhuyaozi ofSichuan and Juhuang of Guangdong, with a growing area 8.3%of the area grown with landraces. Other major landraces include

Xiaohongmai for wheat on 7.8% of the area planted;Baibaomi, Huobaomi and Huanghuoyumi for maizeon 3.2% of the area planted; Husang 32, Dahuasangand Dayibai for mulberry on 1.3% of the areaplanted; Yichuanling and Xintaimici for cucumberon 1.0% of the area planted; 15 landraces such asQichen and Xuechen for citrus on 0.3% of the areaplanted, and 50 landraces, such as XuchuanGouniannaocha of Jiangxi and TenchongWenjiatangdayecha of Yunnan for tea on 0.1% ofthe total area planted with landraces. No landracesare used to grow cotton.

Basic researchFor the 10 target crops, 12 278 accessions were usedfor basic research (see Table 4). This has mainlyfocused on the following areas: genetics and the

Table 5. Utilization of germplasm received at the 13 main breeding centres (1984-98)

Germplasm involved indevelopment of released varieties

Total area Germplasm used Fromcultivated for breeding genebanks Total

Germplasm VarietiesCrop† ‘000 ha received No. % bred No. % No. %

Rice 18 497.67 35 000 3260 9.3 376 303 0.87 393 1.12Wheat 10 207.40 53 010 13 252 25.0 267 213 0.4 424 0.8Maize 6609.09 4523 733 16.2 120 87 1.92 141 3.1Soyabean 300.80 13 300 4633 34.8 292 36 0.27 71 5.3Cotton 1789.29 1662 1170 70.4 192 163 9.8 282 16.9Citrus 2.54 700 138 19.7 8 11 1.57 17 2.43Cucumber 66.90 1474 400 27.1 64 32 2.17 106 7.19Tea 4.11 1772 34 1.92 109 34 1.92 34 1.92Mulberry 3.92 398 30 7.5 19 13 3.27 20 5.03Total 37 481.72 11 1839 23 650 21.1 1 447 892 0.8 1487 1.33

† Peking cabbage was not included.

Table 6. Use of landraces for the 10 target crops (1984-98)

No. oflandraces Growing

Crop used Elite traits used area (ha)

Rice 66 Disease resistance 9 909 000Wheat 1 Stress tolerance 1 000 000Maize 10 Disease resistance, early 46 031

maturity, drought toleranceSoyabean 13 Large grain, used for 1 064 050

vegetables, early maturityCitrus 15 Good quality, high yield, 39 700

early maturityCucumber 4 Disease resistance, 124 500

cold toleranceTea 50 Good quality, high yield 16 055Mulberry 19 High yield 163 388Total 178 12 362 724

Page 7: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 5

mechanism of heterosis, botany, plant taxonomy, biologicaldiversity, plant physiology, plant biochemistry, phytopathol-ogy and resistance mechanisms, molecular biology, genetic engi-neering, cytological engineering and environmental biology.Most of the research results were published in China.

Limiting factors in the use of germplasm resourcesThe use of crop germplasm resources in China has made greatprogress since 1984. However, there are some factors which limitits effective use (see Table 7). The survey investigated the viewsof respondents working in different areas of genetic resources.The questions can be divided into five categories: (a) character-ization and evaluation (8-11), (b) exchange and communication(1, 2, 4, 14), (c) germplasm enhancement (13), (d) policies (19-22) and (e) other factors. Respondents differed on numbers 3, 5-7, 12, 15-18, 23 and 24 which came under (e) and were inagreement on questions 1, 8-11, 13 and 19-22. Further detailsare given in Table 8.

Germplasm characterization and evaluationThe survey showed that there was a lack of in-depth studies onthe huge collections and basically that germplasm was charac-terized and evaluated phenotypically, which led to an unclearunderstanding of its use value. For some accessions, no charac-terization and evaluation of agronomic characters, resistance todisease and pests or tolerance to stress had been carried out. Forexample, although all the wheat germplasm (38 000 accessions)preserved in the national genebanks had been characterizedagronomically, resistance to seven diseases had been evaluatedfor only 22 000 accessions, drought tolerance for only 15 000

accessions, cold and salt tolerance for only 2000-3000 acces-sions, and crude protein and lysine content for only 20 000accessions. Approximately two-thirds of maize germplasm hadbeen characterized and evaluated for resistance to disease andpests, stress tolerance and quality analysis. This lack of charac-terization and evaluation has undoubtedly limited, to someextent, the wide use of the rich genetic diversity available andthe enhancement of germplasm.

Germplasm exchange and communicationMedium-term germplasm exchange banks, facilities forgermplasm multiplication and regeneration, and informationnetworks are needed for the effective use of germplasm re-sources. For many reasons, however, these facilities have notbeen established or perfected. Most of the medium-termgenebanks are located in different provinces and are responsiblefor the medium-term preservation of local germplasm. Someprovinces have no modern medium-term genebanks and theconditions for preservation are poor. Approximately 7% of re-spondents have long-term genebanks, 20% medium-term banks,42% germplasm nurseries, 29% working genebanks and 2% nogenebanks. Moreover, because of the lack of funding for theregeneration of germplasm preserved in the medium-term banks,no material is available for distribution and some accessionshave been lost.

As some provincial medium-term genebanks are not linked tothe National Germplasm Information Database, this has led tothe ineffective germplasm and information exchange betweenunits working on germplasm and units working on breeding andbasic research. Thus, some germplasm curators are unaware of

Table 7. Factors limiting the use of crop germplasm resources (CGR)

No. Statement

1 Limited exchange of CGR information2 Breeders do not know CGR information in genebanks3 Curators do not know breeders’ needs4 Poor distribution of CGR5 Insufficient number of CGR for target crop in genebanks6 Insufficient number of useful CGR for target crop in genebanks7 Little genetic diversity of target crop preserved in genebanks8 Insufficient characterization and evaluation in genebanks9 Insufficient characterization and evaluation for disease and pest resistance of CGR in genebanks10 Insufficient characterization and evaluation for stress tolerance (e.g. cold, drought, salt, etc.) of CGR in genebanks11 Insufficient genetic evaluation of CGR in genebanks12 Unreliable data of CGR characterization and evaluation13 Insufficient CGR enhancement14 Obtaining desirable CGR from national medium-term genebanks is difficult15 Amount of CGR supplied by national genebanks is not sufficient to meet needs16 Time taken to respond and provide CGR requested is very long17 Obtaining CGR from national medium-term genebanks is expensive18 Property right may be involved if CGR from other Chinese institutions is used19 Elite materials held by breeders is not preserved in genebanks20 Present policies and systems are not beneficial to CGR sharing21 Government has not paid great attention to genetic resource activities22 Breeders do not request CGR from curators23 Introduction of desirable materials from other countries is faster and less expensive than requesting them from

Chinese institutes or enhancement by self24 Requests for CGR are sometimes limited by policies, e.g. only institutions that send CGR to the genebank can obtain

the CGR

Page 8: Plant Genetic Resources newsletter

6 Plant Genetic Resources Newsletter, 2000, No. 123

breeders’ urgent requirements and breeders are unaware of theinformation available on germplasm. This has resulted in theinaccurate objectives of both curators and breeders.

Germplasm enhancementGermplasm enhancement to broaden genetic diversity is veryimportant for the effective use of germplasm resources. In China,poor germplasm enhancement and improvement has led to thepoor exploitation and inefficient use of elite germplasm. Withthe exception of a few landraces, it is impossible that allgermplasm traits are elite. In the past, breeders used traditionalbreeding methods to develop varieties and they often neededonly one or two elite traits. Nowadays they require materialswith more elite traits resulting in an urgent need for germplasmenhancement.

PoliciesFirstly, although the Government has paid considerable attentionto crop germplasm resources in the past two decades, not enoughhas been done to support such a huge undertaking and insuffi-cient resources have been given to increasing public awareness.Secondly, in general the Government does not give high priority togermplasm management and this has led to the lack of funds andpoor equipment in some genebanks. Thirdly, present policies donot facilitate sharing germplasm between holders and users, andthe intellectual property rights of holders and breeders cannot beprotected effectively. This is why some elite material owned bybreeders is not preserved in the national genebanks and/or nurs-eries and, therefore, cannot be used by others.

Other factorsRespondents had different opinions on the following questions.(a) Do germplasm curators know the needs of breeders? (b) Arethe accessions preserved in the genebanks sufficient for re-search? (c) Is there enough useful germplasm in the genebanks?(d) Is there sufficient genetic diversity in the accessions pre-served in the genebanks? (e) Is the amount of seed providedenough? (f) Does the time for seed provision take too long? (g) Isthe cost of obtaining germplasm from the genebanks too high?(h) Is the introduction of parents from abroad faster and quickerthan waiting for germplasm enhancement by breeders? Ananalysis of the returned questionnaires is given in Table 8.

Analysis of limiting factors involved in germplasmutilizationThe use of germplasm resourcesThe survey supports the view that germplasm should be furtherevaluated to promote its utilization. Over 90% of respondentsstated they would use germplasm for breeding purposes if it wasevaluated more. Lack of funds is considered to be the mostimportant limiting factor in the use of germplasm, followed bypolicy, evaluation, information and others.

Germplasm sharingThe survey showed that more than half the respondents pro-posed that the sharing of germplasm should conform to theprinciple of bilateral benefit, that is, breeders or others who hopeto use the germplasm preserved in the genebanks may obtainmaterials required but at considerable cost. This is perhaps a

Table 8. Analysis of factors limiting germplasm utilization

Factor Response China (%) Abroad (%)

Germplasm received needs further evaluation Yes 90 80No 8 20

Germplasm received is used in breeding programmes Yes 98 80No 2 20

Major limiting factors in using germplasm Financial 45 33Policies 31 33Characterization and evaluation data 14 17Information 9 17Other 1 0

Most serious problems in germplasm enhancement Policies 34 37Lack of useful germplasm 27 13Lack of information 19 25Other 20 25

Major approaches to access information of germplasm Catalogues 34 33Journals 36 22Database systems 7 28Oral presentation 20 17Other 3 0

Ways to share information and elite germplasm Bilateral benefits 79 50Distribution free of charge 18 40Other 3 10

Major difficulties in germplasm exchange among No policy guarantee benefits 55 33.3breeders and curators No mutual understanding 29 33.3

Low genetic diversity of 8 11.1germplasm in genebanksBelief that other breeders do 2 11.1not have elite germplasmOther 6 11.1

Page 9: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 7

good way for developing countries, such as China, tosustainably run genebanks and nurseries, and provide materialsto breeders and other users. However, the measures taken shouldbe in keeping with the requirements of the International Under-taking on Plant Genetic Resources.

Germplasm enhancementAccording to the respondents, the major limiting factors forgermplasm enhancement are policies, the lack of usefulgermplasm and the shortage of information. Policies are themain bottleneck but determining which materials should beenhanced is also critical.

Germplasm and information exchangeThe difficulties in germplasm and information exchange mainlyresult from the lack of protection of intellectual property rightsand the lack of communication between breeders and curators.Breeders and other germplasm users obtain information con-cerning germplasm mainly via catalogues and journals. How-ever, scientists in other countries also obtain information viainformation databases. Some Chinese scientists are now begin-ning to use these methods.

Suggestions and recommendationsDuring this study, experts from different fields made manysuggestions on how to effectively improve the use of germplasm.After careful analysis of these suggestions, the following list ofproposals has been drawn up.

1. Strengthening characterization, evaluation andthe enhancement of germplasmWhile germplasm collecting and preservation should continue,in the near future the emphasis should be shifted to character-ization and evaluation, and in-depth research into germplasmresources. Biotechnology, including the use of molecular mark-ers, cell engineering and genetic engineering, should be used ingermplasm enhancement and more genotyping should be con-ducted. In particular, favourable genes existing in wild relativesof crops should be transferred to cultivars to obtain new types ofgermplasm. Germplasm researchers should provide not onlyelite germplasm but also information concerning its characteris-tics and genetic mechanism in order to improve the use of thematerial.

Germplasm enhancement should target diverse ecologicalregions and diverse breeding objectives. For wild relatives espe-cially, more trials and research is needed in order to exploitpotential value. Germplasm researchers should understand theunique advantages and the accompanying disadvantages of theirown accessions, and then form clear objectives to improve them.

2. Promoting the exchange of germplasm andassociated informationApproximately 350 000 accessions are preserved in the NationalGenebank of China and in medium-term genebanks. However,the limited multiplication of accessions in China seriously influ-ences the distribution and exchange of germplasm resources. Itis suggested that germplasm researchers should increase and

improve their contacts with breeders to exchange germplasmand associated information. To do this, various activities needto be organized such as ecogeographical trials. These shouldinclude material from different ecological regions and provideopportunities for interaction between germplasm researchersand users as well as farmers. A national information network,accessible to breeders and other researchers, should also bedeveloped to provide relevant information on germplasm con-servation, characterization, evaluation and enhancement.

3. Formulating benefit-sharing policiesBenefit-sharing policies for the use of germplasm should bedrawn up in order to encourage cooperation between germplasmholders and users. On the one hand, this should include theprinciple that germplasm providers should benefit from the useof their germplasm by breeders and other researchers, while onother, encourage breeders to send their improved and enhancedelite materials to genebanks for preservation, exchange and use.Paid germplasm services could be considered as a way of satis-fying users and meeting the needs of the market.

4. Strengthening financial supportThe Government should increase its support for the conserva-tion and use of germplasm resources. This is critical for promot-ing the various activities needed to increase the use ofgermplasm. At the same time, each institution concerned withgermplasm should apply for funds, through the various chan-nels available, to carry out research to identify, evaluate, en-hance and ensure the provision of useful germplasm for cropimprovement and other purposes.

5. Establishing a national coordinating mechanismA national coordinating mechanism is essential for the promo-tion of the use of plant genetic resources in China and a nationalcommittee for plant genetic resources should be the coordinat-ing and decision-making body in the country, composed ofofficials from various sectors, as well as experts on conservationand the use of plant genetic resources. This body would beresponsible for formulating rules and management policies, andfor making short- medium- and long-term plans for action.

6. Future workIt is suggested that the proceedings of the workshop organizedfor this project be published. This provides useful informationon the use of crop genetic resources, particularly for the 10 targetcrops, and will assist scientists and the relevant authorities tomake the decisions needed to strengthen the nationalprogramme for the conservation and use of crop germplasm inChina. This information will also be of use to scientists andorganizations concerned with plant genetic resources in othercountries.

BibliographyCao Chen. 1997. Characterization of mulberry germplasm re-

sources for forage quality. Crop Genet. Resour. 1:37-38.Chen Liang. 1998. RAPD analysis of genetic diversity of 15

cultivars of tea trees. Tea Sci. (1).Chen Zhaozhong. 1989. “Suiling Laolaishao”, a cucumber culti-

Page 10: Plant Genetic Resources newsletter

8 Plant Genetic Resources Newsletter, 2000, No. 123

var with drought resistance. Hort. North 1:11.CIMMYT. 1988. Proceedings of the Global Maize Germplasm

Workshop on Recent Advances in the Conservation and Utili-zation of Genetic Resources. CIMMYT, Mexico.

Department of Management for Field Crops/the Ministry ofAgriculture of China, Institute of Crop Germplasm Re-sources/Chinese Academy of Agricultural Sciences. 1998.Compilation of Information on Plant Genetic Resources forFood and Agriculture. pp.22-27.

FAO. 1996. State of the World’s Plant Genetic Resources. FAO,Rome, Italy.

Frey, K.J. 1998. National plan for genepool enrichment of the UScrops. National Plant Breeding Study - III, Special Report101.

Gao Weidong and Shumin Wang. 1997. Advances and prospectsof crop germplasm resources in China. Pp. 27-22 in Researchon the Development of Agricultural Science and Technologyin China. China Agricultural Sci-tech Press, Beijing, China.

Guo Hai’ao. 1998. Analysis of germplasm groups and its en-hancement in Jilin Province. Crops J. (Suppl.):55.

Huang Zikang. 1996. Cotton varieties in China and their pedi-grees. China Agriculture Press, Beijing, China.

Knerr, L.D, J.E. Staub, D.J. Holder and B.P. May. 1989. Geneticdiversity in Cucumis sativus L. assessed by variation at 18allozyme loci. Theor. Appl. Genet. 78:119-128.

Li Dehua, Guojun Shao, Xiuru Zhang, Yong Han, Yuedong Li andFulin Qiu. 1998. Breeding for Liaojin series varieties and itstheoretical basis. Zhang Dao Dao Mi 6:9-11.

Li Shude. 1995. Advances in the breeding of major vegetables fordisease resistance in China. Science Press, Beijing, China.

Li Xixiang, Di Shen and Chunzheng Zhang. 1999. Origin of Chi-nese cucumber genetic resources and their genetic diversity.Crop Genet. Resour. 3.

Li Yu, Jie Wang, Yongsheng Cao, Weidong Gao, Jiahe Fang andXizhi Lou. 1998. The use of genetic resources in crop improve-ment: lessons from China. Genet. Resour. Crop Evol. 45:181-186.

Li Yuehua (ed.). 1996. Catalogue of elite germplasm resources inwheat. China Agriculture Press, Beijing, China.

Liang Guolu. 1988. Giemsa C-bands of a part of Citrus andrelated genera. Acta Genet. Sin. (6):409-415.

Lin Shicheng and Shaokai Min (eds.). 1991. Rice Varieties in Chinaand their Pedigrees. Shanghai Sci-tech Press, Shanghai, China.

Luo Lijun, Hanwei Mei and Xinhua Zhao. 1998. QTL mapping ofresistance to rice bacterial blight and race specificity. Sci. inChina (series C in Chinese) 28(6):536-541 and Sci. in China(series C in English) 41(5):524-547.

Luo Shaobo and Weibo Zhou. 1996. Development of “Xiasheng”,a new cucumber cultivar with heat tolerance and good qual-ity. China Vegetables (5):25-27.

Mulberry Institute of Chinese Academy of Agricultural Sciences.1993. Catalogue of Mulberry Cultivars in China. China Agri-culture Press, Beijing, China.

National Center for Extension and Service of Agricultural Tech-nology. 1996. Statistics of extension information on majorvarieties for crops, China.

Peng Zebin and Xinzhi Liu. 1998. Review of maize hybrids inChina. Crops J. (Suppl.):1-5.

Qian Qian, Zhenmin Xiong, Shaokai Min and Lihuang Zhu. 1996.Molecular mapping of huge embryo genes in rice. Rice Sci. inChina 10 (2):65-70.

Sheng Shenglan. 1997. Retrospect and prospect of breeding ofjaponica rice for high yielding in Jiangsu Province. Rice inChina 4:9-12.

Sun Xiaoxia. 1988. Preliminary report on the development of Yu71-1, a mulberry cultivar. Mulberry Sci. 14(2):55-59.

Wang Kunbo. 1990. Karyotypic variation and evolution of Dgenome in cotton. Acta Agron. Sin. 16(3).

Wang Yibo. 1986. Comprehensive analysis and evaluation ofgermplasm basis of maize hybrids in Henan Province. J.Henan Agric. Univ. 20(1):1-11.

Wu Jingfeng and Xiangyun Yu. 1998. Strategies of maizegermplasm enhancement at the beginning of the 21st century.Pp. 75-84 in Proc. of the National Workshop on Maize Culti-vation Technologies for High Yield. Science Press, Beijing,China.

Wu Jingfeng. 1983. Review of germplasm basis of major maizehybrids in China. China Agric. Sci. (2):1-8.

Xiao J, S. Grandillo, S.N. Ahn, S.R. McCouch and S.D. Tanksley.1995. Genes from wild rice improve yield. Nature 384:223-224.

Yin Cunshan. 1999. Status and research trend of the global cropgenetic resources. World Agric. 2:20-21.

Yu Dongping. 1996. Rapid development of japonica rice withgood quality in Jiangsu Province. Rice in China 6:22-24.

Yu Tianbin, Jianxiong Li and Fangguo Xu. 1998. Epistasis isimportant genetic basis for rice heterosis. Sci. China (series Cin Chinese) 28(4):331-342.

Yu Xiangyun and Xiaoyang Zhu (eds.). 1996. Elite maizegermplasm: guidance for research and use. China Agricul-ture Press, Beijing, China.

Yu Yinhong, Jinxia Huang, Jinming Liu and Lianfang Wang.1995. Pedigree analysis and review of rice varieties and hy-brids used in Hunan Province. Hunan Agric. Sci. 5:1-5.

Zeng Sansheng. 1990. Germplasm basis of maize hybrids inChina. China Agric. Sci. 4:1-9.

Zhang Haiying, Yongjian Wang and Yong Xu. 1998. RAPD analy-sis and genetic relationships of cucumber germplasm re-sources. Acta Hort. Sin. 25(4):345-349.

Zhang Qi, Ainong Shi, Chunlian Wang and Gengsheng Que. 1990.Genetic studies on resistance to rice bacterial blight. Rice Sci.in China 4(1):1-8.

Zheng Diansheng. 1996. General status of characterization foragronomic characters, documentation, multiplication andpreservation in genebanks of food crops genetic resources inChina. Crop Genet. Resour. 4.

Zhenmin Xiong, Shaokai Min and Shihua Cheng. 1990. Widecompatibility and utilization value of rice cultivars ‘T984’and ‘Pecos’. Rice Sci. in China 4(1):9-14.

Zhou Shaochuan. 1998. Pedigree analysis of rice varieties withgood quality in Guangdong Province. Rice in China (1):6-9.

Zhu Liwu. 1988. Numerical taxonomy of citrus in China. ActaPhytotaxon. Sin. 26(2):353-361.

Zhuang Jieyun, Huirong Qian and Hongxuan Lin. 1995. Originand evolution of Asian cultivated rice based on RFLP analy-sis. Rice Sci. in China 9(3):135-140.

Zhuang Qiaosheng (ed.). 1996. Research advances in wheat breed-ing in China. China Agriculture Press, Beijing, China.

Page 11: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 9Plant Genetic Resources Newsletter, 2000, No. 123: 9 - 18

RésuméUtilisation des jardinsfamiliaux comme composantede la stratégie nationale pourla conservation in situ desressources phytogénétiques àCubaCette étude détermine et décrit les fac-teurs à prendre en compte lorsqu’onélabore un plan pour l’utilisation des jar-dins familiaux (“conucos”) dans le cadrede la conservation in situ des ressourcesgénétiques des plantes cultivées à Cuba.Il s’agit de facteurs géographiques, envi-ronnementaux, culturels, ethnologiques,phytogénétiques, socioéconomiques etrelatifs aux types de systèmes de produc-tion agricole, qu’ils soient privés oucoopératifs. Sur la base de ces facteurs etde la diversité présente dans les “conu-cos” des diverses provinces, 30 zonesprésentant des caractéristiques dif-férentes ont été sélectionnées dans 12provinces et la municipalité spéciale deIsla de la Juventud. L’étude comprendégalement le suivi de plusieurs espècespour leur variabilité infraspécifique,choisies en fonction de leur importance,de leur origine et de leur domesticationdans les régions d’Amérique centrale etdes Caraïbes. Sur la base de cette étude, ilest proposé d’utiliser les jardins familiauxpour conserver la diversité génétique desvégétaux et de les intégrer dans les pro-grammes de conservation ex situ(banques de gènes et jardins botaniques)et in situ (zones protégées) en cours, ainsique dans des programmes socioé-conomiques. Le questionnaire utilisépour le choix et le suivi des “conucos”figure en annexe.

The use of home gardens as a component of thenational strategy for the in situ conservation of plantgenetic resources in CubaL. Castiñeiras1*, Z. Fundora Mayor1, S. Pico1 and E. Salinas2

1 Instituto de Investigaciones Fundamentales en Agricultura Tropical “Alejandro de Humboldt” (INIFAT), Calle 2 esqu. 1,Santiago de las Vegas, Ciudad de La Habana, Cuba. Tel: +53 7 579308; Fax: +53 7 579014; Email: [email protected] Facultad de Geografía de la Universidad de La Habana, Calle 23 esqu. a L. Vedado Plaza, Ciudad de La Habana, Cuba

SummaryThe use of home gardens as acomponent of the nationalstrategy for the in situconservation of plant geneticresources in CubaThis study determines and describes thefactors to be considered when develop-ing a plan for the use of home gardens(“conucos”) as part of the in situ conser-vation of Cuban cultivated plant geneticresources. These factors were geographi-cal, environmental, cultural, ethnologi-cal, phytogenetic, socioeconomic andtype of agricultural production system,whether private or cooperative. On thebasis of these and the diversity found inthe “conucos” of the various provinces,30 areas with different characteristicswere selected from 12 provinces and thespecial municipality of Isla de la Juventud.The study also included the monitoringof some species for infraspecific variabil-ity, selected on the basis of their impor-tance, origin and domestication in theCentral American and Caribbean re-gions. On the basis of this study it isproposed to use home gardens to con-serve plant genetic diversity and to inte-grate them into the existing ex situ(genebanks and botanical gardens) andin situ (protected areas) conservationprogrammes, as well as with socioeco-nomic programmes. The questionnaireused to select and monitor the “conucos”is given as an appendix.

Key words: Ethnology, ex situ, homegardens, in situ, socioeconomics

ResumenLos huertos familiares comoparte de la estrategia nacionalpara la conservación in situ delos recursos fitogenéticos enCubaEste estudio enumera y describe los fac-tores que hay que considerar para plani-ficar el uso de los huertos familiares (“co-nucos”) con miras a la conservación insitu de los recursos genéticos de plantascultivadas cubanas. Tales factores songeográficos, ambientales, culturales, et-nológicos, fitogenéticos, socioeconómi-cos y relativos al sistema de producciónagrícola, privada o en cooperativa. Sobreesta base y en función de la diversidad de“conucos” de varias provincias, se selec-cionaron 30 zonas con característicasdiferentes en 12 provincias y en el muni-cipio especial de Isla de la Juventud. Seobservó también la variabilidad in-traespecífica de algunas especies selec-cionadas por su importancia, su origen ysu domesticación en América Central yel Caribe. Sobre la base de este estudio sepropone utilizar los huertos familiarespara conservar la diversidad fitogenéticae integrarlos en los actuales programasde conservación ex situ (bancos de ger-moplasma y jardines botánicos) e in situ(zones protegidos), así como en los pro-gramas socioeconómicos. En el apéndicepuede verse el cuestionario utilizado paraseleccionar y observar los “conucos”.

ARTICLE

IntroductionCuba has a rich natural flora with approximately 6700 speciesof vascular plants distributed in 1300 genera and 181 families.Nearly 50% of the flora is endemic, one of the highest percent-ages in the Antillean area (Capote et al. 1992).

Many authors have commented on the importance of homegardens for the in situ conservation of plant genetic resources.Altieri and Merrick (1987) and Altieri et al. (1987) discussed the roleof in situ conservation in preserving traditional agricultural systemsand Niñez (1986) pointed out that home gardens are a usefulmechanism for conserving non-crop species and that, dependingupon the diversity present, they can be considered as genebanks for

primitive cultivars with a potential value. Ragione and Perrino(1995) have described a successful example of on-farm conserva-tion of old fruit tree varieties in the Timber Valley, Italy, carried outfor a number of years by several groups composed of farmers, localcooperatives and/or regional associations, farmer’s associations,local and regional institutions, amateur clubs and private nurseries.Salazar (1996) also discussed the important role of home gardens inrural communities for the conservation of rice in Viet Nam. Never-theless, it is important to note that because of the small size of plantpopulations involved in home gardens, there is a risk of gene lossthrough genetic drift and founder effect.

Page 12: Plant Genetic Resources newsletter

10 Plant Genetic Resources Newsletter, 2000, No. 123

As Esquivel and Hammer (1994) pointed out, the in situconservation of landraces and their wild relatives through theuse of “conucos” in Cuba is important because it allows for thecontinuous process of evolution by means of introgression,domestication and adaptation to unfavourable conditions totake place in the natural environment. This has given rise to aninteresting variability of cultivated plants in Cuba. These au-thors also stressed the importance of “conucos” as a refuge forlandraces and obsolete cultivars, which are rich reservoirs ofgenes for adaptation and resistance.

“Conucos” are small gardens where farmers practise tradi-tional agriculture mainly based on local cultivars. They are alsoreferred to as “vega”, “sitio” or “patio”, depending on their sizeand the locality in which they occur. A number of studies havebeen carried out on the historical development, structure andcomposition of Cuban “conucos” (Esquivel and Hammer 1988,1992a, b). In some cases mixed gardens overspill into tropicalforests making it difficult to identify the borders between them.The authors observed a total of 80 taxa in the six “conucos”studied and these were classified according to their use.

Activities concerning plant genetic resources are supportedby the State through the National System of Plant GeneticResources (NSPGR), which is composed of a network ofgenebanks belonging to different institutions and ministriesthroughout the country where ex situ collections of the mostimportant crops are preserved. These include, among others,sugar cane, tobacco, vegetables, grains, oil seeds, major tropicalroots and tubers, bananas and plantains, citrus and fruit crops.The National System of Protected Areas, which are identifiedand managed according to the regulations of the World Conser-vation Union , is also integrated into the NSPGR.

Home gardens are integrated with the protected areas usedto preserve primitive and obsolete cultivated species. It is pro-posed to integrate these with the ex situ conservation strategiesalready existing in Cuba. According to Hodgkin (1995) there aretwo main considerations that need to be taken into accountwhen considering the in situ conservation of plant genetic re-sources of cultivated plants: (a) the factors influencing farmers’decisions to maintain diversity in their crops and (b) the ap-proaches that could support farmers in maintaining diversity.

The objectives of this study are: (a) to identify and describe thefactors to be considered in developing a plan to use “conucos” aspart of Cuba’s in situ conservation strategy, (b) to determinepotential areas where “conucos” can contribute to the in situpreservation of the genetic resources of cultivated plants, on thebasis of geographical, ethnological, phytogenetical and socioeco-nomic factors, and (c) analyze the possibility of creating a net-work of areas of in situ conservation using “conucos” to comple-ment the already existing ex situ conservation programmes.

Materials and methodsSecondary data usedMajor geographical factors were examined according to Salinasand Salinas (1992), and the types of Cuban landscape and theirhuman modification over time were also analyzed to understandtheir effect on biodiversity (Perera 1986; Perera and Rosabal 1986;Leiva 1992). Ethnological factors that could influence the preser-

vation of plant diversity were also examined, taking into consider-ation the different cultures that converge in Cuba (Rivero de laCalle 1966; Franco 1975; Ortiz 1975; Pérez de la Riva 1977; Valdés1978, 1986; Dacal and Rivero de la Calle 1986).

Wild and cultivated plants were analyzed and a surveyundertaken of their origins and use in accordance with thescientific studies performed by Esquivel et al. (1989), Capote et al.(1992), Hammer et al. (1992), Knüpffer (1992), Rodríguez et al.(1992), and on previous collecting missions carried out in Cuba.In addition, socioeconomic factors affecting the Cuban agricul-tural system and types of land tenancy were studied to examinethe importance that each gives to subsistence agriculture(MINAG 1991; Santana 1991).

Analysis of secondary dataConsidering the data obtained on the main types of landscapesand the ethnological, phytogenetical and socioeconomic factors,11 provinces were identified where “conucos” could be used forthe in situ conservation of cultivated plants. In each area two tothree families were visited. In some cases, once the purpose ofthe research had been explained, sites were recommended bymembers of the provincial delegations from the Ministry ofAgriculture or by local experts As they knew the areas, includingthe crops grown, the production systems and the farmers, theywere able to judge their suitability. In other cases they wereselected at random by observing possible sites from the road.

In order to prepare the exploration of the selected areas andto identify potential “conucos”, the mission examined informa-tion accumulated during previous visits and collecting mis-sions, as well as the detailed studies of “conucos” carried outduring the INIFAT-ZIGuK collaboration that took place be-tween 1986-1993 (Esquivel and Hammer 1988; Esquivel et al.1990, Esquivel and Hammer 1992a, 1992b; Hammer et al. 1992;Esquivel and Hammer 1994).

Exploration missionsA questionnaire was prepared to provide the data needed toselect “conucos”. This included an introduction, general ques-tions, data on the locality, ethnological data, data on the“conuco” (origin, area, destination of the production and itspossible use) and specific information about the plants grown.This served as a guide for the exchange of information with thefarmers and is given in Appendix 1.

An inventory was made of cultivated plants present in the“conucos” to select possible species that merit conservation andto monitor variability. The study of infraspecific variability wasbased on visual observations of flower and fruit characteristicsusing IPGRI descriptors. In some cases infraspecific variabilitywas obtained from interviews with farmers.

ResultsThe factors that need to be considered for the in situ conservationof cultivated plant genetic resources are given below.

GeographyThere are three main geographical features in Cuba: insularity(predominance of coastal landscapes and a strong marine influ-

Page 13: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 11

ence on natural elements); geological and geomorphologicalcomplexity (the association of reliefs, plains and mountains,and the combination of the different types of relief); and climate(significant influence of winds and great variation in humidityassociated with a very complex rain regime).

Prior to 1492 when Cuba was ‘discovered’ by ChristopherColumbus the inhabitants had made localized modifications tothe landscape through hunting, fishing and agricultural activi-ties. From the first half of the 16th century up to the 19th centuryrapid agricultural development took place, particularly with thegrowth of sugar cane plantations, the exploitation of forestsand cattle raising. The third period, from the middle of the 20th

century onwards, was characterized by a rapid loss of forests;an increase in relatively small farms growing sugar, plantainand citrus; the development of hunting; and an increase inurban areas (Leiva 1992).

In 1963 national reserves were created, covering a total landarea of 25 000 ha, in order to provide different levels of protec-tion as recommended by the World Conservation Union (Leiva1992, McNeely 1995) and to preserve the landscape. At presentthese comprise an estimated 9% of the land in Cuba.

EthnologyCuba’s population is of varied origin and is a mixture not onlyof races but also of cultures, with influences from Indoamerica,Europe, Africa, French Haiti and Asia as well as post-warimmigrants from various countries. A short description of eachethnic group follows.Indoamericans The Taínos, of the Arawak tribes in the Orinoco areaof South America, were the most advanced group of early settlers.During the conquest and colonization of Cuba, the aboriginalpopulation diminished and indigenous people from CentralAmerica and the Caribbean, such as Yucatánecans, were broughtin. Agricultural practices such as “tumba y quema” (slash andburn) for the cultivation of grains and maize, and “montones”(hills) for roots and tubers are examples of the influence of theindigenous cultures of Central and South America.Europeans The majority of immigrants were Spanish and theybrought their Mediterranean implements and customs withthem. English people living in Havana also had some culturalinfluence.Africans The most important factor in the introduction of Afri-can slaves was the development of the sugar cane industry atthe end of 16th century (Pérez de la Riva 1977). African culturehas been one of the strongest influences on Cuban culture,which can still be seen in the music, dance and religion.French-Haitians French influence was considerable, particularly inthe eastern provinces where French immigrants built mansionsnear their coffee plantations. Many African slaves came to Cubawith their French masters from Haiti, and their descendants andsome elements of their culture still survive.Asians After 1842 a great number of Chinese came to Cuba fromthe English colonies of Barbados, Jamaica and Trinidad. Laterthey were contracted directly from China to work in the agricul-tural sector and with them a new form of slavery commencedconsisting of heavy workloads for extremely low rewards. TheJapanese were a minority within the Asian immigrants and were

concentrated in relatively few areas. Their most important rolewas in the development of fruit and vegetable crops.Post-war minorities After the Second World War many Europeanimmigrants came to Cuba, one group being the Swiss whosettled in specific areas and introduced advanced agriculturaltechnologies. In the first half of the 20th century many NorthAmericans also settled in Cuba and their influence can still beseen in some food, cultural and linguistic customs.

PhytogeneticAccording to Rodríguez et al. (1994), there are 809 endemic taxa ofwild flora, belonging to 55 families and 86 genera, related to thecultivated plants in Cuba. One of the characteristics of this florais the presence of species complexes (a group of similar relatedspecies), one example being Eugenia. The relative abundance ofsuch complexes is an indication of genetic plasticity and sug-gests an active geneflow among them. Species related to culti-vated rice, such as Oryza perennis, or to sweet potato (Ipomoea spp.),are other examples of this, as is the existence of an endemicfruit-bearing species of Solanum, which could be useful for breed-ing purposes.

Knüpffer (1992) estimated that there are a total of 1045 taxaof cultivated flora belonging to 117 families and 531 genera,excluding woody trees and ornamental plants. The majority ofthese species are cultivated as medicinal plants (432), fruit crops(262), forage plants (173) or vegetables (99). These plants comemainly from America but also from Europe, Indochina, Indone-sia, Africa and the Indian subcontinent.

SocioeconomicThere are three basic agricultural production systems in Cuba:(1) state production (state farms); (2) the cooperative sector,including cooperatives that provide credit and services (CCS),cooperatives for agriculture and cattle production (CPA), andbasic units of cooperative production (UBPC); and (3) the pri-vate sector. Agricultural production in home gardens in theCPAs and UBPCs is dedicated to complementing food suppliesas staple foods are obtained directly from the state sector andthrough internal trade networks.

Crops grown in CCSs and in private farms are exclusivelythe property of the farmers who own the land and many fami-lies depend upon their produce. Farmers cultivate species andvarieties that are then passed on from one generation to an-other, sometimes over periods of more than 80 years. In general,as they are adapted to poor agroclimatic conditions, these geno-types can be cultivated out of the main growing season and onthe poorest farmland.

Land use in extensive agricultural production systems may bedetermined by only one crop; in such cases home gardens occupya very small area, poorly managed, and in general on the edges ofland. Home gardens used for vegetables, and root and tuberproduction in the cooperatives are on better land than those in theextensive systems and occupy larger areas, although they arelimited in size by an agreement with the cooperative. In urbanareas, home gardens are managed by families who then share theproduce. They may be located in peri-urban centres and some-times include cultivation without soil (hydroponics).

Page 14: Plant Genetic Resources newsletter

12 Plant Genetic Resources Newsletter, 2000, No. 123

Plant genetic diversity in home gardens:proposed areas for in situ conservationThe results of the exploration mission showed that it was pos-sible to find a large variety of cultivated plants, as well as relatedwild species, in a number of different areas. Thirty localities withdifferent characteristics from 12 provinces were selected. Twoprovinces were excluded due to their similarity with other se-lected areas close by.

Table 1 gives the areas selected, some of their characteristics,the type of predominant landscape and the number of impor-tant species observed in each. Variability among the selectedareas can be observed between the regions where there is acertain amount of agricultural development and those whereisolation permits the maintenance of traditional or underutilizedcultivars. Such areas are to be found throughout the countryand among all the principal landscapes. Some “conucos” can beconsidered as living genebanks because of the variety of speciesmaintained and the variability within them. These should bepreserved for the future as a complement to ex situ strategies.

The list of the principal species observed in the “conucos” isshown in Table 2. Species were classified into six groups accord-ing to their utilization by farmers. The group of roots and tubersincluded 16 species, legumes and grains 15 species, while 29species could be classified as vegetables. A further 20 specieswere classified as fruit crops, 20 as medicinal, stimulants andspices, and seven species were placed in the group of fibres andornamental plants. An analysis of the main crops in the areasvisited enabled the identification of 107 species maintained byfarmers in their own gardens. The variation within the homegardens visited indicates their potential for the conservation ofplant genetic diversity.

A high level of infraspecific variability was observed in manycrops, based on morphological characters. For example, Phaseolusvulgaris possessed wide variation for seed characters and differ-ent degrees of resistance or tolerance to diseases in open condi-tions. Variability was even greater in Phaseolus lunatus, a speciesthat is maintained as a perennial crop close to fences or inabandoned maize fields and given little or no attention. An-other interesting case was that of maize where pure races suchas ‘Criollo’, ‘Canilla’ and ‘Tuzón’ were only found in very iso-lated “conucos”. In the eastern region of Cuba it was alsopossible to find primitive cultivars of flint maize with littleintrogression from modern dent maize.

High infraspecific variability was also observed in vegetables,such as in primitive cultivars of Lycopersicon esculentum and in arelated weedy form L. esculentum var. cerasiforme. We observedvariable populations of Capsicum annuum, C. chinense and C.frutescens dispersed throughout the island and it was interestingto note the high degree of cross pollination and morphologicalsimilarities among some of these species, which made identifi-cation difficult (Barrios 1999).

It is common to find many species of fruit crops in “conucos”as they provide food as well as shade for houses, crops, pastureand roads. Infraspecific variability was considerable for rootsand tubers. For example, Manihot esculenta was observed in themajority of the “conucos” visited, the primitive cultivars had awide variation in texture, colour and root fibre. Primitive and

variable cultivars of Ipomoea batatas, with wild related taxa, werealso found throughout Cuba (Fernández et al. 2000).

To summarize, crops such as bananas, plantains and com-mon beans, with a range of species and types, appeared in mostof the “conucos”. Other crops such as maize and sweet potatowere also found, however, the most important vegetable cropsgrown were tomatoes, pumpkins and the Alliaceae, as these areextensively used in Cuban cooking. Medicinal plants have in-creased in importance in recent years and are given special careby families. In all probability this phenomenon is influenced bycurrent socioeconomic factors, which have led to a scarcity ofmedicines. Doctors play an important role in promoting the useof plants for medicinal purposes.

Survey to characterize and monitor “conucos”The utilization of farmers as local experts is important in theareas explored. Many farmers have lived in the same placesometimes for more than sixty years and know the farms as wellas their home gardens, including the crops grown and theircharacteristics. The meetings with local experts, that took placeprior to exploring a region, proved very useful for this study.Frequently farmers were recommended by the provincial delega-tions of the Ministry of Agriculture.

In general, Cuban farmers are kind and hospitable. Whenarriving at a farmer’s home, the specialist described the Institu-tion and the objectives of the research. During the discussionsand while completing the questionnaire, members of the fami-lies gave interesting and useful answers. The recommendationsand information given served as an introduction to other farm-ers allowing the whole region to be explored. Despite the currenttrend of migration from the country to the cities (temporally ordefinitively), farmers tend to maintain themselves on their landfor more than sixty years. This is one reason why a home gardencan be used for the in situ conservation of plant genetic resources.

The educational and vocational level of family members,which were noted in the questionnaire, should be taken intoconsideration as they can have a positive or negative influenceon the garden with respect to the diversity maintained and itsutilization. This information is also useful for predicting thefuture of a “conuco”. Data on a family’s ethnic roots and theeconomic position of the owner are also significant as thesefactors are reflected in the choice of plants cultivated.

Some questions dealt with quantitative indices like gardensize, climatic characteristics and degree of pollution, while oth-ers were concerned with the organization of the garden. Thereplies provided information on the structure, composition andfunction of the garden. In many cases, “conucos” with similarplant taxa, content and organization were managed by theirowners in completely different ways.

A large number of questions were asked about the plantspresent in each “conuco” (Appendix 1-IV) in order to recordeach species and obtain information on the types and varietiesof species present, and their relationship with wild or semi-wildtypes. The final question asked was whether the farmer wouldallow their “conuco” to be considered as a potential site for thein situ conservation of the plants. In the majority of the cases theanswer was in the affirmative.

Page 15: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 13

Table 1. Characteristics of the selected areas in different Cuban provinces, predominant landscapes and thenumber of species observed in each area

Area Province Characteristics Predominant No. oflandscape species

frequently Guane Pinar del Rio Influence of Spaniards, Fluvial marine plains 15tobacco cultivation

Viñales Pinar del Rio Influence of Africans, tobacco Karstic mountains and 20cultivation in the valleys, timber valleys

Soroa Pinar del Rio French influence, timber, tourism Dissectional low 12mountains

Cocodrilo Isla de la Juventud† Ethnic (caimaneros), fishing Karstic plains 15settlements in great isolation

Jucaro Isla de la Juventud† Strongly influenced by ethnic minorities Sandy accumulative 11(Japanese, North Americans) alluvial plains

Guira de Melena Havana Intense agricultural development, still Karstic plains 20small farms, traditional crops andhigh-yielding cultivars

Loma de Grillo Havana Influence of ethnic minorities Highlands and hills 13(Yucatecan Indians), relative isolation

Stgo. de las Vegas Havana City Relationship with foreign institutions, Karstic plains 20rich in fruit gardens with uniquecollections

Alamar Havana City Urban area in peripheral zone Marine plains 11Cienaga de Zapata Matanzas Subsistence “conucos”, isolation, Accumulative marshy 13

national park, potential ecotourism plainsfor rare-bird watching

Valle de Yumuri Matanzas Isolation, ecotourism and health Fluvial plains 12tourism development

Perico Matanzas African and Asiatic influence, sugar Karstic plains 19cane dominates commercial production

La Sierrita-San Blas Cienfuegos Coffee plantations, integrated Highlands and hills 16programme for medicinal plants, denudedpotential for ecotourism

Topes de Collantes Sti. Spiritus Coffee and timber production, plant Karstic dissectional low 13introduction or acclimatization, health mountainsand ecotourism

Banao Sti. Spiritus Area of small vegetable farms Low mountains denuded 15karstic

Zaza del Medio Sti. Spiritus Influence of ethnic minorities Denuded and eroded 13especially from Canary Islands plains

Cevallos Ciego de Avila Influence of ethnic minorities Karstic plains 16(North Americans), production ofcitrus fruit and vegetables

Palma City – Camaguey Influence ethnic minorities Moist highlands, hills 14Sierra Cubitas (North Americans), cultivation of and mountains

citrus and other fruitsOmaja Las Tunas Influence of ethnic minorities Sandy accumulative 16

(North Americans, Europeans) alluvial plainsVelazco Holguin Agricultural development Denuded eroded plains 18Yaguajay Holguin An important place for Taíno Highlands and hills 15

development. Obsolete cultivars denuded karsticPinares de Mayari Holguin Highly microclimatic, potential Low mountains denuded 12

for ecotourismTurquino Santiago de Cuba Isolated region, national park Very moist middle mountains 14Gran Piedra Santiago de Cuba “Conucos” with rare and Highlands and hills denuded 15

obsolete cultivarsGuantanamo Valley Guantanamo High temperature and salinity Accumulative alluvial plains 14Yateras Guantanamo Isolation, occupied mainly by Low denuded mountains 15

descendants of aboriginal groupsCaujeri Guantanamo Horticultural zone., “conucos” Dissectional low mountains 15

frequently feature obsolete andrare cultivars

Yunque de Baracoa Guantanamo Isolated, coffee, coconut and Low denuded mountains 14cacao cultivation

Cajobabo Guantanamo Isolated, agro-forestry systems and Accumulative eroded plains 16potential for ecotourism

La Maquina Guantanamo Coffee cultivation, some “conucos” Accumulative eroded plains 8contain obsolete cultivars

† Havana Special Municipality

Page 16: Plant Genetic Resources newsletter

14 Plant Genetic Resources Newsletter, 2000, No. 123

Table 2. Main species found in Cuban “conucos” according to farmer’s utilization, their origin and thefrequency of the species observed in the 30 sites selected

Use/Species Origin Freq. Use/Species Origin Freq Use/Species Origin Freq.

Roots/tubers Medicinal/stimulant/spices Fruits/fruit treesArracacia NW† 1 Aloe vera OW 3 Averrhoa carambola OW 1xanthorrizaBeta vulgaris OW 1 Aloe spp. OW 1 Annona reticulata NW 1Brassica napus OW 1 Artemisia OW 1 Annona muricata NW 1subsp. napus abrotanumBrassica rapa OW 2 Coffea arabica OW 2 Annona squamosa NW 1Colocasia esculenta OW 3 Coriandrum sativum OW 4 Carica papaya NW 4Cyperus esculentus OW 2 Datura candida NW 1 Citrullus lanatus OW 4Daucus carota OW 1 Erygium foetidum NW 1 Citrus aurantiifolia OW 4Dioscorea alata OW 3 Laurus nobilis OW 3 Citrus aurantium OW 2Dioscorea bulbifera OW 2 Mentha spicata OW 4 Citrus sinensis OW 1Ipomoea batatas NW 10 Mentha spp. OW 1 Cocos nucifera OW 1Manihot esculenta NW 8 Nicotiana tabacum NW 3 Cucumis melo OW 4Maranta NW 3 Ocimum basilicum OW 2 Mammea americana NW 4arundinaceaPlectranthus OW 1 Ocimum OW 5 Manilkara zapota NW 2amboinicus gratissimunRaphanus sativus OW 1 Ocimum temiflorum OW 2 Mangifera indica BO§ 4Sechium edule NW 4 Orthosiphon OW 3 Melothria NW 1

aristatus guadalupensisXanthosoma NW 7 Petroselium crispum OW 2 Muntigia calabura NW 1sagittifolium

Saccharum OW 1 Musa spp. OW 9officinarumSatureja hortensis OW 1 Pasiflora NW 2

quadrangularisSesamum orientale OW 5 Persea americana NW 4Zingiber officinale OW 2 Psidium guajabita NW 2

Grain/legumes Vegetables Fibre/ornamentalsArachis hypogaea NW 8 Abelmoschus OW 6 Catharanthus roseus OW 2

esculentusCajanus cajan OW 5 Allium canadese NW 4 Gossypium hirsutum NW 1Canavalia gladiata OW 1 Allium cepa OW 4 Gossypium spp. NW 1Canavalia spp. OW 1 Allium cepa var. OW 1 Justicia pectoralis NW 5

aggregatumCicer arietinum OW 2 Allium chinense OW 3 Lippia alba NW 4Helianthus annuus NW 5 Allium fistulosum OW 1 Luffa acutangula OW 1Lablab purpureus OW 2 Allium sativum OW 8 Ruta chalepensis OW 1Mucuna pruriens OW 3 Allium spp. OW 9subsp. deeringianaPachyrhizus erosus NW 1 Amaranthus spp. NW 1Panicum miliaceum OW 2 Apium graveolens OW 1Phaseolus lunatus NW 13 Basella alba OW 1Phaseolus vulgaris NW 12 Benincasa hispida OW 3Sorghum vulgare OW 2 Brassica juncea OW 3Vigna ungiculata OW 13 Brassica napus OW 1Zea mays NW 11 Brassica napus OW 1

var. esculentaBrassica spp. OW 1Capsicum annuum NW 2Capsicum chinense NW 2Capsicum frutescens NW 5Cimbopogon citratus OW 1Cucumis dipsacus OW 1Cucumis sativus OW 4Cucurbita moschata NW 12Lactuca sativa OW 1Lagenaria siceraria BO 1Lycopersicon NW 10esculentumMomordica charantia OW 1Solanum melongena OW 1Solanum ciliatum NW 1

NW = New World; OW = New World; BW = both New and Old World.

Page 17: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 15

Identification of crops to characterize and monitorthe infraspecific diversity within and among the“conucos”It is important to identify the species and varieties that shouldbe targeted for in situ conservation. As a considerable number ofcultivated plant species posses high infraspecific variability, atleast on the basis of the morphological characteristics observed,it was difficult to select crops for the characterization andmonitoring of variability among home gardens for use in thenext stage of the project.

When selecting crops of primary concern for further stud-ies, the origin and diversity of the species, in relation to theirgeographic position, were taken into account as well as eth-nological and socioeconomic factors, the diversity found inprevious exploration missions, the frequency of their appear-ance in the “conucos” visited, the type of crops and theirutilization by farmers (Table 2). Using these criteria the fol-lowing crops were selected: tomato (Lycopersicon esculentum),maize (Zea mays), peanut (Arachis hypogaea), pumpkin (Cucurbitamoschata), common bean (Phaseolus vulgaris), lima bean (Phaseoluslunatus), origanum (Ocimum gratissimum), sweet potato (Ipomoeabatatas), banana and plantains (Musa spp.), and cowpea (Vignaunguiculata).

A morphological minimum descriptor list was prepared tomonitor each selected species for at least three years. It is pro-posed to add descriptors to these lists for each crop on anindividual basis. Flexibility in this aspect of the programme iscrucial as the frequency of monitoring each morphological char-acter depends upon the crop itself. For example, a perennialcrop could be monitored monthly during flowering and thefructification period, while an annual crop should be monitoredseveral times a month. This implies that a careful study isneeded prior to beginning work on in situ conservation.

DiscussionDeveloping an integrated plan for the in situconservation of plant genetic resourcesInstitutional aspectsA head coordinator is needed to develop a plan for the in situconservation of plant genetic resources and to liase with thedifferent institutions that come under the Ministries of Agri-culture, Science, Technology, Environment and Higher Educa-tion. Field coordinators would then be selected at the level ofmunicipality and province. They would come under the direc-tion of the local and municipal governments, or other organi-zations such as Non-governmental Organizations, and be re-sponsible for the protection and conservation of the homegardens in their areas.

At the same time, an education campaign is needed todivulge information concerning the importance of the in situconservation of plant genetic resources. This should involvefarmers, local experts and people from local governments. Notall institutions in a province/municipality will be involved withthe selected home gardens. Only institutions in, or near, theselected home garden will be involved in the work and they willchoose, depending upon their means, which home gardens to beinvolved with.

Integration with ex situ conservation, other in situconservation programmes and existing socioeconomicprogrammesAfter demonstrating the contribution of Cuban “conucos” to theevolution of cultivated plants and the benefits of an in situ ap-proach to conserving plant genetic resources, it will then be neces-sary to decide how best to preserve these agro-ecosystems. Bothprogrammes for ex situ conservation, such as genebanks or botani-cal gardens, as well as in situ conservation in protected areas,should be connected with the rational utilization of natural re-sources and the conservation of primitive or obsolete cultivars inhome gardens. Ministries and universities with activities relatedto the conservation and use of plant genetic resources shouldwork together in order to establish an effective monitoring systemfor conserving plant genetic resources in home gardens. Theconditions needed for such activities exist, as there is good coordi-nation at the different levels of government, between the state andthe municipalities and/or localities, and with farmers.

A network for in situ conservation in farmer’s “conucos”should be integrated with the main socioeconomic and develop-ment programmes in the country in order to develop the sus-tainable use of plant genetic resources. One example is theCuban food programme, the main objective of which is to securean adequate supply of food by increasing food productionthrough the use of sustainable agriculture practices.

Another example is the health programme which advocatesa direct and close relationship between the doctor and thecommunity. One of its objectives is to promote the use of “greenmedicine”. This approach was emphasized by Prain and Piniero(1995) in a study on the community care of plant geneticresources in the southern Philippines. Often farm families havegreater traditional knowledge and experience of the alternativeuses of medicinal plants than doctors. It should be possible toincrease the use of crop varieties, which have good yields, ac-cording to farmers, and to develop the necessary genetic base fordeveloping breeding and biotechnological programmes, andother scientific research to identify and broaden the use of thedifferent varieties of medicinal plants.

Long-term monitoring of the variability in home gardenscould be carried out by the farmers themselves, assisted by localexperts from protected areas or provincial environmental units,in accordance with the national integrated strategies. A struc-tured “conuco” network would contribute to preserving plantvarieties and improve the sustainable increase of agriculturalproduction in the country by means of the rational use of plantgenetic resources with a low ecological cost. This would alsohelp to preserve valuable traditional practices and cultural val-ues in farm communities. The use of home gardens to conservein situ the many varieties of cultivated species present in Cubacan be a key complementary approach to the ongoing conserva-tion strategies and socioeconomic programmes.

AcknowledgementsWe wish to acknowledge the support of the IPGRI for thesestudies and particularly the technical support of Dr TobyHodgkin and Dr Pablo Eyzaguirre. We wish also to thank all thepeople that contributed to the revision of the manuscript.

Page 18: Plant Genetic Resources newsletter

16 Plant Genetic Resources Newsletter, 2000, No. 123

ReferencesAltieri, M.A. and L.C. Merrick. 1987. In situ conservation of plant

genetic resources through maintenance of traditional farmingsystems. Econ. Bot. 41:86-96.

Altieri, M.A., L.C. Merrick and M.K. Anderson. 1987. Peasantagriculture and the conservation of crop and wild plant re-sources. Conserv. Biol. 1:49-58.

Barrios, O. 1999. Estudio de los recursos genéticos de Capsicumspp. (ají y pimiento) en Cuba. MSc Thesis, Facultad deBiología, Universidad de la Habana.

Capote, R., R. Berazaín and A. Leiva. 1992. Flora and Vegetation.Pp. 26-36 in “... y tienen faxones y fabas muy diversos a losnuestros ...”. Origin, Evolution and Diversity of Cuban PlantGenetic Resources, Vol. I (K. Hammer, M. Esquivel and H.Knüpffer, eds.) Inst. für Pflanzengenetik undKulturpflanzenforschung, Gatersleben, Germany.

Dacal, R. and M. Rivero de la Calle. 1986. Arqueología aborigende Cuba. Ed. Gente Nueva.

Esquivel, M. and K. Hammer. 1988. The “conuco” - an importantrefuge of Cuban plant genetic resources. Kulturpflanze36:451-463.

Esquivel, M., L. Castiñeiras, H. Knüpffer and K. Hammer. 1989.A checklist of the cultivated plants of Cuba. Kulturpflanze37:211-357.

Esquivel, M., L. Castiñeiras and K. Hammer. 1990. Origin, classi-fication and distribution of lima beans (Phaseolus lunatus L.)in the light of Cuban materials. Euphytica 49:89-97.

Esquivel, M. and K. Hammer. 1992a. Contemporary traditionalagriculture - structure and diversity of the “conuco”. Pp.174-192 in “... y tienen faxones y fabas muy diversos a losnuestros ...”. Origin, Evolution and Diversity of Cuban PlantGenetic Resources, Vol. I (K. Hammer, M. Esquivel and H.Knüpffer, eds.). Inst. für Pflanzengenetik undKulturpflanzenforschung, Gatersleben, Germany.

Esquivel, M. and K. Hammer. 1992b. The Cuban home garden“conuco”: a perspective environment for evolution and in situconservation of plant genetic resources in Cuba. Genet. Resour.Crop Evol. 39:9-22.

Esquivel, M. and K. Hammer. 1994. The “conuco”: a perspectiveenvironment for the evolution and in situ conservation ofplant genetic resources in Cuba. Pp. 694-702 in “... y tienenfaxones y fabas muy diversos a los nuestros ...”. Origin,Evolution and Diversity of Cuban Plant Genetic Resources,Vol. III (K. Hammer, M. Esquivel and H. Knüpffer, eds.).Inst. für Pflanzengenetik und Kulturpflanzenförschung,Gatersleben, Germany.

Fernández, L., A.A. Rodríguez Nodals, N. Companioni, O.L.Parrado, J. Saurín, Z. Fundora Mayor, A. Cairo and P. Sánchez.(2000). Colecta de recursos fitogenéticos en la provincia deCamaguey. Rev. Jardín Botánico Nacional (in press).

Franco, J.L. 1975. La diaspora africana en el Nuevo Mundo. Ed.Ciencias Sociales. La Habana, Cuba.

Hammer, K., M. Esquivel and H. Knüpffer. 1992. Inventory of thecultivated plants. Pp. 213-454 in “... y tienen faxones y fabasmuy diversos a los nuestros ...”. Origin, Evolution and Diver-sity of Cuban Plant Genetic Resources, Vol. II (K. Hammer,M. Esquivel and H. Knüpffer, eds.). Inst. für Pflanzengenetikund Kulturpflanzenforschung, Gatersleben, Germany.

Hodgkin, T. 1995. The role of farmers in maintaining biodiversity.Pp. 92-93 in In Situ Conservation and Sustainable Use ofPlant Genetic Resources for Food and Agriculture in Develop-ing Countries. Report of DSE/ATSAF/IPGRI Workshop,Bonn-Rottgen, Germany.

Knüpffer, H. 1992. The database of cultivated plants of Cuba.Pp. 202-212 in “... y tienen faxones y fabas muy diversos a losnuestros ...”. Origin, Evolution and Diversity of Cuban PlantGenetic Resources, Vol. II (K. Hammer, M. Esquivel and H.Knüpffer, eds.). Inst. für Pflanzengenetik undKulturpflanzenforschung, Gatersleben, Germany.

Leiva, A. 1992. In situ conservation of wild plants. Pp. 174-192 in“... y tienen faxones y fabas muy diversos a los nuestros ...”.Origin, Evolution and Diversity of Cuban Plant Genetic Re-sources, Vol. I (K. Hammer, M. Esquivel and H. Knüpffer,eds.). Inst. für Pflanzengenetik und Kulturpflanzenforschung,Gatersleben, Germany.

McNeely, J.A. 1995. The role of protected areas for conservationand sustainable use of plant genetic resources for food andagriculture. Pp. 27-42 in In situ Conservation and SustainableUse of Plant Genetic Resources for Food and Agriculture inDeveloping Countries. Report of DSE/ATSAF/IPGRI Work-shop, Bonn-Rottgen, Germany.

MINAG - Ministerio de la Agricultura. 1991. Plan de AcciónForestal para Cuba. Documento Base, Ministerio de laAgricultura, La Habana, Cuba.

Niñez, V. 1986. El huerto casero: un salvavidas? Ceres 112:31-36.Ortiz, F. 1975. Los negros esclavos. Ed. Ciencias Sociales, La

Habana, Cuba.Perera, A. 1986. Panorámica de las áreas protegidas en la

República de Cuba. Conservando el patrimonio natural de laregión neotropical. Proc. of the 27th Working Season of theIUCN Commission on Natural Parks and Protected Areas,Bariloche, Argentina.

Perera, A. and P. Rosabal. 1986. Las áreas protegidas en Cuba.Silvestres 2:13-17. FAO Regional Office for Latin Americaand the Caribbean, Santiago, Chile.

Pérez de la Riva, J. 1977. Cuántos africanos fueron traídos aCuba? Ed. Ciencias Sociales, La Habana, Cuba.

Prain, G.D. and M.C. Piniero. 1995. Community curatorship ofplant genetic resources in southern Philippines, preliminaryfindings: towards a partnership. Proc. of an InternationalWorkshop on User Participation in Plant Genetic ResourcesResearch and Development. Alaminos, Pangasinan, Philip-pines

Ragione, I. Dalla and P. Perrino. 1995. On-farm conservation offruit trees and the informal sector in Italy. Pp. 166-175 inIntegration of Conservation Strategies of Plant Genetic Re-sources in Europe. Proc. of an International Symposium ofPlant Genetic Resources in Europe. Gatersleben, Germany.

Rivero de la Calle, M. 1966. Las culturas aborígenes de Cuba. Ed.Universitaria, La Habana, Cuba.

Rodríguez, M., F. Cejas, A. López and L. Montes. 1994. The wildrelatives of cultivated plants in the flora of Cuba. Pp. 570-577in “... y tienen faxones y fabas muy diversos a los nuestros...”. Origin, Evolution and Diversity of Cuban Plant GeneticResources, Vol. III (K. Hammer, M. Esquivel and H. Knüpffer,eds.) Inst. für Pflanzengenetik und Kulturpflanzenforschung,Gatersleben, Germany.

Salazar, R. 1996. The role of farming communities in plant geneticresources conservation and development. Pp 170-183 in PlantGenetic Resources in Vietnam. Proc. of a National Workshop,Hanoi, Vietnam, 1995. Agriculture Publishing House, Hanoi,Viet Nam.

Salinas, Er. and Ed. Salinas. 1992. Features of the nature andlandscapes. Pp. 174-192 in “... y Tienen Faxones y Fabas MuyDiversos a Los Nuestros ...”. Origin, Evolution and Diversityof Cuban Plant Genetic Resources, Vol. 1 (K. Hammer, M.Esquivel and H. Knüpffer, eds.). Inst. für Pflanzengenetikund Kulturpflanzenforschung, Gatersleben, Germany.

Santana, E. 1991. Nature conservation and sustainable develop-ment in Cuba. Conserv. Biol. 5:13-16.

Valdés, S. 1978. Indoamericanos no arawakos en el españolhablado de Cuba. Ed. Ciencias Sociales, La Habana, Cuba.

Valdés, S. 1986. La evolución de los indoamericanos en el españolhablado en Cuba. Ed. Ciencias Sociales, La Habana, Cuba.

Page 19: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 17

Appendix 1. Questionnaire used in the pilot project for the in situ conservation ofcultivated plant variability in home gardens

I. NAME AND LOCALIZATION OF THE STUDY AREA (data collected from the area where the home garden is localized)1. Name of the area2. Locality3. Province4. Municipality5. Geographical situation6. General characteristics of flora and fauna7. Pollution8. Accessibility of the area9. State of main communications

II. CHARACTERISTICS OF THE FARM FAMILY (data provided by the owner)1. Name2. Sex3. Colour of skin4. Place of birth5. Date of birth6. When did you arrive in this place?7. Who lived here when you came?8. Do you remember from which country your family came from?9. Do you think you will leave here? If so why?10. What is your level of education?11. What is your civil state?12. Family details (number of persons, age, sex and scholarship)13. How many members of the family are economically dependent upon you (how many are economically unproductive)?14. What is your main occupation?15. What is your occupation (if your main occupation is not the home garden)?

III. DATA ON THE SPECIFIC AREA OCCUPIED BY THE HOME GARDEN1. Name of the home garden or the house in order to identify the locality.2. Size of the area (ha)3. Geographic localization (using GPS) and the distance from a well-known area.4. Topography5. Hydrography6. Soil type (texture, drainage, fertility and humidity)7. Precipitation/year8. Yearly temperature9. Contamination10. How far is the home garden from your home?11. In which state did you find this place?12. Type of home garden according to the property (specify organization system)

Private ____ State ____ Both ____13. Which members of your family or other persons work in your home garden? What activities do they carry out?14. How many hours per person are dedicated to working in the garden per week and per month?15. Do you have domestic animals? If yes what type of animals?

a. Birds _____ b. Bees ____ c. Goats ____ d. Rabbits ___e. Horses ____ f. Ovine ____ g. Pigs _____ h. Cows _____ Other ______Why are you raising the animals (write the letter according to the above)?Subsistence ____ Sell ____ Both ____

16. Do you remember when this land started to be cultivated?17. Why do you cultivate this land?

Subsistence ___ Sell ___ Both ___18. Do you have special plants in your home garden, which and why?19. Do you have only this garden?

Page 20: Plant Genetic Resources newsletter

18 Plant Genetic Resources Newsletter, 2000, No. 123

20. How did you learn to prepare and take care of your home garden?21. What are the main plants grown in your garden?22. Who are you growing the plants for?23. Which of your family’s food needs can be met by the produce of your home garden?24. How do you obtain products that you do not produce in your garden?25. What are the main problems that you face in your home garden?

Water ___ Diseases/pests ___ Seeds ___ Equipment ___ Inputs ___ Fertilizers/pesticides ____Diversity of GR ___ Other (specify) ___How do you supply the inputs you need?Buy ____ Trade ____ Exchange ____ Other (specify) ____

26. Do you receive help from the State? If yes for what?Fertilizer ____ Pesticides ___ Seeds ___ Work equipment ___ Other (specify) ___

IV. SPECIFIC DATA ON PLANTS GROWN IN HOME GARDEN1. Species2. Common name3. Genetic status Wild ___ Weed ___ Landrace ____ Breeding cultivar ____ Other (specify) ____4. When and how did you obtain this plant?5. What is the main reason for growing this species or variety?6. Did you cultivate another variety of this plant? If you have stopped why did you not continue?7. Phenology of the crop———————————————————————————————————————————Month 1 2 3 4 5 6 7 8 9 10 11 12———————————————————————————————————————————Sowing———————————————————————————————————————————Harvest———————————————————————————————————————————8. What is the use of this plant?9. How do you reproduce this plant?10. Do you produce your own seeds?11. How do you harvest the plant? By hand ____ Mechanized ____ Both ____12. How do you prepare the land? By hand ____ Mechanized ____ With animals ____ Other (specify) ____13. Water management Dryness ____ Partial irrigation ____ Irrigation (specify) ____14. Has the crop been affected by pests or diseases? How do you prevent them?15. How do you control weeds? By hand ____ Chemicals ____ Not necessary ____16. Do you fertilize this crop? Which type do you use?

Chemical ____ Organic ____ Both ____17. How do you select the material for the next sowing?18. How do you conserve/store the harvested material for propagation?

Paper bag ____ Paper box ____ Crystal bottle ____Cloth Bag ____ Soil ____ Nylon bag ____ Other (specify) ____

V. GENERAL QUESTIONS1. How do you see the future of your home garden? Will someone from your immediate family keep it up after you?2. What will be the main effect?3. Would you like to cooperate with us in a long-term project to monitor the potential of your home garden to preserve valuable plants?

EVALUATION1. Main observed potentiality2. Main observed restrictions3. Evaluation

Date:Evaluators:

Page 21: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 19Plant Genetic Resources Newsletter, 2000, No. 123: 19 - 22

RésuméLe témoignage ethnobotaniquesur l’ancêtre du manioc(Manihot esculenta Crantzsubsp. esculenta)L´hypothèse sur l´existence de l´ancêtresauvage vivant du manioc fut proposéeà l´année de 1987. Quelsques auteursmirent en doute l´état sauvage de popu-lations étudiées, suggérant qu´elles pou-vaient être du manioc cultivé. Pendantles années, un approche ethnobotaniquesur les raports entre l´homme et l´ancêtresauvage du manioc fut compilé. Cet ap-proche presente une forte évidence ducaractère sauvage des plantes. Les plusimportantes trouvailles faites sur le ter-rain furent : 1. L´ancêtre n´est pas unévadé des plantations ; 2. Les racines sontpresque entièrement ligneuses, im-mangeables et toxiques ; 3. Les feuillessont toxiques au bétail ; 4. La plante estconsidérée comme une mauvaise herbe ;5. Le nom commun attribué à la planteévoque sa condition sauvage.

Ethnobotanical testimony on the ancestors ofcassava (Manihot esculenta Crantz subsp. esculenta)Antonio C. AllemEmbrapa Recursos Genéticos e Biotecnologia, CP 02372, 70849-970 Brasília, DF, Brazil.Email: [email protected]

SummaryEthnobotanical testimony onthe ancestors of cassava(Manihot esculenta Crantzsubsp. esculenta)The hypothesis that cassava has livingwild ancestors was advanced in 1987.Some authors who doubted the wildcondition of the populations reportedhave suggested that these could be feralcassava. Over the years, an ethnobotani-cal record of the relationship betweenhumans and the wild ancestors of cas-sava has been compiled providingstrong evidence for the wild character ofthe material investigated. This study re-ports on the most important findingswhich are: (1) the progenitor did not es-cape from plantations, (2) the roots aremostly woody inedible and toxic, (3) theleaves are toxic to livestock, (4) the plantis widely regarded as a weed, and (5) thecommon name assigned to the plant re-flects its wild condition.

Key words: Ancestor, cassava,Manihot esculenta Crantz subsp.flabellifolia (Pohl) Ciferri, M.esculenta Crantz subsp. peruviana(Muell. Arg.) Allem

ResumenEl testigo etnobotánico sobreel ancestral de la yuca(Manihot esculenta Crantzsubsp. esculenta)La hipótesis sobre la existencia de un an-cestral silvestre vivo de la yuca fue pro-puesta en 1987. Algunos autores pusi-eron en duda el estado silvestre de laspoblaciones estudiadas, sugeriendo queellas podrían ser yuca cultivada. Durantelos años, un abordaje etnobotánico so-bre las relaciones entre el hombre y elancestral silvestre de la yuca fue compila-do. Ese abordaje presenta una fuerte ev-idencia del carácter silvestre de las plan-tas. Los más importantes hallazgoshechos en el campo fueran: 1. El ancestralno es un evadido de las plantaciones; 2.Las raíces son casi por completo leñosas,incomibles y tóxicas; 3. Las hojas son tóx-icas al ganado; 4. La planta es considera-da como una mala hierba; 5. El nombrecomún asignado a la planta evoca sucondicíon silvestre.

ARTICLE

IntroductionEthnobotany studies the biological, economic and cultural inter-relationships between human beings and plants; more specifi-cally, this discipline is concerned with knowledge about plantsand their use by society. In the case of Manihot, researchers havelong been familiar with the fact that wild relatives of cassava areknown to South American rural communities (Pax 1910; Rogers1963; Rogers and Appan 1973). Cassava is known to have severalcommon names (Rogers and Fleming 1973; Lancaster et al. 1982).Traditionally, the vernacular names cited by writers for the wildspecies were mostly taken from herbarium labels. However, morein-depth information from agriculturalists and collectors of wildspecies is conspicuously missing from these.

The most common Portuguese name found in the literaturefor wild relatives of cassava is “mandioca-brava”. The name“mandioca-brava” (mandioca-braba is an orthographic vari-ant) is found in Portuguese-speaking Brazil as well as in otherSouth American regions where Spanish, French, Dutch or En-glish are prevalent. Rogers and Appan (1973) documented alarge variety of names for wild species of cassava but again,most of these derive from herbarium labels and few are accom-panied by more substantial ethnobotanical data. In contrast toshrubs and small trees, which generally go under the name wildcassava, herbs are distinguished with peculiar names, often in

the diminutive form and related to the habits of the plant. Forexample, the name “mandioquinha-do-campo” given to M.hassleriana in southern Brazil is an allusion to its habit of invadingsoyabean plantations.

Attributing names to plants establishes some sort of rela-tionship between people and plants and shows that people arefamiliar with them to some extent. The history of sweet potatoshows how social traditions can be a determining factor in theproliferation of names applied to crops (de la Puente et al. 1996).However, in respect of cassava, the names given to plants arenot anecdotal as the terms used are invariably associated withan economic peculiarity of the plant (e.g. agronomic property ofthe root, invader of crop plantations, etc.).

This study reports on the interaction discovered to exist be-tween agriculturalists and the ancestors of cassava, viz. Manihotesculenta Crantz subsp. flabellifolia (Pohl) Ciferri and M. esculentaCrantz subsp. peruviana (Muell. Arg.) Allem. The aim is to recordthe vernacular historiography and the ethnobotanical knowledgerelated to the ancestors of cassava. This article is also concernedwith the assumptions made about the origin of the materials.Three authors (Bretting 1990; Heiser 1990; Bertram 1993) havesuggested that feral cassava may have been the progenitor of thecrop and that the populations described as wild by Allem (1987)

Page 22: Plant Genetic Resources newsletter

20 Plant Genetic Resources Newsletter, 2000, No. 123

could have spread from cassava plantations. Subsequent publica-tions (Allem 1994a, 1999, 2000) upheld the 1987 interpretation ofthe botanical origin of cassava and reaffirm the view that thesegenetic resources equate with the wild primary genepool of cas-sava. The purpose of this communication is to further strengthenthe hypothesis that the materials are wild.

Materials and methodsInformal field interviews were conducted in areas of the Brazil-ian neotropics, particularly in western Amazonia. These mostlytook place along the sides of the road whenever local residentsshowed an interest in the collecting activity or crossed thecollecting area on foot or on bicycle. Three basic questions wereasked of all the local residents that the team met: (1) “Do youknow this plant?”, (2) “Do you know its name?”, (3) “Is it wildor cultivated by local people?”. Normally, those in transit quicklyanswered the questions and proceeded on their way. However, afew showed greater curiosity and stood by to observe the work ofthe collecting team. In these cases people expanded on theirearlier answers and volunteered additional information on theplant. On such occasions the team took the opportunity to ask afew additional questions of the agriculturalists, the most impor-tant of which were: (4) “Is the plant frequent in the region?” (5)“Is the plant harvested for its roots?” (6) “Is the plant restrictedto roadsides?”.

Table 1 lists the municipalities where the interviews tookplace, the number of local people that took part in the surveyand their replies to the three standard questions. The remarks ofthose who further expanded on their replies were recorded in

their native tongue and are given, together with a translation, inTable 2. The field survey was carried out from 1986 to 1996,most work being done in 1992 and 1993. The herbarium vouch-ers of the author are deposited at the Embrapa RecursosGenéticos e Biotecnologia Herbarium (CENARGEN) in Brasília.

Most of the testimonies were recorded on sheets of paper asthe comments were inappropriate for the type of notebook beingused. This explains why some of the quotations given here aremissing from the respective herbarium labels.

DiscussionThe first interviews took place in 1986 while collecting in theBrazilian Amazonian states of Mato Grosso and Rondônia. Si-multaneously, some data was obtained in the central state ofGoiás and in the northwestern Amazonian state of Acre. All thepeople interviewed and listed in Tables 1 and 2 answered thequestions about the ancestors of cassava to some extent. Thisshowed that all were familiar with the plant in question, nomatter whether the plant was found as a ruderal or bordering thewoods. No one seemed to doubt the wild character of the materi-als. One aspect of the plant that drew the attention of the teamwas the fact that although inedible to humans, a number ofpeople reported that armadillos and wild pigs feed on the roots.

In three locations the ancestors of cassava were described as aweed. When João Xavier, an agriculturalist living at Colônia BelaVista in the state of Mato Grosso was interviewed on 14 May1992, he could not explain why wild Manihot was found growingon his plantation among papaya, banana trees and a few plantsof cultivated cassava as well as common beans. It took consider-

able time for the team to infer whathad happened, i.e. wild cassavahad sprouted back from dormantrootstocks left underground whenthe humid forest was cleared. Thisalso explained the find of two ex-amples of the subspecies peruvianaon a derelict maize plantation atColônia Bela Vista. Voucher 4033documents the visit made on 8June 1992 to the farm of GentilRodrigues. There the team foundshrubs up to 2 m tall of the subspe-cies peruviana growing together withmaize plants, squashes and otherminor crops. The morphology ofthe plants resembled that of culti-vated cassava and the plantationwas encircled by the highly de-graded remnants of the tropicalrainforest. As in the previous casementioned, it became evident thatthe wild cassava plants growing inthe plantation originally grew inthe rainforest and had regrownfrom dormant rootstocks after theplot had been cleared to makeroom for agriculture.

Table 1. Replies to three standard questions about the ancestor of cassava:(1) Do you know this plant? (2) Do you know the name of this plant? (3) Is thisplant wild or cultivated in the area?

Municipality State Date Voucher No. of Reply†

Agriculturalists

Niquelândia Goiás 4.3.86 3469 1 y; mb; wPontes e Lacerda Mato Grosso 12.5.86 3530 1 y; mb; wCacoal Rondônia 14.5.86 3547 1 y; mb; wAriquemes Rondônia 18.5.86 3571 1 y; mb; wVila Rica Mato Grosso 26.5.86 3605 1 y; mb; wPontes e Lacerda Mato Grosso 13.11.91 3980 1 y; mb; wLambari Mato Grosso 23.5.92 3987 1 y; mb; wLambari Mato Grosso 23.5.92 3988 1 y; mb; wPontes e Lacerda Mato Grosso 24.5.92 3992 1 y; mb; wPontes e Lacerda Mato Grosso 8.6.92 4033 1 y; mb; wLambari Mato Grosso 3.6.93 4107 3 y; mb; wLambari Mato Grosso 3.6.93 4108 1 y; mb; wLambari Mato Grosso 3.6.93 4109 1 y; mb; wLambari Mato Grosso 3.6.93 4110 1 y; mb; wLambari Mato Groso 3.6.93 4111 1 y; mb; wLambari Mato Grosso 3.6.93 4112 1 y; mb; wPontes e Lacerda Mato Grosso 7.6.93 4117 2 y; mb; wPontes e Lacerda Mato Grosso 8.6.93 4121 1 y; mb; wPorto Velho Rondônia 11.6.93 4140 1 y; mb; wPorto Velho Rondônia 11.6.93 4141 1 y; mb; wPorto Velho Rondônia 11.6.93 4142 1 y; mb; wGuajará-Mirim Rondônia 11.6.93 4144 1 y; mb; wRio Branco Acre 14.6.93 4149 1 y; mb; w

† y = yes; mb = mandioca brava; w = wild.

Page 23: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 21

Table 2. Replies expanding on the ethnobotanical knowledge of the ancestor of casssava

Municipality State Date Voucher No. of Reply Translationagriculturalists

Niquelândia Goiás 4.3.86 3467 2 Ninguém come; em outras It is not eaten; in otheráreas faz-se farinha e polvilho areas flour and ‘polvilho’ aredela, mas não aqui. made of it, but not here.

Rondonópolis Mato 8.5.86 3515 1 Mandioca-brava. A raiz é Wild cassava. The root isGrosso lenhosa e não é comida. woody and it is not eaten.

Rondonópolis Mato 9.5.86 3516 1 Mandioca-brava. A gente não Wild cassava. We do notGrosso come porque é tóxica e a raiz eat it because it is toxic and

é um pau. the roots are very hard.Pontes e Mato 12.5.86 3531 1 Mandioca-brava. O tatu come Wild cassava. The armadilloLacerda Grosso a raiz dela. eats the roots.Pontes e Mato 12.5.86 3532 1 Mandioca-brava. É abundante Wild cassava. It is abundantLacerda Grosso na mata. Vem fácil quando in the woods. It sprouts back

desmata. Ninguém planta. easily when deforestationCatéte (porco-do-mato) come takes place. Nobody plantsa raiz. É praga. it. Catéte (wild pigs) eat the

roots. It is a weed.Cacoal Rondônia 14.5.86 3545 2 Mandioca-brava. É praga Wild cassava. It is a serious

séria na região. weed in the area.Cacoal Rondônia 14.5.86 3546 1 Mandioca-brava; Wild cassava, bushwood

mandioca-do-mato. Quando cassava. When the forest iscorta a mata, aí é que ela vem fallen, the plant sprouts backfuriosa. Altamente tóxica. vigorously. It is highly toxic.Folhas dadas a porcos, Pigs die if fed on leaves. It ismatam-nos. Em 1982 o pai a weed. In 1982 my fatherplantou estacas dela e deu planted some stakes and theraiz boa, de onde fizemos harvest produced roots offarinha, porque a raiz é tóxica. fair quality, from which onlyColhemos com um ano de flour was made since theplantada. Pega bem de estaca. root is toxic. A good harvest

was obtained within a year.The plant propagates wellthrough stakes.

Ariquemes Rondônia 18.5.86 3572 1 Mandioca-brava. Dá nas Wild cassava. It occurs inmatas. Gosta mesmo é de the woods. It is fond of rockyafloramentos rochosos. A raiz outcrops. The root onlysó dá ‘batatinhas’. produces ‘small potatoes’.

Lacerdinha Mato 13.11.91 3979 1 É mandioca-brava. Não é It is wild cassava. It is notGrosso cultivada. É nativa da região. cultivated. It is a native of the

Ninguém planta. Dá uma region. Nobody plants it. Theraizinha assim. roots are minuscule.

Pontes e Mato 24.5.92 3991 2 É mandioca-brava. Não It is wild cassava. It is notLacerda Grosso plantam aqui. É praga. É o que planted here. It is a weed.

mais tem. Roçou, ela vem” There is plenty of it around.If you prune it back, itsprouts back vigorously.

Lacerdinha Mato 24.5.92 3994 1 É nativa. Dá raiz, mas não It is native. It produces rootsGrosso presta. Na minha lavoura de but they are not good. There

milho tá assim dela. is lots of this wild cassava inmy maize plantation.

Ariquemes Rondônia 27.5.92 4009 1 No Ceará nós conhecemos In Ceará we call it ‘ela por ‘maniçoba’. maniçoba’.

Porto Velho Rondônia 28.5.92 4012 1 Esta mandioca tem muito no There is plenty of thismato. Não dá raiz. cassava in the bush wood.

The plant does not produceedible roots.

Lacerdinha Mato Grosso 8.6.92 4033 1 O gado come desta mandioca Cattle eat wild cassava if-brava se a pastagem não the pasture is not good. Theestá boa. O animal não digere, animal does not digest it,empanzina e morre. the stomach swells and the

animal dies.Lambari Mato Grosso 9.6.92 4034 1 A turma aqui chama ela de Folks know it by the name

mandioca-brava. mandioca-bravaLambari Mato Grosso 9.6.92 4035 5 Todos riram à menção de que All laughed at the mention

podia ser mandioca cultivada. that the plant could beSouza disse que conhecia a cassava. Souza said heplanta e que havia muito dela knew the plant and thatnas matas próximas, de there was plenty of it in thepropriedade de Dr. Armando. nearby woods of the estate

of Dr. Armando.Lambari Mato Grosso 14.5.92 ? 1 Quando roça, ela vem. If you cut it back, it sprouts

back.

Page 24: Plant Genetic Resources newsletter

22 Plant Genetic Resources Newsletter, 2000, No. 123

Three young boys (voucher 4107) laughed at the idea that“mandioca-brava” could be the ancestor of cultivated cassava.The same type of reaction occurred in Colônia Bela Vista, and inthe municipality of Lambari on a plot of land donated by thefederal government and shared among 20 families. When theteam asked about the subspecies peruviana, the wife of the land-less José Lopes de Souza, a migrant from the Brazilian state ofMinas Gerais, and three visiting neighbours, laughed at themention of feral cassava. Agriculturalist José Lopes de Souza,39, offered to take the collecting group to an area where therewas still plenty of this wild cassava (see voucher 4035). Theresults of this exploratory mission are reported in Allem (1994b).

A particularly enlightening view of the wild state of thematerial took place in the district of Lacerdinha on 24 May 1992,at km 323 of BR-174 highway (see Table 2). A 12-year-old boywho saw the team collecting seeds of the subspecies peruvianastopped and dismounted from his bicycle thinking that theteam were collecting the plant by mistake (dialogue given inTable 2). Similarly, two men awaiting a bus on 24 May 1992, atkm 208 of BR-174 highway, eventually intervened after 20 minof watching the team as they were unable to understand whyseeds of the subspecies peruviana were being collected from alongthe embankment (see voucher 3991 in Table 2).

A final revealing episode on the wild character of the plantoccurred 63 km NW of the municipality of Ariquemes on BR-364highway (voucher 4009, Table 2). A migrant from the Braziliannortheastern state of Ceará, walking along the road, addressedthe team saying “In Ceará we know it as maniçoba”. Thistestimony was relevant because it strengthened the hypothesisof the wild nature of the plant by associating its morphologywith that of wild relatives from northeast Brazil. In northeastBrazil, a woody species of Manihot living in the xerophilousvegetation known as Caatinga, is called maniçobas.

To sum up, the rich folklore and wisdom of the inhabitants

of the Brazilian neotropics indicate that wild relatives of cassavastill abound.

ReferencesAllem, A.C. 1987. Manihot esculenta is a native of the neotropics.

Plant Genet. Resour. Newsl. 71:22-24.Allem, A.C. 1994a. The origin of Manihot esculenta Crantz

(Euphorbiaceae). Genet. Resour. Crop Evol. 41:133-150.Allem, A.C. 1994b. Manihot germplasm collecting priorities. Pp.

87-110 in Report of the First Meeting of the InternationalNetwork for Cassava Genetic Resources. International CropNetwork Series No. 10. IPGRI, Rome, Italy.

Allem, A.C. 1999. The closest wild relatives of cassava (Manihotesculenta Crantz). Euphytica 107:123-133.

Allem, A.C. 2000. The origins and taxonomy of cassava (Manihotesculenta Crantz subspecies esculenta). In Cassava: Biology,Production and Utilization (R.J. Hillocks, M.J. Thresh and A.C.Bellotti, eds.). CABI International, Oxford, UK (in press).

Bertram, R.B. 1993. Application of molecular techniques to geneticresources of cassava (Manihot esculenta Crantz, Euphorbiaceae):interspecific evolutionary relationships and intraspecific charac-terization. PhD thesis, University of Maryland, U.S.A.

Bretting, P.K. 1990. New perspectives on the origin and evolutionof New World domesticated plants: introduction. Econ. Bot.(Suppl.) 44:1-5.

Heiser, C.B., Jr. 1990. New perspectives on the origin and evolu-tion of New World domesticated plants: summary. Econ.Bot. (Suppl.) 44:111-116.

Lancaster, P.A., J.S. Ingram, M.Y. Lim and D.G. Coursey. 1982.Traditional cassava-based foods: survey of processing tech-niques. Econ. Bot. 36:12-45.

Pax, F. 1910. Euphorbiaceae-Adrianeae. In Das Pflanzenreich,IV. (A. Engler, ed.). 147.II. 44:1-111.

Puente, de la F., D.F. Austin and J. Díaz. 1996. Common namesof the sweet potato (Ipomoea batatas) in the Americas. PlantGenet. Resour. Newsl. 106:13-15.

Rogers, D.J. 1963. Studies of Manihot esculenta Crantz and relatedspecies. Bull. Torrey Botanical Club 90:43-54.

Rogers, D.J. and Appan, S.G. 1973. Manihot and Manihotoides(Euphorbiaceae), a computer-assisted study. Flora Neotropica,monograph no. 13. Hafner Press, New York, USA.

Rogers, D.J. and H.S. Fleming. 1973. Monograph of Manihotesculenta Crantz. Econ. Bot. 27:1-114.

Municipality State Date Voucher No. of Reply Translationagriculturalists

Lacerdinha Mato Grosso 24.5.92 ? 1 Tá atrás de mandioca? Tá Are you after cassava? Arepegando mandioca? Esta não you collecting cassava?presta, não é mandioca. This is rubbish, it is not

cassava.Lambari Mato Grosso 10.6.92 4037 1 Dá pau. Não presta. The roots are hard, it is no

good.Lambari Mato Grosso 10.6.92 4037 1 É mandioca-brava. É nativa. It is wild cassava, it is native.

O catitu come. Dá uma Wild pigs eat the roots. Itraizinha assim. produces a minute root.

Anápolis Goiás 18.5.92 4047 1 Os fazendeiros caçam Farmers search for itsimplacavelmente a mandioca ancestor implacablyporque as folhas são tóxicas because the leaves areao gado. Se os animais toxic to cattle, theircomem folhas frescas, os stomachs swell and theyestômagos incham e o animal die if they eat fresh leaves.morrre. As folhas da mandioca In contrast, the leaves ofcultivada não são tóxicas. the domesticated variety

are not toxic.Hinterlândia Goiás 18.5.92 ? 1 Isto é mandioca-brava. Não This is wild cassava. It

produz raízes. Nativa da região. does not yield roots. It isNão é fugida de plantações native to the area and itde mandioca ao redor. has not escaped from

nearby cassava plantations.Rio Branco Acre 14.6.93 4149 1 Faz mal de comer. É selvagem. It is no good to eat it is wild.

Page 25: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 23Plant Genetic Resources Newsletter, 2000, No. 123: 23 - 27

RésuméRéintroduction du haricot deLima (Phaseolus lunatus L.)dans l’agriculture traditionnelleau bénéfice des communautésautochtones de San Andrés deSotavento (Córdoba, Colombie)Quatre espèces de Phaseolus (P. vulgaris, P.lunatus, P. coccineus, P. acutifolius) ont nour-ri de nombreuses populations américainesdepuis l’arrivée de Colomb dans le Nou-veau Monde; haricots et maïs étaient lesaliments de base de ces populations. Sur lacôte caraïbe (ou atlantique) de la Colom-bie, la variété de haricot carauta (Phaseoluslunatus L.) a été depuis lors une com-posante importante du régime alimentaireavec le manioc (Maniot esculenta), le maïs(Zea mays), le pois cajan (Cajanus cajanus), lesorgho (Sorghum sp.) et l’igname ailée(Dioscorea alata). Ce type de haricot, comptetenu de ses qualités alimentaires, de savaleur nutritionnelle et de son rapport avecla culture locale, peut contribuer au régimealimentaire à base de glucides des popula-tions Zenú. Pour cette raison, les présentstravaux ont été lancés en 1990-1993 en vuede promouvoir le haricot carauta dans troiscommunautés de la Réserve indienne deSan Andrés de Sotavento. Les principauxobjectifs de ces travaux sont les suivants:constituer une collection de haricots carau-ta pour la côte atlantique colombienne;évaluer les caractères agronomiques desaccessions collectées; estimer le niveaud’acceptabilité et la réintroduction poten-tielle des accessions de haricots. L’étude sepenche sur les résultats suivants: sur 16accessions évaluées, 8 seulement ont af-fiché un comportement uniforme. Ainsi, lecoefficient de variation se situe entre 10,3 %et 28,2 %. Par ailleurs, les accessions ontune teneur en cyanure qui varie entre 17,6et 96 ppm; elles peuvent donc être con-sommées sans danger. En raison de cescaractéristiques, le haricot carauta est con-sidéré comme une accession prometteusepour la Réserve indienne de San Andrés deSotavento. Après trois années d’effortspour le réintroduire, seuls 20% des produc-teurs cultivent encore le haricot carauta etl’utilisent comme complément dans leursystème de production basé sur le maïs, lemanioc et le sorgho. On peut attribuer cetteadoption limitée à la faible demande deharicots carauta dans le commerce local età la présence d’une variété de haricot com-pétitive sur le marché.

Reincorporación del fríjol carauta (Phaseolus lunatusL.) a la agricultura tradicional en el resguardo indígenade San Andrés de Sotavento (Córdoba, Colombia)Gustavo Ballesteros P.¹, Asterio Torres G.²* y Martha Barrera³¹ Universidad de Córdoba, Montería, Colombia² Instituto Técnico Industrial y Agropecuario de Campeche, Baranoa, Atlántico Colombia. Email: [email protected]³ Unidad Municipal de Asistencia Técnica, Agropecuaria (UMATA), Polonuevo, Atlántico, Colombia

SummaryReincoportating Lima bean(Phaseolus lunatus L.) into thetraditional agricultureprotecting indigenouscommunities of San Andrés deSotavento (Córdoba, Colombia)Four species of Phaseolus (P. vulgaris, P.lunatus, P. coccineus, P. acutifolius) haveprovided food to many American peo-ples since the arrival of Columbus in theNew World; beans and corn made thebasic diet of those cultures. In the Carib-bean (or Atlantic) Coast of Colombia, theLima bean (Phaseolus lunatus L.) has beensince then an important component ofthe diet together with cassava (Maniotesculenta), corn (Zea mays), guandú (Caja-nus cajanus), millo (Sorghum sp.) andñame (Dioscorea alata). This type of bean,given its food quality, nutritious valueand relationship to the local culture, cancontribute to the mainly carbohydratediet of the Zenú culture. For that reason,the present work was launched in 1990-1993 to promote the Lima bean in threecommunities of the San Andrés de So-tavento Indian Reserve. The main objec-tives of this work are the following: tomake a Lima bean collection for the Co-lombian Atlantic Coast; to evaluate theagronomic traits of the collected acces-sions; to estimate the acceptability leveland the potential reintroduction of thebean accessions. The following resultsare discussed in this work: out of 16 eval-uated accessions only 8 had a uniformperformance. Thus, the variation coeffi-cient lies between 10.3% and 28.2%. Be-sides, the accessions have a cyanide con-tent that varies between 17.6 and 96 ppm;therefore, they can be consumed safely.Due to these characteristics, the Limabeans are considered promising acces-sions for the Indian Reserve of San An-drés de Sotavento. After 3 years of rein-sertion effort, only 20% of the producersare still cropping the Lima bean and us-ing it as a complement in their produc-tion system based in corn, cassava andsorghum. The reasons for this low adop-tion are probably the low demand forthe Lima beans in the local market andthe presence of a competitve bean vari-ety in the market.

Key words: Collecting, Colombia,Lima bean, Phaseolus lunatus, rein-troduction, traditional farming

ResumenReincorporación del fríjolcarauta (Phaseolus lunatus L.)a la agricultura tradicional enel resguardo indígena de SanAndrés de Sotavento (Córdoba,Colombia)Cuatro especies de Phaseolus (P. vulgaris,P. lunatus, P. Coccineus y P. acutifolius)han proporcionado, desde tiempos pre-hispánicos, alimento a los pueblos deAmérica, que las convirtieron, junto conel maíz, en su dieta básica. En la CostaAtlántica (Costa Caribe) de Colombia seha cultivado así el fríjol zaragoza o carau-ta (Phaseolus lunatus L.) y ha tenido granaceptación solo o asociado con yuca(Manihot esculenta), maíz (Zea mays),guandú (Cajanus cajan), millo (Sorghumsp) y ñame (Dioscorea alata). Este fríjol,por su gran rusticidad, su valor proteicoy su pertenencia a la cultura local, puedecomplementar la dieta de hidratos decarbono predominante en la ‘provincia’Zenú. Por ello, el presente trabajo se real-izó, entre 1990 y 1993, para promover elcultivo del fríjol carauta en tres comu-nidades del resguardo indígena de SanAndrés de Sotavento. Se consideraronlos siguientes objetivos: realizar colectasde fríjol carauta en la Costa Atlántica co-lombiana, evaluar las característicasagronómicas de las accesiones colecta-das, y conocer el grado de aceptabilidady la posibilidad de reinserción de las acce-siones. De las 16 accesiones evaluadas,sólo 8 son homogéneas en cuanto a surendimiento, con un coeficiente de vari-ación que oscila entre 10.3% y 28.2%. Sucontenido de ácido cianhídrico (compues-tos cianógenos) oscila entre 17.6 y 96.0ppm, que las hace aptas para el consumohumano. Por estas características, lasocho accesiones escogidas se consideranpromisorias para la zona del ResguardoIndígena de San Andrés de Sotavento.Después de 3 años de iniciado el estudio,sólo el 20% de los productores han con-tinuado sembrando el frijol carauta comocomponente adicional de los sistemas deproducción basados en la trilogía maíz-yuca-millo. Esta baja reinserción se expli-ca por la escasa demanda de carauta enlos mercados regionales y por la compe-tencia de otras leguminosas, como Vignaunguiculata y Vigna sesquipedalis.

ARTICLE

Page 26: Plant Genetic Resources newsletter

24 Plant Genetic Resources Newsletter, 2000, No. 123

IntroducciónEl fríjol lima (Phaseolus lunatus L.), denominado carauta, caraura yzaragoza en la Costa Atlántica (Costa Caribe) de Colombia, esuna leguminosa de grano que ha estado ligada a la cultura y alas tradiciones indígenas y mestizas de esta región de Colombia.Este fríjol se distribuye desde la península de la Guajira hasta elGolfo de Darién, en los límites con Panamá. Sin embargo, aexcepción de algunas zonas de sabana de Sucre y del BajoMagdalena, su producción y su consumo son marginales y no sevende en los mercados regionales.

En el Resguardo Indígena de San Andrés de Sotavento,perteneciente a la etnia Zenú, existe la memoria histórica delcultivo de carauta y se han mantenido algunas tradicionesagrícolas alrededor de la asociación del maíz, la yuca y el ñame.Se consideró, por tanto, pertinente iniciar en la zona unprograma de fomento del cultivo y hacer allí una evaluación dela aceptación del fríjol entre las comunidades indígenas.

Preferencias regionalesEl género Phaseolus ha sido un importante recurso agrícola enAmérica y en el viejo mundo, donde se ha consumido comosemilla seca, como vaina verde o como un producto procesado.Es una importante fuente de proteína y de calorías para la dietahumana en Africa y en América, donde es un suplemento de ladieta calórica basada en maíz, yuca, ñame y arroz (Oriza sativa). Elincremento del costo de la proteína animal en Europa y Américadel Norte ha convertido algunas especies de fríjol en fuenteimportante de proteína. Cada país y cada zona geográfica tieneuna preferencia respecto al color y al tamaño de la semilla defríjol, la cual proviene de la dispersión (y el consiguienteconsumo) de ciertos tipos de fríjol en el pasado.

En la Costa Atlántica colombiana, las leguminosaspreferidas son el fríjol criollo (Vigna unguiculata), en las variedadesde semilla blanca y roja, que se consume abundantemente du-rante la semana santa; la habichuela (Vigna sesquipedalis) cuyasvainas y semillas se consumen tiernas; el guandú (Cajanus cajan);y la carauta (Phaseolus lunatus).

El nombre carauta se deriva, posiblemente, de los carautas,una tribu caribe que se asentó entre los ríos Sinú y León, cerca dela frontera colombo-panameña. La carauta tiene demanda enlos mercados de Barranquilla como semilla tierna, tipo sieva decolor blanco, que se produce en las riberas del Bajo Magdalena.Asimismo, se expende en los mercados de las sabanas de Sucre(Sincelejo, Corozal, Ovejas, Chalán y Colosó) y de Bolívar (ElCarmen, San Juan y San Jacinto), como semilla seca y tierna,tipo sieva y papa, de color rojo con vetas negras y blanco convetas rojas.

En esas sabanas se siembran accesiones volubles y arbustivasalrededor de los cultivos de yuca, maíz, millo y ñame; la carautaes un componente importante de la dieta rural pues todas lastardes se consume este fríjol con arroz.

Diferentes análisis indican que el fríjol carauta tiene 20% deproteína que, aunque de buen valor biológico, alto contenido delisina y gran digestibilidad, es deficiente en treonina. Este fríjolposee un glucósido cianogénico, la faseolunatina, y la enzimalinamarasa, los cuales se hidrolizan en presencia de humedaden la molienda y liberan glucósidos generando ácido cianhídrico

(HCN), cuyo contenido varía de 10 a más 300 mg/100g de fríjol.Se acepta con frecuencia que las semillas coloreadas de fríjollima tienen un alto contenido de glucósidos, aunque algunosestudios reportan ausencia de correlación entre amboscaracteres. Muchos genotipos comerciales tienen sólo de 1 a 8ppm de HCN en la semilla, en la que generalmente se acepta unaconcentración límite de 100 a 200 ppm de HCN.

MetodologíaLas colectas se hicieron en la Costa Atlántica colombiana y sededicaron a las variedades criollas de fríjol carauta cultivadaspor los pequeños agricultores de la región. Durante la etapa deexploración, en los sitios de colecta se tomaron datos según elformulario de recolección de fríjol del Instituto Internacional deRecursos Fitogenéticos (IPGRI) y del Centro Internacional deAgricultura Tropical (CIAT). Asimismo, mediante entrevistas yencuestas con los productores se amplió la información sobre laetnobotánica de la especie.

Los materiales recolectados fueron enviados al CIAT con elfin de ampliar la colección mundial de germoplasma de fríjollima; gran parte de estas accesiones ya hacen parte de loscatálogos de ese Centro.

La semilla colectada era insuficiente para establecer lasaccesiones entre las comunidades indígenas del resguardo deSan Andrés de Sotavento, en Córdoba; se montó, por tanto, unensayo de multiplicación de semillas durante 1988B, en lospredios de la Universidad de Córdoba, en las condicionessiguientes: temperatura promedio de 29 ºC, humedad relativadel 85%, precipitación anual de 1200 mm, suelos francos yaltura de 19 m.s.n.m.

Las plantas del ensayo se sembraron a 1 m entre una y otray se montó un sistema de espalderas de alambre sostenidas porpostes de madera. Las plantas manifestaron un gran desarrollovegetativo debido a la intensa precipitación que cayó durante eltiempo de cultivo.

Los problemas de sanidad del ensayo fueron los crisomélidos(Diabrotica sp., Omopoita sp., Cistena sp., Diphaulaca sp., Ginandrobroticasp.), las chinches de encaje(Gargaphia sp.) y el virus del mosaico(VMB). Se manifestó asimismo un gran porcentaje de variaciónen la descendencia de algunos genotipos debido a la alogamiaocurrida entre estos materiales de fríjol.

Partiendo de estos datos, se montó otro ensayo en 1990 en lafinca Mina de Oro, localidad de Comején, en Purísima, Córdoba,perteneciente al Resguardo Indígena de San Andrés deSotavento, en las condiciones siguientes: suelos ácidos de texturaarenosa, terreno de topografía ondulada, temperatura promediode 29ºC, humedad relativa de 85%, precipitación anual de 1200mm y una altitud de 20 m.s.n.m.

El suelo se preparó según la tecnología tradicional de lazona: pica, quema y limpia. La siembra manual se hizocolocando tres semillas por sitio y raleando a los 15 días paradejar sólo una planta, a un metro entre plantas y a un metroentre surcos. El ensayo se hizo en parcelas de 54 m2,organizadas en un diseño de bloques al azar. Había 10plantas por parcela y se tomaron datos de fenología, decomponentes del rendimiento, de área foliar en la antesis y delíndice de área foliar.

Page 27: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 25

Asimismo, en el laboratorio de utilización de yuca delCIAT se determinó el contenido de HCN de la semilla por elmétodo de Cooke.

Los granos cocidos y aliñados (de igual forma en cada caso)fueron presentados a un panel compuesto por 50 indígenas dela comunidad de Comején para evaluar la aceptabilidad de losmateriales. A las variables de medición y de recuento se lesaplicó un análisis de estimación de intervalos.

En 1991 se repartió, en la localidad de Comején, semillamezclada de carauta entre 42 familias, con la recomendación deque la sembraran en sus parcelas. En 1992 se repartió de nuevosemilla de una de las muestras promisorias (Unicor 3) entre lasmujeres de la comunidad para que la sembraran en los patios.

En 1993B se hizo un recorrido para evaluar la presencia deeste fríjol en los campos de los agricultores de Comején. Seevaluaron además las condiciones de sanidad del cultivo y elmanejo de éste en las parcelas y en los patios. Finalmente, sehizo una encuesta a las mujeres de esta comunidad.

ResultadosEtnobotánica del cultivoEl fríjol carauta se encuentra distribuido en toda la CostaAtlántica (Costa Caribe) de Colombia, especialmente en losdepartamentos de Atlántico (Juan de Acosta, Tubará, Usiacuríy Ponedera), Bolívar (El Carmen, La Casona, San Jacinto y SanJuan), Sucre (Ovejas, Colosó, Chalán y Don Gabriel),Magdalena (Sevilla, Guaimaro, Guacamayal y Sierra Nevada),Córdoba (Montería, Tierralta y Valencia), y en el UrabáAntioqueño.

La denominación más usual es carauta, aunque en algunossitios se conoce como haba, zaragoza, garbanzo o con nombresque reflejan la forma y el color de la semilla, como panchita, fríjolrojo, carita de santo, huevo de codorniz y venezolana.

En los sitios de colecta se desconoce su procedencia; loscampesinos lo consideran nativo porque se ha cultivado degeneración en generación.

En 50% de los casos, aproximadamente, los cultivos son depatio y consisten en unas 10 plantas alrededor de la vivienda.Sólo en los departamentos de Atlántico y Sucre lo cultivan encampo abierto pero no llega a 0.5 ha el área sembrada por familia(500 a 1500 plantas). A excepción del área tabacalera de Sucre,en ninguna zona se mecaniza la tierra sino que usan elprocedimiento tradicional de roza, tumba y quema. Se utilizanlas cercas o ramas de árboles como tutores (en Sucre), se intercalacon la yuca o el maíz (en Magdalena) o se asocia con yuca ymillo (en Atlántico).

En la siembra no se aplica ningún producto que proteja lasemilla. Por lo regular, se siembra a distancias de 3 m entreplantas, cuando se hace en el patio; en el campo, a de 2 m entreplantas y a 2 ó 3 m entre surcos. Para sembrar utilizan espequesde madera, colocando 3 a 4 semillas por sitio. En ninguna de laszonas del ensayo se fertiliza y en todas se hace control manualde las malezas.

Las siembras se hacen a principios de la época de lluvias(abril-mayo) o a principios del estiaje en los terrenos aluviales delas riberas del río Magdalena.

Son comunes los ataques de crisomélidos (Cerotoma sp.,

Diabrotica sp., Diphaulaca sp., Colapsis sp., Cistena sp.). En Córdobay Magdalena se ha encontrado en las semillas el coleópteroperforador de la semilla (Hipotenemus sp.), el cual se introduce porel hilum y hace galerías dentro de la semilla; se han contadohasta 24 insectos por semilla y las accesiones más atacadas sonUnico 3 y Unico 7. Se encontraron además plantas con fuertesataques de la chinche de encaje (Gargaphia zanchesi). En las riberasdel Magdalena es común el virus del mosaico (VMB).

La producción de grano se inicia 3 meses después de lasiembra; el fríjol se consume como semilla tierna y como semillaseca. En las zonas rurales de los municipios de Ovejas, Colosó yChalán, la comida tradicional de la tarde es arroz con carauta,en proporción de 1 libra de carauta por 1 libra de arroz. Lacarauta seca se pone a ablandar en agua y así se elimina un pocoel cianuro.

No hay todavía un cálculo preciso del rendimiento de estefríjol pues la cosecha es escalonada y no se llevan estadísticas.En la mayoría de los casos, la producción es para autoconsumoaunque en las ciudades donde hay demanda (Barraquilla,Ovejas, El Carmen) se colocan excedentes en el mercado quellegan a tener altos precios (Col$800/lb).

El fríjol almacenado es atacado con frecuencia por el gorgojopintado (Zabrotes subfasciatus). Según los campesinos encuestados,el fríjol carauta necesita menos tiempo para la cocción que losfríjoles andinos (Phaseolus vulgaris); además, no produce malestarestomacal y necesita pocos cuidados en el campo debido a surusticidad.

Evaluacion de los materiales colectadosLos materiales colectados aparecen en el Cuadro 1. Se les asignóun código compuesto por las siglas Unicor, que corresponde allugar del primer depósito, o sea, la Universidad de Córdoba, yun número según el orden en que fueron colectados. El CIAT lesasignó un código, compuesto por una letra y un número quecorresponde a los 3 tipos: sieva, papa y lima grande. Predominaen los materiales el tipo sieva y son de hábito indeterminadotrepador.

Las plántulas tienen hipocotilos verdes o verdes conpigmentos púrpura y los tallos variaron del verde al púrpura. Enel haz de las hojas primarias se presentaron, en algunosgenotipos, manchas plateadas a lo largo de las nervaduras.

Las hojas son pubescentes, con el folíolo terminal de formalanceolada, ovado-lanceolada o redonda. Las flores son de colorblanco o lila con las alas cerradas o superpuestas, en la mayoríade los casos. Sólo la Unicor 6, que tiene apariencia de fríjol limagrande, tenía las alas abiertas.

Las etapas vegetativas (V0, V1, V2 y V3) fueron uniformes enlos materiales; la etapa V4, sin embargo duró 34 días en lasaccesiones Unicor 2, 8 y 10 y 75 días en la Unicor 16. Las etapasreproductivas, mostraron un comportamiento diferencial en todoslos materiales: la etapa R5 tuvo de 7 a 22 días de duración, la R6osciló entre 5 y 9 días, la R7 de 6 a 20 días y la R8 de 14 a 22 días.

En cuanto al rendimiento, los materiales más rendidores sonUnicor 6, Unicor 4 y Unicor 7, con 1254.0, 879.1 y 704.0 kg/ha,respectivamente. Los mayores niveles de área foliar en la antesisse registraron en la accesión Unicor 2 (6726 cm2/planta); en laUnicor 10 ese valor fue de 2746 cm2/planta.

Page 28: Plant Genetic Resources newsletter

26 Plant Genetic Resources Newsletter, 2000, No. 123

Contenido de ácido cianhídrico (HCN)El alto contenido de compuestos cianogénicos (ácidocianhídrico) es una característica indeseable en algunasaccesiones de fríjol carauta, pues le da un sabor amargo a lassemillas. En el Cuadro 2 se observa que los contenidos de HCNoscilan entre 17.6 ppm, en la accesión Unicor 1, y 212 ppm enUnicor 6; esta última es el material que supera en este rubro loslímites permitidos por la Organización Mundial de la Salud.

Efectos de la reincorporaciónEl 60% de los productores de grano que recibieron, en 1990, semillamezclada no sembraron carauta alegando que las semillas se habíandañado por ataques de insectos. Por tanto, 40% sembraron elprimer año, aunque sólo la mitad de ellos (20%) han conservado lasemilla. La mayoría de sembró este fríjol en los patios, cerca de lascasas, y utilizaron como tutores las cercas y las ramas de los árboles.Al juzgar la aceptabilidad del fríjol como alimento, todosmanifestaron que les gusta la carauta (P. lunatus), la habichuela (Vignasesquipedalis) y el fríjol criollo (Vigna unguiculata).

Según la encuesta aplicada a las mujeres que recibieronsemilla de Unicor 3 a principios de 1993, a todas les gustacarauta y un 50% de ellas la sembraron el primer año.

En cuanto al consumo, el 70% las prefieren tiernas (verdes) yun 30% como semilla seca. Preparan el fríjol como sopa, mote,con arroz y con guisos. Al momento de la evaluación del estadode las plantas (agosto de 1993), éstas se hallaban en su períodoreproductivo, en condiciones sanitarias aceptables aunquepresentaban ataques de crisomélidos y del virus del mosaico.

En una evaluación de campo que incluía los patios de lascasas, en octubre de 1993, los componentes principales delsistema eran maíz, ajonjolí, yuca, fríjol criollo y algunashortalizas como col y berenjena (Cuadro 3).

La situación de Comején es similar a la de otra comunidadindígena (Bajo Grande) donde se repitió el programa. Losresultados indicaron que los componentes principales delsistema de producción son la yuca, el maíz y el ajonjolí; siguenen importancia el fríjol criollo, la habichuela y las hortalizas,mientras que el fríjol carauta es un componente marginal. Porrazones económicas y culturales, el maíz y la yuca son la base dela alimentación de estas comunidades; se explica en parte lapresencia del ajonjolí (Sesamun indicum) por la demanda y buenosprecios que tiene en los mercados regionales, así como por sutolerancia a las sequías de fin de año. Algo similar ocurre con elfríjol criollo (Vigna unguiculata) que, además de su precocidad (60días hasta la cosecha), no requiere de tutores.

La habichuela (Vigna sesquipedalis) tiene una producción alta,se consume como fruto tierno y tiene demanda en los mercadosregionales. La carauta, a pesar de ser conocida y aceptada, no seha convertido en un componente significativo en los sistemastradicionales de producción y de consumo de estas comunidadespor las siguientes razones: hay otras leguminosas competitivasde mayor demanda regional, el fríjol carauta requiere de tutores,tiene un período vegetativo largo y no tiene demanda en losmercados locales. Esta especie entra en el conocido círculovicioso de que una vez que un cultivo ha sido abandonado, laescasa producción y el consumo marginal subsecuente dificultansu reinserción en los sistemas tradicionales de producción.

Cuadro 1. Colección regional del fríjol carauta en la Costa Caribe de Colombia

Nombre Sitio de Altura Latitud Longitud Código Códigolocal origen (m s.n.m.) Unicor CIAT

Carauta Valencia (Córdoba) 58 8°15’N 76°0’W Unicor 1 G26322Haba Santafé de (Antioquía) 6°10’N 7530W Unicor 2 G26313Fríjol rojo Loma Grande (Urabá) 55 8°5’N 7620W Unicor 3 G16312Zaragoza J.de Acosta (Atlántico) 28 10°50’N 75°03W Unicor 4 G26316Zaragoza Roja Tubará (Atlántico) 100 10°40’N 75°20’W Unicor 5 G26314Carauta Cansona (Bolívar) 720 9°35’N 7510W Unicor 6 G26320Carauta Ayapel (Córdoba) 25 8°18’N 7509W Unicor 7 G26317Carauta Sampués (Sucre) 43 9°10’N 7520W Unicor 8 G26324Carauta Chalán (Sucre) 150 9°35’N 7525W Unicor 9 †

Carauta Unicor 10 G26323Carauta Colosó (Sucre) 150 9°20’ 7515 Unicor 11 †

Carauta Tuchín (Córdoba.) 50 9131 7530W Unicor 12 G26321Carauta Tierralta (Córdoba) 77 8°12’ 76°5’W Unicor 13 G26319Carauta Ponchita Ponedera (Atlántico) 8 1038N 7446W Unicor 14 G26325Carita de Santo. Usiacurí (Atlántico) 100 1045N 7459W Unicor 15 G26315

† No fueron donados.

Cuadro 2. Contenido de cianógenos (HCN) en lassemillas secas del fríjol carauta

Accesión HCN (ppm)

1 17.62 21.63 20.34 60.05 43.06 212.07 24.08 51.09 38.010 39.311 25.012 96.013 36.314 34.015 35.616 27.3

Page 29: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 27

Conclusiones• En muchas zonas campesinas de la Costa Caribe de Colom-bia se mantiene, como cultivo marginal, el fríjol carauta ozaragoza; sin embargo, su proyección hacia los mercados de lasgrandes ciudades de la región es escasa.• Hay una gran variedad de germoplasma de este fríjol y en élpredominan los tipos sieva. El contenido de compuestosgeneradores de HCN en los materiales colectados, excepto en elgenotipo Unicor 6 (626320), no sobrepasan el nivel de 100 ppmconsiderado tóxico para consumo humano. Por consiguiente,no es el contenido de HCN de las semillas el factor que hainfluido en la posición marginal que ocupa hoy el cultivo.• En un experimento realizado en la vereda Comején delResguardo Indígena de San Andrés, Córdoba, Colombia, endonde se repartió semilla y se hizo una campaña de fomento delcultivo entre hombres y mujeres, sólo el 20% de los productorescontinúa sembrando esta especie, después de 3 años de iniciadala campaña.• El bajo nivel de reinserción de este cultivo en la agriculturatradicional se debe a la escasa demanda de la carauta en losmercados de la zona y a la existencia de otras leguminosascompetitivas (Vigna sp).

ReferenciasBallesteros, P.G. 1990. Evolución del fríjol lima (P. lunatus).

Curso de evolución orgánica. Colegio de Posgraduados,Montecillos, Estado de México. 89 p.

Barrera, M., G. Ballesteros y A. Torres. 1992. Caracterizaciónagromorfológica de 12 accesiones de fríjol carauta (Phaseoluslunatus L.) en el valle del Sinú Medio. Tesis. Universidad deCórdoba. Montería, Colombia.

Cooke, R.D. 1979. Enzymatic assay for determining the cyanidecontent of cassava and products. Cassava Information Cen-ter, Centro Internacional de Agricultura Tropical (CIAT),Cali, Colombia.

Debouck, D. 1979. Proyecto de recolección de germoplasma dePhaseolus en México CIAT/INIA. Centro Internacional deAgricultura Tropical (CIAT), Cali, Colombia.

Fernández, F., P. Gepts y M. López. 1985. Etapas del desarrollode la planta de fríjol. En: Fríjol: Investigación y producción.Progrma de las Naciones Unidas para el Desarrollo (PNUD)y CIAT, Cali, Colombia. p. 61-78.

Lyman, J.M. 1980. Adaptation and breeding studies on the limabean (Phaseolus lunatus L.) as a food legume for LatinAmerica. Tesis (Ph.D.). Cornell University, Ithaca, NY, E. U.275 p.

Maquet, A. 1989. Bean Program. En: CIAT Annual Report. CIAT,Cali, Colombia. (Multicopiado.)

Page 30: Plant Genetic Resources newsletter

28 Plant Genetic Resources Newsletter, 2000, No. 123 Plant Genetic Resources Newsletter, 2000, No. 123: 28 - 34

RésuméLes connaissances locales etleur contribution à lasauvegarde, à la conservationet à l’utilisation des semencesde Phaseolus et de Vigna auVenezuelaL’étude s’est appuyée sur des entretiensethnographiques en vue de collecter etde conserver ex situ du matériel géné-tique de Phaseolus et de Vigna et de mieuxconnaître les pratiques agricoles locales.Les données ont été recueillies à partird’un échantillon de 32 informateurs,situés dans les plaines de Parmana et deCabruta et dans l’Etat de Guárico, sur larive gauche de l’Orénoque, au Venezue-la. Vingt et un échantillons provenant decette collecte possèdent des donnéespasseport basées sur la catégorisation etl’analyse des entretiens eth-nographiques. Les résultats indiquentque les différents échantillons collectéssont le fruit de l’amélioration tradition-nelle des cultures fondée sur la connais-sance locale des plaines visitées. Les agri-culteurs ont contribué par leurs connais-sances à la conservation et à l’utilisationde ces légumineuses à graines. L’analysedes sols fait apparaître une fertilité moy-enne à élevée, qui semble être l’une desraisons du maintien dans le temps de cessystèmes de production à faible apportd’intrants, adaptés à l’environnement lo-cal et à sa conservation. Le matériel col-lecté joue également un rôle fondamen-tal dans l’alimentation des familles et ré-duit la superficie consacrée aux culturesde subsistance: cette zone est souventdéterminée par la crue annuelle del’Orénoque. Ce matériel génétique pos-sède des caractéristiques socioculturellesparticulières qui devraient être prises encompte afin d’améliorer le bien-être desagriculteurs et de leurs familles.

El conocimiento local y su contribución al trabajode rescate, conservación y uso de las semillas dePhaseolus y Vigna en las vegas del Río Orinoco,Estado Guárico, VenezuelaAngela Bolívar*, Marisol López, María D’Goveia y Margaret GutiérrezFondo Nacional de Investigaciones Agropecuarias-Centro Nacional de Investigaciones Agropecuarias, Apdo. Postal4653, Maracay 2001, Venezuela. Email: [email protected]; [email protected]; [email protected]

SummaryThe local knowledge and itcontribution in the rescue,conservation and use ofPhaseolus and Vigna seeds inmargin areas of the OrinocoRiver, Cabruta, ParmanaGuárico - Venezuela.The study used ethnographic interviewsin order to collect and conserve ex situPhaseolus and Vigna germplasm and togain better knowledge of local agricul-tural practices. Data were collected froma sample of 32 key informants, located inthe plains of Parmana and Cabruta andthe extreme Guárico state, on the leftmargin of the Orinoco river, Venezuela.Twenty-one materials of this collectionhave passport data described based onthe categorization and analysis of theethnographic interviews. The results in-dicate that diverse materials collected arethe result of traditional crop improve-ment based on local knowledge of theplains visited. Farmers have contributedthrough their local knowledge to theconservation and use of these grain le-gumes. The medium to high soil fertilityas determined by soil analysis appears tobe one of the reasons for the mainte-nance over time of these low-input pro-duction systems that are adapted to thelocal environment and its conservation.In addition, the collected materials are aprimary source of food in the family dietand reduce the land area needed for sub-sistence: this area is often determined bythe annual flooding of the Orinoco. Thisgermplasm has particular socioculturalcharacteristics which should be taken intoaccount in order to improve the welfareof farmers and their households.

Keywords: Collecting, ethnographicinterviews, germplasm, germplasmconservation, local knowledge

ResumenEl conocimiento local y sucontribución al trabajo derescate, conservación y uso delas semillas de Phaseolus yVigna en las vegas del RíoOrinoco, Estado Guárico,VenezuelaCon el propósito de colectar y conservarex situ materiales de Phaseolus y Vigna, ytambién de caracterizarlos y aprenderdel conocimiento agrícola local de losproductores, se utilizó el método de in-vestigación de la entrevista etnográfica,diseñada para comprender los eventosobservados haciendo énfasis en el análi-sis cualitativo etnográfico. Se tomarondatos a partir de una muestra de infor-mantes clave (32 productores) localiza-dos en las vegas de Parmana y Cabruta,extremo sur del Estado Guárico, en lamargen izquierda del río Orinoco, enVenezuela. De la colecta se obtuvieron21 materiales locales cuyos pasaportesfueron descritos partiendo de la catego-rización y del análisis de la entrevistaetnográfica. Los resultados indican quelos diversos materiales colectados provi-enen de un mejoramiento artesanal cen-trado en el conocimiento local de los pro-ductores de las vegas visitadas, los cuales,a través de sus experiencias y saberes,han contribuido a la conservación y usode estos granos. Por otra parte, las condi-ciones de mediana a alta fertilidad de lossuelos de las vegas bajo estudio, vistas através de los análisis de suelos, es al pare-cer una de las causas de la permanenciaen el tiempo de estos sistemas de pro-ducción de bajos insumos, adaptados alambiente local y a la conservación delmismo. Los materiales colectados son,además, fuente primaria de recursos ali-menticios para el mantenimiento del nú-cleo familiar y reducen además el áreaper cápita necesaria para la subsistencia;esta área está determinado por las inun-daciones anuales del río Orinoco. Confi-eren también estos mataeriales car-acterísticas socioculturales muy particu-lares que deben considerarse a fin demejorar la calidad de vida del productory su familia.

ARTICLE

Page 31: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 29

IntroducciónEl conocimiento agrícola local es el que generan los agricultores,hombres y mujeres, a lo largo del tiempo; contiene informaciónacerca de las preferencias y prácticas de los cultivos y se transmitede generación en generación mediante tradición oral. Esteconocimiento representa una reserva importante de experienciasy saberes para la toma de decisiones ante los distintos problemasy retos que enfrenta una comunidad (Quiroz 1996).

Sobre el conocimiento agrícola local se han realizadosinteresantes estudios, entre los cuales están los de Bentley (1989),Maundu (1990), Cruz (1990) y Mathias (1996); estosinvestigadores dejan ver en ellos la posibilidad de conservar losrecursos fitogenéticos y mejorar la producción agrícola de unacomunidad si se cruza la matriz de conocimiento local de losagricultores con el conocimiento agrícola de los investigadores;ambos se ayudarían y complementarían en la búsqueda desoluciones, tanto técnicas como de conservación de los recursosfitogenéticos. Uno de los principales insumos que se consideraactualmente en los Centros de Investigación Agrícola es elconocimiento local; han adquirido experiencia en este campo elICRISAT, el CIAT y el FONAIAP Lara y ya han incluidoagricultores en sus programas de investigaciones.

En Venezuela, las leguminosas comestibles son uncomponente básico en la dieta del productor y de su familia; porello, considerar el conocimiento local de los agricultores, hombresy mujeres, sobre la producción, conservación y uso de lasleguminosas es una estrategia clave que facilita el rescate devariedades locales y de materiales nativos; unas y otros podránincorporarse luego en programas de mejoramiento genético porlas vías de la conservación in situ y ex situ. En este trabajo secontempla la conservación ex situ; por tanto, las semillascolectadas en este estudio se mantendrán fuera de su hábitatoriginal, en las instalaciones de los bancos de germoplasma parasemillas del CENIAP (Centro Nacional de InvestigaciónAgropecuaria) perteneciente al FONAIAP (Fondo Nacional deInvestigaciones Agropecuarias de Venezuela).

Al considerar la importancia que tiene el conocimientoagrícola local para colectar y conservar materiales, surgenlimitaciones de índole metodológico cuando se trata deabordarlo. Para realizar este trabajo, se aplicaron los métodoscualitativos etnográficos propuesto por Martínez (1990).

Para entender mejor el significado de la investigaciónetnográfica, consideremos algunas definiciones:• La etnografía, según Erikson (1973), es el estudio detalladode una sociedad o unidad social en particular; para Woods(1985), este término deriva de la antropología y significa ladescripción del modo de vida de una raza o grupo deindividuos; Martínez (1996) señala que el término etnográficosignifica la descripción (‘graphos´) del estilo de vida de ungrupo de personas habituados a vivir juntos (‘ethnos´) e indicaque los estudios etnográficos, por sus características técnicasbasadas en la observación, reciben otros nombres entre loscuales están los siguientes: método observacional participante,estudio de caso, método interaccionista simbólico, métodofenomenológico, interpretativo o constructivista; sin embargo,la denominación más generalizada es la de métodoscualitativos.

• Para Bogdan y Biklen (1982) la frase ‘metodologíacualitativa´ se refiere, en su más amplio sentido, a lainvestigación que produce datos descriptivos, hablados o escritosy a la conducta observable. Dadas estas premisas, establecemoslos objetivos del trabajo :- por una parte, colectar semillas de Phaseolus y Vigna yentregarlas al banco de germoplasma de FONAIAP para sucaracterización científica, su evaluación, conservación y uso enprogramas de mejoramiento genético;- por otra parte, aprender del conocimiento local de losproductores de las zonas sobre la conservación, producción yuso de las semillas de Phaseolus y Vigna para caracterizarlas.

AntecedentesCaracterísticas agroecológicas de las vegas delRío OrinocoEl estudio realizado por Riera y Guerrero (1984) señala lassiguientes características agroecológicas de las vegas del RíoOrinoco. Tienen una superficie de 75,153 ha en la zonaestudiada; representan el 2.1% de la superficie total de la RegiónNororiental del Estado Guárico. Los suelos están dentro de launidad agroecológica E-172. Fisiográficamente, la unidad sedefine como planicie de desborde del Río Orinoco.

La precipitación promedio anual es de 1400 mm, que seconcentra en seis meses en los que ocurre el 91% de laprecipitación total anual; los picos están en julio y agosto. Lossuelos predominantes son de los órdenes Aquepts y Fluvents, ylas texturas más comunes son francolimosas (FL) y franco-arcillolimosas (FAL). La fertilidad es considerada de media aalta; los niveles de disponibilidad de nutrimentos (en ppm) sonde 15 a 20 para el fósforo, de 90 a 280 para el potasio y de 280 a300 para el calcio.

Estas características edafoclimáticas, entre otras, son las queantropólogos como Sanoja y Vargas (1978), consideranfundamentales para que los primeros grupos humanosasentados en la región (de 600 a 1000 años A.C.) lograran unalto grado de integración social y de cohesión cultural basadasen la agricultura, la pesca fluvial y la caza terrestre. Estos gruposdebieron ser suficientes para establecer en la zona una poblaciónde cierta densidad que ha perdurado más de 2600 años, segúnlos mismos autores.

Materiales y métodosLa metodología utilizada para desarrollar esta investigación sebasa en la propuesta de Martínez (1990) sobre investigacióncualitativa etnográfica, que consiste en la producción de estudiosanalítico-descriptivos de las costumbres, creencias, prácticassociales, conocimientos y comportamiento de una cultura enparticular. En estos estudios prevalece la observaciónparticipante, se centra la atención en el ambiente natural, seincorpora como co-investigadores a algunos sujetos escogidos yse evita la manipulación de variables por parte del investigador.Este trabajo contiene, como resultado, la categorización de losdatos descriptivos hablados y la conducta observable delproductor obtenida de una muestra intencional de informantesclave (32 productores) durante el período de preparación delterreno, de siembra y de cosecha en los meses de mayo, de

Page 32: Plant Genetic Resources newsletter

30 Plant Genetic Resources Newsletter, 2000, No. 123

información. Estas permiten efectuar validaciones deinformación cruzada, recogiendo datos de diferentes fuentes(Patton 1987). En el presente caso, se emplearon en esta técnicatres instrumentos: la entrevista, la convivencia y la observaciónparticipante.

Entrevista. Mediante la entrevista se motivó al productor,ayudándole a explorar, reconocer y aceptar sus propias vivencias.Se utilizó una guía que seguía temas elegidos previamente(aspectos sociales, tecnológicos y referentes a los materiales).

En cuanto a los aspectos sociales, se recopiló información sobreel núcleo familiar: número de personas que laboran en la unidadde producción; organización del trabajo (familiar, asalariadafija, estacional); participación de la mujer en el trabajoproductivo, reproductivo y comunitario; fuentes deconocimientos (escolaridad, textos, tradición oral, visitastécnicas); principales fuentes de ingreso; autoconsumo yrelaciones con el mercado local.

En relación con los aspectos tecnológicos, se abordaron tresetapas: preparación del terreno y siembra, mantenimiento delcultivo y cosecha. En relación con los materiales se trataron lostemas siguientes: formas de conservación, selección de lasemilla, usos, origen del material, nombre común, peso de lasemilla, forma y color de la semilla).

La entrevista se complementa con notas de campo de tipomemorando, grabaciones o filmaciones; en nuestro caso sólo seusaron las notas.

Codificación. Cada entrevista se desarrolló en forma derelatos o historias, las cuales se codificaron con un número líneapor línea; estas historias se leen todas las veces que sea necesariopara luego seleccionar categorías comunes.

Categorización e interpretación. Se dividieron los contenidosde la entrevista en temas similares y se agruparon según lascaracterísticas comunes, lo cual permitió seleccionar lassiguientes categorías descriptivas:- selección y conservación de semillas,- formas de consumo,- origen de la semilla,- preparación y adecuación del suelo para la siembra, y- mantenimiento del cultivo.

Convivencia. La convivencia es una técnica sencilla que nospermite interactuar con la comunidad. El objetivo primordial deesta técnica es lograr la empatía entre los investigadores y losproductores. La convivencia con fines de investigación enrecursos fitogenéticos logra que, en el plano cognoscitivo, lapersona empática tome la perspectiva de la otra persona y seesfuerce, al hacerlo, por ver el mundo desde el punto de vista deesa persona. En el plano comunicativo, el individuo empáticomuestra comprensión e interés mediante claves verbales y noverbales. La convivencia se puede desarrollar mediante algunaactividad importante para la comunidad, bien sea a fiesta delsanto de la localidad, las ferias o las faenas de trabajo. En esteestudio se hizo en las faenas de trabajo (siembra y cosecha) y seacopió la información mientras se aprendía haciendo,observando y escuchando con mucha atención.

En las convivencias se obtuvo la siguientes información:- lenguaje y tecnología local;- el papel de la mujer,

octubre a noviembre de 1999 y de febrero del 2000. Lametodología contempla los siguientes pasos:

Delimitación de las zonas de colectaLa zona delimitada correspondería a un caserío, un pueblo, elEstado o el país. La zona de colecta para este trabajo está en eleje Parmana-Cabruta localizado en el extremo sur del EstadoGuárico, en la margen izquierda del río Orinoco, en Venezuela,entre las latitudes 7º 30’ y 8º30’ Norte y las longitudes 65º 30’ y66º 30’ Oeste. Su superficie es de 75,153 ha pertenecientes a unamisma unidad agroecológica. Entre las características físicasnaturales más importante de la zona están las crecientes anualesdel río Orinoco que regeneran periódicamente la capa vegetal delas riberas y de las islas del río.

Uso actual. Estos suelos se usan en ganadería extensivatrashumante y para agricultura en las vegas del río; los principalescultivos son: caraota, frijol, algodón y patilla, que dan una cosechaal año a causa de la inundación a que están sometidos los suelos.

Ubicación geográfica. Figuras 1 indica la ubicación de lazona estudiada.

Epoca del estudioSe eligieron los meses del año que, según los factores climáticos,garantizan la presencia de los elementos de estudio de lasplantas (flor, fruto o semilla).

Se realizaron 11 visitas en tres épocas distintas :a) 3 días en época de sequía (colecta de semilla), en el mes demayo de 1999;b) 3 días en época de salida de lluvias (preparación del terrenoy siembra), en el mes de octubre de 1999;c) 3 días en época de sequía (mantenimiento del cultivo), en elmes de noviembre de 1999;d) 2 días en época de sequía (cosecha ), en el mes de febrero del2000.

Permisología. Se pidió autorización para colectar muestrascon fines científicos a:

- Autoridades (cartas, entrevista)- Comunidades (cartas, reunión, taller)

Instrumentos para recolectar informaciónPara realizar este trabajo se escogieron estrategias de recolecciónde datos etnográficos, en especial, técnicas de triangulación de

Fig.1. Atardecer en Las Vegas del Río Orinoco. Parmana-Cabruta, Venezuela.

Page 33: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 31

- formas de comunicación;- identificación de líderes ocultos o ya establecidos;- costumbres y creencias.

Muestreo de suelosCon el propósito de precisar más el contexto agroecológico de laszonas de colecta, se hizo un recorrido por las áreas de estudio ysu entorno. De este modo se logró obtener visualmente unaapreciación de las condiciones descritas por Riera y Guerrero(1984) para estas unidades agroecológicas. Durante el recorridose tomaron muestras de suelo con el fin de analizar la fertilidadde éste en cada una de las unidades de producción consideradasen la colecta. A fin de disminuir la variabilidad del suelo yobtener muestras representativas, se definieron unidades demuestreo (Ovalles 1992); cada unidad está representada por ½ha o por 1 ha, considerando el tipo de manejo del suelo y suscaracterísticas comunes, o sea, tipo de vegetación, color, posiciónfisiográfica y textura. En cada hectárea se tomaron de 20 a 30muestras compuestas según la heterogeneidad del lote. Cadamuestra compuesta consta de la mezcla de submuestras (entre10 y 15). Las muestras se toman al azar siguiendo una trayectoriaen zig-zag (Chririnos y Brito 1985).

Las submuestras se mezclaron y de la mezcla se tomó,aproximadamente, 1 kg de suelo, el cual conformó la muestracompuesta que fue sometida a determinaciones físicas yquímicas para conocer su fertilidad. Los resultados seinterpretaron considerando criterios de deficiencia, suficiencia yexceso de nutrientes.

Resultados y discusiónAplicabilidad de la metodologíaCuando visitamos una comunidad rural con fines deinvestigación, observamos que posee un cúmulo de experienciasy agudos conocimientos sobre la utilización de diversosmateriales de origen vegetal y animal, lo que les ha permitidosobrevivir en el tiempo. En estas comunidades hay valores,creencias y costumbres que permiten a sus habitantes, a pesarde las condiciones adversas del clima, de la infraestructura y deotras limitantes, resistir y permanecer en su lugar de origen.Otras comunidades rurales, por el contrario, se percibenindefensas y susceptibles en la medida en que son intervenidaspor patrones de consumo, tecnologías y necesidades que vienende fuera sin considerar su contexto sociocultural.

En países en vías de desarrollo, esta situación causapreocupación porque es uno de los factores que llevan a hombresy mujeres, que se perciben indefensos, a trasladarse a las grandesciudades dejando atrás un mundo de posibilidades yenfrentando otro de restricciones y discriminación social.

Se desprende de aquí la necesidad de que las investigacionessobre recursos genéticos presten tanta atención a los factoressocioculturales que influyen en una comunidad como a la lautilización y conservación de esos recursos. De este modo seestaría contribuyendo a la conservación del germoplasma vegetaly animal en beneficio de las comunidades mismas y de lasociedad en general. En relación con los aspectos socioculturales,Ulloa (1995) señala que en las comunidades rurales hay un“simil de los bancos de germoplasma; es la memoria colectiva,

donde están depositadas informaciones que vienen degeneración en generación y que se mantienen en el tiempogracias a un vehículo que se conoce como tradición oral. Losdatos de este banco son codificados de manera peculiar y suacceso e interpretación requiere n, como en todo banco deinformación, de algunos criterios y destrezas y del dominio deramas del conocimiento.”

Consideramos, por tanto, que la investigación etnográfica esaplicable a este tipo de trabajo porque brinda la posibilidad deutilizar técnicas sencillas y de desarrollar destrezas para aprenderde esa memoria colectiva y respetarla. Consideramos, además,que la etnografía, como rama fundamental del conocimiento de laantropología cultural y social, puede ayudar a los equipos queinvestigan en recursos fitogenéticos en la conservación y el uso delgermoplasma vegetal a través de la participación justa y equitativade los productores y productoras rurales. Se perciben, sin duda,limitaciones en cuanto a la sistematización de la información, queno es estándar, pero esto podría mejorar en la medida en que losequipos de investigación hagan uso de ella.

Materiales colectadosSe colectaron 21 materiales, a saber: 13 de Phaseolus vulgaris, 2 dePhaseolus lunatus, 5 de Vigna sp., y 1 de Cannavalia sp. Los materialesfueron entregados al personal encargado de realizar lacaracterización científica completa de cada muestra y de haceruna comparación con estudios paralelos. El análisis y ladiscusión de los resultados quedaron restringidos aquí a lainformación suministrada por los productores y a ladeterminación, en el laboratorio, de dos características varietales:el peso de 100 semillas y la forma de la semilla.

Los materiales presentados en el Cuadro 1 son comúnmenteempleados por los productores para las siembras anuales y suorigen es diverso: intercambio de productor a productor, compraen bodegas, compra en las algodoneras, conservada por familiasde generación en generación como si fuera patrimonio familiar.

Los criterios empleados por los productores para seleccionarlas semillas son: buen tamaño y buen color, y no tener picaduras;para conservarlas, el método más común es dejarlas secar bien yluego guardarlas en ‘pipotes´, ‘tamboras´, botellas plásticas(Figura 2) y sacos; se les agrega a veces ceniza y se colocan en unlugar alto y apartado de los animales.

Fig.2. Diversidad de materiales locales de Phaseolus vul-garis y Vigna sp Seleccinados y Conservados por losproductores de la zona visitadas.

Page 34: Plant Genetic Resources newsletter

32 Plant Genetic Resources Newsletter, 2000, No. 123

En el caso del cultivo de Phaseolus vulgaris ¾denominadocaraota, solamente en Venezuela, según un vocablo autóctonode la lengua caribe (Voysest 1983)¾ se presentan diversos coloresde semilla; los productores las clasifican por ello en caraotasnegras, caraotas rojas, caraotas blancas y caraotas pintadas.Estas ultimas presentan distintas tonalidades que van del cremasuave con manchas café rojizo al amarillo azufrado con manchascafé rojizo. En el Cuadro 2 se muestran dos de las característicasdeterminadas en el laboratorio, o sea, la forma y el peso de 100semillas, según los descriptores varietales del CIAT (1993).

En los materiales de Phaseolus, la forma predominante es la desemilla arriñonada y recta en el lado del hilo (8); viene enseguidala forma ovoide (2). El peso varía de 14.12 g y 34.16 g por 100semillas, lo que indica que se trata de semillas de medianas apequeñas. Se consumen cuando el grano está seco; las de mayorpreferencia en el consumo son las negras por su fácil y rápidacocción y por su sencilla preparación, pues su sabor no dependemucho de la cantidad o variedad de condimentos. Otra caraotapreferida por los consumidores es la pintada; sin embargo,requiere de más preparación, o sea, cambio de varias aguas decocción para eliminar el sabor amargo así como mayor cantidady variedad de condimentos. En los dos materiales de Phaseoluslunatus, llamado comúnmente frijol tapiramo, se identificó unsolo color crema oscuro con manchas café oscuro, con granos deforma arriñonada y ovoide, con un peso promedio de 32.29 g, detamaño grande. Este grano se consume seco y es más exigente enla preparación y sazón; sus hojas se usan con fines medicinales.El material de Cannavalia sp. es la semilla de mayor tamaño conun peso de 64. 37 g, es de color blanco y de forma arriñonada yrecta en el lado del hilo(8). Este material se usa comúnmente en

la zona del estudio para la alimentación del ganado y comoabono verde.

El material Vigna unguiculata es comúnmente denominado porlos productores de la zona fríjol vaina de acero, fríjol media ramay fríjol bejuco; el color del grano varía de café rojizo claro a caféoscuro. Las formas que predominan son la pequeña casicuadrada (4), la ovoide (2) y la arriñonada (8). El peso de estosgranos está entre 9.79 y 17.62 g, lo que indica que son losmateriales más pequeños de la colecta. Según información de losproductores, este es el grano que más se consume tanto en lazona estudiada como en el Estado Guárico, en sopa oacompañado, según la disponibilidad de recursos, de otrosalimentos como plátano, pescado o carne seca. Otra forma depreparación es la mezcla de fríjol con arroz, lo que hace un platotípico de la región denominado “palo a pique”. Este grano seconsume más que la caraota, por las siguientes razones:- como la caraota, es fácil de preparar y su sabor es tambiénespecial pues no requiere de la cantidad y variedad decondimentos que exigen otros granos;- el cultivo de la caraota es muy delicado y exigente mientrasque el fríjol bejuco es más suave, su cultivo no exige muchoscuidados y es más resistente a plagas y enfermedades;- el fríjol bejuco se adapta a cualquier condición de clima ysuelo por lo que se puede

producir tanto para el mercado como para la familia;- en cuanto al valor nutritivo, los productores de la zonaconsideran el fríjol bejuco equivalente a la carne para la fuerzade trabajo.Esto indica que los criterios con que los productores de la zonade colecta eligen, para la siembra y el consumo, un material

Cuadro 1. Material de leguminosas colectado en las vegas del río Orinoco, Estado Guárico, Venezuela, en 1999

Entrada (no.) Origen del cultivar Nombre local Lugar de la colecta

99-056 De generación en generación Tapiramo, Tavaita Parmana, sector El Brisote99-057 De generación en generación Caraota blanca Parmana99-058 De generación en generación Vaina de acero, Media rama Cedeño99-059 De generación en generación Tapiramo, Tavaita Sector Isla de López, Municipio

Cedeño, Edo. Bolívar99-060 De generación en generación Canavalia Sector Robo Pelao99-061 De generación en generación, Fríjol negro Sector Robo Pelao

10 años99-062 Compró a vendedor de grano Caraota pintada Sector Isla de López, Municipio

Cedeño, Edo. Bolívar99-063 Compró a otro productor Fríjol Vaina de acero Vega la Guacamaya, Parmana99-064 De generación en generación Caraota blanca Vega la Guacamaya99-065 De generación en generación Caraota pintada Vega la Guacamaya99-066 Compro en bodega Caraota negra Parmana99-067 Guardada de generación Caraota blanca de Bejuco Vega, Isla de López

en generación99-068 Guardada por el productor Caraota Pintada Sector El Burro

hace 10 años99-069 Guardado por el productor Fríjol vaina de acero Parmana99-070 Guardada por el productor Fríjol Sector El Burro99-071 Consiguió hace 3 años, se lo Frijol Bejuco Sector El Burro

dio a otro productor99-072 Compró a otro productor Caraota negra Parmana99-073 Guardada por el productor Caraota blanca El Burro99-074 Guardada por el productor Frijol El Burro99-075 Guardada por el productor Caraota roja Isla El Baulito99-076 Comprada a la algodonera Caraota negra El Burro

Page 35: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 33

como el fríjol bejuco, tiene una lógica que merece atención ypodría interesar a los fitomejoradores para incluirla en susproyectos de investigación.

En relación con las prácticas agronómicas, se observó lavariación de las distancias de siembra según el cultivo; lasprácticas más comunes están centradas en la preparación delterreno. Los productores, al bajar las aguas del río Orinocodesde el mes de septiembre, comienzan las labores depreparación haciendo una limpieza del terreno, que consiste eneliminar las malezas con machete o herbicida o mediante laquema; hecho esto, siembran el fríjol. En algunos casos, todaslas labores se realizan el mismo día y en otros se siembra de dosa tres días después de desmalezar, sobre terreno plano que vadesde ½ ha hasta 4 ha o más.

La siembra tiene dos modalidades: asocian el fríjol con otroscultivos, como el algodón o el maíz, o en monocultivo. Lapráctica más común es ‘a coa´, es decir, el agricultor abre, conuna vara larga, el sitio en el suelo para la semilla y coloca en él de4 a 5 semillas. En la siembra de la caraota se observarondistancias de hasta 30 cm entre plantas y 70 cm entre hileras(calles). En el caso de la caraota pintada, las distancia son de 1m entre plantas y 3 m entre calles. Ninguno de los productoresentrevistados manifestó que aplicaba fertilizantes y sólo serefirieron al mantenimiento, que consiste en observar el cultivodurante todo el ciclo para detectar un ataque de plagas oenfermedades, y controlar las malezas cuando lo creen necesario;así transcurren los 4 meses del cultivo y luego proceden acosechar.

Respecto a las características socioculturales y económicasde los productores y productoras de fríjol, el cultivo de estosgranos representa una estrategia de seguridad para la familiapuesto que su producción garantiza el consumo familiarabastecido durante todo el año y también el ingreso que entrapor la venta de excedente para el mercado local. Se observó queen el grupo familiar los hijos o familiares cercanos son la

principal fuente de mano de obra; la siguen los contratostemporales. Lasa mujeres juegan un papel determinante tantoen su labor reproductiva (mantenimiento del hogar,preparación de alimentos, cuidado de los niños) como en eltrabajo productivo; se observó que las mujeres hacen laboresde siembra, y algunos productores manifiestan que son máscuidadosas y dedicadas en estos trabajos. En general, laproducción de granos de la zona es manejada generalmentepor los hombres ya sea con mano de obra familiar, contratadao de otra modalidad, según sus necesidades. Respecto a lacomercialización de los granos, se observó que suelen vendersea intermediarios que llegan a la zona y fijan el precio y lacantidad que compran. Esta situación preocupa a losproductores, quienes manifestaron tener serias dificultadespara vender sus cosechas pues consideran no que no recibenun precio justo.

Los análisis del suelo de la zona de colecta (Cuadro 3)indican condiciones de fertilidad de intermedia a alta. El fósforoy el calcio disponibles se encuentran en un nivel de medio a alto;las principales limitantes son los bajos niveles de potasio y lareacción del suelo, porque se encontró un pH bajo que reflejauna acidez de moderada a alta. Las variables edafológicasseñaladas en el Cuadro 2 han definido, durante muchos años, eluso dado a las vegas visitadas. Si extrapolamos los estudiosantropológicos de Sanoja y Vargas (1978) a la situación actual,encontramos que muchos cultivos que en el pasado eran lasprincipales fuentes alimenticias de los grupos indígenas, comola yuca, el maíz, la ahuyama y los frijoles, hoy continúancultivándose con prácticas adaptadas al ambiente local y queaun hoy contribuyen a preservarlo.

Las observaciones de campo indican también que elconocimiento local de los productores de las vegas visitadas serefleja en la habilidad y destreza de las prácticas agrícolasdesarrolladas bajo circunstancias muy particulares. Estasprácticas obedecen a las características físiconaturales antes

Cuadro 2. Materiales de leguminosas colectados en las vegas del río Orinoco, Estado Guárico, Venezuela, en 1999

Nombre Entrada Peso de 100 Formaslocal (no.) semillas (g)

Caraota blanca 99-057 26.04 (2) OvoideVaina de acero, Media rama 99-058 13.29 (4) Pequeña, casi cuadradaTapiramo, Tavaita 99-059 32.70 (2) OvoideCanavalia 99-060 64.37 (8) Arriñonada, recta en el lado del hiloFrijol negro 99-061 14.12 (8) Arriñonada, recta en el lado del hiloCaraota pintada 99-062 23.12 (8) Arriñonada, recta en el lado del hiloFrijol vaina de acero 99-063 13.08 (4) Pequeña, casi cuadradaCaraota Blanca 99-064 34.16 (8) Arriñonada, recta en el lado del hiloCaraota pintada 99-065 27.93 (8) Arriñonada, recta en el lado del hiloCaraota negra 99-066 20.90 (8) Arriñonada, recta en el lado hilo.Caraota blanca de bejuco 99-067 27.48 (2) OvoideCaraota pintada 99-068 16.90 (8) Arriñonada, recta en el lado del hiloFríjol vaina de acero 99-069 19.52 (8) Arriñonada, recta en el lado del hiloFríjol 99-070 15.70 (4) Pequeña, casi cuadradaFríjol bejuco 99-071 17.62 (8) Arriñonada, recta en el lado del hiloCaraota negra 99-072 19.78 (2) OvoideCaraota blanca 99-073 30.23 (2) OvoideFríjol 99-074 9.79 (2) OvoideCaraota roja 99-075 23.69 (8) Aarriñonada, recta en el lado del hiloCaraota negra 99-076 31.53 (2) Ovoide

Page 36: Plant Genetic Resources newsletter

34 Plant Genetic Resources Newsletter, 2000, No. 123

descritas (Cuadro 3), las cuales determinan el aprovechamientoy uso de los suelos y aguas. Los productores conocen lasventajas de los suelos de las vegas para la producción de granosy otros cultivos a bajo costo, en comparación con otros suelos dela región. Esto justifica el significativo esfuerzo que cada añohacen estos agricultores cuando trasladan sus familias, casas yenseres al presentarse el desbordamiento del río Orinoco; pasadoéste, vuelven años tras año.

ConclusionesLos materiales colectados derivan de un mejoramiento artesanalcentrado en el conocimiento local que tienen los agricultores,hombres y mujeres, de las vegas de Parmana y Cabruta; ellos, através de sus experiencias y sus conocimientos, han contribuidoa la conservación y uso de esos recursos.

Las condiciones de fertilidad, de mediana a alta, que arrojanlos análisis de suelos de la zona de colecta, pueden ser causa dela permanencia en el tiempo de estos sistemas de producción debajos insumos. Por otra parte, los materiales que hansobrevivido, a pesar de la reacción ácida del suelo, se explicaríancomo un fenómeno de adaptación y selección natural.

Los conocimientos locales de los productores de las vegasvisitadas son fuente de valiosa información para colectar,caracterizar y conservar materiales en los trabajos de recursosfitogenéticos que se realicen. Ahora bien, el uso de dichosconocimientos no debe ser unidireccional, ya que se podríaincurrir en una forma de expropiación o aprovechamientoindebido de los recursos. Es, por tanto, necesario que los centrosde investigación asuman compromisos responsables con lascomunidades rurales a fin de incorporar aspectos o estrategiasque beneficien a la comunidad.

Los materiales colectados son fuente primaria de recursosalimenticios para el mantenimiento del productor y su núcleofamiliar, quienes utilizan el área per cápita necesaria para lasubsistencia y el mercado local. Todo esto está determinado porlas inundaciones anuales del río Orinoco, que le confierencaracterísticas socioculturales muy particulares a la zona, lascuales deben considerarse a fin de mejorar la calidad de vida delos agricultores y sus familias.

ReferenciasBentley, J. 1990. Facts, fantasies and failures of farmer

participation: Introduction to the symposium volume En :Memora del Simposio Participación del Pequeño Agricultoren la Investigación y Extensión Agrícola, celebrado en laEscuela Agrícola Panamericana de Zamorano, Honduras.CEIBA (Honduras) 31(2):7-27.

Bogdan, R. and S. Biklen. 1982 Qualitative research foreducation: An introduction to theory and methods. Allyn yBacen. p. 70-72.

Chirinos, A.V. and J. Brito. 1985. Muestreo de suelos paradiagnóstico de fertilidad. Serie E, No. 8-02. FONAIAP,Maracay. p. 18.

Cruz, J. 1996. Saber local, poder y desarrollo humano sostenible.Bosques, Arboles y Comunidades Rurales (Costa Rica)27:46-47.

Erickson, F. 1979. Mere ethnography: Some problems in its use ineducational practice. Anthropology and EducationQuarterly:36-42.

Gilabert de Brito, J., López I. de R. y R. Roberti. 1990. Análisis desuelos para diagnóstico de fertilidad. En: Manual de métodosy procedimientos de referencia. FONAIAP-ENIAP, Maracay.Serie D, No. 26.

Martínez, M. 1996. Comportamiento humano: Nuevos métodosde investigación. 2ª. ed. Trillas, México DF. p. 199-207.

Mathias, E. 1996. Marco para perfeccionar el uso de losconocimientos locales Bosques, Arboles y ComunidadesRurales (Costa Rica) 27:42-45.

Maundu, P. 1996. Metodología para recolectar y compartir losconocimientos locales: Un estudio de caso. Bosques, Arbolesy Comunidades Rurales (Costa Rica) 27:32-36.

Muñoz, G., G. Giraldo y Fernández de Soto J. 1993. Descriptoresvarietales: Arroz, frijol, maíz, sorgo. Centro Internacional deAgricultura Tropical (CIAT), Cali, Colombia. p. 75-78.

Ovalles, F.A. 1992. Metodología para determinar la superficierepresentada por muestras tomadas con fines de fertilidad.Fondo Nacional de Investigaciones Agropecuarias(FONAIAP) e Instituto de Investigaciones AgrícolasGenerales, Maracay, Venezuela. Serie E. 44 p.

Patton, M. 1980. Qualitative evaluatíon methods. Sage, BeberlyHill, CA, E. U. p, 24.

Quiroz, Consuelo. 1996. Taller sobre el proceso de la extensiónagrícola y la perspectiva de género. Centro para la AgriculturaTropical Alternativa y el Desarrollo Integral (CATADI),Universidad de los Andes, Núcleo Rafael Rangel Trujillo,Mérida, Venezuela. (Mimeografiado.)

Riera, J. y S. Guerrero. 1984. Diagnóstico agroecológico delnororiente de Guárico. En: Archivos de la EstaciónExperimental Valle de la Pascua, Guárico. FONAIAP,Venezuela. 184p. (Mimeografiado.)

Sanoja, M. y I. Vargas. 1978. Antiguas formaciones y modos deproducción venezolanos. Monte Avila Editores, Caracas,Venezuela. p. 106-117.

Ulloa, L. 1996. Proyectos en las comunidades: ¿Construirescenarios de acción conjunta? Colección Cuadernos de LibreOpinión. Servicio de Información Mesoamericano sobreAgricultura Sostenible (SIMA), Managua, Nicaragua. p. 49.

Voysest, O. 1983. Variedades de frijol en América Latina y suorigen. Centro Internacional de Agricultura Tropical (CIAT),Cali, Colombia. p. 85-87.

Woods, P. 1985. Sociology, ethnography and teacher practice:Teacher and teacher education. p. 15 –21.

Cuadro 3. Resultados de los análisis de suelos con fines de fertilidad hechos en la localidad de Parmana, enlas vegas del Río Orinoco, en marzo de 1999

Variables Resultados Método de determinación†

Textura Franco limosa (FL) BouyoucosP (ppm) 11 - 25 Olsen et al. 1954K (ppm) 40 - 70 Olsen et al. 1954Ca (ppm) 338 - 500 MorganMateria orgánica (%) 1.0 - 1.6 Combustión húmeda, Walkey and Black modificadopH (1:1.5) 4.5 - 5.0 Relación suelo:agua es 1:2.5

† Ver Manual de Métodos y Procedimientos de FONAIAP-CENIAP, Serie D, No.26, Capítulos 4.1 y 5.1, Maracary, Venezuela.

Page 37: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 35Plant Genetic Resources Newsletter, 2000, No. 123: 35 - 40

RésuméUn réseau de gestion desressources génétiques despopulations de maïs en FranceLes sélectionneurs français ont perçudepuis longtemps la nécessité de con-server la variabilité génétique des popu-lations de maïs. Dans le cadre d’un pro-gramme qui a rassemblé et étudié envi-ron 1315 populations, ils se sont dotésdes équipements nécessaires à la conser-vation à long terme et à la distribution deces ressources génétiques. Un réseaucomposé des unités de la recherche pub-lique et des établissements privés desélection permet un partage des tâchespour régénérer, conserver et distribuerle matériel aux membres du réseau etaussi à d’autres partenaires. Un accord :la “ Charte pour la gestion des ressourc-es génétiques de maïs ”, précise les droitset les obligations de chaque membre.Actuellement, 25 partenaires régénèrentchaque année une centaine de popula-tions. Les semences sont déshydratées à7% d’humidité, puis conditionnées en sa-chets aluminium. Dix échantillons parpopulation contenant 600 grains sontconservés dans une chambre froide à+4°C pour la distribution. On pense pou-voir les conserver pendant 25 ans. Deuxautres échantillons sont conservés à –18°C pour la régénération et pour la sécu-rité. Dans ce réseau coopératif, à la dif-férence d’autres banques de gènes, tousles travaux, depuis le champ de régénéra-tion jusqu’à l’envoi aux utilisateurs, sontexécutés par des professionnels du maïs.Grâce à ce réseau coopératif, on utilisedes méthodes efficaces de régénérationet de conservation qui tiennent comptedes recommandations de l’IPGRI et desapproches théoriques de la génétique despopulations.

A network for the management of genetic resourcesof maize populations in FranceJacques Dallard*, Philippe Noël, Brigitte Gouesnard and Armand BoyatUnité Mixte de Recherche “Diversité et Génome des Plantes Cultivées”, INRA Domaine de Melgueil, 34130 Mauguio,France. Tel: +33 4 67290617; Fax: +33 4 67293990; Email: [email protected]

SummaryA network for the managementof genetic resources of maizepopulations in FranceFrench maize breeders have for a longtime been aware of the need to save thegenetic variability in maize populations.In the 1980s they decided to collaboratein order to study approximately 1315populations and to equip themselveswith the tools needed for the long-termconservation and dissemination of mate-rials. A cooperative network was set upof French maize breeders, including pub-lic research and private companies, toallow the tasks of regeneration, conser-vation and distribution of materials to beshared between the members of the net-work and also with other partners. Acommon agreement, the “Charter forthe management of maize genetic re-sources”, specifies the rights and obliga-tions of the partners. Altogether 25members regenerate 100 populationsper year. Seeds are desiccated to 7% mois-ture content and packed in laminatedaluminium-foil bags. Ten samples perpopulation, containing 600 kernels each,are conserved in a coldroom at +4°C fordistribution (user samples). Two othersamples are stored for regeneration andsafety purposes in a coldroom at –18°C.A 25-year conservation period is expect-ed for the user samples. Unlike in othergenebanks, in this cooperative networkgenetic resources are managed by maizeprofessionals from their regeneration totheir dispatch. Thanks to this collabora-tive network, efficient methods of re-generation and conservation, in line withthe recommendations of IPGRI and thetheoretical developments of populationgenetics, can be used.

Keywords: Ex situ conservation,genebank, landrace, regeneration,Zea mays L.

ResumenUna red para la gestión de losrecursos genéticos de laspoblaciones de maíz en FranciaLos selectionadores franceses de maíz dehan dado cuenta, hace tiempo, de lanecesidad de conservar la variabilidadgenética en poblaciones de maíz. En losaños ochenta, en el marco de un progra-ma que ha agrupado y estudió alrededorde 1350 poblaciones, se equiparon de losútiles necesarios para la conservación alargo plazo y la distribución de estos re-cursos genéticos. Una red, incluyendo lainvestigación pública y empresa priva-das de selessión, permite repartir la tar-eas para regenerar, conservar y distri-buir los materiales a los miembros de lared y también a otros socios. Un acuerdocomún, la “ Carta para la gestión de losrecursos genéticos del maíz “ especificalos derechos y obligaciones de cada so-cio. Actualmente, 25 miembros regene-ran 4 poblaciones por año cada uno. Lossemillas están deshydratadas a 7% dehumedad y después condicionadas enbolsas de aluminio. 10 muestras de 600granos por población están conservadaen una cámara friá a +4° para distribuir.Dos muestras mas están conservadas a -18° para regeneración y para seguridad.Se espera un período de conservación de25 años para las muestras de distribución.En esta red cooperativa, a diferencia deotros bancos de genes, todas las opera-ciones, desde el campo de regeneraciónhasta que envia a los usuarios, son eje-cutados por professionales del maíz. Gra-cias a esta red de cooperación, se utilizánmétodos eficaces de regeneración y deconservación, que tienenen cuenta lasrecomendaciones del IPGRI y los estu-dios teóricos de la genética de las pobla-ciones.

ARTICLE

IntroductionMaize is a major crop in France, occupying 3.3 million ha offarmland; half of which is for silage production. The variedclimatic conditions in France make it possible to crop early(grain or silage) to late (grain) hybrids. For 40 years, the annualgain in grain productivity has been 0.12 t ha-1 year-1, of which amajor part is due to an important plant-breeding activity(AGPM 1994). In fact, increases in the annual production ofmaize are due to higher yields rather than increases in acreage.

All cultivated maize varieties are now hybrids. The firstdevelopment of maize hybrids began in France at the end of the1950s, with the selection of the so-called first-cycle inbred lines.Early inbred lines, developed from European flint kernel popu-lations, in combination with early dent American inbred lines,produced early hybrids suitable for European cultivation. Thelaboratories of the Institut National de la RechercheAgronomique (INRA) played a very important initial role in

Page 38: Plant Genetic Resources newsletter

36 Plant Genetic Resources Newsletter, 2000, No. 123

developing the first hybrids (INRA 200 in 1957, INRA 258 in1958, INRA 260 in 1961). Thereafter, private and cooperativebreeding companies further developed this activity by improv-ing lines. This has resulted in continuous genetic progress and aflow of new varieties throughout northern Europe.

In the 1980s a new interest emerged in landraces. The ge-netic basis of cultivated maize has narrowed as few genitors areused in hybrid development. Thus the F2 line, developed fromthe Lacaune population in about 1955, is still used and waspresent in 85% of the early and medium-early varieties sold in1990 (Gallais et al. 1992). In 1983 public and private Frenchmaize breeders joined together to collect, maintain, characterizeand evaluate maize landraces adapted to French conditions.With the financial support of the French Ministries of ScientificResearch and Agriculture, the cooperative programme“Programme Populations Sources” (PPS) was formed under theleadership of Professor André Gallais and with the participa-tion of six INRA laboratories1 and 16 private companies belong-ing to the PRO-MAIS2 association. Approximately 1300 popu-lations of maize adapted to French conditions were included inthe PPS. A description of the programme and its main resultscan be found in Gallais et al. (1992), Groupe Maïs DGAP-INRA,PROMAIS (1994) and Gallais and Monod (1998).

Since 1993, the collection of maize population genetic re-sources has been managed through a maize network, with regen-eration being carried out through an association of public andprivate maize breeders. The network’s regulations for the manage-ment and distribution of the genetic resources of maize are de-fined in a charter under the aegis of the Bureau des RessourcesGénétiques (BRG)3, derived from the general charter for Frenchgenetic resources (http://www.brg.prd.fr/brg/ecrans/charte).

This article presents the partners in the network, describesthe technical and organizational aspects of the programme(regeneration, germination tests, medium- and long-term con-servation) and discusses the advantages and disadvantages ofsuch an organization. Guidelines for the distribution of materialare also given.

Maize populationsThe maize populations conserved are described in Table 1 ac-cording to their collection status and genetic type. All the Frenchlandraces still available and some French public synthetics arein the national collection. Although French landraces are welladapted to growing conditions they have not been grown ascrops in France for about 30 years. In the 1950s and 1960slandraces were collected mainly by the INRA stations ofClermont-Ferrand, Saint-Martin-de-Hinx and Montpellier,

mainly from the Pyrenean area, the Garonne valley, and Poitou,Bresse and Alsace, the areas where maize was traditionallygrown. All these regions, which are characterized by rainy sum-mers, are favourable for maize cultivation. Most Frenchlandraces are flint-type corn, of which 40% are white kernels.The genetic variability of all French landraces was studied byusing morphological traits (Gouesnard et al. 1997).

In addition to maize populations cultivated in France, otherpopulations have been obtained through exchanges with na-tional institutions. These are mostly early or medium-early ma-turing varieties, many of which originated in Eastern Europeand were chosen for their adaptability to French conditions

Genepools derived from populations are also included in thecollection. These have been formed by intercrossing 20 to 40populations selected on the basis of utilization. Grain, forage-yield performance, earliness and combining ability were takeninto account. A large part of the pools were then crossed withelite materials in order to improve their agronomic traits.

The networkThe network includes the PRO-MAÏS private companies andINRA stations distributed throughout France (see Fig. 1). PRO-MAIS (Association pour l’Etude et l’Amélioration du Maïs) is aprivate association, created in the 1960s, which gathers togetherall the seed companies carrying out maize breeding in Franceand working in the European market. The list of the 18 PRO-MAIS members for the year 2000 is given in Table 2.

Its structure enables French private breeders and INRA sci-entists to combine resources and knowledge to carry out re-

1 The INRA units of Mons en Chaussée, Le Moulon, Lusignan,Clermont-Ferrand, Montpellier and Saint-Martin-de-Hinx.2 Members of Pro-Maïs involved in PPS: CACBA, CARGILL(SEMENCES), CAUSSADE SEMENCES, CIBA-GEIGY,FRANCE CANADA SEMENCES, GIE EUROMAIS, ICI SEEDS,LIMAGRAIN, MAÏSADOUR, NICKERSON, NORTHRUP-KINGSEMENCES, ORSEM, PIONEER FRANCE, RAGT, RUSTICASEMENCES, SDME.3 Bureau des Ressources Génétiques, 15 rue Claude Ber-nard, 75231 Paris cedex 05. http://www.brg.prd.fr/brg

Table 1. Origin and type of managed populations

Collection Landraces Synthetics Genepools Totalstatus

National 270 60 – 330collectionNetwork 648 267 74 985collectionTotal 918 327 74 1315

Table 2. Member companies of PRO-MAIS

ADVANTA FranceASGROW Monsanto SASCARGILL Monsanto SASCAUSSADE SEMENCESCEBECO SEMENCESCORN STATES INTERNATIONALGOLDEN HARVEST - ZELDERLIMAGRAIN GENETICSMAÏSADOUR SEMENCESNICKERSON SEMENCESNORDSAAT FranceNOVARTIS SEEDSPAU SEMENCESPIONEER GENETIQUER.A.G.T. SEMENCESRUSTICA PROGRAIN GENETIQUES.D.M.E./K.W.S. FranceVERNEUIL RECHERCHES

Page 39: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 37

search to serve the common long-term interests of maize breed-ers and not just research for short-term profit. Projects areproposed by the Genetic and Plant Breeding Department ofINRA and managed by PRO-MAÏS and INRA together, under ageneral agreement for the regulation of research projects, payingcareful attention to issues such as Intellectual Property Rights.

Most of the activities are developed with only some of themembers through a research clause included in the general agree-ment. PPS, which operated between 1983 and 1993, was just sucha programme. Two long-term and compulsory activities are imple-mented by all members: experimentation of new inbred linesdeveloped by INRA (GELI, Groupe d’Etude des Lignées INRA)and regeneration of maize populations conserved in Montpellier.The latter activity is the subject of this paper.

For this project the network is constituted by PRO-MAÏSand the six INRA maize units; work is coordinated by the staffof the INRA maize unit at Montpellier. Besides the common taskof regeneration, the team deals with seed conservation anddistribution, and with documentation through catalogues and

data files. The network is experienced inmaize experimentation and knowledge-able about maize variability and thebreeding process. It has also gained ex-perience in managing a genebank.

RegenerationScientific basisThe main objective when regeneratinggermplasm is to avoid any loss of ge-netic diversity due to random geneticdrift, subsequent inbreeding or loss ofseed viability. However, this process hasto be carried out under a programmeconstrained by limited funding.

From studying population genetictheory Crossa (1989), Crossa andVencovsky (1994) and Crossa et al.(1994) evolved practical methods ofseed regeneration for maize or monoe-cious species. Theoretical developmentsare based on the concept of effectivepopulation size (Ne), i.e. that the size ofa population is the size of a theoreticalpopulation with the same inbreedingcoefficient, or the same allelic frequencyvariance, as that of the actual or hypo-thetical population under study. For alarge mating population the effectivepopulation size can be defined as thenumber of progenitors contributing tothe next generation (also called effectivegenitors). The number of effectivegenitors, sex ratio and variation in thenumber of offspring, influence effectivepopulation size (Crossa and Vencovsky1994). These considerations have to betaken into account when defining the

number of conserved seeds, the mating design and the numberof seeds sampled on ears in order to constitute a seed set forconservation.

To determine the number of seeds to be conserved for eachaccession, an analysis of genetic drift can be carried out consid-ering the probability of keeping an allele for a locus. Based on arandom mating population of infinite size and a HardyWeinberg equilibrium for independent loci, Crossa et al. (1993)found that this probability was influenced much more by thesample size of parents and the frequencies of the rarest allelesthan by the number of alleles per locus. For example, the samplesize should be greater than 400 to preserve, with 95% probabil-ity, four alleles per locus with the rarest at 1% frequency. Underthe same conditions, a sample size of 80 would be sufficient fora frequency of 5%. The loss of an allele has an incidence uponthe reduction of heterozygosity. In general, the rate of changefrom x alleles to x-1 alleles (inbreeding rate) is F= x(x-1)/4Ne(Kimura 1955). Frankel and Soul (1981) suggested that the rateshould not be higher than 1%.

Fig 1. Regeneration sites of maize landraces in France. Source: P. Ruaud

Page 40: Plant Genetic Resources newsletter

38 Plant Genetic Resources Newsletter, 2000, No. 123

A full-sib mating design using plants as females or malesbut not both, ensures the control of the number of genitors andthe equality of their sex ratio. Such a mating design maximizesthe effective population size for a given number of progenitors.In this case, Ne=2Nt (Nt being the number of offspring in genera-tion t), for a population in a Hardy Weinberg equilibrium withan equal contribution of parents and when all seeds give de-scendants (Crossa and Vencovsky 1994). In a mating designwith random pollination and a controlled number of femaleprogenitors the effective population size is lower than in full-sibmating design (Ne=4/3Nt with the same assumptions). For alimited number of progenitors the full-sib mating design isbetter than isolation field design.

Selection during regeneration has contrasting effects:favourable when the mutation accumulation is considered andunfavourable when the evolution of population size is consid-ered, expressed by the number of effective progenitors. Schoen etal. (1998) have investigated the impact of the regeneration pro-cedure on mutation accumulation. They found that mutationnumbers per genome increased significantly in sample sizes lessthan 75 or equalization of seed production by individual plants.With a number of viable seeds higher than the number ofgenitors, a selection step may occur during regeneration. Thus,the genetic load is maintained at an acceptable level.

ImplementationThe following protocol of full-sib mating design is used in orderto limit random genetic drift, preserve the increase of the in-breeding rate and limit mutation accumulation. For each popu-lation 500 to 600 kernels are sown at two planting dates, thesecond date at the emergence of the first. The two planting datesmake crosses possible between plants of different earliness andfavour panmixia. Both tassels and ears are bagged and pollina-tion is carried out manually. Each plant is used once only as afemale or a male but not both. The aim is to produce 200 ears perpopulation. The conservation sample is a 600-kernel balancedsample composed by collecting 3 kernels from each of 200 ears.When less than 200 ears are obtained, more kernels are pickedfrom each ear in order to maintain a 600-kernel sample. Theaccession is replanted the following season if less than 100 earsare obtained. Twelve samples are made up in this way and theremaining seeds are bulked.

As each company has its own methods of working, theabove compulsory protocol of cropping and managing the re-generation process was agreed on by the association in order to

prevent discrepancies. In this way, all the partners use the samemethod. The standardized sets of seeds produced according tothe agreed full-sib method are delivered to the conservationunit. Only the number of ears is allowed to fluctuate (between100 to 200). Of course, this is laborious and time-consumingwork with no immediate financial return. However, the aware-ness of members that the participation of each component of thenetwork is needed for the long-term common good ensures thatcompanies agree to this programme.

During regeneration, sowing date, emergence rate, silkingdate, height, lodging, smut, stay-green and other stresses, ifany, are recorded. All these data are then cross-referenced to acontrol hybrid present in the field and the effective number ofused ears per balanced sample is recorded.

ResultsFor the past six years, population regeneration has made itpossible to obtain 39% of populations with 100 to 150 ears,35% with 150 to 200 and 26% with 200 ears. On average, from550 sown seeds, 440 fertile plants and 163 full-sib ears arecropped. In the worst-case scenario, 385 plants and 100 full-sib ears are obtained. Since the seed sample is constituted bybulking three to six kernels per ear, it is possible that in thenext regeneration plants from the same ear are crossed. How-ever, as the probability of this happening is low: 0.003 and0.008 for 200 and 100 ears respectively, it can be assumed thatthe risk is negligible.

Below, one regeneration is considered as a step within ascheme with a constant population size so that Nt=Nt-1 (Crossaand Vencovsky 1994). We will assume that the mean allelenumber per locus is four. This number could be considered as anaverage situation between isozyme and RFLP loci (Dubreuil andCharcosset 1998).

Three scenarios are considered: the best, the average and theworst, depending on the number of ears cropped (Table 3). Ne isgiven by the equation Ne=N*2u/(2-u) (Crossa and Vencovsky1994) where u is the ratio of the number of effective genitors onthe number of progenitors or sown seeds (=550). Whatever thenumber of independent loci, any regeneration saves alleles at 5%frequency with 95% probability. However, only in the best-casescenario is a probability level of 1% frequency obtained. In anysituation a number of potential genitor plants will be rejected:48% in the worst-case scenario, 26% on average and 12% in thebest case. Thus, selection against deleterious mutations alwaysoccurs.

Table 3. Regeneration: probability of retaining four alleles per locus, according to sample size, for 550 germi-nated seeds and five loci

Situation Number Sample U† Effective Inbreeding Frequencyof ears size population rate of alleles

size

Ne F 1% 3% 5%Lower borderline 100 200 0.36 241 1.2% <90% 95% (a)‡ 95%Medium case 163 326 0.60 471 0.6% 90% (b) § 95% 95%Optimum case 200 400 0.73 632 0.5% 95% (b) § 95% 95%

† ratio of effective genitors: sown progenitors ‡ (a) loci number <5 § (b): for 1 locus

Page 41: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 39

Seed processingWhen a sample is added to the long-term genebank collection,the quality of seeds, including both their genetic and physicalcharacteristics, must be checked. To do this, the following op-erations are carried out: sampling, check of purity, check ofgermination rate, drying, packing and labelling.

After harvesting, seed is dried to 12-15% moisture contentby a conventional dryer at 40°C. The balanced samples are thenmade up and sent to the conservation unit. Here samples arevisually compared with previous samples in order to identifyany pollution or error. Scored data are investigated.

Germination testsThe germination tests are carried out on two occasions: (1) at thereceipt of a population after regeneration on two replicates of100 remnant bulked seeds and (2) on each population every 10years by sequential tests on 50 seeds from a user sample. Themethods and norms used for commercial seeds (ISTA rules)seem to be poorly adapted to populations because in general,genetic resources have low germination energy and a high rateof fungal infection. We now use the method described below.

On an enclosed plastic tray (60 cm x 40 cm x 7 cm) grains aredistributed between two blotting paper layers. This size traymakes it possible to lay out 400 grains with enough spacebetween them. Distilled water is then added and the trays areput in a room under the following conditions: 12 hours at 25°Cwith light and 12 hours at 18°C in the dark. Relative humidity isalways kept higher than 85%.

The germination rate is established with the proportion ofnormal and delayed seedlings after seven days. A poor relation-ship was observed between the germination rate in the labora-tory and the emergence rate in the field. For this reason, traitssuch as delayed seedlings and fungal infection are also takeninto account. When the germination rate is lower than 90%, orthe percentage of fungal-infected seeds is greater than 35%, theregeneration process is carried out again the following year.Annually, approximately 5% of the populations have to beregenerated again due to germination deficiency.

Seed dryingStudies have highlighted the predominant influence of moisturecontent on seed ageing (IPGRI 1985; Roberts 1989). Therefore, asignificant effort was made to lower the moisture content ofseeds and to keep them in waterproof cans.

In the drying room a dehumidifier is used which uses theabsorption properties of lithium chloride. Grain is packed intonet bags and during the first stage (one month) the drier ismaintained at +15°C and 15% RH. For the next month condi-tions are maintained at +20°C and 10% R.H; the grain moisturecontent is then near 7%. The drying time for drying maize grainis long compared with other seeds because of the high seedweight.

Seed packingAfter drying, each unit of 600 kernels is packed in a laminatedfoil bag and immediately sealed and stored in the coldroom. Thebag consists of four layers: an outer layer of 50 g/m2 paper, a

layer of 12 g/m2 polyethylene, followed by a layer of 15 µmaluminium foil and an inner layer of 36 g/m2 polyethylene. Thepolyethylene provides the sealing properties and the aluminiumprovides a barrier to moisture. In this way the seeds are main-tained at 7% moisture content.

Conservation and stock managementTen bags constitute the medium-term user samples destined tobe distributed and preserved in the coldroom at +4°C. Theirconservation time is assumed to be around 25 years. Two bagsare kept for long-term conservation. The first is stored in adomestic refrigerator at -20°C at Mauguio, the second in a hiredcommercial coldroom at -18°C. This should ensure conservationfor approximately 50 years.

Distribution of germplasmRequests for material by users should be made in writing givingthe proposed use. All materials conserved are free and availableto members of the network. For others, the national collection isonly available on the basis of reciprocal exchange. The solecondition laid down is that users of the material are required toreport the data they gather on the germplasm received. Thisallows us to improve our knowledge of the material and itsadaptability to different environments.

Information managementThe information is managed with an application built on anACCESS package. This allows for the identification of popula-tions, and the management of passport data and some primarydata. It is also used for stock management, the management ofannual regeneration and the distribution of material. Therefore,it is possible to trace back the dates, destination, nature andamount of germplasm distributed in previous years. Paperrecords are also kept. An Index Seminum, implemented by theUnité de Recherche de Génétique et Amélioration des Plantes,describes the germplasm in the national collection and is widelydistributed.

Discussion and conclusionA main feature of this network is that maize professionals,within the framework of the plant-breeding network, are re-sponsible for implementing the management of the geneticresources and not genebank specialists (Lefort et al. 1997). There-fore, nobody works full time on this activity. The disadvantageis that in the past, some problems occurred due to the lack ofspecific equipment or to poor knowledge of conservation prac-tices. The advantage is that network members are knowledge-able about maize and the use of genetic resources by breeders.

One interesting aspect of this network is the implication forFrench maize breeders, all of whom are committed to the task ofregeneration through the “Charte pour la gestion des ressourcesgénétiques du maïs”. Thanks to the number of regeneratorsinvolved, an efficient, but highly time-consuming and expen-sive method can be used. This would not be possible if only onepublic unit was involved in the project. In addition, all breedershave the opportunity to handle genetic resource materials andare aware that they are participating in a collective investment.

Page 42: Plant Genetic Resources newsletter

40 Plant Genetic Resources Newsletter, 2000, No. 123

Thus they are encouraged to use genetic resources in theirrespective breeding programmes. From the regeneration point ofview, the distribution of regeneration locations in varied lati-tudes and climates (from 43°60’N to 50°N) permits the regenera-tion of the maize population collection with a high degree ofearliness, from 700 to 1100 Growing Degree Units to femaleflowering.

The regeneration and conservation costs have been evalu-ated for French genetic resources (Burstin et al. 1997). For maizealone, the regeneration step, at around 600 Euros per regenera-tion or 24 Euros per population per year, is clearly more expen-sive than the conservation step at 8 Euros per population peryear. Therefore, our strategy will be to space out the regenerationas much as possible, to keep seed on a long-term basis and tomanage the collection in such a way as to provide enough seedsto respond to requests.

To manage the collection of French maize landraces a corecollection of 80 populations has been constituted. Based onmorphological and passport data, sampling is done by follow-ing the MSTRAT method (Gouesnard et al. unpublished). Anumber of classes of variables is used as a diversity index tomaximize the allelic richness. Sampling commenced with asmall number of early maize populations used in the develop-ment of first-cycle inbred lines. The aim is to favour germplasmutilization and to lower conservation costs. In future we couldpreserve all the germplasm deep-frozen for the long term,while making the core collection easily available to breeders forboth quality selection and quantity of seeds. Our knowledge ofthe genetic variability of the core collection has also beenenhanced by studies on neutral polymorphism (RFLP andmicro-satellites).

ReferencesAGPM. 1994. Association Générale des Producteurs de Maïs. Le

maïs. Septembre 1994.Burstin, J., M. Lefort, M. Mitteau, A. Sontot and J. Guiard. 1997.

Towards the assessment of the cost of genebank manage-ment: conservation, regeneration and characterization. PlantVar. Seeds 10:163-172.

Crossa, J., C.M. Hernandez, P. Bretting, S.A. Eberhart, and S.Taba. 1993. Statistical genetic considerations for maintaininggermplasm collections. Theor. Appl. Genet. 86:673-678.

Crossa, J. and R. Vencovsky. 1994. Implications of the varianceeffective population size on the genetic conservation of mono-ecious species. Theor. Appl. Genet. 89:936-42.

Crossa, J. 1989. Methodologies for estimating the sample sizerequired for genetic conservation of outbreeding crops. Theor.Appl. Genet. 77:153-161.

Dubreuil, P. and A. Charcosset. 1998. Genetic diversity withinand among maize populations: a comparison betweenisozyme and nuclear RFLP loci. Theor. Appl. Genet. 96: 577-587.

Frankel, O.H. and M.E. Soule. 1981. Conservation and evolution.Cambridge University Press, Cambridge, UK.

Gallais, A., H. Duval, P. Garnier and A. Charcosset. 1992. Unexemple de gestion des ressources génétiques en vue de lasélection. Pp. 468-477 in Complexes d’espèces, flux de gèneset ressources génétiques des plantes. Colloque international,Paris, 8-10 janvier 1992. BRG, Paris, France.

Gallais, A. and J.P. Monod. 1998. La gestion des ressourcesgénétiques maïs en France: de leur caractérisation jusqu’auxpremiers stades de leur valorisation. C.R. Acad. Agric. Fr.,1998, n°3, pp. 173-181. Séance du 6 mai 1998.

Gouesnard, B., J. Dallard, A. Panouille and A. Boyat. 1997.

Classification of French maize populations based on mor-phological traits. Agronomie 17:491-498.

Groupe Mais DGAP-INRA, PROMAIS. 1994. Cooperative pro-gram for management and utilization of maize genetic re-sources. Meeting of EUCARPIA, 15-18 March 1994,Clermont-Ferrand, France.

IPGRI. 1985. Handbook of seed technology for genebanks. IPGRI,Rome, Italy.

Kimura, M. 1955. Random genetic drift in a multi-allelic locus.Evolution 9:419-435.

Lefort, M., M. Chauvet, Y. Dattee, J. Guiard, M. Mitteau and A.Sontot. 1997. The French strategy for the management ofplant genetic resources. Plant Var. Seeds 10:153-162.

Roberts, E.H. 1989. Seed storage for genetic conservation. PlantToday 2:12-17.

Schoen D.J., J.L. David and T.M. Bataillon. 1998. Deleteriousmutation accumulation and the regeneration of genetic re-sources. Proc. Nat. Acad. Sci. USA 95:394-9.

Page 43: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 41Plant Genetic Resources Newsletter, 2000, No. 123: 41 - 45

RésuméCaractérization cyanogénétiqued’une collection de trèfle blanc(Trifolium repens L.) àPergamino, ArgentineLa concentration d’acide cyanhydriqueest une caractéristique du trèfle blanc quimontre des variations entre populationset aussi a l’intérieur des populations. Ladistribution de cet acide est affectée parplusieurs facteurs de sélection étant latempérature le plus important. Avec lebut de se servir de ce caractère pou décr-ire une collection de cette espèce on aétablie la fréquence de plantes qui mon-trent ce condition sur 53 populations detrèfle blanc (Trifolium repens L.) collectédans Argentine, et 21 populations exo-tiques. Le pourcentage de plantes cyan-ogénétiques pour l’ensemble des popu-lations collectés était haut. Seulement 2populations montraient une proportionplus faible de phénotypes cyanogéné-tiques (40%). L’unique corrélation posi-tive trouvée a été avec précocité. La clas-sification selon l’intensité de la réaction amontré des formes cyanogénétiques peuimportantes et modérées dans la plupartdes populations. D’un autre côté, la plu-part des populations exotiques a mon-trée une haute fréquence de formes acy-anogénétiques, exception faite des aus-traliennes.

Caracterización por cianogénesis de una colecciónde trébol blanco (Trifolium repens L.) en Pergamino,ArgentinaE.M. Pagano y B.S. Rosso*Estación Experimental Agropecuaria del INTA, C.C. 31, 2700-Pergamino, República Argentina.Email: [email protected]

SummaryCyanogenic characterizationof a white clover (Trifoliumrepens L.) collection inPergamino, ArgentinaCyanide production (CP) in white cloveraccessions varies among populations andamong plants within populations. Sev-eral factors affect CP distribution andtemperature is the most important. Inorder to use this character to describe agermplasm collection of this species, thefrequency of cyanogenic plants wasevaluated in 53 naturalized populationscollected in Argentina and in 21 intro-duced populations. The percentage ofcyanogenic plants was high in the natu-ralized populations. Only two popula-tions showed a lower proportion (40%)of cyanogenic phenotypes. Earliness wasthe only variable showing significant cor-relation with cyanogenesis. Reaction in-tensity indicated that most naturalizedpopulations had low and moderatescores compared to introduced popula-tions, except those from Australia, whichhad a high frequency of acyanogenicpopulations.

Key words: Characterization, collec-tion, cyanogenesis, populations, Trifo-lium repens, white clover

ResumenCaracterización porcianogénesis de una colecciónde trébol blanco (Trifoliumrepens L.) en Pergamino,ArgentinaLa concentración de ácido cianhídrico esuna característica del trébol blanco quevaría entre poblaciones y entre las plan-tas dentro de una población, y cuya dis-tribución resulta afectada por distintasfuerzas de selección, siendo la temper-atura la de mayor importancia. Con el finde utilizar este carácter en la descripciónde una colección de esta especie, se cal-culó la frecuencia de plantas que presen-tan esta condición en 53 poblaciones detrébol blanco (Trifolium repens L.) natu-ralizadas, recolectadas en Argentina, yen 21 poblaciones introducidas. El por-centaje de plantas cianogénicas en laspoblaciones colectadas tendió a ser alto.Sólo dos poblaciones presentaron unamenor proporción de fenotipos cian-ogénicos (40%). La única correlación sig-nificativa encontrada fue con el carácterprecocidad. La intensidad de la reacciónindicó que la mayoría de las poblacionescolectadas presenta formas cianogénicasleves y moderadas, a diferencia de lasintroducciones. En éstas se exceptúan lasde Australia, en las que se observó unaalta frecuencia de formas acianogénicas.

ARTICLE

IntroducciónComo ocurre en otras 2000 especies vegetales, en las poblacionesde trébol blanco (Trifolium repens L.) hay una proporción variablede individuos capaces de liberar ácido cianhídrico (HCN). Elfollaje de muchas plantas de trébol blanco libera HCN cuandosus hojas sufren daños y este proceso se denomina cianogénesis.El HCN resulta nocivo para la planta; por ello no está presentecomo tal, sino que se produce por la acción de una enzimahidrolítica (la beta-glucosidasa) que hidroliza un glucósidocianogénico y el final de esta reacción es la liberación de HCN.Estos sustratos cianogénicos (lotoaustralina y linamarina) estánalmacenados en la vacuola mientras que la(s) enzima(s)correspondiente(s) se ubican a menudo en la pared celular. Poresta razón, el HCN se produce únicamente cuando se destruyenlas células, condición en que el material vegetal empieza acontener un compuesto tóxico. Si bien el rumiante dispone demecanismos que permiten transformar el HCN, cuando lacantidad de ácido absorbida es muy alta, el mecanismo dedesintoxicación se satura y el riesgo de enfermedad por

intoxicación es mucho mayor (Lehmann et al. 1991).La herencia de la cianogénesis en el trébol blanco es diploide

(Corkill 1942) dando lugar a dos fenotipos: uno cianogénico,que depende genéticamente de la presencia de dos genescomplementarios en estado de dominancia (fenotipo Ac-Li-), yotro acianogénico, que se da en tres categorías: a) ausencia decianoglucósidos, b) ausencia de linamarasa, y c) ausencia deambos (fenotipos ac-Li, Ac-li y ac-li).

El nivel de actividad cianogénica varía entre plantasdiferentes y hay evidencia de que la variación cuantitativa en elcontenido del glucósido depende, en parte, de la condiciónheterocigota u homocigota de estos genes; por tanto, la condiciónAc/ac y la Li/li tendría distinto efecto que Ac/Ac y Li/- y daríalugar a distintas cantidades de HCN liberado (Hughes 1991).Por otra parte, se ha encontrado que esa variación cuantitativase debe parcialmente a la existencia de diferentes alelos Ac y Li,los cuales determinan distintos niveles de actividad enzimáticay de contenido de glucósido (Hughes et al. 1984).

Page 44: Plant Genetic Resources newsletter

42 Plant Genetic Resources Newsletter, 2000, No. 123

El polimorfismo cianogénico del trébol blanco interesa a losmejoradores porque, según las primeras investigaciones, elrendimiento de forraje y la persistencia de la planta estánasociados a niveles moderados de cianogénesis (Caradus y Wil-liams 1989).

El polimorfismo es, sin duda, de origen genético; ahorabien, aunque se investigó el mantenimiento de la variabilidadde la cianogénesis y el papel de las fuerzas selectivas queoperan para que esto ocurra, el sistema no ha podido serentendido, en realidad. Si bien las relaciones entre latitud,altitud y distribución de los genes ¾encontradas por Daday(1954a; 1954b) y confirmadas por otros autores como Caraduset al. (1990)¾ están bien establecidas, es decir, el porcentaje decianogénesis disminuye con el incremento de la altura y lalatitud, quedan sin resolver las relaciones entre otros factoresambientales y biológicos que determinan el patrón de esadistribución. Así pues, la cianogénesis se considerageneralmente como una protección contra los herbívorosdepredadores y contra los insectos perjudiciales. Si esta fuesela única presión de selección, todas las poblaciones de trébolblanco deberían ser cianogénicas. Ahora bien, muchas de esaspoblaciones no liberan HCN o son una mezcla de genotipos.Algunos estudios demuestran que las formas acianogénicaspueden ser favorecidas bajo ciertas condiciones edáficas(Foulds y Grime 1972). Entre los estudios hechos paradeterminar ventajas comparativas, Noitsakis y Jacquard(1992), sugirieron que los fenotipos acianogénicos tienenmayor acumulación de biomasa y producen más flores porplanta, lo que puede ser el resultado de una utilización máseficiente de la energía; esas plantas tendrían, por tanto, mejorcomportamiento bajo la condición de pasturas polifíticas.

En relación con la variación en contenido, Daday (1955)halló una correlación positiva entre las poblaciones que teníanmayor proporción de plantas cianogénicas, de un lado, y unareacción de picrato más intensa, del otro. Caradus et al. (1989)encontraron que el alto potencial de liberación de HCN estabaclaramente asociado con cultivares en que es más frecuente elfenotipo cianogénico.

Las poblaciones de trébol blanco son polimórficas en supropiedad cianogénica; esta característica es, por tanto, útilcomo marcador genético y ha sido considerada así en muchostrabajos. Hawkins (1959), por ejemplo, la utilizó para laclasificación e identificación de variedades de trébol blanco.La lista mundial de variedades de trébol también incluye estecarácter en la descripción de éstas (Caradus 1986; Caradus yWoodfield 1997). Es, además, uno de los descriptoressugeridos por el IBPGR (1992) para el trébol blanco (Trifoliumrepens L.).

Este estudio tenía los siguientes objetivos: (1) caracterizarpoblaciones introducidas y naturalizadas de trébol blanco delbanco de germoplasma de la EEA INTA Pergamino; (2)determinar, en las poblaciones colectadas en Argentina, lasposibles asociaciones del polimorfismo cianogénico concaracteres morfofisiológicos y con aspectos ecológicos, según elsitio de recolección del material, y (3) considerar la utilización deesa característica en la identificación o en la clasificación de lasaccesiones argentinas de trébol blanco.

Materiales y métodosLas 21 accesiones introducidas eran originarias de Costa Rica(PI 193164), Italia (Simone, PI 195532, 217444, 233813, 291837,291838), Irán (PI 260984, 326144, 381049), Australia (Waverly,Haifa, PI 201214, 237926, 241460), Israel (PI 200372), Chile (PI291826, 291827), Japón (Makibashiro) y Estados Unidos(MSRedF, MSLM). Como testigo se utilizó la población mejoradaEl Lucero MAG (Argentina).

Los 53 materiales naturalizados eran originarios de lasprovincias de Buenos Aires (1,2 3, 21, 22, 23, 24, 34, 36, 37, 38,39), Santa Fe (4, 5, 6, 7, 8, 9, 10, 11, 19, 20, 25, 26, 27, 28, 29, 30,31, 32, 33, 40, 41, 42, 43, 49, 50, 51), Entre Ríos (12, 13, 14, 15, 16,17, 18), Córdoba (52, 53), La Pampa (35), Chaco (46, 47, 48) yFormosa (44, 45), que comprenden una franja situada entre los26º y los 38º de latitud S y de los 58º a los 63º de longitud O.

Cada planta se analizó aplicando la prueba del papel depicrato (Pusey 1966) a la tercera hoja expandida contada desdeel ápice en crecimiento activo. Se colocó igual cantidad de hojas(un peso equivalente) en varios tubos de ensayo, se agregaron 2gotas de agua y se maceraron las hojas. Se añadieron luego 2gotas de tolueno y se colocó un tapón de goma en cada tubo; deltapón pendía una tira de papel embebido en picrato de sodio. Seincubaron los tubos en la estufa a 40 °C durante 2 horas y sesometieron a observación. Cuando el resultado era positivo,había un cambio en el color del papel: del amarillo viraba a untono que va del naranja suave al marrón. Las plantas que danreacción positiva son las Ac /Li y la intensidad de la reacción seasocia con la cantidad de HCN liberado; se clasificaron, portanto, las plantas en tres grupos: de reacción leve (color naranja),moderada (color rojizo) y alta (color marrón). Se evaluaron 20plantas de cada material y se establecieron las proporciones decada tipo de reacción.

Para el análisis estadístico se utilizó el paquete SAS (SAS1985). Se hizo un análisis de correlación del carácter estudiadocon las siguientes variables: grosor de los estolones, hábito decrecimiento, largo y ancho del folíolo, largo del pecíolo y días afloración. Asimismo, mediante el análisis de componentesprincipales se determinó la influencia de este carácter en loscomponentes principales.

Resultados y discusiónLa Figura 1 presenta la caracterización de la cianogénesis en lacolección de accesiones introducidas. Los resultados de laevaluación de las poblaciones introducidas mostraron que, en lamayor parte de éstas, son poco frecuentes las plantas que tienenlos dos genes complementarios en estado dominante (fenotiposcianogénicos). La tendencia que muestra el germoplasmaanalizado puede relacionarse con su lugar de origen ya que lasintroducciones provienen de regiones frías o de alta montaña.Los resultados indican que las poblaciones de Costa Rica, Chile,Estados Unidos, Italia, Irán y Japón presentan un rango defenotipos cianogénicos que va de 0% a 40%.

Las introducciones de Australia e Israel, por su parte,presentaron mayor frecuencia de fenotipos cianogénicossimilares al germoplasma de Argentina; el porcentaje deliberación de HCN de las plantas de cada accesión estaba entre75% y 100%.

Page 45: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 43

No se detectó ninguna asociación significativa del carácterde cianogénesis con las variables morfológicas y fenólogicasestudiadas. Sin embargo, según Daday (1965) y Caradus et al.(1989), los fenotipos cianogénicos florecen más temprano y losacianogénicos producen mayor número de inflorescencias. Enestudios previos realizados en la EEA INTA Pergamino, el culti-var Espanso, que es acianogénico, se comportó como de floracióntardía pero muy escasa (Pagano et al. 1998). La floración es uncarácter altamente dependiente del fotoperíodo y también de lavernalización; además, nuestras condiciones pueden diferir delas que predominan en las regiones de origen de las poblacionesintroducidas. Estos dos hechos podrían considerarse comocausa probable de la ausencia de asociación de los caracteresestudiados en dichas poblaciones.

En el análisis de componentes principales, la cianogénesisfue el carácter de mayor importancia para definir el segundocomponente principal; es, por tanto, de importancia en laclasificación del germoplasma caracterizado.

Dado que la concentración del HCN liberado varía entrepoblaciones y entre plantas dentro de una población, losfenotipos cianogénicos se clasificaron según su capacidad deliberación de HCN (Fig. 2); se encontró así una población detrébol blanco proveniente de Israel que tenía alto contenido decianógenos, en especial el cultivar Waverley cuya producción deHCN es muy alta.

En la colección de poblaciones naturalizadas de diferentesprovincias argentinas se encontró una alta frecuencia defenotipos cianogénicos (Fig. 3); algo similar se observó en eltestigo, Lucero MAG, que es el cultivar más difundo en el país.La excepción fueron dos accesiones en las que la frecuencia deplantas que liberan HCN fue de 40%. Estas plantascorrespondieron a una población colectada en la localidad demayor altura (140 msnm) y a otra población colectada en unalatitud mayor (37ºS). Esto coincide con lo expresado por muchosautores, ya que la frecuencia de los genotipos cianogénicos

Fig.1. Caracterización de la cianogénesis en las poblacionesintroducidas de trébol blanco.

Fig. 3. Caracterización de la cianogenésis en las poblacionesnaturalizadas de trébol blanco.

Fig. 2. Clasificación del contenido cianogénico de laspoblaciones introducidas de trébol blanco.

disminuye con la altitud y con la latitud (Daday 1954a, 1954b;Ganders 1990; Caradus et al 1990). También en poblaciones deCanadá (alta latitud), Fraser (1989) encontró que sólo unaminoría eran cianogénicos, variando el porcentaje del genotipoAc/Li del 1.7% al 35%.

Según Foulds y Grime (1972), la exposición a una severasequía causa la muerte de los fenotipos con el gen Ac. En estacolecta se tomaron poblaciones provenientes de sitios queestaban sometidos a una prolongada sequía pero no se observóque la frecuencia de plantas acianogénicas en dichas poblacionesfuera alta.

En cuanto a la correlación de la cianogénesis con loscaracteres morfológicos y fenológicos en las poblacionescolectadas en Argentina, se encontró una asociación

Page 46: Plant Genetic Resources newsletter

44 Plant Genetic Resources Newsletter, 2000, No. 123

significativa entre la cianogénesis y el número de días hasta el50% de floración (r = 0.36). Esta asociación no se ajustaría a loque concluyen Caradus et al. (1989) quienes observaron, en unaclasificación de 109 cultivares, que la tendencia de los cultivaresaltamente cianogénicos era la floración temprana pero con bajonúmero de inflorescencias.

En los primeros trabajos hechos en Nueva Zelandia seencontró que las poblaciones cianogénicas eran de folíolosgrandes, más productivas y más persistentes (Foy y Hyde 1937);ésta es también la tendencia de los nuevos cultivaresneozelandeses, a excepción del cv. G. Kopu (Caradus et al. 1995).En Estados Unidos, en cambio, tanto los cultivares utilizados,que se clasificaron entre los de folíolo grande, como elgermoplasma colectado han mostrado ser predominantementeacianogénicos (Crush y Caradus 1995; Pederson et al. 1996). Encambio, en este trabajo, si bien se observó una alta frecuencia depoblaciones de folíolos grandes, no se halló ninguna asociaciónde la cianogénesis con el tamaño de la hoja (en las introducidas,r = 0.20, ns; en las colectadas, r = 0.15, ns respecto al ancho delfolíolo).

Los resultados de clasificar sobre la base de la intensidad dela reacción de las plantas cianogénicas, en las poblacionesargentinas, tienden a presentar una liberación de HCN de baja amoderada. Esta característica ubica esas plantas como ungermoplasma de interés, ya que una alta producción de HCNpuede llegar a ser tóxica para los rumiantes; en algunos países serecomienda no emplear cultivares con ese carácter. Además, sedebe señalar que, de acuerdo con la bibliografía consultada, unafrecuencia alta de plantas que contienen los genes Ac-/Li-(fenotipo cianogénico) y el modo de reacción intenso de ellasestán fuertemente correlacionados (Caradus et al. 1989).

Es necesario considerar que la presión de selección a que hansido sometidas las poblaciones naturalizadas debería serdiferente en los diversos sitios de colecta, en los que haydiferentes condiciones no sólo de clima y suelo sino también delentorno en que se halla cada población; éstas provienen, enefecto, de banquinas, parques y potreros naturales sometidos adistintas intensidades de pastoreo y allí han estado condiferentes especies acompañantes. Según los resultadosobtenidos, esas situaciones no han tenido influencia en lageneración de poblaciones que contrasten en el polimorfismo dela cianogenésis de esta colecta. Así pues, el predominio de losfenotipos cianogénicos puede deberse, en gran parte, al papeldesempeñado por el macroambiente el cual, para el áreaexplorada, va de templado a templado cálido, principalmente.

ConclusionesLas poblaciones introducidas se caracterizaron por lavariabilidad en sus propiedades cianogénicas. Se estableció, enefecto, que en ellas hay una alta frecuencia de formasacianogénicas que poenen en evidencia las características de sulugar de origen.

Las poblaciones naturalizadas colectadas en la Argentinafueron todas cianogénicas con valores que variaron del 40% al100%. Los valores más bajos correspondieron a sitios de latitudy altitud mayores. Las formas más frecuentes de reacción fueronla liberación de HCN leve o moderada.

No pudo detectarse una asociación de la cianogénesis conlos sitios de recolección que eran afectados por largas sequías.Las poblaciones naturalizadas parecen responder a lascondiciones ambientales del área de colecta.

No se halló tampoco asociación de la cianogénesis concaracteres morfológicos relacionados con aspectos agronómicos;sólo se determinó una correlación positiva con el número de díasa floración en los ecotipos colectados. Según el análisis decomponentes principales, la cianogénesis fue un carácter deimportancia para la clasificación del germoplasmacaracterizado.

AgradecimientosLas autoras agradecen al Ing. Agr. Oscar Bertín por la críticarevisión de este manuscrito y al Consejo Regional Buenos AiresNorte por el apoyo financiero para la realización de la colecta deaccesiones.

ReferenciasCaradus, J.R., R. Hay R. and D. Woodfield. 1995. The positioning

of white clover cultivars in New Zealand. Agronomy Societyof New Zealand Special Publications, No. 11. Grassland Re-search and Practice Series 6:45-47.

Caradus, J.R. and D.R. Woodfield. 1997. World checklist of whiteclover varieties. NZ J. Agric. Res. 40:115-206.

Caradus, J.R. 1986. World checklist of white clover varieties. NZJ. Exp. Agric. 14:119-164.

Caradus, J.R., M.B. Forde, S. Wewala and A.C. MacKay. 1990.Description and classification of a white clover (Trifoliumrepens L.) germplasm collection from southwest Europe. NZJ. Agric. Res. 33:367-375.

Caradus, J.R., A.C. MacKay, D.R. Woodfield, J. van den Boschand S. Wewala. 1989. Classification of a world collection ofwhite clover cultivars. Euphytica 42:183-196.

Caradus, J.R. and W. Williams. 1989. Breeding for legume persis-tence in New Zealand. Pp. 529-530 in Proceedings of a Trilat-eral Workshop, Hawai. American Society of Agronomy,Madison, Wisconsin.

Corkill, L. 1942. Cyanogenesis in white clover (Trifolium repensL.): The inheritance of cyanogenesis. NZ J. Sci. Technol.8(23):178-193.

Crush, J. and J. Caradus. 1995. Cyanogenesis potential andiodine concentration in white clover (Trifolium repens L.) culti-vars. NZ J. Agric. Res. 38:309-316.

Daday, H. 1954a. Gene frequencies in wild populations of Trifo-lium repens L.; I: Distribution by latitude. Heredity 8:61-78.

Daday, H. 1954b. Gene frequencies in wild populations of Trifo-lium repens L.; II: Distribution by altitude. Heredity 8: 377-384.

Daday, H. 1955. Cyanogenesis in strains of white clover. J. Brit.Grassl. Soc. 10:266-274.

Daday, H. 1965. Gene frequencies in wild populations of Trifo-lium repens L.; IV: Mechanism of natural selection. Heredity20:355-365.

Foulds, W. and J. Grime. 1972. The response of cyanogenic andacyanogenic phenotypes of Trifolium repens to soil moisturesupply. Heredity 28:181-187.

Foy, N. and E. Hyde. 1937. Investigation of the reliable of the“Picrit acid test” for distinguishing strains of white clover inNew Zealand. NZ J. Agric. 55:219-224.

Fraser, J. 1989. Characteristics of naturalized populations ofwhite clover (Trifolium repens L.) in Atlantic Canada. Can. J.Bot. 67:2297-2301.

Ganders, F.R. 1990. Altitudinal clines for cyanogenesis in intro-duced populations of white clover near Vancouver, Canada.Heredity 64:387-390.

Hawkins, R.P. 1959. Botanical characters for the classificationand identification of varieties of white clover. J. Nat. Inst.Agric. Bot. 8:675-682.

Page 47: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 45

Hughes, M.A. 1991. The cyanogenic polymorphism in Trifoliumrepens L. (white clover). Heredity 66:105-115.

Hughes, M.A., J. Stirling and D. Collinge. 1984. The inheritance ofcyanoglucoside content in Trifolium repens L. Biochem. Genet-ics 22:139-151.

IBPGR (International Board for Plant Genetic Resources). 1992.Descriptors for white clover (Trifolium repens L.). IBPGR,Rome.

Lehmann, J., E. Meister, A. Gutzwiller, F. Jans, J. Charles and J.Blum. 1991. Peut-on utiliser des varietés de trefle blanc (Tri-folium repens L.) a forte teneur en acide cyanhydrique? RevueSuisse Agricole 23(2):107-112.

Noitsakis, B. and P. Jacquard. 1992. Competition between cyano-genic and acyanogenic morphs of Trifolium repens. Theor.Appl. Genet. 83:443-450.

Pagano, E.M., J.O. Scheneiter and P. Rimieri. Persistenciavegetativa de trébol blanco (Trifolium repens L.) en el norte dela Provincia de Buenos Aires. Rev. Tecnología Agropecuaria3(7):15-18.

Pederson, G., T. Fairbrother and S. Greene. 1996. Cyanogenesisand climatic relationships in U.S. white clover germplasmcollection and core subset. Crop Sci. 36:427-433.

Pusey, J.G. 1966. Cyanogenesis in Trifolium repens L. Pp. 99-104 inTeaching Genetics (C.D. Darlington and A.D. Bradshaw,eds.). R.U., Edinburgh y Londres.

SAS Institute. 1989. SAS/STAT User’s Guide. Release 6. 3a ed.Cary, North Carolina, E.U.

Page 48: Plant Genetic Resources newsletter

46 Plant Genetic Resources Newsletter, 2000, No. 123 Plant Genetic Resources Newsletter, 2000, No. 123: 46 - 51

RésuméConservation et valorisationdes ressources génétiquesfourragères et pastorales duNord TunisienLa Tunisie, à l’instar des pays du bassinméditerranéen, possède une grande rich-esse d’espèces spontanées fourragères etpastorales. Cependant, ces espèces na-turelles sont restées, jusqu’à présent, peuétudiées et sous-exploitées. Seulesquelques espèces fourragères spon-tanées et/ou cultivars traditionnels, ontété évalués et ont fait l’objet de collec-tions souvent actives. Mais, la plupart desespèces n’ont pas encore franchi l’étapede l’observation générale, bien qu’ellesaient déjà enrichi de nombreusesbanques de gènes internationales et servià développer de nombreux cultivars. Denombreuses missions de prospection ontpermis la collecte de près de 2800 acces-sions appartenant à plus de 100 espèces.Cet effort d’exploration et de collecte desplantes autochtones fourragères et pas-torales, déployé par l’ensemble des insti-tutions d’enseignement et de rechercheen agriculture, est la première étape de lamise en valeur des ressources génétiqueslocales. La conservation et l’utilisation deces ressources phytogénétiques localesconstituent aujourd’hui l’un des pro-grammes prioritaires adoptés par lescommissions de programmation de larecherche agronomique dans le cadre desactions de sauvegarde et de valorisationdu patrimoine génétique fourrager etpastoral. Il repose sur l’évaluation, lasélection et le développement de culti-vars tunisiens en vue de leur introduc-tion sur le marché et de leur utilisationpar les agriculteurs.

Conservation et valorisation des ressourcesgénétiques fourragères et pastorales du Nord TunisienM. Chakroun1* et M. Zouaghi21 Institut National de la Recherche Agronomique de Tunisie, Rue Hadi Karray, 2049, Ariana, Tunisie.Fax : 216-1-752-897. Email: [email protected] Institut National Agronomique de Tunis, 43 Avenue Charles Nicole, 1002, Tunis, Tunisie.

SummaryTunisia, like any other Mediterraneancountry has been recognized as richsource of genetic diversity for forage andpasture species. However, these naturalspecies are no fully studied and used.Few forage and pasture species areevaluated and conserved. Others are in-adequately studied while they were con-served in many international genebanksand from which a range of improvedcultivars have been developed. Numer-ous exploration missions were carriedout and led to the collecting of around2800 accessions representing more than100 species. This exploration effort, de-ployed by researchers at the NationalResearch and Education Institutes, is onlythe first step in the development of localgenetic resources. Today, the conserva-tion and use of these local genetic re-sources constitute one of the priorityprogrammes adopted by National Re-search Planning Committees represent-ing the preservation and valorization ofthe forage and pasture resources. Thisprogramme aimed to evaluate and in-corporate the conserved material intoforage and pasture improvementprogrammes and thus to develop newcultivars that will be used by farmers.

Key words: Collecting, conservation,evaluation, forage, genetic diversity,genetic resources, improvementprogramme, pasture, Tunisia

ResumenTúnez, como cualquier otro país medi-terráneo, dispone de una rica diversidadgenética en especies forrajeras y herbá-ceas, pero estas especies naturales no sehan estudiado ni se utilizan cabalmente.Pocas de ellas son evaluadas y conserva-das. Otras se estudian insuficientemente,aunque se conservan en muchos bancosde germoplasma internacionales y apartir de ellas se han desarrollado diver-sos cultivares mejorados. Se han realiza-do numerosas misiones de exploraciónque han permitido recoger unas 2800accesiones correspondientes a más de100 especies. Esta actividad de explo-ración, a cargo de investigadores de losInstitutos Nacionales de Investigación yEducación, es sólo el primer paso paradesarrollar los recursos genéticos locales,cuya conservación y uso constituyen unode los programas prioritarios adoptadospor los Comités Nacionales de Planifi-cación de la Investigación para la conser-vación y valorización de los recursos for-rajeros y herbáceos. Este programa seproponía evaluar el material conservadoe incorporarlo a los programas de mejo-ramiento de forrajes y pastos, desarrol-lando así nuevos cultivares para su usopor los agricultores.

IntroductionLa Tunisie présente une grande richesse d’espèces spontanéesfourragères et pastorales propres à l’alimentation animale maisdont la valeur fourragère est mal connue. Déjà en 1911, GAGEYrapportait l’existence dans de nombreuses régions, de plusieursespèces fourragères spontanées intéressantes appartenant auxgenres Medicago (espèces annuelles et pérennes), Scorpiurus(vermiculatées), Lolium (rigidum), Trifolium (repens, hybridum,subterraneum, fragiferum), Boromus, Lotus, Hedysarum, Phalaris, etDactylis qui servaient à alimenter les troupeaux (Lapeyronie 1978).

Malgré les efforts des chercheurs, ces ressources génétiquesfourragères et pastorales naturelles restèrent peu étudiées etsont encore sous-exploitées. Seules quelques espèces fourragères

spontanées ou cultivars traditionnels, ont été évalués et ont faitl’objet de collections souvent actives. Pour d’autres, seules desobservations générales ont été reportées, alors qu’elles ont servi àenrichir de nombreuses banques de gènes internationales et àdévelopper de nombreux cultivars (Zouaghi 1989). Ainsi, leCatalogue australien indique l’existence de très nombreux culti-vars de graminées ou légumineuses (fétuque élevée, ray-grassanglais, dactyle, phalaris, medics etc.) obtenus à la suite d’unesimple évaluation des ressources génétiques introduites à partirde l’Afrique du Nord (Tunisie, Algérie, Libye et Maroc). Laplupart de ces cultivars sont utilisés de nos jours au sud del’Australie, particulièrement dans les régions où les

ARTICLE

Page 49: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 47

précipitations sont comprises entre 350 et 500 mm. C’est le casde la fétuque élevée ‘Déméter’, du dactyle ‘Currie’ ou de Medicagotruncatula ‘Jemalong’ (Oram 1991).

La conservation et la valorisation des ressources génétiquesfourragères et pastorales sont devenues urgentes. L’objet decette étude est de présenter une synthèse sur l’état des culturesfourragères et des principales espèces pastorales, sur les institu-tions en charge de la conservation et de la valorisation desressources génétiques fourragères et pastorales en Tunisie,l’inventaire des travaux de collecte et les menaces d’érosiongénétique. Une présentation des programmes en cours et de leurorganisation concluent ce rapport.

Cultures fourragères et principalesespèces pastoralesEn Tunisie, le développement de l’élevage, secteur prioritaire deproduction, repose en grande partie sur la disponibilité desressources alimentaires constituées d’une part, par les fourragescultivés, les résidus de récolte et les sous-produits agro-industriels (19% des besoins de l’ensemble des élevages), etd’autre part, par les parcours, les arbustes fourragers et les zonesforestières (67-68% des besoins). Les aliments concentrésreprésentent 13% du total des besoins alimentaires destroupeaux. Parmi ces ressources, les fourrages et les parcoursoccupent une superficie importante mais la contribution desfourrages aux besoins du cheptel est faible et va en diminuanten raison de l’utilisation abusive des parcours et de la réductiondes surfaces fourragères semées (Zouaghi 1998).

L’extension des cultures fourragères et pastorales prévue parles plans de développement se concrétise difficilement et lesrendements de ces cultures restent faibles. Une analyse del’exploitation pastorale et des cultures fourragères pratiquées enTunisie, a permis de constater la faible productivité des couvertsvégétaux des zones pastorales et le manque de diversité descultures fourragères. De plus l’insuffisance de semencesfourragères constitue encore un handicap à l’extension de cescultures.

Cultures fourragèresLe secteur fourrager est basé essentiellement sur la culture del’avoine pure (Avena sativa L.) et/ou de la vesce-avoine récoltéesous forme de foin. La luzerne cultivée (Medicago sativa L.) et lebersim (Trifolium alexandrinum) sont cultivés particulièrementdans les périmètres irrigués et les oasis. En culture pluviale,l’orge en vert (Hordeum vulgare) tend à se substituer à la vesce-avoine dans les zones les plus arides ou plus salées. D’autrescultures fourragères telles que le sulla (Hedysarum coronarium) sontactuellement en cours d’extension avec plus ou moins de succès.Le trèfle souterrain (T. subterraneum), les Medicago annuels (Medicagospp.), malgré les programmes de développement dont ils ont faitl’objet, sont en régression. Cet échec est imputable à l’applicationd’un modèle de mise en valeur étranger (australien) qui a étédifficilement accepté par les agriculteurs. Dans les périmètresirrigués, le ray-grass d’Italie (Lolium multiflorum) et les culturesdérobées d’été comme le maïs (Zea mays L.) et le sorgho fourrager(Sorghum sp.), sont en augmentation. Les cultures pérennes sontde plus en plus pratiquées dans le nord du pays,

particulièrement le sulla. D’autres espèces telles que la fétuqueélevée (Festuca arundinacea) et le ray-grass anglais (Lolium perenne)sont, pour l’instant, destinées uniquement à la création deprairies permanentes.Toutefois, la performance de ces cultures reste insuffisante, enraison des facteurs suivants :• la non-maîtrise des techniques d’installation, de conduitedes cultures, de récolte et de conservation• l’inadaptation variétale des espèces les plus courammentcultivées• l’emploi de semences non certifiées concurrençant un secteursemencier tunisien peu encouragé• l’érosion et la perte de fertilité des sols aggravées par un travaildu sol effectué parfois perpendiculairement aux courbes deniveaux.

Principales espèces pastorales herbacéesLes prairies du Nord ont été considérées, pendant longtemps,comme le réservoir fourrager naturel de la Tunisie. Ces zonesnaturelles ont été intensément défrichées au profit des culturescéréalières, arboricoles et, plus récemment, de prairiespermanentes. Seule, la prairie à Hedysarum coronarium / Convolvu-lus tricolor située dans l’espace de la base aérienne de Bizerterestent à l’état naturel. Le potentiel pastoral de ces zones de-meure important comme le montre l’amélioration pastoraleréalisée à Sedjenane, où l’introduction d’espèces fourragèresproductives telles que le trèfle souterrain, la fétuque élevée et leray-grass pérenne, a permis d’aménager 6 000 ha de prairiesdans le cadre du projet d’amélioration des pâturages dans lenord-ouest tunisien (Jaritz 1982). Actuellement, les superficiesaménagées ne dépassent pas 8 000 ha. Ces prairies, malgré desinvestissements importants, sont aujourd’hui fortementdégradées en raison de l’inadéquation des systèmesd’exploitation et de suivi. Elles sont à présent partiellementcouvertes d’une végétation inexploitable par les animaux quiannonce le retour du maquis. D’autres prairies ont été convertiesen céréaliculture et en arboriculture, zone à faible ressourcefourragère pour le cheptel.

La végétation naturelle non défrichée dans le nord, se répartitsur trois types de pelouses (Thiault 1957; Lapeyronie 1982;Zouaghi 1989, 1995) :• la pelouse caractéristique des stations sèches sur sol àencroûtement calcaire (Plantago lagopus et Echium parviflorum ouOryzopsis miliacea)• la pelouse caractéristique des zones humides à inondationpassagère (Festuca elatior et Oenanthe globulosa)• la pelouse sur marnes caractérisée par Hedysarum coronarium etConvolvulus tricolor.

Ces trois catégories de pelouses comportent des espècespastorales dominantes susceptibles de régénérer des pâturages àproductivité satisfaisante.

L’augmentation des rendements passe par l’améliorationdes techniques culturales, le respect des stades de récolte etl’utilisation des méthodes de conservation appropriées. Elledépend surtout de l’amélioration génétique et de la création devariétés adaptées aux différentes conditions du milieu (sol,

Page 50: Plant Genetic Resources newsletter

48 Plant Genetic Resources Newsletter, 2000, No. 123

climat, parasites et autres). La création variétale est assujettieà la disponibilité en ressources génétiques locales intégrant lesadaptations aux conditions du milieu. Dès lors, la conserva-tion et la valorisation des ressources génétiques deviennentessentielles pour répondre aux besoins actuels et futurs dupays.

Ressources génétiques fourragères etpastoralesInstitutions en charge de la conservation et de lavalorisation des ressources génétiques fourragèreset pastorales en TunisieLe maintien de la diversité et la réussite des programmesd’amélioration de la productivité passent par la conservation etla valorisation des ressources génétiques locales. Plusieurs insti-tutions tunisiennes sont en charge de cette étape :• l’institut National Agronomique de Tunisie (INAT)• l’institut National de la Recherche Agronomique de Tunisie(INRAT)• l’ecole Supérieure d’Agriculture du Kef (ESA Kef)• l’ecole Supérieure d’Agriculture de Mateur (ESA Mateur)• l’institut des Régions Arides de Médenine (IRA)• l’institut National de la Recherche Scientifique etTechnologique de Tunisie (INRST)• la Faculté des Sciences de Tunis.

Les activités des trois derniers instituts, ne relèvant pas duMinistère de l’Agriculture pour cette opération, ne font pasl’objet de cette étude.

Inventaire des travauxDepuis la fin des années 60, des activités de collecte, de conser-vation et de valorisation des germoplasmes fourrager et pasto-ral sont menées par l’INAT et l’INRAT. Ainsi, à la suite dediverses prospections de graminées et de légumineusespérennes, des collections actives ont été réunies et des travauxd’évaluation et de sélection ont abouti à des variétés-popula-tions de fétuque élevée, de ray-grass anglais, de dactyle,d’Oryzopsis, de phalaris et de trèfles. Ces variétés se sont révéléessupérieures aux matériels étrangers testés, en termesd’adaptation, de productivité et de persistance (Chakroun et al.1994). Les variétés de fétuque élevée sont maintenues en parcellesisolées in situ à la station de Mornag pour la production desemences. Cependant, le manque de moyens de conservation aconduit à la perte de la plus grande partie du matériel collecté.Seule la collection de l’INAT a pu assurer une certaine continuitédans ses travaux.

En 1976 et 1984, L’IPGRI (International Plant Genetic ResourcesInstitute) a organisé, en collaboration avec certains InstitutsNationaux de Recherche, deux missions de prospection qui ontpermis la collecte de plusieurs espèces de céréales, delégumineuses alimentaires et de plantes fourragères. En 1980,une autre mission, effectuée dans le cadre du Projet intégré(OEP), a concerné quelques espèces de légumineuses des genresMedicago, Hedysarum et Trifolium. Cette prospection a couvert lenord et le centre du pays et 41 accessions de Medicago, représentant12 espèces ont été collectées. Mais, le manque de coordination

entre les divers intervenants et l’insuffisance des moyenshumains, matériels et financiers ont empêché ces travauxd’évaluation d’aboutir à des écotypes commerciaux.

A l’INRAT, le laboratoire des Productions Fourragères s’estparticulièrement intéressé, ces dernières années, à la collecte, laconservation (Tableau 1) et l’évaluation des ressourcesgénétiques fourragères et pastorales. En 1992, lors d’une mis-sion de prospection en collaboration avec l’Unité des RessourcesGénétiques (GRU) de l’ICARDA, 377 accessions, représentant49 espèces et 12 genres de légumineuses pastorales, ont étécollectées dans le centre du pays sur 40 sites (Hassen et al. 1994).En 1994, une autre mission, effectuée en collaboration avec leGRU et le Centre for Legumes in Mediterranean Agriculture d’Australie(CLIMA), a permis la collecte de 894 accessions d’espèces delégumineuses fourragères et pastorales représentant 16 genres et80 espèces. Ces collections sont stockées à l’INRAT (Zoghlami etHassen, comm. pers.). En juin 1994, conformément à la Conven-tion pour la préservation du patrimoine génétique des principalesgraminées pérennes fourragères et pastorales, signée parl’Institution de la Recherche et de l’Enseignement SuperieurAgricoles (IRESA), le Victorian Department of Agriculture (Australie)et l’USDA, une prospection de 10 jours sur 57 sites a été réaliséeen collaboration avec le Department of Agriculture (Australie) et leUSAID (USA). Des semences de 93 populations des espècessuivantes ont été collectées : fétuque élevée (Festuca arundinacea,Schreb.), ray-grass anglais (Lolium perenne L.), dactyle (Dactylisglomerata, L.) et phalaris (Phalaris tuberosa L.) (Chakroun et al. 1995).Une dernière prospection, effectuée en collaboration avecl’ICARDA en mai 1995, a assuré la collecte de 44 accessions dugenre Hedysarum et de leur rhizobium sur 42 sites du nord et ducentre du pays. La collection de rhizobium est installée àl’ICARDA. Une partie de l’ensemble du matériel collecté est encours d’évaluation multilocale conformément au descripteurinternational et devrait aboutir à la sélection d’écotypes adaptésaux conditions locales.

A l’INAT, des travaux sur les ressources génétiques sontconduits depuis les années 60. Mais, en l’absence d’un accordpréalable sur le devenir du matériel biologique à collecter, la col-laboration avec les organismes internationaux n’a pu seconcrétiser. Les collectes sont aujourd’hui organisées chaqueannée pour couvrir systématiquement l’ensemble du territoire etpermettre la constitution d’une collection active évaluée à environ1200 lots de semences appartenant à 103 espèces fourragères etpastorales originaires de différentes régions du pays (Tableau 1).Certaines de ces espèces considérées comme prioritaires sontconservées au froid et à –18°C, après déshydratation. Cette tech-nique, appliquée depuis 1981, donne de bons résultats ; des lotscollectés à cette époque ayant montré, en 1996, un excellentmaintien du pouvoir germinatif. Actuellement, les collectes sontfinancées uniquement par les Programmes NationauxMobilisateurs (PNM) de Recherche et concernent : Hedysarumcoronarium, H. carnosum, H. spinosissimum, Trifolium sp., Medicago spp.,Lathyrus et Lupinus ainsi que d’autres espèces de graminées et enparticulier la fétuque élevée (en collaboration avec le Laboratoiredes Productions fourragères de l’INRAT). Pour ces espèces, desvariétés sont en cours de production particulièrement pour le sulla(Hedysarum coronarium), et le bersim (Trifolium alexandrinum).

Page 51: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 49

A l’ESA Kef, le travail sur les ressources génétiques, a débutéen 1993 avec l’établissement d’une collection basée sur l’échangede germoplasmes (Ben Youness, comm. pers.). L’ESA Kef dis-pose actuellement de 159 accessions représentant 44 espèces delégumineuses et de graminées (Tableau 1).

Menaces d’érosion génétiqueDepuis plusieurs années, les observations consignées par lescollecteurs indiquent une érosion génétique du matériel naturellocal.

Lapeyronie (1978), résumant les travaux de Gagey (1911)signale que la flore dans les principales zones fourragères de laTunisie était, au début du siècle, beaucoup plus variée que dansles années soixante. Actuellement, il est facile de constater qu’elleest encore beaucoup plus dégradée notamment dans la zone deMateur - Mabtouha - Bizerte. Cette situation est attribuée à :• l’introduction de variétés européennes et américaines pour

l’amélioration des rendements, ce qui a contribué à ladénaturation des variétés locales, particulièrement pour lesespèces allogames telles que le sulla ou certains trèfles

• la destruction de l’habitat naturel de nombreuses espèces,menacées de disparition en raison du développement del’urbanisation et de l’utilisation des terres (drainage deszones humides et construction de barrages)

• la mécanisation intensive de l’agriculture et la réductiondes terres de parcours au profit des cultures céréalières etarboricoles aggravées par les catastrophes naturelles dansles écosystèmes fragiles (en particulier sous bioclimatssemi-aride et aride), comme ce fut le cas en Tunisie en1969

• l’utilisation intensive d’herbicides destructeurs de la floremessicole et surtout le surpâturage

• les inondations et l’érosion catastrophique de la couchearable du sol qui est le réservoir naturel des semences in situ(Zouaghi 1988).

Les rapports de missions de prospection (Burton 1981;Graves 1985; Cunnigham 1994) ont mentionné que lesgermoplasmes fourragers et pastoraux sont soumis à une érosiongénétique forte, due à une croissance démographique de lapopulation, à une augmentation des zones de culture et à unedégradation rapide des terres provoquée par une utilisationinappropriée des techniques culturales modernes.

La tâche actuelle est donc de préserver la variabilité génétiquede notre patrimoine fourrager et pastoral et de le valoriser enassurant son intégration dans les programmes d’améliorationdes plantes pour l’intérêt immédiat de nos agriculteurs et pourun développement durable.

Tableau 1. Espèces et nombre d’accessions fourragères et pastorales des différentes collections

INRAT INAT ESA Kef

Genre Espèce Accession Espèce Accession Espèce Accession

Medicago 25 405 15 110 12 64Vicia 8 108 6 40 4 10Trifolium 20 179 14 130 3 12Lathyrus 3 36 4 80Lupinus 3 3 4 35Hedysarum 4 83 3 231 2 6Anthyllis 2 10Astragalus 7 63Coronilla 2 29Hippocrepis 4 52Lotus 5 77 3 10 4 8Melilotus 2 19Scorpiurus 2 126Tetragonolobus 1 14Trigonella 4 27Pisum 1 1 1 30 5 13Festuca 1 38 2 25 2 3Lolium 1 19 5 65 3 3Dactylis 1 22 1 8Phalaris 2 14 2 10Avena 2 12 2 16 2 2Hordeum 1 150 4 6Agropyrum 1 1Tricosecale 1 30Oryzopsis 2 10Bromus 2 10Crucifères 4 50Autres 3† 4 32‡ 105 2§ 2Total 104 1342 103 1218 44 159

† Ononus et Hymonocarpus‡ Glycine, autres légumineuses et graminées.§ Lespediza et Sesbania.

Page 52: Plant Genetic Resources newsletter

50 Plant Genetic Resources Newsletter, 2000, No. 123

Esquisse d’une stratégie pour ledéveloppement et la valorisation dupatrimoine génétique fourrager etpastoralLa conservation et l’utilisation des ressources génétiquesfourragères et pastorales est l’un des programmes prioritairesdéfinis par les commissions de programmation de la recherche(«Grandes Cultures» et «Elevage et Pastoralisme»). Dans cecadre, un programme a été développé par les laboratoires deproduction fourragère de l’INRAT, l’INAT, l’ESA Kef et l’ESAMateur. Ce programme entre dans l’action «Sauvegarde etvalorisation du patrimoine génétique fourrager et pastoral» etcomprend deux thèmes : i) développement de germoplasmesadaptés de légumineuses fourragères et pastorales ; ii) évaluationet développement de quelques variétés-populations degraminées pérennes fourragères et pastorales.

La flore naturelle de Tunisie, extrêmement riche en espècesspontanées propres à l’alimentation animale, est en train de subirune dégradation alarmante. La grande variation des conditionsdu milieu (sol, température, pluviosité, humidité etc.…) a entraînél’existence, pour chaque espèce comestible, d’un grand nombred’écotypes. Cette variabilité génétique constitue un matériel dechoix pour la sélection et la création de variétés adaptées auxconditions diverses. Parmi toutes ces espèces, une dizaine doitretenir plus particulièrement l’attention en raison de leur largeutilisation actuelle, de leur potentiel élevé de production, et de leurimportance économique dans les zones humides, sub-humides etsemi-arides supérieures (Zouaghi 1987).

Les activités de conservation et de valorisation du patrimoinefourrager et pastoral local intéressent deux types d’espècesprioritaires : les légumineuses (et leur rhizobium), et lesgraminées. Parmi les légumineuses, on s’intéressera enparticulier aux espèces Hedysarum, Vicia, Trifolium, Lupinus,Medicago et Lotus. Concernant les graminées, les espècesprioritaires sont : Avena sp., Festuca sp., Lolium perenne, Dactylisglomerata, et Phalaris sp. Les espèces Phalaris sp., Vicia, Trifoliumfragiferum et Lupinus sont les plus menacées de disparition. Pra-tiques de terrain, moyens de conservation ex situ et techniques delaboratoire seront optimisés pour aboutir à des créationsvariétales susceptibles d’intéresser les agriculteurs.

Les espèces retenues pour les travaux d’amélioration sont :• légumineuses fourragères : vesce, sulla, bersim et luzernecultivée• légumineuses pastorales à resemis naturel (légumineusesannuelles) : trèfle (Trifolium subterrameum), lupin et médics(Medicago spp.)• graminées annuelles et pérennes : avoine, orge en vert,fétuque élevée, ray-grass pérenne, ray-grass annuel, Sudan grasset maïs fourrager.

Objectifs du programme• Poursuite des travaux de collecte des espèces fourragères etpastorales spontanées pour le maintien de la diversité génétique• Evaluation agronomique et fourragère du matériel biologiquecollecté et multiplication en absence de contamination pollinique• Conservation, à moyen et long terme, du matériel génétiqueà des fins d’amélioration variétale

• Incorporation du matériel génétique évalué dans lesprogrammes d’amélioration afin de créer de nouveaux cultivarsde plantes fourragères et pastorales.

Plan d’actionLa conservation et la valorisation des ressources génétiquesfourragères et pastorales sont assurées par l’INAT, l’INRAT,l’ESA Kef, l’IRA Médenine et, à un moindre degré, par l’ESAMateur. Pour pallier le manque de coordination des travaux,effectués par des scientifiques de spécialités diverses, l’Equipede recherche fourragère et pastorale, regroupant tous leschercheurs de la discipline, a instauré un accord de coordinationvolontaire (Réunion de Mateur 1994). Les moyens humains etmatériels restent cependant insuffisants, avec une répartitionirrégulière des compétences suivant les instituts et une pénurieen personnel de soutien. Néanmoins, une amélioration est encours depuis l’inscription des recherches fourragères au premierplan des préoccupations officielles par le Conseil ministérielrestreint de mars 1998. Les structures existantes devraient en-courager les chercheurs de ce groupe à resserrer les liens entre lesinstitutions responsables de la recherche et de la conservationdes ressources phytogénétiques fourragères et pastorales.

L’ampleur des travaux a amené l’Equipe de recherche àprocéder à la répartition des thèmes prioritaires de recherche et àse préoccuper de la réactivation du fonctionnement des contratsprogrammes.

Trois équipes de chercheurs, seront mises sur pied, chacunespécialisée dans un type d’espèces : légumineuses fourragères,légumineuses pastorales et graminées fourragères et pastorales.En outre, ces équipes s’intéresseront, progressivement et enfonction des financements, à la conservation et la valorisationd’espèces locales non prioritaires.

Les missions de collecte seront planifiées en 5 phases :1. Développement d’une stratégie de collecte et de l’itinéraire àsuivre.2. Collecte : moyens de déplacement, fiche d’information.3. Conditionnement et conservation du matériel collecté.4. Constitution d’une base de données reliant les différenteséquipes à travers le réseau ‘intranet’ créé à l’IRESA.5. Mise à disposition du matériel maintenu auprès desutilisateurs potentiels (sélectionneurs, physiologistes, autresbanques de gènes...).

La réalisation des objectifs avancés dans ce programme deconservation et de valorisation des ressources génétiquesfourragères et pastorales est subordonnée à la mise en applica-tion des étapes représentées dans la figure 1 et à l’obtention desmoyens humains, matériels et financiers nécessaires.

La conservation et la valorisation des ressources génétiquesentre dans le cadre d’un travail pluridisciplinaire. L’ouverturede cette activité à d’autres domaines dépendra des objectifs et del’importance économique du programme en question.

L’exploration et la collecte des plantes autochtones fourragèreset pastorales est le préalable au développement de ces ressourcesgénétiques qui verra son aboutissement dans le développement decultivars tunisiens commerciaux après évaluation et sélection.

L’exploitation efficace de ces ressources génétiques exige une

Page 53: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 51

concertation et une coopération entre les différentes institu-tions, renforcées par des moyens de travail supplémentaires etdéjà initiées au sein de l’Equipe de Recherche Fourragère etPastorale créée en 1994 à la réunion de Mateur.

RemerciementsLes auteurs tiennent à remercier Mme Ghrabi Ghammar Z.,Melle Zoghlami A. et MM. Hassen H., Ben Youness M., et BenJeddi F. pour leur collaboration à la réalisation de ce travail.

RéférencesAnonyme. 1994. Orientations et programmes de recherche en

production fourragère en Tunisie. Mateur, 16-17 mars 1994.Burton, J.C. 1981. Use of Rhizobium-leguminous plant associa-

tion to increase forage and pasture production in Tunisia.Report on a survey and nodule collection trip through Tuni-sia. 27 March-21 April 1981.

Chakroun, M., M.Y. Mezni et H. Seklani. 1994. Importance desgraminées pérennes locales dans la diversification des pro-ductions fourragères. Journées nationales sur les acquisrécents de la recherche agronomique. Hammamet, 2-4 déc1994.

Chakroun, M., M.Y. Mezni, P. Cunningham and W. Graves. 1995.Genetic resources collection of perennial pasture grasses inTunisia. «Options Mediterranéennes», Proceedings of themeeting of the Mediterranian Working Group of the FAO/CIHEAM Inter-Regional Research and Development Networkon Pastures and Fodder Crops, Avignon (France), 29 May-2June 1995.49-51.

Hassen, H., A. Zoghlami et S. Sassi. 1994. Contribution à l’étudede quelques espèces spontanées de légumineuses pastoralesen Tunisie centrale: Répartition géographique et relation avecle milieu environnement. Ann. de l’INRAT, 67 (1,2): 203-221.

Jaritz, G. 1982. Amélioration des herbages et cultures fourragèresdans le nord-ouest de la Tunisie : étude particulière des

prairies de trèfles-graminées avec trifolium subterraneum. GTZ.Germany.

Lapeyronie, A. 1982. Les productions fourragèresmediterranéennes. Tome I: Généralités, caractères botaniqueset biologiques. Techniques agricoles et productionsméditerranéennes. G.P. Maisonneuve et Larose, Paris, France.

McWilliams, J.L. 1980. Report on plant exploration and collectionin Tunisia. May/June 1980.

Oram, R.N. 1991. Register of Australian Herbage Plant Cultivars.3 rd Edition. Australian Herbage Plant Registration Author-ity. Division of Plant Industry. CSIRO Publications,Melbourne, Australia.

Thiault, M. 1957. Les pelouses de la Tunisie du Nord et leursaptitudes pastorales. Ann. du Ser. Bot. et Agr. de Tunisie. 30:165-170.

Zouaghi, M. 1987. Production fourragère et pastorale en Tunisie.Identification des problèmes et besoins de recherche à longterme par grand secteurs de production. Programme dedéveloppement de la recherche agricole en Tunisie. Vol. 2:194-227. ISNAR R27f.

Zouaghi, M. 1989. Le patrimoine génétique fourrager et pastoral:ressources à préserver et à promouvoir. Pp. 107-115 in Con-stitution de Réseaux Thématiques de Recherche Agricole auMaghreb. Birouk, A., Ouhsine A. et Ameziane E. Eds, Actesdu séminaire organisé à Rabat en décembre 1988, RéseauTRAM. ACCT.

Zouaghi, M. 1995. Etude et aménagement à prévoir dans la zonedes marais de l’Ichkeul. Rapport BCEOM sur l’aménagementdu Parc National de l’Ichkeul.

Fig. 1. Représentation schématique des principales activités liées à la conserva-tion des ressources génétiques fourragères et pastorales.

Page 54: Plant Genetic Resources newsletter

52 Plant Genetic Resources Newsletter, 2000, No. 123 Plant Genetic Resources Newsletter, 2000, No. 123: 52 - 60

RésuméRésistance au blanc des raceslocales d’orge (Hordeumvulgare L.) provenant d’EgypteCette étude a consisté à cribler 135 raceslocales d’orge collectées en Egypte envue de tester leur résistance au blanc. Cesraces locales provenaient de la collectiondu Centre international pour la recher-che agricole dans les régions sèches(ICARDA). Huit variétés locales (6 %) ontrésisté au blanc et 11 lignées dérivantd’une plante unique ont été sélection-nées. Trois de ces lignées ont été testéesau stade plantule par 17 isolats différen-ciés de blanc et huit autres lignées par 23isolats différenciés de blanc. Les isolatsont été choisis selon leur spectre de viru-lence observé sur la série différenciéed’iso-lignées de Pallas. La distribution dutype de réaction indique que 80 % destypes d’infection observés pouvaientêtre classés comme résistants au blanc(cotes: 0, 1 et 2). La lignée 441-1-1 a affichéune résistance à tous les principaux gènesde virulence du blanc présents en Eu-rope. Chez neuf lignées (82%), on a dé-tecté la présence de gènes inconnus asso-ciés à un gène spécifique. On a posé com-me principe que deux différents allèlesde résistance Mlat et Mla7 étaientprésents chez les lignées testées. L’allèlede résistance le plus fréquent chez leslignées testées était Mlat, présent chezneuf lignées testées. Sur les trois régionsd’Egypte d’où provenaient les variétéslocales, celles récoltées à Marsa Matrruhet dans le nord du Sinaï se sont montréesrésistantes au blanc. Toutes les races lo-cales récoltées à As Sahra Ash Sharqiyahétaient sensibles à l’isolat R303. Les raceslocales d’orge examinées dans cetteétude seront précieuses pour la diversifi-cation des gènes résistants au blanc util-isés dans les programmes d’améliorationde l’orge.

Resistance to powdery mildew in barley (Hordeumvulgare L.) landraces from EgyptJerzy H. CzemborPlant Breeding and Genetics Department, Plant Breeding and Acclimatization Institute, Radzików-Warsaw, 05-870 Blonie,Poland. Tel: +48 22 7252611; Fax: +48 22 7254714; Email: [email protected]

SummaryResistance to powdery mildewin barley (Hordeum vulgare L.)landraces from EgyptThis study consisted of screening 135 bar-ley landraces collected in Egypt for resis-tance to powdery mildew. The landracesoriginated from the collection of the In-ternational Center for Agricultural Re-search in the Dry Areas (ICARDA). Eightlandraces (6%) showed powdery mildewresistance reactions and 11 single plantlines were selected. Three of these lineswere tested in seedling stage with 17 dif-ferential isolates of powdery mildew andanother eight lines with 23 differentialisolates of powdery mildew. The isolateswere chosen according to their virulencespectra observed on the Pallas isolinesdifferential set. Distribution of reactiontype indicated that 80% of all infectiontypes observed could be classified aspowdery mildew resistance (scores 0, 1and 2). Line 441-1-1 showed resistance toall major powdery mildew virulencegenes present in Europe. In nine lines(82%) the presence of unknown genes incombination with a specific one was de-tected. Two different resistance allelesMlat and Mla7 were postulated to bepresent in the tested lines. The most com-mon resistance allele in the tested lineswas Mlat, which was present in ninetested lines. Among the three regions ofEgypt from which the landraces origi-nated those collected in Marsa Matrruhand north Sinai expressed resistance topowdery mildew. All landraces collectedin As Sahra Ash Sharqiyah were suscep-tible to R303 isolate. The barley landracesdiscussed in this study will be of value indiversifying the genes resistant to pow-dery mildew used in barley breeding.

Key words: Erysiphe graminis,germplasm, Hordeum vulgare,landraces, powdery mildew, resis-tance genes

ResumenResistencia al mildiupulverulento en las variedadeslocales egipcias de cebada(Hordeum vulgare L.)Este estudio consistió en seleccionar 135variedades de cebada recogidas en Egip-to para observar su resistencia al mildiupulverulento. Las variedades procedíande la colección del Centro Internacionalde Investigaciones Agronómicas en Zo-nas Áridas (ICARDA). Ocho de ellas (6%)tuvieron reacciones de resistencia al mil-diu y se seleccionaron 11 líneas de plantasseparadas. Tres de éstas se sometieron aprueba en su fase de plántulas con 17cultivos aislados diferenciales de mildiu,y otras ocho líneas se sometieron a lamisma prueba con 23 aislados diferen-ciales de mildiu. Los cultivos aislados seescogieron por sus espectros de virulen-cia observados en la serie diferencial deisolíneas Pallas. Los tipos de reacción in-dicaron que el 80% de todas las infec-ciones observadas podían clasificarsecomo resistencia al mildiu pulverulento(0, 1 y 2 puntos). La línea 441-1-1 mostróresistencia a todos los principales genesde virulencia de mildiu presentes en Eu-ropa. En nueve líneas (82%) se detectó lapresencia de genes desconocidos en com-binación con uno específico. Se dedujo lapresencia en las líneas sometidas a prue-ba de dos alelos de resistencia diferentesMlat y Mla7. El alelo de resistencia máscomún en esas líneas era Mlat, presenteen nueve líneas. Entre las tres regionesde Egipto de las que procedían las var-iedades locales, las recogidas en MarsaMatrruh y Sinaí septentrional mostraronresistencia al mildiu pulverulento. Todaslas variedades recogidas en As Sahra AshSharqiyah eran susceptibles al aisladoR303. Las variedades de cebada aquí estu-diadas serán valiosas para diversificar losgenes resistentes al mildiu utilizados enla mejora genética de la cebada.

ARTICLE

IntroductionBarley (Hordeum vulgare L.) is the fourth most important cereal cropin the world after wheat, maize and rice. Among African countries,barley is an important crop in Ethiopia, Eritrea and Sudan, and inNorth African countries such as Morocco, Tunisia, Algeria, Libyaand Egypt (Rasmusson 1985; Czembor and Czembor 2000).

Powdery mildew, caused by the pathogen Erysiphe graminisDC. f. sp. hordei Em Marchal (synamorph Blumeria graminis (DC.)Golovin ex Speer f. sp. hordei), is one of the most destructive

foliar diseases of barley in areas with a maritime climate such asnorthern Europe, Japan and the Mediterranean coast. In recentyears, this disease has also become more significant in areaswith a dry and hot climate because of the increased use ofirrigation and nitrogen fertilizer. Losses in barley yields due topowdery mildew can reach 20% in Europe and 30% in NorthAfrica (Scott and Griffiths 1980; Rasmusson 1985; ZineElabidine et al. 1992; Czembor and Czembor 1998, 1999b).

Page 55: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 53

Egypt is located in an area where different phytogeographi-cal regions meet. The deserts of Egypt have widely differentecosystems. Marsa Matrruh province in western Egypt is char-acterized by deep depressions reaching more than 100 m belowsea level, such as the Qattara depression and the oases. On theother hand, high mountains rising more than 2100 m asl occurin Sinai and in the As Sahra Ash Sharqiyah (eastern desert).Rain-fed agriculture prevails in the northwest coastal strip fromAlexandria to the Libyan border and in north Sinai, with aver-age annual precipitation of 100-250 mm. In these regions barleyis still grown as landraces, both for grain and straw, in marginallow-input drought-stressed environments. The importance ofbarley landraces in these areas is due to the fact that they areoften the only possible rain-fed crop (AboElenein et al. 1995;Batanouny 1995; Madkour and Abou-Zeid 1995; FAO 1996).

In Europe during the 19th century, a few farmers and land-owners such as Knight in England, Janasz in Poland, Vilmorin inFrance and Rimpau in Germany started to select desirable plantsfrom landraces, based upon their phenotypic variation (Janasz1893; Jensen 1988; Zeven 1996, 1998). Often only one line wasselected as a new cultivar and the landrace from which this linewas selected was no longer maintained. This has resulted in agreat deal of genetic erosion of major crops during the last 100years. In most European countries today landraces of majorcrops, including barley, exist only in genebanks (Brush 1992; ZineElabidine et al. 1995; Hammer et al. 1996; Podyma 1997).

Genetic studies of barley resistance to powdery mildew startedin 1907 when Biffen showed that the resistance of Hordeumspontaneum is controlled by a single recessive gene. Currently pow-dery mildew on barley is considered as one of the most clearlycharacterized system of host-pathogen genetic interaction andmore than 100 barley powdery mildew resistance alleles have beenidentified. Most of these genes originated from barley landracesfrom West Asia, Ethiopia and North Africa (Biffen 1907; Czembor1976; Jensen and Jørgensen 1991; Jørgensen 1992b, 1994).

Powdery mildew on barley can be controlled by the use offungicides and/or resistant cultivars. About 20 years ago fungi-cide treatment against E. graminis f. sp. hordei became a commonpractice in order to reduce the severity of powdery mildew.However, pathotypes of E. graminis f. sp. hordei resistant to com-monly used fungicides have now been identified. This, togetherwith the cost of fungicides and environmental concerns regard-ing pesticide use in most developed countries, may lead to agradual limitation of their use for control of powdery mildew(Gacek 1992; Brown and Kane 1994; Brown 1996).

Breeding for resistance is a cheap and environmentally safealternative approach to reduce the loss in yields caused bypowdery mildew. However, breeding for resistance dependsupon having genepools from which new genes can be intro-duced into existing cultivars. Such genepools are barleylandraces, especially those originating from centres of origin forcultivated barley (Ceccarelli et al. 1987, 1995; Valkoun et al. 1995;ICARDA 1998; IPGRI 1999).

The original area of cultivation of Hordeum vulgare L. was theFertile Crescent (a crescent-shaped region of rich farmland thatstretched in ancient times from the Mediterranean sea to thePersian Gulf, through the Tigris and Euphrates valley) and Egypt

(Zohary and Hopf 1988; Nesbitt 1995; Willcox 1995). Accordingto archaeological evidence barley was cultivated in this region inthe ninth millennium B.C. (Wendorf et al. 1979, 1984; Williams1988, 1995; Harlan 1995; Damania and Valkoun 1997).

Vavilov (1926) believed the Mediterranean area to be one ofthe major centres of the crop’s origin. Recently, this hypothesishas been supported by the discovery of wild barley in NorthAfrica (Molina-Cano and Conde 1980; Molina-Cano et al. 1982,1984, 1999; Moralejo et al. 1994). This would suggest that in thisregion barley coevolved with the fungus E. graminis f. sp. hordei,therefore, barley landraces from Egypt may possess new genesfor resistance to powdery mildew. The objective of this studywas to determine whether genes resistant to powdery mildeware present in Egyptian landraces of barley.

Materials and methodsPlant materialDrs J. Valkoun and S. Ceccarelli of ICARDA kindly providedseed samples of 135 Hordeum vulgare L. landraces. The seeds of124 landraces were collected in three regions from 15-25 April1987 (ICARDA collection code EGY87) and seeds of a further 11landraces were collected from 18-20 April 1989 (ICARDA collec-tion code EGY89). Of these, 79 landraces (58.5%) originatedfrom Marsa Matrruh (Mediterranean coast, Libyan plateau,Qattara Depression and the Siwa Oasis), 47 (35%) originatedfrom north Sinai and nine (6.5%) from As Sahra Ash Sharqiyah(eastern desert). All collected barley landraces were of a spring-growth type, had covered kernels and six-row heads. In Polishconditions they were intermediate in heading date and showedlow resistance to lodging.

PathogensThirty-five isolates of E. graminis f. sp. hordei Em Marschal wereused (Table 1). These originated from collections in the RisøNational Laboratory, Denmark; the Danish Institute for Plantand Soil Science, Denmark; the Edigenossische TechnischeHochschule (ETH), Switzerland, kindly provided by Dr H.J.Schaerer; and from the Plant Breeding and AcclimatizationInstitute (IHAR) Radzików, Poland. The isolates were chosenaccording to differences in virulence spectra observed on thePallas isolines differential set (Kølster et al. 1986) provided by DrL. Munk (Royal Agricultural and Veterinary University, Den-mark). They were purified by single pustule isolation, and main-tained and propagated on young seedlings of the powderymildew susceptible cultivar ‘Manchuria’ (CI 2330). Frequentvirulence checks were made to assure the purity of isolatesthroughout the experiment.

Disease assessmentAfter 8-10 days incubation, the infection types were scoredaccording to a 0-4 scale developed by Mains and Dietz (1930).The seedlings were classified into susceptible or resistant groups.Plants scoring 0-2 were included in the resistant group andplants scoring 3-4 were included in the susceptible group.

Resistance testsThis investigation was conducted during 1996-99 at IHAR

Page 56: Plant Genetic Resources newsletter

54 Plant Genetic Resources Newsletter, 2000, No. 123Ta

ble

1.

Diff

eren

tial

isol

ates

and

the

ir i

nfec

tion

type

s on

Pal

las

diff

eren

tial

sets

Diff

eren

tial s

etIs

olat

es

Isol

ines

Gen

e1

23

45

67

89

1011

1213

1415

1617

58-7

459

-11

59-1

263

-1A

6D

17E

mA

30G

EH

L3/5

HL3

/5-1

JEH

11M

H1

MH

1-2

R13

CR

63R

71/1

R86

.1

Pal

las

Mla

84

44

44

44

44

44

44

44

44

P1

Mla

10

40

44

44

00

00

00

00

00

P2

Mla

31

00

00

00

00

00

00

00

00

P3

Mla

6,0

00

00

00

44

40

40

44

04

Mla

14P

4AM

la7,

44

44

02

00

20

42

22

41

2M

lk,?

P4B

Mla

7,?

44

44

11

00

22

44

42

42

2P

6M

la7,

44

44

00

01

20

44

42

41

2M

l(LG

2)P

7M

la9,

44

04

00

00

00

40

00

00

0M

lkP

8AM

la9,

44

04

00

00

00

40

00

00

0M

lkP

8BM

la9

44

04

00

00

00

40

00

00

0P

9M

la10

,4

44

40

04

00

04

00

12

40

Ml(D

u2)

P10

Mla

120

00

40

04

00

00

24

44

40

P11

Mla

13,

42

04

00

00

00

04

40

40

0M

l(Ru3

)P

12M

la22

44

40

44

44

44

04

44

40

4P

13M

la23

24

11

11

11

21

22

12

12

2P

14M

lra4

44

40

44

44

44

00

44

44

P15

Ml(R

u2)

34

44

42

42

24

22

04

44

2P

17M

lk4

44

40

22

22

04

02

22

22

P18

Mln

n4

44

44

44

44

44

34

44

44

P19

Mlp

20

22

22

22

12

22

22

22

2P

20M

lat

20

22

42

22

22

42

22

22

2P

21M

lg,

44

44

00

04

44

04

40

00

0M

l(CP

)P

22m

lo5

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

33

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

P23

Ml(L

a)2

44

43

23

22

33

24

34

44

P24

Mlh

44

44

04

44

04

44

44

44

4

Page 57: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 55D

iffer

entia

l set

Isol

ates

Isol

ines

Gen

e18

1920

2122

2324

2526

2728

2930

3132

3334

35

R18

9R

261

R27

5R

303

Ru

3T

R2

Ry4

dE

n1/A

1R

303.

1E

9259

-11.

1S

Z/C

10R

a7R

a9R

a10

Ra1

3R

a16

Ra2

2

Pal

las

Mla

84

44

44

44

44

44

44

44

44

4P

1M

la1

00

00

04

00

04

00

00

44

00

P2

Mla

34

00

00

40

00

00

40

40

00

0P

3M

la6,

40

00

40

00

04

04

44

44

44

Mla

14P

4AM

la7,

24

00

02

24

04

42

04

44

44

Mlk

,?P

4BM

la7,

?2

40

00

22

40

44

20

44

44

4P

6M

la7,

04

00

01

04

04

40

02

12

44

Ml(L

G2)

P7

Mla

9,1

44

00

40

00

00

00

00

04

0M

lkP

8AM

la9,

14

40

04

00

00

00

00

00

40

Mlk

P8B

Mla

94

44

00

40

00

00

00

00

04

0P

9M

la10

,0

44

40

44

40

44

00

44

44

4M

l(Du2

)P

10M

la12

00

00

04

44

04

04

04

44

24

P11

Mla

13,

00

40

00

04

00

00

00

44

04

Ml(R

u3)

P12

Mla

224

00

04

40

40

04

44

04

40

0P

13M

la23

12

21

12

21

12

22

22

21

12

P14

Mlra

44

43

44

44

44

44

44

44

44

P15

Ml(R

u2)

24

22

22

24

44

44

44

44

44

P17

Mlk

24

40

14

24

24

40

24

44

44

P18

Mln

n4

34

04

44

44

44

04

44

44

2P

19M

lp2

22

02

22

22

22

22

22

42

0P

20M

lat

24

20

22

22

22

24

22

44

22

P21

Mlg

,0

44

34

44

44

44

40

44

44

4M

l(CP

)P

22m

lo5

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

0(4)

P23

Ml(L

a)2

23

34

44

44

42

44

44

44

4P

24M

lh4

44

34

40

44

04

44

44

44

4

Page 58: Plant Genetic Resources newsletter

56 Plant Genetic Resources Newsletter, 2000, No. 123

Radzików, Poland. In the winter of 1996-97 approximately 30plants per landrace were evaluated in a greenhouse with theR303 isolate of E. graminis f. sp. hordei. R303 represented the mostavirulent isolate available, allowing the expression of a maxi-mum number of resistance genes. The cultivar ‘Manchuria’ wasused as a susceptible control. In addition, approximately 30plants per landrace were evaluated in a greenhouse with amixture of E. graminis f. sp. hordei isolates with all the virulencesknown in Europe. Again the cultivar ‘Manchuria’ was used as asusceptible control.

Eight (6%) of the 135 landraces showed resistance reactions(Table 2). From one to five resistant plants for each landrace weregrown in the greenhouse to obtain seed. In this manner, 11 singleplant lines were created. Three of these lines were tested with 17isolates of powdery mildew during the winter of 1997-98 (Table3). Another eight lines were tested with 23 isolates during thewinter of 1998-99 (Table 4). This research was conducted in theIHAR Radzików greenhouse. The plants were grown with 16 hlight and a temperature range of 16-22oC. Inoculation was carriedout when the plants were 10–12 days old by shaking or brushingconidia from diseased plants. The disease reaction types shownby seedlings were scored after 8-10 days incubation.

Postulation of resistance allelesHypotheses about the specific resistance genes present weremade by comparing the reaction spectra of the tested lines withthose of differential lines. Identification of resistance genes wasmade by eliminating resistance genes not present in tested lines.The next step was to determine the postulated and possibleresistance genes (Brown and Jørgensen 1991; Czembor andCzembor 1998, 1999b). This was done on the basis of the genefor gene hypothesis (Flor 1956).

ResultsAmong the 135 landraces from Egypt, eight (6%) expressedresistance to isolate R303 of E. graminis f. sp. hordei (Table 2). Fromthe three regions in Egypt from which the landraces originatedonly landraces collected in Marsa Matrruh and north Sinaiexpressed resistance to powdery mildew. All landraces collectedin As Sahra Ash Sharqiyah were susceptible to R303 isolate.

Eleven single plant lines were selected. All these lines pos-sessed one or more resistance alleles to powdery mildew ofbarley (Tables 3, 4). However, only one line (441-1-1) expressedresistance to all isolates used. It was impossible to determinewhich specific gene or genes for resistance are present in line441-1-1 (Table 4). Based on the assumption that different resis-tance genes may condition different infection types it may beconcluded that this line had more than one resistance gene(Table 5). The distribution of infection types indicates that 80%of all reaction types observed were classified as powdery mildewresistance (score 0, 1 and 2). The most frequent score was 2(75%). Ten lines had a score of 2 for most of the isolates usedand one line (476-2-2) scored 4 (susceptible) for more than 50%of the isolates used.

In nine lines (82%), the presence of previously unknowngenes in combination with a specific one was detected (Table 3,4). Two different resistance alleles Mlat and Mla7 were postulatedto be present in the tested lines. The most common resistanceallele in the tested lines was Mlat. This allele was postulated to bepresent in nine (82%) of the tested lines. Allele Mla7 was postu-lated to be present in line 476-2-2 together with an unknowngene or genes.

DiscussionMany studies show that barley landraces are rich sources ofresistances to pests and pathogens. These landraces evolvedduring the period of primitive agriculture by more or less deliber-ate selection by farmers to obtain plants with desirable charac-teristics. This selection favoured the plants best fitted to surviveand those which gave the highest yields of a good qualityproduct. As very susceptible plants gave no seed, this selectionresulted in plants which were not very susceptible to damagingpests or diseases (Jørgensen 1994; Valkoun et al. 1995; Madeley1996; Jørgensen and Jensen 1997; IPGRI 1999; Czembor andCzembor 2000).

This study shows that barley landraces from Egypt are avaluable source of resistance to powdery mildew. Of the 135barley landraces from Egypt tested, eight (6%) showed resis-tance to E. graminis f. sp. hordei. The region of Marsa Matrruh isworth noting out of the three regions of Egypt from which the

Table 2. Site of collection of eight barley landraces from Egypt showing resistance to powdery mildew

Landraces ICARDA Altitude Province Sitecoll. code (m asl)

No. IHAR no. ICARDA no.

1 415 ICB 32493 EGY87 95 North Sinai El Gura; 214 km S Sheik Zwaied2 440 ICB 32518 EGY87 5 Marsa Matrruh Al Matareh; 12 km west Marsa

Matrruh3 441 ICB 32519 EGY87 - Marsa Matrruh Em Rakham Bahri; 30 km west

Matrruh4 443 ICB 32521 EGY87 5 Marsa Matrruh Abu Lahu Bahri; 36 km NW Marsa

Matrruh5 471 ICB 32549 EGY87 15 Marsa Matrruh Samala; 10 km east Marsa Matrruh6 476 ICB 32554 EGY87 85 Marsa Matrruh Ras Al Hekma; 68 km east Matrruh-

Alexandria7 607 ICB 32998 EGY89 -5 Marsa Matrruh Zaqawa village in Siwa oasis8 610 ICB 33001 EGY89 -5 Marsa Matrruh El Hitabit in Siwa oasis

Page 59: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 57Ta

ble

3. R

esis

tanc

e al

lele

s an

d in

fect

ion

type

s of

thre

e lin

es to

infe

ctio

n by

17

isol

ates

of E

. gra

min

is f.

sp.

hor

dei

Line

sIs

olat

esP

ostu

late

dre

sist

ance

alle

les

12

46

89

1112

1415

1617

1819

2021

24

58–7

459

-11

63-1

D17

GE

HL3

/5JE

H11

MH

1R

13C

R63

R71

/1R

86.1

R18

9R

261

R27

5R

303

Ry4

d

443-

1-5

22

22

22

42

22

22

24

22

2M

lat

471-

4-5

22

22

11

42

22

22

24

22

2M

lat,

+?†

476-

1-1

22

22

12

41

22

22

24

22

2M

lat,

+?†

† U

nide

ntifi

ed r

esis

tanc

e al

lele

not

pre

sent

in th

e P

alla

s is

olin

es s

et.

Tabl

e 4.

Res

ista

nce

alle

les

and

infe

ctio

n ty

pes

of e

ight

line

s to

infe

ctio

n by

23

isol

ates

of E

. gra

min

is f.

sp.

hor

dei

Lin

esIs

olat

esP

ost

ula

ted

resi

stan

ceal

lele

s

13

45

710

1113

1821

2223

2526

2728

2930

3132

3334

35

5859

63A

6E

mA

30H

L3/

JEH

11M

H1-

2R

189

R30

3R

u3

TR

2E

n1/

R30

3.1

E92

59S

Z/

Ra7

Ra9

Ra1

0R

a13

Ra1

6R

a22

-74

-12

-15-

1A

1-1

1.1

C10

415-

1-1

22

24

24

22

22

22

22

22

22

44

22

Mla

t, +?

440-

1-1

22

24

22

42

22

22

22

22

22

24

42

2M

lat,

+?†

440-

1-2

22

24

22

42

22

22

22

22

42

24

42

2M

lat,

+?†

441-

1-1

22

00

22

21

21

12

22

02

22

02

21

2+?

471-

1-3

24

24

22

42

22

22

02

22

42

24

42

2M

lat,

+?†

476-

2-2

44

42

22

42

22

24

42

44

22

44

44

4M

la7,

+?†

607-

1-2

22

22

22

42

22

22

22

02

42

24

42

0M

lat,

+?†

610-

1-1

22

24

22

42

22

22

22

22

42

22

22

2M

lat,

+?†

† U

nide

ntifi

ed re

sist

ance

alle

le n

ot p

rese

nt in

the

Pal

las

isol

ines

set

.

Tabl

e 5.

Inf

ectio

n ty

pes

– fr

eque

ncy

in 1

1 E

gypt

ian

land

race

s fo

r iso

late

s of

E. g

ram

inis

f. s

p. h

orde

i

Land

race

IHA

R n

o.N

o. o

f iso

late

s th

at p

rodu

ced

infe

ctio

n ty

peTo

tal

01

23

4

415-

1-1

00

18

04

22

440-

1-1

00

19

04

23

440-

1-2

00

18

05

23

441-

1-1

44

15

00

23

443-

1-5

00

15

02

17

471-

1-3

10

13

06

23

471-

4-5

02

13

02

17

476-

1-1

02

13

02

17

476-

2-2

00

10

01

32

360

7-1-

20

01

70

42

361

0-1-

10

02

00

32

3

Page 60: Plant Genetic Resources newsletter

58 Plant Genetic Resources Newsletter, 2000, No. 123

landraces originated, as the highest percentage (10%) oflandraces collected in this region expressed resistance to barleypowdery mildew. In addition, line 441-1-1, which possessesresistance to all powdery mildew isolates used in this study,originates from landraces collected in this area.

Based on the results of this study, the barley landraceswhich will be collected in future germplasm collecting missionsin the Marsa Matrruh region should have high levels of powderymildew resistance. Organizing collecting expeditions in Egypt ishighly recommended because barley landraces in North Africaare subject to genetic erosion due to drought and desertification(Perrino et al. 1986; Damania 1988).

Isolates used in this experiment had virulency to all themajor resistance genes currently found in Europe. Therefore, itcan be concluded that line 441-1-1 is resistant to all the majorvirulence genes present in populations of powdery mildew inEurope. The distribution of infection types indicates the mini-mum number of genes involved because different genes forresistance may elicit a different reaction type. Based on thisassumption, it may be concluded that line 441-1-1 may havemany genes for resistance. This line should be used in barleybreeding programmes as a new and very valuable source ofresistance to powdery mildew. The frequency of powdery mil-dew resistant landraces to all isolates of powdery mildew in thepresent study was less than 1%, which is smaller or similar tothe findings of other studies (Honecker 1938; Nover andLehmann 1973; Czembor 1976, 1999; Czembor et al. 1979;Negassa 1985; Lehmann and von Bothmer 1988; Leur et al. 1989;Jørgensen and Jensen 1997; Czembor and Johnston 1999;Czembor and Czembor 1999a, 2000). Divergences may relate todifferences in methods and isolates of powdery mildew used toscreen landraces for resistance in the different studies.

The presence of unknown genes alone or in combinationwith specific ones was postulated to be present in 10 lines. Twodifferent resistance alleles Mlat and Mla7 were postulated to bepresent in the lines. The most common resistance allele in thetested lines was Mla, found in nine (82%) of the tested lines.Allele Mla7 was present in line 476-2-2 together with an un-known gene or genes. These findings are in line with the factthat virulence to these genes is common in the North Africanmildew population (Yahyaoui et al. 1997). The presence in barleylandraces of a high number of genes different from the majorresistant genes used in Europe agrees with findings in otherstudies (Honecker 1938; Nover and Lehmann 1973; Czembor1976, 1999; Czembor et al. 1979; Negassa 1985; Lehmann andvon Bothmer 1988; Leur et al. 1989; Jørgensen and Jensen 1997;Czembor and Johnston 1999; Czembor and Czembor 1999a,2000).

New genes for resistance to barley powdery mildew areneeded. In the 20th century approximately 40 alleles for race-specific resistance to powdery mildew, either alone or in combi-nation, have been used in Europe since the first gene, Mlg, wasintroduced on a large scale in the 1930s in Germany. The mostcommon resistance genes used by barley breeders were Mla6,Mla7, Mla9, Mla12 and Mla13 belonging to the Mla locus and theresistance alleles Mlk, Mlg, MlLa, Mlh and Mlra (Brown andJørgensen 1991; Jørgensen 1992b, 1994; Czembor and Czembor

1998, 1999b). These genes have been used in approximately 700cultivars. However, virtually all these genes are gradually over-come by virulent races within four to five years when cultivarscontaining them are grown on a large acreage (Czembor andGacek 1987, 1995; Jørgensen 1992b, 1994; Wolfe and McDermott1994). This occurs because E. graminis f. sp. hordei is able todevelop new races which rapidly spread across Europe on sus-ceptible barley cultivars.

A high level of pathogenic variability in local populationshas been demonstrated in many studies (Limpert 1987;Hovmøller and Østergård 1991; Huang et al. 1995; Müller et al.1996). What is more, 28 alleles for resistance to powdery mildeware closely linked or allelic. This limits the possible number ofgene combinations in breeding new barley cultivars (Czemborand Gacek 1990, 1996; Brown and Jørgensen 1991; Czemborand Czembor 1998, 1999b).

The use of genes originating from landraces for resistance topowdery mildew should be a relatively easy task as there shouldbe no problems of sterility or other abnormalities that wouldoccur when mutants or some wild barley are used (Burdon andJarosz 1989; Jørgensen 1994). A good example of this is theintroduction of Mlo resistance into modern European barleycultivars. All 25 different mlo alleles, with the exception of mlo11,were obtained by mutagenesis. However, almost all barley culti-vars with mlo resistance have the same allele mlo11, which origi-nated from the Ethiopian landrace L92 (Jørgensen 1992a, b,1994; Schwarzbach 1997)

Tests performed on seedlings for powdery mildew resistanceare usually sufficient for the needs of breeders and pathologists.However, these tests do not necessarily predict the resistance ofthe adult plant (Brown and Jørgensen 1991; Jensen and Jørgensen1991; Jensen et al. 1992; Czembor and Czembor 1998, 1999b). Thenew sources of resistance to powdery mildew in barley landracesfrom Egypt, identified in this study, confer resistance against all,or at least to a large number, of the powdery mildew virulencegenes present in Europe. Therefore, they can make a significantcontribution to the diversity of the powdery mildew resistancegenepool available to barley breeders.

AcknowledgementsThe author thanks Drs J. Valkoun and S. Ceccarelli, ICARDA forkindly providing seed samples of barley landraces from Egypt,Dr H.J. Schaerer, ETH, Switzerland for the powdery mildewisolates and Dr L. Munk, Royal Agricultural and VeterinaryUniversity, Denmark for the Pallas near-isogenic lines.

ReferencesAboElenein, R.A., E.T. Kishk and A.M. Abd El Shafi Ali. 1995.

Germplasm needs critical for arid lands of Egypt. Diversity11:52-53.

Batanouny, K.H. 1995. Loss of biological diversity in Egypt avital concern. Diversity 11(1-2):51-52.

Biffen, R.K. 1907. Studies on the inheritance of disease resistance.J. Agric. Sci. 2:109-128.

Brown, J.K.M. 1996. Fungicide resistance in barley powdery mil-dew: from genetics to crop protection. Pp. 259-267 in Euro-pean and Mediterranean Cereal Rust and Powdery MildewsConference (G.H.J. Kema, R.E. Niks and R.A. Daamen, eds.)Lunteren, the Netherlands.

Brown, J.K.M. and J.H. Jørgensen. 1991. A catalogue of mildew

Page 61: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 59

resistance genes in European barley varieties. Pp. 263-286 inIntegrated Control of Cereal Mildews: Virulence Patterns andTheir Change (J.H Jørgensen, ed.). Risø National Laboratory,Roskilde, Denmark.

Brown, L.R. and H. Kane. 1994. In Full House (L. Starke, ed.).W.W. Norton and Company, London.

Brush, S.B. 1992. Reconsidering the green revolution: diversityand stability in cradle areas of crop domestication. HumanEcol. 20(2):145-167.

Burdon, J.J. and A.M. Jarosz. 1989. Wild relatives as sources ofdisease resistance. Pp. 280-296 in The Use of Plant GeneticResources (A.H.D. Brown, O.H. Frankel, D.R. Marshall andJ.T. Williams, eds.) Cambridge University Press, Cambridge,UK.

Ceccarelli, S., S. Grando and J.A.G. van Leur. 1987. Geneticdiversity in barley landraces from Syria and Jordan. Euphytica36:389-405.

Ceccarelli, S., S. Grando and J.A.G. van Leur. 1995. Barleylandraces of the Fertile Crescent offer new breeding optionsfor stress environments. Diversity 11:112-113.

Czembor, H.J. 1976. Sources of resistance of barley to Erysiphegraminis f. sp. hordei. Hod. Rosl. Aklim. Nas. 20:467-490.

Czembor, J.H. 1999. Resistance to powdery mildew in barleylandraces from Tunisia. Plant Breed. Seed Sci. 43(2):49-63.

Czembor, J.H. and H.J. Czembor. 1998. Powdery mildew resis-tance in cultivars of spring barley from Polish Register. PlantBreed. Seed Sci. 42(2):87-99.

Czembor, J.H. and H.J. Czembor. 1999a. Resistance to powderymildew in barley landraces collected from Jordan. Plant Breed.Seed Sci. 43(2):65-80.

Czembor, J.H. and H.J. Czembor. 1999b. Powdery mildew resis-tance in cultivars of winter barley from Polish Register. PlantBreed. Seed Sci. 43(1):65-75.

Czembor J.H. and H.J. Czembor. 2000. Powdery mildew resis-tance in selections from Moroccan barley landraces.Phytoparasitica 28(1):65-78.

Czembor H.J. and E. Gacek. 1987. Investigations on the methodsof an increase of the stability of genetic resistance of barley topowdery mildew and other diseases. Biul. IHAR 163:25-32.

Czembor, H.J. and E. Gacek. 1990. Selected problems of thedisease resistance breeding of cereals. Biul. IHAR 173-174:53-62.

Czembor, H. J. and E.S. Gacek. 1995. Systems for increasingdurability of disease resistance in cereals. Pp. 39-48 in Pro-ceedings of Second Symposium on Plant Resistance to Dis-eases, Pests and Unfavorable Environmental Conditions (E.Arseniuk, T. Góral and P.C. Czembor, eds.). IHAR Radzików,Poland.

Czembor, H.J. and E.S. Gacek. 1996. The use of cultivar andspecies mixtures to control diseases and for yield improve-ment in cereals in Poland. Pp. 177-184 in Integrated Controlof Cereal Mildews and Rusts: Towards Co-ordination ofResearch Across Europe (E. Limpert, M.R. Finckh and M.S.Wolfe, eds.) Kluwer, Dordreccht, the Netherlands.

Czembor, H.J., E.S. Gacek and M.M. Kudla. 1979. Sources ofresistance to barley mildew Erysiphe graminis f. sp. hordei.Hod. Rosl. Akl. Nas. 23(6):337-355.

Czembor, J.H. and M.R. Johnston. 1999. Resistance to powderymildew in selections from Tunisian barley landraces. PlantBreed. 118(6):503-509.

Damania, A.B. 1988. Sampling cereal diversity in Morocco. PlantGenet. Resour. Newsl. 72: 29-30.

Damania, A.B. and J. Valkoun. 1997. Linkages between modernplant breeding and the origins of agriculture and crop domes-tication in the Near East explored. Diversity 13 (2-3):5-7.

FAO. 1996. World Food Summit, Chap. 9: Role of research inglobal food security and agricultural development. <http://www.fao.org/wfs/final/e/volume2/t09a-e.htm>

Flor, H.H. 1956. The complementary genetic systems in flax andflax rust. Adv. Genet. 8:29-54.

Gacek, E. 1992. Resistance of powdery mildew (Erysiphe graminisDC) and other cereal pathogens to systemic fungicides. Biul.IHAR 184:31-44.

Hammer, K., H. Knupffer, L. Xhuveli and P. Perrino. 1996.Estimating genetic erosion in landraces – two case studies.Genet. Res. Crop Evol. 43(4):329-336.

Harlan, J.R. 1995. Agricultural origins and crop domestication inthe Mediterranean region. Diversity 11:14-16.

Honecker, L. 1938. Über die physiologische Spezialisierung desGerstenmeltaues als Grundlage für die Immunitetszüchtung.Züchter 10:169-181.

Hovmøller, M.S., H. Østergård. 1991. Mildew populations inrelation to selection and recombination. Pp. 115-122 in Inte-grated Control of Cereal Mildews: Virulence Patterns andtheir Change (J.H. Jørgensen, ed.) Risø National Laboratory,Roskilde, Denmark.

Huang, R., J. Kranz and H.G. Welz. 1995. Virulence gene fre-quency change in Erysiphe graminis f. sp. hordei due to selec-tion by non-corresponding barley mildew resistance genesand hitchhiking. J. Phytopathol. 143:287-294.

ICARDA. 1998. ICARDA Annual report 1997. ICARDA, Aleppo,Syria.

IPGRI. 1999. Diversity for development: the new strategy of theInternational Plant Genetic Resources Institute. IPGRI, Rome,Italy.

Janasz, A. 1893. Description of a farm in the Kingdom of Polandcultivated chiefly for the production of seeds of improvedagricultural crops - the world’s Colombian exposition atChicago. Chicago, USA.

Jensen, H.P., E. Christensen and J.H. Jørgensen. 1992. Powderymildew resistance genes in 127 northwest European springbarley varieties. Plant Breed. 108:210-228.

Jensen, H.P., J.H. Jørgensen. 1991. Resistance to powdery mildewin spring barley varieties and their distribution in Denmark1977 to 1989. Pp. 257-262 in Integrated Control of CerealMildews: Virulence Patterns and Their Change (J.H.Jørgensen, ed.) Risø National Laboratory, Roskilde, Denmark.

Jensen, N.F. 1988. Plant breeding methodology. John Wiley andSons, New York, USA.

Jørgensen, J.H. 1992a. Discovery, characterization and exploita-tion of Ml-o powdery mildew resistance in barley. Euphytica63:141-152.

Jørgensen, J.H. 1992b. Genes for powdery mildew reaction. BarleyGenet. Newsl. 22:110-131.

Jørgensen J.H. 1994. Genetics of powdery mildew resistance inbarley. Crit. Rev. Plant Sci. 13:97-119.

Jørgensen, J.H. and H.P. Jensen. 1997. Powdery mildew resis-tance in barley landrace material. I. Screening for resistance.Euphytica 97: 227-233.

Kølster, P., L. Munk, O. Stølen and L. Løhde. 1986. Near-isogenicbarley lines with genes for resistance to powdery mildew.Crop Sci. 26:903-907.

Lehmann, L. and R. von Bothmer. 1988. Hordeum spontaneum andlandraces as a gene resource for barley breeding. Pp. 190-194in Cereal Breeding Related to Integrated Cereal Production(M.L. Jorna and L.A.J. Slootmaker, eds.) Pudoc, Wageningen,The Netherlands.

Leur, van J.A.G., S. Ceccarrelli and S. Grando. 1989. Diversity fordisease resistance in barley landraces from Syria and Jordan.Plant Breed. 103:324-335.

Limpert, E. 1987. Barley mildew in Europe: evidence of wind-dispersal of the pathogen and its implications for improveduse of host resistance and of fungicides for mildew control.Pp. 31-33. in Integrated Control of Cereal Mildews: Monitor-ing the Pathogen (M.S. Wolfe and E. Limpert, eds.) MartinusNijhoff, Dordrecht/Boston.

Madeley, J. 1996. Yours for food: plant genetic resources andfood security. <http://carryon.oneworld.org/aprodev/yours1.htm>.

Madkour, M.A. and A. Abou-Zeid. 1995. Egypt plans for theestablishment of a coordinated national plant genetic re-sources unit. Diversity 11:55

Mains, E.B. and S.M. Dietz. 1930. Physiologic forms of barleymildew, Erysiphe graminis hordei Marchal.Phytopathol.20:229-239.

Molina-Cano, J.L., C. Gomez-Campo and J. Conde. 1982. Hor-deum spontaneum C. Koch as a weed of barley fields in Mo-rocco. Z. Pflanzenzuecht. 88:161-167.

Molina-Cano, J.L., P. Fra-Mon, G. Salcedo, C. Aragoncillo, F.Roca de Togores and F. Garcia-Olmedo. 1984. Morocco as apossible domestication center for barley: biochemical and

Page 62: Plant Genetic Resources newsletter

60 Plant Genetic Resources Newsletter, 2000, No. 123

agromorphological evidence. Theor. Appl. Genet. 73:531-536.Molina-Cano, J.L., M. Moralejo, E. Igartua and I. Romagosa.

1999. Further evidence supporting Morocco as a centre oforigin of barley. Theor. Appl. Genet. 98:913-918.

Molina-Cano, J.L. and J. Conde. 1980. Hordeum spontaneum C.Koch emend Bacht. collected in southern Morocco. BarleyGenet. Newsl. 10:44-47.

Moralejo, M., I. Romagosa, G. Salcedo, R. Sanchez-Monge andJ.L. Molina-Cano. 1994. On the origin of Spanish two-rowedbarleys. Theor. Appl. Genet. 87:829-836.

Müller, K., J.M. McDermott, M.S. Martin and E. Limpert. 1996.Analysis of diversity of plant pathogens: the barley powderymildew pathogen across Europe. Europ. J. Plant Pathol.102:385-395.Negassa, M. 1985. Geographic distribution andgenotypic diversity of resistance to powdery mildew of barleyin Ethiopia. Hereditas 102:113-121.

Nesbitt, M. 1995. Clues to agricultural origins in the northernFertile Crescent. Diversity 11:142-143.

Nover, I. and C.O. Lehman. 1973. Resistenzeigenschaften imgersten- und weizensortiment Gatersleben 17. Prüfung vonsommergersten auf ihr verhalten gegen mehltau (Erysiphegraminis DC. f. sp. hordei Marchal). Kulturpflanze 21:275-294.

Perrino, P., G.B. Polignano, J. Sui-Kwong and M. Khouya-Ali.1986. Collecting germplasm in southern Morocco. Plant Genet.Resour. Newsl. 65:26-28.

Podyma, W. 1997. Strategy for conservation and management ofcrop genetic resources. Pp. 525-533 in Proc. of First Confer-ence on Plant Breeding (M. Ogrodowczyk, ed.) Poznan, Po-land.

Rasmusson, D.C. 1985. Barley. American Society of Agronomy,Crop Science Society of America, Soil Science Society ofAmerica. Madison, Wisconsin, USA.

Schwarzbach, E. 1997. Recent history of the mlo gene. Pp. 98 inProtection of Cereal Crops Against Harmful Organisms, Proc.of a Conference held at Cereal Research Institute (L. Tvaruzek,ed.). Kromeriz Ltd.

Scott, S.W. and E. Griffiths. 1980. Effect of controlled epidemicsof powdery mildew on grain yield of spring barley. Ann.Appl. Biol. 94:209-220.

Valkoun, J., L.D. Robertson and J. Konopka. 1995. Genetic re-sources at the heart of ICARDA mission throughout theMediterranean region. Diversity 11:23-26.

Vavilov, N. 1926. Origin and geography of cultivated plants.Cambridge Univ. Press, Cambridge, UK.

Wendorf, F., R. Schild, A.E. Close, D.J. Donahue, A.J.T. Jull, T.H.Zabel, H. Wieckowska, M. Kobusiewicz, B. Issawi and N.El.Hadidi. 1984. New radiocarbon dates on the cereals fromWadi Kubbaniya. Science 225:645-646.

Wendorf, F., R. Schild, N.El. Hadidi, A.E. Close, M. Kobusiewicz,H. Wieckowska, B. Issawi and H. Haas. 1979. Use of barley inthe Egyptian late paleolithic. Science 205:1341-1347.

Willcox, G. 1995. Archeobotanists sort out origins of agriculturefrom early Neolithic sites in the Eastern Mediterranean. Diver-sity 11:141-142.

Williams, J.T. 1988. Vavilov’s centers of diversity and the conser-vation of genetic resources. Plant Gen. Resour. Newsl. 72:6-8.

Williams, J.T. 1995. Mediterranean genetic resources and thehuman perspective: past and present. Diversity 11:5-6.

Wolfe, M.S. and J.M. McDermott. 1994. Population genetics ofplant pathogen interactions: the example of the Erysiphegraminis-Hordeum vulgare pathosystem. Ann. Rev. Phytopath.32:89-113.

Yahyaoui, A.H., M. Reinhold and A.L. Scharen. 1997. Virulencespectrum in populations of barley powdery mildew patho-gen, Erysiphe graminis f. sp. hordei in Tunisia and Morocco in1992. Plant Pathol. 46:139-146.

Zeven, A.C. 1996. Results of activities to maintain landraces andother material in some European countries in situ before 1945and what we may learn from them. Gen. Res. Crop Evol.43:337-341.

Zeven, A.C. 1998. Landraces: a review of definitions and classifi-cations. Euphytica 104:127-139.

Zine Elabidine, F., H. Mellas and K. Rh’rib. 1995. Erosion ofMorocco’s great genetic wealth cause for concern. Diversity11:82-83.

Zine Elabidine, F., M. Reinhold and A.L. Scharen. 1992. Effect ofbarley powdery mildew infection on barley under simulateddrought stress. Cereal Rusts and Powdery Mildews Bull.20:1-5.

Zohary, D. and M. Hopf. 1988. Domestication of plants in theOld World. Clarendon, Oxford, UK.

Page 63: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 61Plant Genetic Resources Newsletter, 2000, No. 123: 61 - 67

RésuméVariation génotypique dumatériel génétique de tomatedu Kenya (Lycopersiconesculentum L.)Une analyse génotypique systématique dumatériel génétique de tomate du Kenya aété effectuée en vue de définir la variabilitépotentielle sur la base de divers caractèresmorphologiques, agronomiques et bio-chimiques. On a examiné tant les races lo-cales que les cultivars commerciaux dans lebut de faciliter l’amélioration de la tomate.Dans une expérience réalisée en serre en1993 au Centre fédéral de recherche agri-cole (FAL) en Allemagne, 26 races locales detomates et neuf cultivars commerciaux ontété étudiés à l’aide d’un dispositif de blocscomplètement randomisés avec quatrerépétitions. L’analyse de la variance a mon-tré clairement une importante variationpour tous les caractères quantitatifs. Les rac-es locales ont donné en moyenne plus defruits par plante (90) mais ils étaient pluspetits que ceux des cultivars commerciaux(19). Toutefois, les fruits frais provenant decultivars commerciaux ont affiché un poidsmoyen supérieur (56,5 g), à celui des fruitsdes variétés locales (40,6 g en moyenne).Une analyse de corrélation multiple a con-firmé la supériorité des races locales pour lescaractères de qualité des fruits et une associ-ation négative importante entre lesparamètres biochimiques des fruits et lepoids des fruits frais. Des groupementsstructurels limités ont été détectés sur labase d’une analyse en composantes princi-pales. Par cette méthode, les cultivars detomates pour la transformation ou la con-sommation en frais pourraient être nette-ment séparés sur la base des caractères desfruits. Cette analyse a aussi permis de dif-férencier quelques races locales des cultivarscommerciaux, mais l’on soupçonne qu’il ex-iste une phylogénie plus étroite par intro-gression. Parmi les races locales, les typesjaune-cerise se distinguent de tous les au-tres. Sur la base de cette étude, on peutconclure que l’utilisation de races locales plusprolifiques, en termes de nombre de fruitset de rendement effectif en fruits, serait sou-haitable pour une production continue etintensive de tomates.

Genotypic variation of Kenyan tomato (Lycopersiconesculentum L.) germplasmS.G. Agong¹*, S. Schittenhelm² and W. Friedt³¹ Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, PO Box 62000, Nairobi, Kenya.Email: [email protected]² Institute of Crop Science, Federal Agricultural Research Centre, Braunschweig-Völkenrode (FAL), Bundesalle 50, D-38116Braunschweig, Germany³ Institute of Crop Science and Plant Breeding I, Justus-Liebig University Giessen, Ludwig Str. 23, D-3539 Giessen, Germany

SummaryGenotypic variation of Kenyantomato (Lycopersiconesculentum L.) germplasmSystematic genotypic analysis of Kenyantomato germplasm was carried out inorder to delineate potential variabilitybased on various morphological, agro-nomic and biochemical traits. Bothlandraces and market cultivars were ex-amined with a view to facilitating tomatoimprovement. In an experiment con-ducted in 1993 in a glasshouse at the Fed-eral Agriculture Research Centre (FAL),Germany, 26 tomato landraces and ninemarket cultivars were investigated usinga four-replicate completely randomizedblock design. Analysis of variance clearlyillustrated a large variation for all thequantitative traits. Landraces on averageproduced more fruit per plant (90) but ofa smaller size than the market cultivars(19). However, market cultivars had asuperior average fresh fruit weight of56.5 g while the landraces registered onaverage 40.6 g. Multiple correlationanalysis confirmed the superiority oflandraces for traits of fruit quality and astrong negative association betweenfruit biochemical parameters and freshfruit weight. Limited structural group-ings were detected on the basis of a prin-cipal components analysis. Using thismethod, processing and fresh tomatocultivars within the germplasm could beclearly separated on the basis of fruitcharacters. Furthermore, this analysisdistinguished a few landraces from themarket cultivars, although closer phy-logeny through introgression was highlysuspected. Within the landraces, the yel-low-cherry types were distinct from allthe others. On the basis of this study, theuse of more prolific landraces, in terms ofnumber of fruit as well as actual fruityield, would be desirable for intensiveand continuous production of tomatoes.

Key words: Genetic diversity,landraces, Lycopersicon esculentum,phylogenetic relationships, principalcomponents analysis, tomato

ResumenVariación genotípica delgermoplasma del tomatekeniano (Lycopersiconesculentum L.)Se procedió a un análisis genotípicosistemático del germoplasma del tomatekeniano para trazar la variabilidad po-tencial en función de diversos rasgosmorfológicos, agronómicos y bioquími-cos. Se examinaron variedades locales ycultivares comerciales con miras a facili-tar la mejora del tomate. En un experi-mento realizado en 1993 en un invernad-ero del Centro Federal de InvestigaciónAgrícola (FAL) de Alemania, se investi-garon 26 variedades locales de tomates ynueve cultivares comerciales utilizandoun diseño en bloque cuadruplicado com-pletamente aleatorio. El análisis de vari-anza ilustró claramente una amplia vari-ación para todos los rasgos cuantitativos.Las variedades locales produjeron enpromedio más frutos por planta (90),pero de menor tamaño que los cultivarescomerciales (19). No obstante, los culti-vares comerciales alcanzaban un prome-dio más alto de peso del fruto fresco: 56,5g frente al promedio de 40,6 g de lasvariedades locales. El análisis de correl-ación múltiple confirmó la superioridadde las variedades locales en la calidad delfruto y una fuerte asociación negativaentre los parámetros bioquímicos del fru-to y el peso del fruto fresco. Se detectaronagrupaciones estructurales limitadas so-bre la base de un análisis de componentesprincipales. Con este método pudieronsepararse claramente, dentro del germo-plasma, los cultivares de tomate frescos yprocesados, en función de las característi-cas del fruto. Por otra parte, este análisisdistinguió unas pocas variedades localesde los cultivares comerciales, aunquehabía fuertes sospechas de filogenia máspróxima por introgresión. Dentro de lasvariedades locales, los tipos amarillo-cereza eran distintos de todos los demás.Según este estudio, el uso de variedadeslocales más prolíficas tanto en número defrutos como en rendimiento efectivo delfruto sería deseable para la producciónintensiva y continua de tomates.

ARTICLE

IntroductionWith the increasing need of consumers for both quality anddiversity of tomato products, there is a need to extensivelycollect, exploit and evaluate unknown tomato germplasm. To-

mato continues to play a key horticultural role in Kenya and itsimprovement would enhance agricultural productivity, alleviatepoverty and facilitate food security (Agong and Schittenhelm

Page 64: Plant Genetic Resources newsletter

62 Plant Genetic Resources Newsletter, 2000, No. 123

1993; Agong et al. 1997). However, most of the tomatogermplasm in the country is largely undocumented and hasunknown morphological, agronomic and biochemical attributes.Tomato is continuously introduced and grown in all ecologicalzones where arable agriculture is practicable. This tendency hasfuelled the extensive cultivation of various tomato cultivars withunclear documentation (Agong and Schittenhelm 1993).

Systematic study and characterization of tomato germplasmis of great importance for current and future agronomic andgenetic improvement of the crop. Furthermore, if an improve-ment programme is to be carried out evaluation is imperative, inorder to understand the genetic background and the breedingvalue of the available tomatoes.

Morphological, agronomic as well as biochemical param-eters have been widely used in the evaluation of various crops(Rick and Holle 1990; Weber and Wricke 1994; Kaemmer et al.1995). Exploitation of such traits increases our knowledge of thegenetic variability available and strongly facilitates breeding forwider geographic adaptability, with respect to biotic and abioticstresses. In addition, genetic diversity needs to be described andmeasured if it is to be effectively incorporated into breedingstrategies and management of plant genetic resources.

The objective of this study, therefore, was to examine thevariation in tomato germplasm based on the morphological,agronomic and biochemical traits in the landraces, as well asin market cultivars, with an ultimate view of identifying po-tential accessions to improve tomato production. This studyalso aimed to generate data to increase understanding of thephylogeny of the Kenyan tomato germplasm to improve effec-tive management.

Materials and methodsTomato (Lycopersicon esculentum L.) accessions collected fromdifferent parts of Kenya, as described by Agong andSchittenhelm (1993) and Agong et al. (1997), were used in thisstudy. Germplasm was comprised mostly of landraces grownby mainly small-scale farmers over several years, and collectedmainly in the western, central, eastern and coastal regions ofKenya. These areas differ greatly in their agro-ecological andethnic compositions.

Morphological, agronomic and biochemical characteriza-tion of the tomato germplasm was conducted with the hy-pothesis that any differences among the tomato accessionswould be due to the genetic differentiation therein and notsolely to phenotypic plasticity, given the diverse environmen-tal differences between the collection sites (Agong andSchittenhelm 1993). Using a four-replicate randomized com-plete block design, a pot experimental study under a con-trolled glasshouse environment was conducted from Februaryto August 1993 at FAL. For each replicate, 12 plants peraccession were studied. In the experiment 35 accessions wereused, including three of German origin used as a control. Thetomatoes were grown in an organically enriched Völkenrodecompost soil following standard horticultural practice, as de-scribed in Agong et al. (1997). Throughout the experiment,glasshouse temperatures were kept at 15°C at night and 25°Cduring the day and relative humidity maintained at 70%. The

seedlings were pricked out into 26 cm plastic pots four weeksafter emergence and cultured up to bright-red fruit maturity.

The parameters scored during vegetative growth andthrough fruit maturity included: total fruit set (% FS), totalnumber of fruit per plant (NF), fresh fruit weight per plant ofmature fruits (g FFW), plant height at fruit maturity (cm PH),mature fruit dry matter content (% DC), dry fruit weight ofmature fruit (g DFW), mature fruit index (FI), thousand-seedweight (g SW), electrical conductivity (dS/m EC), pH value(pH), Brix (% BRI), titratable acidity (% TA), citric acid (mM/LCA), malic acid (mM/L MA], fructose (% FRU) and glucose (%GL) of mature fruit. Fruit juice extracts from each tomato acces-sion were obtained and stored at -20°C for the chemical analy-sis. From each of the 12 plants per accession in every replication,5 g of juice extract was obtained to provide a 60 g mixed juicesample for use in the biochemical analyses.

Sampling was done carefully to ensure that fruit from all theaccessions was at an approximately similar physiological matu-rity (bright red ripe). Thawed juice samples were vigorouslyshaken and used to determine the electrical conductivity andpH values according to the procedures of Agong et al. (1997). Thepercentage of total soluble solids was measured by the use of asucrose hand refractometer (model HRN-20 of Krüss-W.S.R.Tokyo).

Sugars (glucose and fructose) and organic acids (citric andmalic) were analyzed from the homogenously mixed fruit-juiceextract using high performance liquid chromatography (HPLC)as described by Mitchell et al. (1991). However, the sugars wereextracted in distilled water and not in 60% ethanol. The separa-tion of sugars and organic acids was accomplished on anAminexTM HPX-87H 300 x 7.8 mm column (BIO-RAD, Rich-mond, California) with a degassed 0.05 N H2SO4 as the mobilephase (eluant) at a flow rate of 0.4 ml/min. Sugars were de-tected with a differential refractometer (RI-Detektor, Knauer)and organic acids by UV absorbance at 210 nm. All sampleswere run at a constant temperature of 30°C. Titratable aciditywas determined using the methods of the National CannersAssociation (1968) and Agong et al. (1997).

By using the computer program SAS (SAS Institute Inc.1990) an analysis of variance (ANOVA) was carried out todetermine the significance of differences. Multiple correlationand principal components analysis (PCA) were carried out asdescribed by Broschat (1979) on the standardized and normal-ized mean values of the metric characters and correlationmatrices.

ResultsThe evaluation of the Kenyan tomato germplasm showed alarge and significant variation in the quantitative traits betweenthe accessions (Tables 1a, b). For example, the percentage offruit set was scored at 39.6 and 94.9% for accessions 7 and 24,respectively. The average fresh and dry fruit weights variednotably among the accessions. Most of the landraces gave lowerfresh and dry fruit yields than the market cultivars. On the otherhand, the landraces displayed superiority with respect to bio-chemical parameters. For example, landraces 29, 31 and 33 hadvery high levels of Brix (Table 1b). Electrical conductivity for all

Page 65: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 63

accessions ranged between 6.5 and 9.4 dS/m. Similarly, the fruitjuice extract of the landraces, particularly accessions 33 and 31,had the highest electrical conductivity.

Correlation analysis revealed strong relationships amongthe biochemical traits (Table 2). As expected, the weight of freshfruit was negatively associated to the fruit’s biochemical con-tents. Fresh fruit weight also correlated negatively to fruit num-ber per plant and dry matter content. Positive correlationship,however, was observed between fresh fruit weight and fruitwidth and fruit equatorial length, whereas the number of fruitper plant was negatively correlated to fruit width.

Visual appraisal of the germplasm during the vegetativeand the reproductive phases also showed that the accessionswere fairly variable. For example, observation of the reproduc-

tive parts revealed that accession 33, a red-cherry tomato, had apin flower form whereas the yellow-cherry and the market typesdisplayed the thrum flower structure (Fig. 1). Similarly the fruitforms differed.

The PCA on 15 unrelated but linearly correlated quantitativecharacters indicated that the first three principal componentswere adequate in explaining more than 70% of the phenotypicvariation in the tomato germplasm (Fig. 2). However, no clearclasses could be adduced from the analysis. To some extent itwas possible to distinguish between accessions collected in thewestern, central and coastal areas of Kenya. An approximateclassification is (a) landraces with yellow fruit from the coast,(b) landraces with red-cherry fruit from western Kenya, (c) amixture of coastal, central and western accessions, (d) central

Table 1a. Accession means for yield-related characters in tomato

Accession no. Character†

FS (%) NF FFW (g) DFW (g) FI NS SW (g) DC (%)

2M 89.4 22.0 35.9 3.4 0.96 66 2.53 9.63M 70.3 13.5 92.6 7.2 1.47 160 2.80 7.74M 76.4 24.7 49.4 4.2 1.24 131 3.06 8.55M 90.3 24.6 37.0 2.6 0.86 64 3.27 7.26M 79.0 27.3 39.1 2.9 0.81 58 2.81 7.47M 39.6 10.1 83.3 7.6 1.44 170 2.68 9.18M 74.1 19.4 48.4 4.0 0.92 51 3.42 8.39M 71.3 14.5 65.8 7.5 1.30 151 2.99 11.410M 79.3 17.3 57.0 4.1 1.47 72 3.77 7.111L 69.9 26.5 35.2 2.6 0.87 74 3.23 7.512L 61.8 24.3 31.5 2.7 0.95 69 3.00 8.613L 58.6 27.0 33.0 2.3 0.80 77 3.12 6.914L 78.4 23.0 41.7 3.1 1.17 119 3.21 7.415L 65.8 34.9 30.2 2.3 1.02 87 2.52 7.716L 78.9 27.5 42.7 4.9 1.33 141 2.89 11.517L 82.0 26.8 37.8 2.9 1.26 93 2.86 7.718L 85.5 47.1 16.9 1.4 1.50 107 2.64 8.419L 64.1 33.0 28.8 2.5 1.29 117 2.90 8.620L 72.3 21.2 51.2 3.8 1.34 112 3.01 7.321L 81.7 28.9 35.1 3.0 1.19 80 2.89 8.622L 72.0 72.9 7.9 0.8 1.37 80 1.93 10.523L 79.5 44.0 15.7 1.6 1.33 113 2.41 9.824L 94.9 83.7 14.7 1.3 0.81 42 2.02 8.625L 58.8 30.1 43.5 3.2 1.30 111 1.92 7.426L 80.4 26.3 45.0 3.4 1.25 95 2.89 7.627L 48.9 11.2 82.1 3.4 1.39 200 2.60 4.228L 79.2 25.1 39.0 5.2 1.18 109 3.09 13.429L 89.1 158.9 2.6 0.3 1.04 73 1.11 11.030L 74.6 28.0 33.7 2.4 1.00 67 2.93 7.231L 83.9 115.2 4.3 0.4 1.06 96 1.24 10.432L 79.0 21.0 55.8 4.4 1.07 121 3.32 7.933L 84.9 73.4 8.2 0.8 1.23 91 1.79 10.235GL 98.5 103.1 5.4 0.5 1.03 49 2.00 9.836GL 46.0 9.7 90.7 8.4 1.49 196 2.65 9.237GL 95.7 14.0 80.4 6.4 1.51 119 2.79 8.0X‡ 75.3 37.4 40.6 3.4 1.18 102 2.69 8.6LSD(0.05)§ 10.7 4.6 7.2 0.7 0.08 13 0.17 0.8

† See ‘Methods’ for character definition.‡ X = grand mean.§ LSD(0.05) = least significant difference at 5% level.FS = fruit set; NF = number of fruit per plant; FFW = fresh fruit weight; DFW = dry fruit weight; FI = mature fruit index; NS = no.of seeds per fruit; SW = thousand-seed weight; DC = dry matter content; M = market cultivars; L = landraces of Kenyan origin;GL = landraces of German origin.

Page 66: Plant Genetic Resources newsletter

64 Plant Genetic Resources Newsletter, 2000, No. 123

accessions with large fruit, (e) coastal accessions with large fruitand (f) a mixture of all accessions. Accessions 35, 36 and 37were used for control purposes and do not affect the possiblegenotypic classifications. Market cultivars can be separated intothree categories: 4 and 10; 3, 7 and 9; and 2, 5, 6 and 8. Tomatoesfor processing (2, 5, 6 and 8) could clearly be separated on thebasis of PCA analysis from the fresh market cultivars (3, 4, 7, 9and 10).

DiscussionThe heterogeneity observed in the germplasm is largely attribut-able to the genotypic variability within and between the indi-vidual tomato groups. The variation adduced in this studyconforms with earlier work on the reaction of this germplasm tosalinity stress (Agong et al. 1997). The availability of a base

variable population, for example red and yellow cherry fruitingtomato types, is crucial for any significant progress in cropgenetic advancement. Genetic improvement of tomato shouldnot only depend on the introduction but also on the gradualdevelopment of more closely adapted accessions suited to localconditions (Agong 1995).

On the basis of the morphological, agronomic and bio-chemical data generated in this study on yield and yield-related traits, it is suggested that fruit number per plant andfruit index (length/width), which are closely associated withfresh fruit yield (Table 2), can be used to create a better under-standing of diversity in the tomato for yield and crop improve-ment (Cavicchi and Silvetti 1976). The percentage of fruit setand fruit number per plant were strongly correlated, hence thisrelationship can be useful for effective pruning management

Table 1b. Accession means for biochemical attributes of tomato fruit

Accession Character †

EC pH BRIX (%) TA (%) GL (%) FRU (%) CA (mM/L) MA (mM/L)

2M 7.8 4.1 8.5 0.9 2.3 2.5 46 733M 7.0 4.1 7.9 0.7 2.6 2.6 43 454M 7.3 4.2 7.4 0.6 2.3 2.5 33 565M 7.5 4.1 7.3 0.7 1.8 2.0 44 496M 6.6 4.3 7.0 0.5 2.0 2.2 34 347M 7.5 4.2 8.8 0.7 2.2 2.5 36 428M 7.3 4.4 8.4 0.5 2.0 2.1 32 809M 6.5 4.2 6.8 0.6 1.6 1.7 39 4010M 7.1 4.1 7.6 0.8 2.0 2.0 39 5611L 6.9 4.3 6.8 0.5 2.1 2.2 24 7312L 7.3 4.5 8.4 0.5 2.4 2.5 24 7313L 6.8 4.3 7.3 0.5 2.5 2.7 30 1714L 6.7 4.3 7.3 0.5 2.1 2.2 27 8515L 6.7 4.4 7.2 0.5 2.0 2.1 28 6316L 6.7 4.3 7.0 0.5 2.1 2.2 29 1317L 6.8 4.3 7.4 0.5 2.2 2.5 21 6118L 8.2 4.2 7.4 0.8 2.1 2.3 41 3819L 6.6 4.3 7.4 0.6 2.1 2.3 34 6220L 7.0 4.2 7.1 0.6 2.0 2.2 31 4921L 7.4 4.1 7.6 0.7 2.0 2.2 34 6022L 8.0 4.1 8.4 0.7 1.9 2.3 43 4723L 8.0 4.2 8.3 0.6 1.4 1.4 42 4124L 7.6 4.2 8.0 0.6 2.4 2.6 36 4325L 8.5 4.2 7.3 0.4 2.3 2.5 25 2326L 7.0 4.1 7.0 0.6 2.1 2.3 30 4327L 7.1 4.2 8.4 0.6 2.3 2.5 31 7328L 7.3 4.2 8.1 0.6 2.4 2.5 31 5029L 7.4 4.1 10.5 0.8 2.9 3.6 66 3730L 7.0 4.4 7.4 0.5 1.8 1.9 24 9731L 9.4 4.0 9.0 0.8 2.3 2.7 61 4332L 6.7 4.2 7.2 0.5 1.8 1.9 30 2033L 9.3 3.9 9.5 1.0 2.5 2.9 67 3935GL 8.6 3.8 8.1 1.2 1.4 1.6 62 4536GL 7.5 4.2 8.7 0.6 2.2 2.5 36 1837GL 7.4 4.2 7.1 0.5 1.3 1.6 28 11X‡ 7.3 4.2 7.8 0.6 2.1 2.3 36 48LSD(0.05) § 0.6 0.7 0.8 0.1 0.7 0.7 6 55

† See ‘Methods’ for character definition.‡ X= grand mean.§ LSD(0.05) = least significant difference at 5% level.EC = electrical conductivity; TA = titratable acidity; L = glucose; FRU = fructose; CA = citric acid; MA = malic acid; M = marketcultivars; L = landraces of Kenyan origin; GL = landraces of German origin.

Page 67: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 65

as well as for predicting new selection pro-cedures for crop improvement (Cavicchiand Silvetti 1976).

The pH, total titratable acidity and Brixare vital attributes with respect to the orga-noleptic quality of tomato fruit (Tigchelaar1986; Mitchell et al. 1991; Agong 1995). Onaverage, most landraces had a high numberof biochemical attributes (Table 1b) andthese characteristics are definitely usefulwhere production tends to be for process-ing. Thus landraces may be a valuablesource of germplasm for the improvementof processing tomatoes. The greater com-mercialization of these landraces wouldstrongly motivate and economically em-power small-scale farmers who possess alarge portion of the germplasm.

The lack of definitive classificationbased on the PCA strongly suggested closerphylogenetic relationship amongst the to-mato accessions (Fig. 2). Fruit charactersalone are unlikely to be suitable for evaluat-ing tomato germplasm. The inclusion ofmore morphological, agronomic and bio-chemical traits would be appropriate, espe-cially in a multi-trait selection programmefor the improvement of horticultural char-acteristics (Broschat 1979). However, visualappraisal of germplasm during the vegeta-tive and the reproductive phases confirmedgenotypic variability within the germplasm(Fig. 1).

These visual features were extremelyhelpful in genotypic differentiation of thelandraces, such as the expression of stigmaabove the anther cone in accession 33, sug-gesting the close phylogenetic relationshipof this landrace to the primitive progenitorof tomato (L. esculentum var. cerasiformie),known for its out-breeding tendency (Rick1976; Alcazar-Esquinas 1981). From an evo-lutionary standpoint, if farmers have beenpractising methods which encourage in-tense inbreeding, it is very likely that raregenes will ultimately be expressed, thus ex-posing the wild phenotypes as observed inaccession 33. Modern tomato cultivars com-prise strongly self-pollinating types thathave a limited chance of cross-pollination.

As expected, correlation analyses re-vealed that fresh fruit yield was negativelyassociated to fruit number (Table 2). Thus,if small-scale farmers have been selectingfor higher fruit number they might havedone so at the expense of improving yields.Most tomato landraces had a higher num-Ta

ble

2.

Phe

noty

pic

corr

elat

ions

am

ong

the

quan

titat

ive

trai

ts (

mor

phol

ogic

al,

agro

nom

ic a

nd b

ioch

emic

al p

aram

eter

s) s

tudi

ed

Par

amet

ers

12

34

56

78

910

1112

1314

1516

17

Pla

ntFr

uit

Frui

tFr

esh

Dry

Frui

tFr

uit

See

d/10

00E

C †

TA †

Bri

xFr

ucto

seG

luco

seC

itric

Frui

tM

alic

heig

htse

tfr

uit/

mat

ter

leng

thw

idth

frui

tse

edac

idpH

acid

plan

tco

nten

tw

eigh

t

cm%

no./

g%

cmcm

gdS

/m%

%%

%m

M/L

mM

/Lpl

ant

1–

––

––

––

––

––

––

––

––

20.

11–

––

––

––

––

––

––

––

–3

0.61

**0.

47**

––

––

––

––

––

––

––

–4

0.49

**–0

.15

–0.7

8**

––

––

––

––

––

––

––

50.

35**

0.27

0.41

*–0

.34*

––

––

––

––

––

––

–6

–0.7

9**

–0.4

0*–0

.86*

*0.

74**

–0.4

7**

––

––

––

––

––

––

7–0

.41*

*–0

.50*

*–0

.84*

*0.

74**

–0.3

20.

72**

––

––

––

––

––

–8

0.14

–0.6

1**

–0.4

1**

0.32

–0.0

40.

220.

70**

––

––

––

––

––

90.

73–0

.18

–0.8

3*0.

73**

–0.3

6*0.

79**

0.61

**0.

08–

––

––

––

––

10

0.48

**0.

24**

0.54

**–0

.63*

*0.

28–0

.61*

*–0

.49*

*–0

.20

–0.6

5**

––

––

––

––

11

0.43

**0.

430.

56**

–0.5

5**

0.37

*–0

.59*

*–0

.40*

–0.1

8–0

.46*

*0.

62**

––

––

––

–1

20.

44**

0.01

0.64

**–0

.71*

*0.

38*

–0.5

5**

–0.4

1*–0

.03

–0.6

6**

0.48

**0.

49**

––

––

––

13

0.33

–0.1

60.

43*

–0.2

90.

13–0

.28

–0.2

80.

01–0

.46*

*0.

190.

140.

64**

––

––

–1

40.

21–0

.28

0.22

–0.1

20.

03–0

.09

–0.1

40.

09–0

.28

0.08

–0.0

10.

51**

0.96

**–

––

–1

50.

47**

0.41

0.76

**–0

.68*

*0.

43**

–0.6

9**

–0.5

6**

–0.1

9–0

.67*

*0.

63**

0.88

**0.

69**

0.34

*0.

17–

––

16

0.41

*–0

.36*

–0.3

9*0.

29–0

.28

0.43

**0.

17–0

.04

0.41

*–0

.55*

*–0

.87*

*–0

.31

–0.0

70.

05–0

.76*

*–

–1

70.

47**

0.04

0.15

–0.0

50.

28–0

.25

–0.0

60.

22–0

.22

–0.0

70.

030.

38*

0.36

*0.

270.

02–0

.06

† E

C =

ele

ctric

al c

ondu

ctiv

ity, T

A =

titra

tabl

e ac

idity

.*

Sig

nific

ant a

t P =

0.0

5; *

* sig

nific

ant a

t 0.0

1.

Page 68: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 61

ber of fruit per plant than the market cultivars, confirming theirmostly inferior fresh fruit yield in comparison to the marketcultivars, as evidenced elsewhere (Agong 1995). Over a longtime period the high production of fruit in landraces can sub-stantially benefit urban and peri-urban communities. Thuslandraces can effectively be utilized under intensive and con-tinuous tomato production systems.

Most of the biochemical characters were negatively corre-lated to fresh fruit yield (Table 1b). Therefore, a breedingprogramme would sacrifice the larger fruit to obtain better qual-ity, particularly when the main objective is to improve theprocessing quality (Agong et al. 1997). Electrical conductivity,Brix [%], pH value and total titratable acidity are used as criteriato judge the organoleptic and processing qualities of tomatoand, therefore, require inclusion into breeding programmes(Mitchell et al. 1991; Agong et al. 1997).

To conclude, based on current data, Kenyan tomatolandraces are found to be suitable for production systemswhere processing is the commercial objective. Furthermore,due to their ability to produce a high quantity of fruit overtime, their usefulness for improving tomato production underintensive and continuous systems cannot be ignored. How-ever, modern cultivars produce higher fruit yield and willremain equally important for tomato improvement. In addi-tion, due to the ever increasing rate at which tomato is intro-duced, there is a need to develop a reliable, faster and moreaffordable cultivar characterization procedure in order to safe-guard small-scale producers.

AcknowledgementsThis work was accomplished with the help of a financial grantfrom the German Academic Exchange Service (DAAD) to S.G.

Fig. 1. Differentiation of the landraces from the market cultivars based onflower and fruit forms. Stigma protrusion from, and enclosure within, theanther cone as seen in ‘Nyaluo’ (a) and ‘Moneymaker’ (b) respectively.Diversity in fruit forms: ‘Moneymaker’ (c), ‘Cal J’ (d), Tindi (e) and‘Nyanyandogo’ (f).

Fig. 2. Plot of the three principal components in determining the genotypic relatedness of the tomatoes based on fruit quantitative characters. g = StandardKenyan tomato accessions; ? = West Kenyan tomato accessions; h= Central Kenyan tomato accessions; 6 = East/coastal Kenyan tomato accessions.

a b

c d

e f

Page 69: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 67

Agong. The authors also wish to thank Mr E. Sommer, Mr B.Arnemann and Mrs C. Methner for their unfailing technicalsupport.

ReferencesAgong, S.G. 1995. Collection and evaluation of Kenyan tomato

landraces with special reference to salt and drought tolerance.Thesis, Justus-Liebig-Univ., Giessen.

Agong, S.G., S. Schittenhelm and W. Friedt. 1997. Assessment ofsalt tolerance in the Kenyan tomato germplasm. Euphytica95:57-66.

Agong, S.G. and S. Schittenhelm. 1993. Collection of Lycopersiconesculentum germplasm in Kenya. Plant Genet. Resour. Newsl.96:51-54

Alcazar-Esquinas, J.K. 1981. Genetic resources of tomatoes andwild relatives. International Board of Plant Genetic Resources,Rome, Italy.

Broschat, T.K. 1979. Principal component analysis in horticul-tural research. Hortscience 14:114-117.

Cavicchi, S. and E. Silvetti. 1976. Yield in tomato. I. Multipleregression between yield and yield components. Genet. Agric.30:293-313.

SAS Institute Inc. 1990. Version 6 SAS/STAT User’s Guide. Vol.I and II. Cary, NC.

Kaemer, D., K. Weising, B. Beyermann, T. Börner, J.T. Epplen andG. Kahl. 1995. Oligonucleotide fingerprinting of tomato DNA.Plant Breed. 114:12-17.

Mitchell, J.P., C. Shennen, S.R. Grattan and D.M. May. 1991.Tomato fruit yields and quality under water deficit andsalinity. J Amer. Soc. Hort. Sci. 116:215-221.

National Canners Association. 1968. Laboratory manual for foodcanners and processors, Vol. II. AVI Publishing Company,Westport, Conneticut, USA.

Rick, C.M. 1976. Tomato. Pp 268-273 in Evolution of Crop Plants(N.W. Simmonds, ed.). Longman, London, UK.

Rick, C.M. and M. Holle. 1990. Andean Lycopersicon esculentumvar. cerasiformie: Genetic variation and its evolutionary signifi-cance. Econ. Bot. 44:69-78.

Tigchelaar, E.C. 1986. Tomato breeding. In Breeding of VegetableCrops (M.J. Basset, ed.). Avi Publishing Company, Westport,Conneticut, USA.

Weber, W.E. and G. Wricke. 1994. Genetic markers in plantbreeding. In Advances in Plant Breeding. J. Plant Breed, Suppl.16.

Page 70: Plant Genetic Resources newsletter

68 Plant Genetic Resources Newsletter, 2000, No. 123 Plant Genetic Resources Newsletter, 2000, No. 123: 68 -77

RésuméEvaluation de l’aptitude du lupin(Lupinus L.) à fixer l’azoteOn a testé des obtentions de lupin (Lupi-nus L.) d’origines différentes (N=1050),provenant de la collection de l’InstitutN.I. Vavilov, en vue d’établir leur apti-tude à fixer l’azote. On a utilisé trois trait-ements: 1) sans inoculation des semencesavec des souches industrielles russes deBradyrhizobium sp.(Lupinus) etl’application d’azote minéral (témoin), 2)avec inoculation des semences avecBradyrhizobium lupini (N biologique), et3) avec une application d’azote minéral(N minéral). Les résultats obtenus ontmontré les différentes obtentions de lu-pin à forte aptitude à fixer l’azote, lessouches bactériennes des nodosités trèsactives, et les symbioses complémen-taires de plantes et de bactéries pouvantmieux accumuler l’azote atmosphérique.On s’appuie sur ces résultats pour exam-iner des aspects de la diversité des lupinset proposer des programmes de sélec-tion des lupins pour une fixation symbi-otique de l’azote à haute intensité.

Evaluation of the biological nitrogen-fixing ability oflupin (Lupinus L.)B.S. Kurlovich1�, L.T. Kartuzova1, B.M. Cheremisov1, T.A. Emeljanenko1,I.A. Tikhonovich2, A.P. Kozhemyakov2 and S.A. Tchetkova2

1 N.I. Vavilov Institute of Plant Industry, 190000, B. Morskaya str. 44, St. Petersburg, Russia.Present address (B.S.K.): Leppälaaksontie 5, as 1. 52420, Pellosniemi, Finland. Tel: +358 4051-386572 Research Institute for Agricultural Microbiology, 189620, St. Petersburg-Pushkin 8, Russia

SummaryEvaluation of the biologicalnitrogen-fixing ability of lupin(Lupinus L.)Accessions of lupin (Lupinus L.) with dif-ferent origins (N=1050), drawn from theN.I. Vavilov Institute collection, weretested to reveal their nitrogen-fixing abil-ity. Three treatments were used: (1)without inoculation of seed with Russianindustrial strains of Bradyrhizobium sp.(Lupinus) and mineral nitrogen applica-tion (control), (2) with seed inoculationwith Bradyrhizobium lupini (biological N),and (3) with an application of mineralnitrogen (mineral N). The results ob-tained demonstrated the different acces-sions of lupin with high nitrogen-fixationability, the most effective nodule bacteriastrains, and the complementary symbio-ses of plant and bacteria best able to accu-mulate nitrogen from the atmosphere.The results are used to discuss aspects oflupin diversity and suggest programmesfor lupin selection for high-intensity sym-biotic nitrogen fixation.

Keywords: Bradyrhizobium sp.(Lupinus), breeding, lupin diversity,Lupinus L., nitrogen fixation

ResumenEvaluación de la capacidad delaltramuz (Lupinus L.) para lafijación biológica de nitrógenoSe realizaron pruebas con accesiones dealtramuz (Lupinus L.) de diversos orí-genes (N=1050), tomadas de la coleccióndel Instituto N.I. Vavilov, para observarsu capacidad de fijación de nitrógeno. Seutilizaron tres tratamientos: 1) sin inocu-lación de semilla con variedades industri-ales rusas de Bradyrhizobium sp. (Lupi-nus) y aplicación de nitrógeno mineral(control), 2) con inoculación de semillacon Bradyrhizobium lupini (N biológico),y 3) con una aplicación de nitrógeno min-eral (N mineral). Los resultados obteni-dos pusieron de manifiesto las diferentesaccesiones de altramuz con alta capacidadde fijación de nitrógeno, las variedadesde bacterias nodulares más efectivas y lassimbiosis complementarias de planta ybacteria más aptas para acumular nitró-geno de la atmósfera. A partir de losresultados se considera la diversidad delaltramuz y se proponen programas deselección de altramuz con miras a unaalta intensidad de fijación simbiótica denitrógeno.

ARTICLE

IntroductionThe genus Lupinus L. has hundreds of species (Cowling 1994;Gladstones 1974, 1998), divided by origin into two clear groups(Kurlovich 1988; Kurlovich et al. 1995): one from the Mediterra-nean (subgen. Lupinus), and the other from America (subgen.Platycarpos (Wats.) Kurl.). The species are highly variable for themajority of characters, including their ability to fix nitrogen,which is determined by the efficiency of interaction between thelupin plants and the different nodule bacteria strains.

The Lupinus genus is nodulated by the soil microorganismBradyrhizobium sp. (Lupinus). Bradyrhizobia are encountered asmicrosymbionts of other leguminous crops (Argyrolobium, Lotus,Ornithopus, Acacia) of Mediterranean origin (Allen and Allen 1981;Jordan 1982; Legocki et al. 1997; Howieson et al. 1998). Manyaspects of the Lupinus-Bradyrhizobium sp. (Lupinus) symbiosis havenot been well investigated, especially from the point of view ofgenetic resources. The purpose of our work was to look at thediversity of lupin accessions in terms of biological nitrogen-fixing ability, and relate them to the most effective nodulebacteria strains and complementary symbioses (plants andnodule bacteria strains) for nitrogen fixation.

Materials and methodsThe material for research was made up of 1050 accessions fromthe N.I. Vavilov collection representing four species of lupinwith various ecogeographical origins from the Mediterraneanand 16 species from America. The principal accessions andspecies are specified in the tables in the Results section.

Three treatments were used in evaluating the accessions:1. Without inoculation of seed with Bradyrhizobium sp. (Lupinus)and mineral nitrogen application (control).2. Seed inoculation with Bradyrhizobium lupini (biological N).Three widely used industrial Russian strains of Bradyrhizobium sp.(Lupinus) – 363A, 367 and 375A – produced in the All-RussianResearch Institute for Agricultural Microbiology were used forinoculation.3. Mineral nitrogen application (mineral N). For the mineral Ntreatment, ammoniac saltpeter was introduced at a rate of 60 kgactive ingredient per hectare.

The research was conducted between 1988 and 1998 in thefield at Pavlovsk Experimental Station of the N.I. Vavilov Insti-tute of Plant Industry, 20 km from St. Petersburg. The soil of the

Page 71: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 69

plot was a derno-podzolic acid loam that had not been fertilizedfor several years. Accessions were tested at the same density of30 plants/m2 under standardized conditions (Kurlovich et al.1990, 1995, 1997). Nitrogenase activity was determined usingInstitute for Agricultural Microbiology recommendations(Alisova and Chunderova 1982).

ResultsGrowth and development of plantsInoculating seed with Bradyrhizobium sp. (Lupinus) did not in-crease germination or change the duration of the vegetativeperiod. However, distinctions between plants of control variant(without inoculation with Bradyrhizobium lupini and mineral Napplication) and variant with inoculation were detected early.In the first case the colouring of lower leaves of plants wasyellow, and higher leaves were yellow-green. In variants withapplication of biological and mineral N, all leaves were brightgreen. These colour differences were maintained up to the flow-ering phase. Subsequently, plants of the control acquired moregreen colouring, but colour intensity was much less than ininoculated plants.

Root nodule formationWhite lupin (Lupinus albus L.)All control accessions had plants without nodules. More often,these plants were weaker and stunted. However, most of thetreated plants had from one to seven large (maximum diam. 20mm), dense and uneven nodules, located singly, on the sideradicals. There were some exceptions to this pattern. On one (k-507 from Egypt), nodules were also detected on the centralradical and the side radicals; their size reached 23-28 mm indiameter. A large number of nodules (up to 45) were observed onplants of three samples (k-1930 from Sudan, and k-2589 and2617 belonging to West-European agrogeotype); however, theirsize did not exceed 8 mm.

The inoculation variant differed sharply in all morphologicalparameters from the control. Inoculated plants had a greaternumber of smooth nodules (2-7 mmdiam.) placed evenly on all root sys-tems. Number of nodules varied indifferent plants and samples, but inall cases there were many.

Narrow-leafed lupin (L.angustifolius L.)Accessions of this species also hadthe most nodules when inoculatedwith Bradyrhizobium sp. (Lupinus).Nodules were larger, placed as cou-plings and half-couplings.

Yellow lupin (L. luteus L.)Inoculated accessions from Portu-gal, particularly k-2290 and k-2292, had a large number of nod-ules. Figure 1 shows the root sys-tems with nodules in the wild form

of yellow lupin (k-2292 from Portugal), compared with the rootsof a commercial variety (‘Akademichesky 1’) under inoculationwith Bradyrhizobium sp. (Lupinus). Variety ‘Akademichesky 1’ wasused in our experiment with yellow lupin as control. Of theaccessions without inoculation and with mineral N application,samples k-2290 and k-2292 were the least responsive, and nonodules were formed. In cv. ‘Augy’ from Lithuania, noduleswere densely located on all main radical roots. Nodules in thecontrol were more protuberant than in experimental variants.

Lupinus pilosus Murr.In the control the uniform distribution on the root system ofseparate nodules of a very large size (up to 15 mm) was charac-teristic. In the inoculated experimental variant, nodules werepinker and frequently located on a main root.

Species of lupin from AmericaThe majority of investigated species of lupin from America hadnodules on the root systems. The exceptions were three species(L. affinis Agardh, L. barkeri Lindl. and L. succulentus Dougl.), inwhich on the control the root system was poorly branched andwithout nodules. Depending on the species of lupin and sourceof N, nodules had unequal size, form and colour. The majorityof species grew round nodules that surrounded main and sideradicals, their sizes varied depending on species. Thus, on plantsof L. paniculatus Desr. the half-couplings and couplings reached20 mm. More often they were elastic, almost smooth thicken-ings, but sometimes protuberant. Plants of L. douglassii Agardhhad marked, comblike couplings. The colour of nodules changeddepending on species of lupin and treatments. Nodules oc-curred on all root systems (L. mutabilis Sweet.), or mainly on themain radical (L. pubescens Benth), or only on the side radicals (allspecies on mineral N treatment). In plants that received themineral N, the root systems were strongly advanced. Howeverthe presence of ammoniac saltpeter decelerated development ofnodules. They were fewer and placed mainly on the side radi-cals, more often as a bead-necklace formation.

Fig. 1. Root systems with nodules of the wild form of yellow lupin k-2292 from Portugal(right), compared with the roots of commercial variety ‘Akademichesky 1’ (left) underinoculation with Bradyrhizobium sp. (Lupinus).

Page 72: Plant Genetic Resources newsletter

70 Plant Genetic Resources Newsletter, 2000, No. 123

Nitrogenase activityOne important parameter in the process of biological nitrogenfixation is the nitrogenase activity (Alisova and Chunderova1982; Kurlovich et al. 1995; Van Kammen 1995). This param-eter changes during the growth and development of plants(Table 1). In healthy plants the nitrogenase activity can berather high up to the phase of green maturity of seed. However

in plants infected with fusarium wilt (e.g. L. angustifolius), nitro-genase activity was sharply reduced in this phase. Nitroge-nase activity is dependent on a number of factors: experimen-tal treatments, species and varieties features (belonging todifferent geotype, ecotype or variety type), the presence ofspontaneous populations of nodulating bacteria or industrialstrains of rhizotorfin. Coefficient of variation (CV, %) of the

Table 1. Intensity of nitrogenase activity in lupin through the stages of development (Mmol C2H4 h-1 plant-1)

Stages of plant development

VIR no. Species Vars., cvs., access. blossoming flowering green maturityof seed

2644 L. albus L. Start 5.91 8.20 4.742603 L. albus L. Druzba 9.39 9.94 18.301981 L. angustifolius L. Nemchinovsky 846 4.89 8.10 0.872949 L. angustifolius L. Danko 8.16 5.77 0.352159 L. mutabilis Sweet. - 49.87 87.21 86.952267 L. ornatus Dougl. - 9.21 11.95 12.80193 L. succulentus Dougl. - 0.06 0.06 0.05

Table 2. Nitrogenase activity in nodules of lupin (at flowering stage) with 375A industrial strain ofBradyrhizobium sp. (Lupinus) bacteria

Nitrogenase activity (Mmol C2H4 h-1 plant-1)

VIR no. Species Access., vars., cvs. Origin Avg. Min. Max. CV (%)

Lupins from Mediterranean (subgen. Lupinus)2644 L. albus L. Start Russia 8.20 2.79 15.69 39.62603 L. albus L. Druzba Ukraine 6.94 2.27 15.60 41.52949 L. angustifolius L. Danko Belarus 5.77 1.46 9.54 15.52868 L. angustifolius L. – France 7.46 1.22 16.52 58.22866 L. angustifolius L. Apendrilon Greece 9.23 0.11 19.54 76.51379 L. angustifolius L. – Russia 13.64 6.49 21.59 44.21980 L. angustifolius L. – Russia 6.05 2.23 19.11 62.11981 L. angustifolius L. Nemchinovsky 846 Russia 8.10 1.94 12.33 56.22664 L. angustifolius L. Timir–1 Russia 7.32 1.80 17.20 61.52956 L. luteus L. Augy Lithuania 93.10 34.58 142.70 45.62298 L. luteus L. Cyt Poland 5.52 0.24 16.82 71.42289 L. luteus L. – Portugal 10.59 0.53 17.84 89.32291 L. luteus L. – Portugal 11.69 9.45 16.46 17.92292 L. luteus L. – Portugal 15.89 2.34 38.14 48.12865 L. luteus L. – Spain 11.53 5.57 18.04 18.22601 L. luteus L. Kopylovsky Ukraine 15.42 4.66 30.06 15.22649 L. luteus L. Foton Ukraine 9.47 0.15 36.69 82.6304 L. pilosus Murr. – Greece 17.16 0.72 43.29 105.1Lupins from America (subgen. Platycarpos (Wats). Kurl.)1572 L. affinis Agardh – Canada 0.09 0.00 0.45 179.32791 L. albococcineus Hort. – USA 8.63 0.19 14.93 55.12543 L. aridus Dougl. – Colombia 13.18 3.19 26.67 52.11385 L. barkeri Lindl. – Mexico 0.09 0.00 0.37 142.71425 L. douglassi Agardh – Mexico 4.03 1.02 9.90 80.9113 L. elegans H.B.K. – Mexico 21.39 2.13 66.64 86.82110 L. hartwegii Lindl. – Mexico 20.63 2.03 95.66 133.91733 L. micranthus Dougl. – Canada 10.33 1.01 22.03 52.52159 L. mutabilis Sweet. – Peru 87.21 34.00 136.00 42.51387 L. nanus Dougl. – Colombia 8.09 0.75 26.19 97.52267 L. ornatus Dougl. – USA 11.95 0.33 27.41 78.21960 L. paniculatus Dougl. – Canada 39.84 9.24 97.85 64.9208 L. pubescens Dougl. – Ecuador 22.05 6.31 38.78 50.12920 L. subcarnosus Hook – USA 6.89 0.82 14.44 71.5193 L. succulentus Dougl. – USA 0.06 0.00 0.42 225.81954 L. truncatus Nutt. – Mexico 8.46 1.58 19.17 70.0

Page 73: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 71

level of nitrogenase activity ranged in species from 15.1 to255.8% (Table 2).

The highest nitrogenase activity was in L. mutabilis, the low-est in L. succulentus. Large variability of this parameter wasrecorded in the lupin species assessed: in yellow lupin ‘Augy’(k-2956), nitrogenase activity reached 142.70 Mmol C2H4 h-1

plant-1 (Table 2), and in variety ‘Cyt’ (k-2398), belonging to thesame species, it changed within the limits of 0.24-16.82 MmolC2H4 h-1 plant-1. The high nitrogenase activity of variety ‘Augy’promoted increased accumulation of dry weight of plants(Table 3). The positive correlation between nitrogenase activityand accumulation of dry substance, and sometimes also ofprotein content, has been established for many species oflupin.

Accumulation of green and dry matter and N inplantsThe efficiency of symbiosis is best measured on the accumula-tion in plants of dry matter (DM) and nitrogen. Research hasshown that the application of nodulating bacteria Bradyrhizobiumsp. (Lupinus) in most cases increases the efficiency of plants. Insome samples the increase in the total DM under inoculationwith Bradyrhizobium sp. (Lupinus) bacteria was larger than underapplication of mineral N.

White lupin (L. albus L.)Studied accessions responded differently to inoculation withB. lupini (Table 3). The maximum increase of green and dryweight (6.18 times) was measured in the sample from Greece (k-

Fig. 2. Effect of inoculation of Lupinus angustifolius L. (var. ‘Nemchinovsky 846’ from Russia, and var. ‘Yandee’ fromAustralia) with different strains of Bradyrhizobium sp. (Lupinus).

2864), and the minimum (1.17-1.21 times) in variety ‘Tambovsky86’ from Russia and sample k-682 from former Yugoslavia. Invariety ‘Druzba’ from the Ukraine, in contrast, the total DMunder application of Bradyrhizobium bacteria decreased. Otheraccessions that produced a good increase in crop yield (incomparison with control) when inoculated were: cvs. ‘Start’ (k-2644) from Russia, ‘Olezka’ (k-2980) from Ukraine, accessionsk-2989 and k-3250 from Portugal, ‘El Harrach-1’ (k-3110) fromAlgeria. Among the investigated samples, the greatest total DMin all treatments was from k-507 from Egypt, k-1930 fromSudan and k-2986 from Portugal.

Narrow-leafed lupin (L. angustifolius)Most accessions showed increased plant productivity after ap-plication of B. lupini. The best efficiency was in: cvs. ‘Ladny’ and‘Nemchinovsky 846’, ‘Determinant-2’ (k-3365) and ‘Determi-nant-3’ (k-3366) from Russia, k-3065 from Australia, ‘Apva’ (k-2950), ‘Vika 65’ (k-2954), ‘DG-94’ (k-3351) and ‘DG-95’ (k-3352) from Belarus, wild forms k-3076, k-3079 from Spain, k-3083 from Portugal and k-3093 from Morroco (Fig. 2). So forexample, application of B. lupini to the commercial Russian vari-ety ‘Nemchinovsky 846’ increased the dry matter weight from17.8 to 20.5 g. In this variety also the increase in accumulationof N was revealed (Table 4). In many cases increased plantproductivity after inoculation with B. lupini was more significantthan after application of mineral N. However, inoculation didnot increase productivity of specimens and varieties from Pales-tine (k-288), Greece (k-2866) or of accessions from Australia (k-2632, k-3062).

Page 74: Plant Genetic Resources newsletter

72 Plant Genetic Resources Newsletter, 2000, No. 123

Table 3. Accumulation of dry matter in plants (g/plant) on different backgrounds of nitrogen nutrition

Treatment (DM in g/plant)

VIR no. Species Access., vars., cvs. Origin Control Biol. N Mineral N

Lupins from Mediterranean (subgen. Lupinus)3110 L. albus L. El Harrach–1 Algeria 17.9 26.5 25.2507 L. albus L. – Egypt 30.3 33.6 33.0484 L. albus L. – Ethiopia 30.1 32.9 33.52589 L. albus L. Lublanc France 14.6 16.2 16.02617 L. albus L. – France 14.5 16.3 16.02864 L. albus L. – Greece 15.0 85.1 25.2294 L. albus L. – Palestine 25.1 28.2 28.01602 L. albus L. – Poland 22.6 24.2 24.52623 L. albus L. Line 802–15 Portugal 27.0 29.5 30.02986 L. albus L. 48B Portugal 29.5 32.6 30.02989 L. albus L. – Portugal 19.6 25.9 25.13250 L. albus L. – Portugal 20.1 26.9 27.01596 L. albus L. Snezinka Russia 16.8 18.2 18.52644 L. albus L. Start Russia 15.1 20.9 21.02806 L. albus L. Tambovsky 86 Russia 15.0 15.3 17.31930 L. albus L. – Sudan 30.2 33.6 34.12603 L. albus L. Druzba Ukraine 20.7 20.0 22.52980 L. albus L. Olezka Ukraine 19.6 26.8 25.1682 L. albus L. – Yugoslavia 19.4 19.9 19.52096 L. angustifolius L. Unicrop Australia 16.7 18.5 20.02632 L. angustifolius L. Yandee Australia 16.8 15.9 20.23061 L. angustifolius L. Line 75A/326 Australia 22.5 24.6 25.03062 L. angustifolius L. – Australia 15.0 14.2 22.03064 L. angustifolius L. Line 75A/330 Australia 20.1 23.8 24.03065 L. angustifolius L. – Australia 19.2 23.6 25.02681 L. angustifolius L. Vada 10 Belarus 15.2 20.3 20.02950 L. angustifolius L. Apva Belarus 19.2 22.1 20.02953 L. angustifolius L. Jniven Belarus 17.9 19.5 20.22954 L. angustifolius L. Vika 65 Belarus 19.0 21.0 20.03351 L. angustifolius L. DG–94 Belarus 24.5 27.8 28.03352 L. angustifolius L. DG–95 Belarus 25.6 28.3 28.02866 L. angustifolius L. Apendrilon Greece 2.1 2.1 6.51354 L. angustifolius L. Melkosemianny Latvia 20.5 22.6 24.03093 L. angustifolius L. – Morocco 28.0 32.1 30.53094 L. angustifolius L. – Morocco 26.5 30.1 30.03097 L. angustifolius L. – Morocco 27.5 31.0 32.5288 L. angustifolius L. – Palestine 18.2 16.5 24.22570 L. angustifolius L. Mirela Poland 19.5 24.8 22.32662 L. angustifolius L. Emir Poland 16.8 21.3 20.52801 L. angustifolius L. Mut–1 Poland 22.2 24.6 25.03083 L. angustifolius L. – Portugal 16.2 18.5 19.03084 L. angustifolius L. – Portugal 15.1 17.3 17.03087 L. angustifolius L. – Portugal 17.6 18.5 19.13090 L. angustifolius L. – Portugal 16.3 18.5 18.01981 L. angustifolius L. Nemchinovsky 846 Russia 17.8 20.5 20.82648 L. angustifolius L. Ladny Russia 13.5 17.8 17.23365 L. angustifolius L. Determinant–2 Russia 16.8 20.4 20.03366 L. angustifolius L. Determinant–3 Russia 16.5 19.3 19.53367 L. angustifolius L. Determinant–4 Russia 15.5 18.2 19.03076 L. angustifolius L. – Spain 18.5 22.4 22.03079 L. angustifolius L. – Spain 19.0 23.2 24.83081 L. angustifolius L. – Spain 14.6 16.2 19.03082 L. angustifolius L. – Spain 14.3 16.0 17.21947 L. luteus L. Akademichesky 1 Belarus 16.2 18.52956 L. luteus L. Augy Lithuania 24.2 20.72398 L. luteus L. Cyt Poland 6.6 10.22089 L. luteus L. – Portugal 19.5 17.52291 L. luteus L. – Portugal 13.8 12.62290 L. luteus L. – Portugal 9.7 19.62292 L. luteus L. – Portugal 10.1 20.12865 L. luteus L. – Spain 9.3 13.0

Page 75: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 73

Yellow lupin (L. luteus)The greatest increase of dry matter under inoculation (99%)appeared in wild forms k-2290 and k-2292 from Portugal, andcv. ‘Cyt’ (k-2398) from Poland. ‘Cyt’ also showed an increase inaccumulation of N (Table 4). Figures 3 and 4 show the size of

inoculated plants of the wild form k-2292 from Portugal (Fig. 3),and cv. ‘Cyt’ (k-2398) from Poland (Fig. 4), compared with thecontrol.

However, for cv. ‘Augy’ from Lithuania, and also samples k-2289 and k-2291 from Portugal, the application of the bacterial

Treatment (DM in g/plant)

VIR no. Species Access., vars., cvs. Origin Control Biol. N Mineral N

2869 L. luteus L. – Spain 21.5 16.13070 L. luteus L. – Spain 8.5 12.32000 L. luteus L. T–12 Sweden 18.3 22.42610 L. luteus L. Sojuz Ukraine 16.8 21.82649 L. luteus L. Foton Ukraine 16.6 23.2304 L. pilosus Murr. – Greece 9.9 9.5Lupins from America (subgen. Platycarpos (Wats). Kurl.)1572 L. affinis Agardh – Canada 1.83 4.58 4.642791 L. albococcineus Hort. – USA 8.10 5.52 14.482543 L. aridus Dougl. – Colombia 10.81 6.28 16.391385 L. barkeri Lindl. – Mexico 4.85 3.13 6.321425 L. douglassi Agardh. – Mexico 4.53 3.67 10.90113 L. elegans H.B.K. – Mexico 5.45 6.48 7.802110 L. hartwegii Lindl. – Mexico 9.10 5.52 7.261733 L. micranthus Dougl. – Canada 9.67 6.64 5.862159 L. mutabilis Sweet. – Peru 32.40 27.86 41.751387 L. nanus Dougl. – Colombia 1.52 1.52 3.682267 L. ornatus Dougl. – USA 9.52 6.36 8.901960 L. paniculatus Dougl. – Canada 5.29 4.37 7.55208 L. pubescens Benth. – Ecuador 4.22 3.72 9.912920 L. subcarnosus Hook. – USA 6.83 2.29 8.71193 L. succulentus Dougl. – USA 4.51 5.52 8.941954 L. truncatus Nutt. – Mexico 1.47 1.43 1.56

Table 4. The contents and accumulation of N in lupin plants with different N sources

N content of plants (%) Accumulation of N (mg/plant)

VIR no. Species Access., vars., cvs. Control Biol. Mineral Control Biol. MineralN N N N

Lupins from Mediterranean (subgen. Lupinus)2398 L. luteus L. Cyt 3.90 3.80 257 3892856 L. luteus L. Augy 3.82 3.25 922 6742603 L. albus L. Druzba 3.00 3.06 622 6162644 L. albus L. Start 3.56 3.03 537 5112649 L. angustifolius L. Danko 2.99 2.71 574 5121981 L. angustifolius L. Nemchinovsky 846 2.59 2.60 461 532304 L. pilosus Murr. – 2.47 2.70 244 256Lupins from America (subgen. Platycarpos (Wats). Kurl.)2159 L. mutabilis Sweet. – 2.94 2.46 2.83 953 684 11822543 L. aridus Dougl. – 3.14 3.03 3.32 339 190 5441733 L. micranthus Dougl. – 3.44 3.32 3.52 333 220 2062267 L. ornatus Dougl. – 3.18 3.11 3.47 303 198 3092791 L. albococcineus Hort. – 2.89 3.15 3.05 234 174 4422110 L. hartwegii Lindl. – 2.58 2.32 2.65 235 129 1922920 L. subcarnosus Hook. – 2.45 2.73 2.58 167 171 2241960 L. paniculatus Dougl. – 3.18 3.18 3.07 168 169 232208 L. pubescens Benth. – 3.36 3.40 3.30 142 127 327113 L. elegans H.B.K. – 2.44 2.41 2.85 133 156 2221425 L. douglassii Agardh. – 2.86 – 3.20 130 – 3491385 L. barkeri Lindl. – 2.25 2.50 2.60 109 178 164193 L. succulentus Dougl. – 2.26 2.60 2.73 102 144 2441387 L. nanus Dougl. – 3.20 3.47 2.89 49 53 1061954 L. truncatus Nutt. – 3.12 2.97 3.11 46 43 491572 L. affinis Agardh. – 2.44 2.37 2.46 45 109 114

Page 76: Plant Genetic Resources newsletter

74 Plant Genetic Resources Newsletter, 2000, No. 123

strain 375A did not result in either an increase of dry matter orof N. Despite this, cv. ‘Augy’ had the greatest total DM of allinvestigated samples, both with inoculation of B. lupini andespecially without it.

Lupinus pilosus Murr.For inoculated accession k-304, green and dry weight did notincrease (Table 3), although the contents and accumulation of Ndid increase (Table 4).

Species of lupin from AmericaThese species were unresponsive to application of the nodulat-ing bacteria strains 367A and 375A. Maximum accumulation ofdry matter and N for almost all species from America occurredwith application of mineral N. The exceptions were L. micranthusDougl. and L. hartwegii Lindl., which were unresponsive to bothinoculation with the industrial strain of bacteria, and the appli-cation of mineral N. The greatest amount of accumulated N inall three treatments was in L. mutabilis Sweet. Of interest as sourcematerial for selection for increased nitrogen-fixation ability arethe following species: L. aridus Dougl., L. micranthus Dougl., L. ornatusDougl., L. albococcineus Hort.

In these experiments, also studied was the response of thefodder low-alkaloid multifoliate Washington lupin (L. polyphyllusLindl.) to inoculation with strains of nodule bacteria in purestate and in combination with the biostimulator lentechnin androot diazotrops of the genus Arthrobacter (Table 5). Best resultswere received when inoculating the Washington lupin (cv.‘Truvor’) with nodule bacteria strain 1625. Combining inocula-tion with seed treatment with lentechnin was also found to beefficient. Root diazotrops from Arthrobacter sp. did not showgreat efficiency in this combination.

Discussion and conclusionsAs our research has shown, the evaluation of lupin accessionsfrom different origins under treatments with biological andmineral N is rather effective. As a result of these experiments,the large differences in responses of various species and acces-sions of lupin to inoculation with nitrogen-fixing bacterialstrains of Bradyrhizobium sp. (Lupinus) are revealed. The majority ofinvestigated accessions showed rather high responsiveness toinoculation with commercial strains of Bradyrhizobium sp. Thelow or negative effects of inoculation in some accessions (espe-cially from America) we explain by mismatch of the strains ofbacteria used to plant genotypes. It testifies to the importance ofcreating highly complementary symbiotic pairs (plant and mi-croorganisms), with the purpose of increasing responsiveness ofplants to inoculation.

It is necessary to realize that, without preliminary tests, theuse of preparations of bacteria can be not only ineffective, butalso can have negative results. On the other hand, the carefulselection of varieties of lupin and complementarymicrosymbionts can increase efficiency of plants and fertility ofsoils, and also save expenditures on mineral fertilizers.

One major condition for successful breeding of lupins withhigh nitrogen-fixing ability is the availability of genetically well-investigated and diverse materials, both plants and microorgan-

Fig. 4. Comparativesizes of plants ofyellow lupin cv.‘Cyt’ from Polandinoculated withBradyrhizobiumlupini (right), andcontrol variant (left).

Fig. 3. Comparative sizes of plants of wild form k-2292 fromPortugal (Lupinus luteus L.), inoculated with Bradyrhizobiumlupini (right), and control variant (left).

isms. Until now, more attention in research has been given tothe second component of the symbiosis – nodulating bacteria.Research on increased efficiency of nitrogen fixation is putforward at the expense of selection of leguminous plants(Tchetkova and Tikhonovich 1986; Kurlovich et al. 1997). Fur-thermore, these components of a symbiosis are not equivalent,as the leguminous plant can exist and give good production

Page 77: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 75

without microorganisms, for example with the expense of min-eral fertilizers. However, it is necessary to execute genetic andbreeding research in both directions. The selected prospectiveplant material should pass tests in treatments with the differentstrains of nodulating bacteria, and these new strains need to betested on a rather large set of lupin accessions with differentecogeographical origins. The final stage of these operationsshould be the creation of effective and complementary symbio-ses (variety of plant and strain of bacteria), ensuring high symbi-otic nitrogen-fixing ability.

It is necessary to remark that the selection of lupin wasbegun long before the phenomenon of symbiotic nitrogen fixa-tion was understood. Moreover, in those regions where wildlupin did not grow and was introduced, the natural soil popula-tions of microorganisms very frequently did not contain highlevels of active (and even specific) nodule bacteria. As a result,there was an unconscious selection of genotypes with low nitro-gen-fixing ability. Thus, we now have varieties of lupin thatreact rather poorly to inoculation with bacteria, but are capableof providing a certain level of efficiency without inoculation. Inthis connection, one important problem now is the effectiveselection of bacterial strains suitable for existing commercialvarieties of lupin, and the necessity of further selecting for a highintensity of symbiotic nitrogen fixation.

As an example of a successful solution to this problem therecan be carried out by us selection of the effective strain of bacteria(1625) for the perennial multifoliate fodder variety Washington(Lupinus polyphyllus Lindl.) from America. Given the results pre-sented here, we conclude that efficient cultivation of Washing-ton lupin is possible with highly efficient preparations of nodulebacteria strains, particularly in regions where lupin has not yetbeen cultivated. For each new variety of lupin it is necessary toselect efficient nodule bacteria strains that correspond to thegenotype of the plant.

For creation of valuable genotypes of lupin it is necessary totake into account also the activity of the nitrogenase complex,which varies in the different forms of lupin from 0 to 100 Mmol

Table 5. Effects of nodule bacteria, biostimulator lentechnin (LT), and root diazotrops mizorin (MIZ) on activityof nitrogenase and productivity of fodder (sweet) Lupinus polyphyllus Lindl. (average for 1990–1995).

Treatment Activity of nitrogenase Yield of green mass Mass of seeds(Mkmol C2H4 h

-1 plant-1) (kg/m²) (g/plant)

Control 80 6.8 18.0Strain 1610 172 6.2 21.3Strain 1614 55 6.1 15.2Strain 1625 336 8.5 26.7Strain 1647 166 7.3 23.8

Inoculation + lentechnin (LT) 50 7.0 22.2Strain 1610 + LT 190 5.3 17.6Strain 1614 + LT 30 5.7 22.3Strain 1625 + LT 275 9.1 26.2Strain 1647 + LT 1555 8.3 25.1

Inoculation + mizorin (MIZ) 150 5.1 17.3Strain 1610 + MIZ 540 3.2 22.6Strain 1614 + MIZ 810 4.8 21.3Strain 1625 + MIZ 600 8.9 27.2Strain 1647 + MIZ 330 7.6 22.4

SEM (standard error of mean) 27 0.6 1.2

C2H4 h-1 plant-1, and more. Even among plants of one samplethere is variability of the given parameter (CV from 39.0 to94.17%). Each sample represents a complex population con-sisting of plants with different levels of nitrogen-fixing activity.Selection of prospective plants should consider their levels ofnitrogenase activity and its place in the selection process.Matching of the data on activity of the nitrogenase complexwith parameters of accumulation of dry matter and proteincontent at lupin shows that the correlation between theseparameters is frequently, though not always, significant. Forexample, the variety of yellow lupin ‘Augy’ from Lithuania hasa very high nitrogenase activity (93.10 Mmol C2H4 h-1 plant-1),and the variety ‘Cyt’ from Poland has the lowest activity (5.52Mmol C2H4 h-1 plant-1). As a result, the total dry matter atvariety ‘Augy’ grown without N and without inoculation withnodulating bacteria is 24.2 g/plant, and for variety ‘Cyt’ only 6g/plant. The same varieties grown with inoculation of nodulat-ing bacteria (strain 376A) produced 20.7 and 10.2 g/plant,respectively. This example, except for the positive connection oftwo above-stated parameters, strongly illustrates the mismatchof strain 367A of nodule bacteria to the yellow lupin variety‘Augy’.

Thus, only complex record-keeping of all parameters de-scribing the intensity of biological nitrogen-fixation in lupinallows us to evaluate the diversity in a species, to allocateeffective material for selection, and also to develop many theo-retical positions useful for the introduction and classificationof a source material. In our research we were guided by Vavilov’sdifferential systemogeographic method of crop studies basedon his Law of Homologous Series in hereditary variation and onthe theory of the centres of origin (domestication) of cultivatedplants (Vavilov 1920, 1935, 1987). This enabled us to not onlydisclose the diversity of forms, but also to reveal a series ofregularities in their variation depending on the degree of culti-vation, geographic environments and soil conditions. Our re-search has established that samples with high nitrogen-fixingability are more often material from primary centres of forma-

Page 78: Plant Genetic Resources newsletter

76 Plant Genetic Resources Newsletter, 2000, No. 123

tion and origin of that or other species of lupin (Kurlovich 1988).An example is the yellow lupin accession k-2292 from Portugal,which is an updated centre of formation of yellow lupin (Vavilov1935, 1987; Kurlovich et al. 1995). The high productivity of thisaccession under inoculation with Bradyrhizobium sp. (Lupinus) isconfirmed not only by our data, but also by other research(Cheremisov 1991). Among accessions of white lupin fromGreece (also a centre of origin and formation of this species) wasthe sample k-2864, also with high nitrogen-fixing ability. Ourexplanation for this is that the plants and their nodulatingbacteria, during evolution at the centres of formation and do-mestication, became adapted to one another. When cultivatedin new places, the plant did not thrive, but when inoculatedwith Bradyrhizobium sp. (Lupinus) bacteria in the new locations, theplants responded to give such high results. The indicated formsdeserve the special attention as objects of genetic research, as thegenes controlling nitrogen-fixing ability have jointly evolvedwith those of symbionts (Simarov and Tikhonovich 1985).

The valuable forms of nitrogen-fixing lupins can be im-proved with mutagenesis (Sidorova et al. 1995). Practice showsthat the best results can be achieved for optimum combinationof mutagenesis and hybridization. For these purposes in hybrid-ization it is necessary to involve mutants, wild and domesti-cated forms of lupin of various geographical origins.

The results point to some areas of research that will allow theexisting genetic resources of lupin to contribute further selectionand breeding activities. Highly productive varieties of lupincould be created with increased abilities to nodulate and moreefficient symbiotic nitrogen fixation, in conditions of low natu-ral contents of soil mineral N. To do this, lupin varieties betterable to form associations with the most effective strains ofbacteria will need to be located.

List of the best selected accessions oflupin, recommended as initial materialfor future breeding for high nitrogen-fixing ability

White lupin (L. albus)� Accessions ensuring an increase of a crop yield under pro-cessing of Bradyrhizobium sp. (Lupinus) bacteria (strain 363a) with-out application of mineral N (in comparison with control): cvs.‘Start ‘ (k-’2644') from Russia, ‘Olezka’ (k-2980) from Ukraineaccessions, k-2989 and k-3250 from Portugal, k-2864 fromGreece, ‘El Harrach-1’ (k-3110) from Algeria.� Accessions with high activity of nitrogenase*: Lines 802-15(k-2623) and 48B (k-7986) from Portugal, accessions k-507 fromEgypt, ‘El Harrach-1’ (k-3110) from Egypt, k-1602 from Poland.� Accession described by increase of nitrogenase activity un-der artificial processing of Bradyrhizobium sp. (Lupinus) bacteria*:cvs. ‘Snezinka’ (k-1596) and ‘Tambovsky 86’ (k-2806) fromRussia, k-1601 from Italy and ‘Lublanc’ (k-2589) from France.

Narrow-leafed lupin (L. angustifolius)� Accessions ensuring an increase of a crop yield (in compari-son with control) under processing of Bradyrhizobium sp. (Lupinus)bacteria (strain 367A) without application of mineral N: k-3065

from Australia, ‘Determinant-2’ (k-3365) and ‘Determinant-3’(k-3366) from Russia, ‘Apva’ (k-2950), ‘Vika 65’ (k-2954), ‘DG-94’ (k-3351) and ‘DG-95’ (k-3352) from Belarus, wild forms k-3076, k-3079 from Spain, k-3083 from Portugal and k-3093 fromMorocco.� Accessions ensuring an increase of green and dry matterunder processing of Bradyrhizobium sp. (Lupinus) bacteria (strain367A) also in a combination with application of mineral N*: cv.‘Unicrop’ (k-2096), lines 75A/326 (k-3061), 75A/330 (k-3064)from Australia, cv. ‘Melkosemianny’ (k-1354) from Latvia, ‘Mut-1’ (k-2803 from Poland, accessions ‘Vada 10’ (k-2681), ‘Jniven’(k-2953) from Belarus, ‘Nemchinovsky 846’ (k-1981), ‘Determi-nant 4’ (k-3367) from Russia, wild forms k-3079, k-3081, k-3082from Spain, k-3083, k-3084, k-3087, k-3090 from Portugal, k-3093, k-3094, k- 3097 from Morocco.

Yellow lupin (L. luteus)� Accessions ensuring an increase of a crop yield underprocessing of Bradyrhizobium sp. (Lupinus) bacteria (strain 375A)without application of mineral N: cvs. ‘Sojuz’ (k-2610), ‘Foton’(k-2649) from Ukraine, ‘T-12’ (k-2000) from Sweden, k-2869and k-3070 from Spain, wild form k-2292 from Portugal, cv.‘Cyt’ (k-2398) from Poland, and cv. ‘Augy’ (k-2956) fromLithuania.� Accessions ensuring an increase of green and dry matterunder processing of Bradyrhizobium sp. (Lupinus) bacteria (strain375A) in a combination with application of mineral N*: cvs.‘Sojuz’ (k-2610), ‘Foton’ (k-2649) from Ukraine, k-2869 fromSpain, wild form k-2292 from Portugal.

** These data are the result of our previous investigation andpublications in Russian (Kurlovich et al. 1995, 1997).

AcknowledgementsWe wish to express our gratitude to Dr A.V. Khotyanovich of theInstitute for Agricultural Microbiology for valuable assistanceand advice during the experiments in 1988-95, and to Dr GudniHardarson (FAO/IAEA Programme, Austria) for his interest,discussion and valuable literature. This work was supportedfinancially by State Research Programme INTERBIOAZOT-2000, Russian Fund of Fundamental Research, Grant of theEuropean Community (INTAS).

ReferencesAlisova, C.M. and A.I. Chunderova. 1982. Methodological guides

for application of acetylene method during selection of le-gumes on increasing of symbiotic nitrogen fixation [in Rus-sian]. Leningrad, 10p.

Allen, O.N. and E.K. Allen. 1981. The Leguminosae: A SourceBook of Characteristics, Uses and Nodulation. Macmillan,London, 250p.

Cheremisov, B.M. 1991. Evaluation of lupine collection underinoculation conditions and without nodule bacteria. Bull.VIR. St. Petersburg 213:12-17.

Cowling, W.A. 1994. Use of lupin genetic resources in Australia.Pp. 9-18 in Advances in Lupin Research (J.M. Neves Martinsand M.L.Beirao da Costa, eds.). Proceedings of the 7th Inter-national Lupin Conference, Evora, Portugal. ISA Press,Lisbon.

Gladstones, J.S. 1974. Lupin of the Mediterranean region andAfrica. W. Austral. Dept. Agric. Tech. Bull. 26, 48p.

Page 79: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 77

Gladstones, J.S. 1998. Distribution, origin, taxonomy, history andimportance. Pp. 1-39 in Lupins as Crop Plants. Biology,Production and Utilization (J.S. Gladstones, C.A. Atkins andJ. Hamblin, eds.). CAB International, Oxon, UK.

Graham, P.H., M.J. Sadowski, S.W. Tighe, J.A. Thompson, R.A.Date, J.G. Howieson and R. Thomas. 1995. Differences amongstrains of Bradyrhizobium in fatty acid-methyl ester (FAME)analysis. Can. J. Microbiol. 41:1038-1042.

Hardarson, G. 1993. Methods for enhancing symbiotic nitrogenfixation. Plant and Soil 152:1-17.

Howieson, J.G., I.R.P. Fillery, A.B. Legocki, M.M. Sikorski, T.Stepkowsky, F.R. Minchin and M.J. Dilworth. 1998. Nodula-tion, nitrogen fixation and nitrogen balance. Pp. 149-180 inLupins as Crop Plants. Biology, Production and Utilization(J.S. Gladstones, C.A. Atkins and J. Hamblin, eds.). CABInternational, Oxon, UK.

Jordan, D.C. 1982. Transfer of Rhizobium japonicum Buchanan1980 to Bradyrhizobium gen. nov., a genus of slow-growing,root nodule bacteria from leguminous plant. Intern. J. Sys-tem. Bacteriol. 32:136-139.

Kozhemyakov, A.P., N.S. Ivanov and B.S. Kurlovich. 1992. Effi-ciency of inoculation of fodder Lupinus polyphyllus Lindl. withnodule bacteria and root diazotrops. Res. Bull. VIR 220:3-5.

Kozhemyakov, A.P., B.S. Kurlovich and T.A. Emeljanenko. 1995.Nitrogen-fixing ability of Lupinus angustifolius L. accessionsunder inoculatuon with nodule bacteria strains. In NitrogenFixation: Fundamentals and Application (I.A. Tikhonovich,N.A. Provorov and V.I. Romanov, eds.). Proceedings of the10th International Congress on Nitrogen Fixation, St. Peters-burg, Russia. Kluwer Academic Publishers Group, Dordrecht,Netherlands.

Kurlovich, B.S. 1988. On the centres of species formation of thegenus Lupinus L. Bull. VIR Leningrad 193:20-24.

Kurlovich, B.S. 1998. Species and intraspecific diversity of white,blue and yellow lupins. Plant Genet. Resour. Newsl. 115:1-10.

Kurlovich, B.S. et al. 1995. Theoretical basis of plant breeding.Vol. 111. The gene bank and breeding of grain legumes (lu-pine, vetch, soya and bean) [in Russian]. St. Petersburg, VIR,438p.

Kurlovich, B.S., N.S. Nazarova et al. 1990. Study of samples toworld collections of lupin [in Russian]. St. Petersburg, VIR,34p.

Kurlovich, B.S., I.A. Tikhonovich, L.T. Kartuzova and A.P.Kozemyakov. 1997. Trends and Methods of lupine breedingfor increasing level of symbiotic nitrogen fixation. Bull. Appl.Bot. Gen. Plant Breed. St. Petersburg 152:39-47.

Legocki, A.B., W. Karlowski, J. Podkowinski, M. Sikorski and T.Stepkowski. 1997. Advances in molecular characterization ofthe yellow lupin – Bradyrhizobium sp. (Lupinus) symbioticmodel. Pp. 263-266 in Biological Fixation of Nitrogen forEcology and Sustainable Agriculture (A.B. Legocki and H.Both, eds.). Proceedings NATO Advanced Research Work-shop, Poznan, Poland, 10-14 September 1996. Springer-Verlag; Berlin; Germany.

Sidorova, K.K., V.K. Shumny and L.P. Uzhintseva. 1995. Geneticexperiments with pea mutants pending symbiosis studies.Pp. 475-478 in Nitrogen Fixation: Fundamentals and Appli-cation (I.A. Tikhonovich, N.A. Provorov and V.I. Romanov,eds.). Proceedings of the 10th International Congress on Ni-trogen Fixation, St. Petersburg, Russia. Kluwer AcademicPublishers Group, Dordrecht, Netherlands.

Simarov, B.V. and I.A. Tikhonovich. 1985. Genetic basis of le-gume-rhizobial symbiosis. Mineral and biological nitrogen inArable farming. Moscow, p. 199-203.

Tchetkova, S.A. and I.A. Tikhonovich. 1986. Selection and use ofthe strains, effective on peas of the Afghani origin. Microbiol-ogy, Moscow 55:143-146.

Van Kammen, A. 1995. The molecular development of nitrogenfixing root nodules. Pp. 9-14 in Nitrogen Fixation: Funda-mentals and Application (I.A. Tikhonovich, N.A. Provorovand V.I. Romanov, eds.). Proceedings of the 10th Interna-tional Congress on Nitrogen Fixation, St. Petersburg, Russia.Kluwer Academic Publishers Group, Dordrecht, Netherlands.

Vavilov, N.I. 1920. The law of homologous series in hereditaryvariation. Pp. 3-20 in Proceedings, 3rd All Russian BreedingCongress, Saratov, Russia.

Vavilov, N.I. 1935. Theoretical basis of plant breeding. Moscow-Leningrad, 1:17-162. VIR, St. Petersburg, Russia.

Vavilov, N.I. 1987. Origin and geography of cultivated plants.Leningrad, p. 15-42. VIR, St. Petersburg, Russia.

Page 80: Plant Genetic Resources newsletter

78 Plant Genetic Resources Newsletter, 2000, No. 123 Plant Genetic Resources Newsletter, 2000, No. 123: 68 -77

News and NotesEstablished terms and definitions on plant genetic resources and biologicalconservation in dispute

There is a concern that some critical conservation concepts areinappropriately defined. An examination of the meaning of wordsused in conservation shows that some convey misleading defini-tions, i.e. distinct terms and distinct definitions are often appliedto materials seemingly equal in nature. In particular, three selectterms and their definitions – namely ‘genetic resource’, ‘biologi-cal resource’ and ‘biodiversity’ – have been shown to carry anumber of incongruencies.1 Nonetheless, although flawed orredundant, these concepts (in particular, biological resource andbiodiversity) are in the way of becoming established, supported

Fifteen years since the issuance of “A Guide to Forest SeedHandling, with special reference to the tropics” compiled by R.L.Willan and published jointly by DFSC and FAO, relevantprogress has been achieved and new techniques and protocolsfor effective seed handling have become available.

The present “Guide to Handling of Tropical and SubtropicalForest Seed” is meant to provide the reader with a comprehen-sive and updated review of efficient methods currently availablefor forest seed collection, handling and storage.

As remarked in Chapter 1, problems related to seed pro-curement, processing and storage often represent a tangiblerestriction on the use of particular species. Scarcity of seed,inconstancy in seed production, short viability, difficulties incollecting and in removing barriers to germination are, amongothers, factors that limit the use of many tree species. In factseedlings often tend to be sold at a fairly uniform price, nomatter how much effort was involved in raising them (p. 7,quoted from Pedersen 1994). Consequently, only a handful ofimportant genera and families are used in planting programmes,despite the increasing demand to broaden species diversityand to encourage the use of native trees. The application of themost suitable and cost-effective techniques for handling andstorage of tropical forest seeds has the potential to bring morespecies into use.

This Guide draws on the well-known capacity and experiencegained by the Danida Forest Seed Centre over more than 30 yearsof continuous activity in this sector, particularly with the poorlyunderstood tropical and subtropical species. It is written in a clearand direct style, while complying with sound scientific quality andproviding a comprehensive list of reference at the end of eachchapter.

The outline of the book observes a logical sequence, startingwith a general introduction to seed biology (Chapter 2) and thenfollowing the chronological order of seed handling: planning ofseed collecting (Chapter 3), description of collecting phases(Chapter 4), processing (Chapter 6), seed storage and pretreat-ment (Chapters 8-9), and germination and seedling establishment(Chapter 10).

Chapter 8 deals specifically with the effects of pests andpathogens on seed quality and gives useful hints on how to controlthem during the collecting, processing and storage phases, eitherthrough necessary precautions or through seed treatment.

Seed testing (Chapter 11) is discussed from the perspectiveof the seed handler, thus describing what is measured duringthese tests, rather than how to conduct them, redirecting thereader to existing detailed guidelines for in-depth reading.

Possible implications of seed handling on the genetic qualityof seeds are discussed in Chapter 12. The author draws the

Book ReviewGuide to Handling of Tropical and Subtropical Forest Seed

Lars Schmidt2000. Danida Forest Seed Centre, Krogerupveg 21, DK-3050 Humlebaek, Denmark ([email protected]). ISBN 87-982428-6-5.Available free.

as they are by parts of the scientific community and the politicalclasses. The argument defended is that the establishment ofdefective concepts undermines the foundations of scientificthought itself. Seemingly, for example, the concept of biologicalresource is a circumscription rather than a definition and over-laps with that of genetic resource. Likewise, the term biodiversitysounds more like a conglomerate given the inclusion in thedefinition of biotic and abiotic elements. In the interest of truth, awider discussion of this subject is much encouraged.

1 Allem, A.C. 1999. Dubious concepts in the Convention on Biological Diversity with special reference to genetic resource, biologicalresource, and biodiversity. In Second International Symposium on Genetic Resources for Latin America and the Caribbean,SIRGEALC 2 (A.S. Mariante and P.G. Bustamante, eds.). Brasília. Proceedings published in CD-ROM.

Page 81: Plant Genetic Resources newsletter

Plant Genetic Resources Newsletter, 2000, No. 123 79

readers’ attention to possible caveats that may occur, in thisrespect, at any step in the seed-handling process. In fact, sincemost of the physical, morphological and physiological charac-teristics of the seeds differ according to family, each handlingphase might result in a negative selection against seeds be-longing to specific families rather than others. Therefore, part ofor whole families may be lost during processing and handling,and the ratio between families in the final bulked seed lot orplants in the nursery may be different from the ratio between

families in the seed lot before processing (p. 364, quoted fromLauridsen 1995).

Chapter 13 provides details on the taxonomy, biology andmanagement, in relation to nursery operation, of importantmicrosymbionts for cultivated plants (e.g. mychorrizae, rhizobiaand frankiae). There are specific cases, e.g. raising seedlings ona sterile medium or plantation on sites.

Leonardo Petri

Below are some interesting Web addresses related to genetic resources. Please send information on other sites to the Managing Editorof the Newsletter at [email protected]. The addresses given here were all operating at the time of going to press (September 2000).

Digital Taxonomyhttp://www.geocities.com/RainForest/Vines/8695/Digital Taxonomy is an attempt to present a wide-ranging re-source of information for biodiversity data management in theWorld Wide Web, and promote the effective use of computers forhandling biological software development projects. The site pro-vides a range of links on software, hardware, methodologies,standards, data sources, and projects related to biodiversity datamanagement, covering DELTA, taxonomic databases, ecology,morphometrics, and phylogenetic analysis software, with empha-sis on the exchange of free scientific software tools (preferablythose including source code), computer techniques, and Internetaddresses of developers and distributors of free bioinformaticssoftware.

The Expert Center for TaxonomicIdentificationhttp://www.eti.uva.nlThe Expert Center for Taxonomic Identification (ETI) is a non-governmental organisation (NGO) in operational relations withUNESCO. Its mission is to develop and produce scientific andeducational computer-aided information systems, to improve thegeneral access to, and to promote the broad use of taxonomic andbiodiversity knowledge worldwide.

ETI’s World Biodiversity Database, available on CD-ROM,provides a combination of scientific text, expert illustrations andprofessional photographs.

ETI produces about 10 CD-ROM titles a year, packed withmegabytes of reliable and thoroughly reviewed scientific infor-mation, all quickly accessible on CD-ROM. These CD-ROMs aredistributed at the lowest possible (cost) price, in order to allow

every scientist, including those in developing countries, to getaccess to information.

The International Legume Database &Information Service (ILDIS)http://www.ildis.org/The International Legume Database & Information Service (ILDIS)is an international project that aims to document and cataloguethe world’s legume species diversity in a readily accessibleform. Research groups in many countries are participating on acooperative basis to pool information in the ILDIS World Data-base of Legumes, which is used to provide a worldwide informa-tion service through publications, electronic access and enquiryservices.

The ILDIS Co-ordinating Centre is based at the Centre forPlant Diversity and Systematics, School of Plant Sciences, TheUniversity of Reading, UK. ILDIS has regional centres in Argen-tina, Australia, Brazil, China, Colombia, India, Japan, Malawi,New Zealand, Russia and USA. These centres collect informa-tion from local herbaria, national botanists and from literaturewritten in many different languages, making accessible a wealthof information that would otherwise remain hidden.

Species 2000http://www.sp2000.org/Species 2000 aims at enumerating all known species of plants,animals, fungi and microbes on Earth as the baseline dataset forstudies of global biodiversity. It will also provide a simple accesspoint enabling users to link to other data systems for all groups oforganisms, using direct species-links. Users worldwide will beable to verify the scientific name, status and classification of any

Plant geneticresources in

Page 82: Plant Genetic Resources newsletter

80 Plant Genetic Resources Newsletter, 2000, No. 123

known species via the Species Locator, which provides accessto species checklist data drawn from an array of participatingdatabases.

The goal of Species 2000 is to provide a uniform and vali-dated quality index of names of all known species for use as apractical tool.

New Agriculturist onlinehttp://www.new-agri.co.uk/New Agriculturist online provides monthly updates on the latestnews and developments in tropical agriculture for a global audi-ence. It also provides information on training courses and confer-ences for agriculturists, and on recent publications.

Sections include: Points of view (children in agriculture, inthe latest issue); Perspective; Focus on . . .(beekeeping, in thelatest issue); In print; News briefs; In conference; On course;Developments; and Country profile. Recent books on PGR re-viewed include “Encouraging Diversity: The conservation anddevelopment of plant genetic resources” (Conny Almekindersand Walter de Boef, eds), published by Intermediate TechnologyPublications, and “The Root Causes of Biodiversity Loss”(Alexander Wood, Pamela Stedman-Edwards and JohannaMang, eds), published by WWF-International in association withEarthscan.

The Internet Directory of Botanyhttp://www.botany.net/IDB/This would be a useful starting point for anyone seeking botanicalinformation on the Internet.

The Directory is an index to botanical information availableon the Internet, compiled by Anthony R. Brach (Harvard Univer-sity Herbarium, Cambridge; http://www.herbaria.harvard.edu/;Missouri Botanical Garden, St. Louis, USA; http://www.mobot.org/), Raino Lampinen (Botanical Museum, Finnish Museum of Natu-ral History, University of Helsinki, Finland; http://www.helsinki.fi/kmus/), Shunguo Liu (SHL Systemhouse, Edmonton, Canada)and Keith McCree (Oakridge, Oregon).

Links are organised by the following categories: Arboreta andBotanical Gardens; Botanical Societies, International BotanicalOrganizations; Biologists’ Addresses; Botanical Museums, Her-baria, Natural History Museums; Checklists and Floras, Taxo-nomical Databases, Vegetation; Conservation and ThreatenedPlants; Economic Botany, Ethnobotany; Gardening; Images;Journals, Book, Literature Databases, Publishers; Link Collec-tions, Resource Guides; Listservers and Newsgroups; LowerPlants and Fungi; Other Resources; Paleobotany, Palynology,Pollen; Software; University Departments, Other Institutes; andVascular Plant Families.

Page 83: Plant Genetic Resources newsletter

Plant Genetic ResourcesNewsletter

Aims and scopeThe Plant Genetic Resources Newsletter pub-lishes papers in English, French or Spanish,dealing with the genetic resources of useful plants,resulting from new work, historical study, reviewand criticism in genetic diversity, ethnobotanicaland ecogeographical surveying, herbarium stud-ies, collecting, characterization and evaluation,documentation, conservation, and genebank prac-tice.

ManagementThe Plant Genetic Resources Newsletter is pub-lished under the joint auspices of the Internation-al Plant Genetic Resources Institute (IPGRI) andthe Plant Production and Protection Division ofthe Food and Agriculture Organization of theUnited Nations (FAO).

AvailabilityThe Plant Genetic Resources Newsletter ap-pears as one volume per year, made up of fourissues, published in March, June, September andDecember. Plant Genetic Resources Newsletteris available free of charge to interested librariesof genebanks, university and government depart-ments, research institutions, etc. The periodicalmay also be made available to individuals whocan show that they have a need for a personalcopy of the publication.

Types of paperArticlesAn article will publish the results of new andoriginal work that makes a significant contribu-tion to the knowledge of the subject area that thearticle deals with. Articles, which should be of areasonable length, will be considered by the Edi-torial Committee for scope and suitability, thenassessed by an expert referee for scientific con-tent and validity.

Short communicationsA short communication will report results, in anabbreviated form, of work of interest to the plantgenetic resources community. Short communi-cations in particular will contain accounts of ger-mplasm acquisition missions. The papers will beassessed by an expert referee for scientific con-tent and validity.

Other papersThe Plant Genetic Resources Newsletter willpublish other forms of reports such as discussionpapers, critical reviews, and papers discussingcurrent issues within plant genetic resources.Book reviews will be printed, as well as a Newsand Notes section. Suggestions for books toreview are invited, as are contributions to Newsand Notes.

SubmissionIn the first instance papers may be submitted intypescript form or as an Email message. Thefinal version may be submitted as an Email file oras a Windows-readable file on diskette. Manu-scripts submitted for publication and other com-munications on editorial matters should be ad-dressed to IPGRI's Editorial and PublicationsUnit.

Bulletin des ressourcesphytogénétiques

Domaine d’intérêtLe Bulletin des ressources phytogénétiques pub-lie des articles en anglais, en espagnol et enfrançais, sur les ressources génétiques de plan-tes utiles, fruit de nouvelles recherches, d’étudeshistoriques, d’examens et de critiques concer-nant la diversité génétique, d’études ethnobota-niques et écogéographiques, d’études d’herbiers,d’activités de collecte, de caractérisation etd’évaluation, de documentation, de conservationet les pratiques des banques de gènes.

ParrainageLe Bulletin des ressources phytogénétiques estpublié sous les auspices de l’Institut internationaldes ressources phytogénétiques (IPGRI) et de laDivision de la production végétale et de la protec-tion des plantes de l’Organisation des NationsUnies pour l’alimentation et l’agriculture (FAO)

DistributionLe Bulletin des ressources phytogénétiques paraîtune fois par an en un volume regroupant quatrenuméros publiés en mars, juin, septembre etdécembre. Il est distribué gratuitement aux bib-liothèques des banques de gènes, universités,services gouvernementaux, instituts de recher-che, etc. s’intéressant aux ressources phytogéné-tiques. Il est aussi envoyé sur demande à tousceux pouvant démontrer qu’ils ont besoin d’unexemplaire personnel de cette publication.

Types de documents publiésArticlesUn article contient les résultats de travaux nou-veaux et originaux qui apportent une contributionimportante à la connaissance du sujet dont traitel’article. Les articles, qui doivent être d’unelongueur raisonnable, sont d’abord examinés parle Comité de rédaction qui en évalue la portée etla validité, puis par un expert qui en examine lecontenu et l’intérêt scientifiques.

Brèves communicationsOn entend par brève communication un textecontenant, sous une forme abrégée, les résultatsde travaux présentant un intêrêt pour tous ceuxqui s’occupent de ressources phytogénétiques.Elle contient en particulier des comptes rendusdes missions d’acquisition de matériel génétique.

Autres documentsLe Bulletin des ressources phytogénétiques pub-lie d’autres types de rapport tels que des docu-ments de synthèse, des études critiques et desarticles commentant des problèmes actuels con-cernant les ressources phytogénétiques. Le Bul-letin publie une revue de livres ainsi qu’une sec-tion intitulée Nouvelles et Notes. Les auteurssont invités à envoyer leurs suggestions pour leslivres à passer en revue ainsi que des contribu-tions aux Nouvelles et Notes.

PrésentationEn premier lieu, les documents doivent être sou-mis dactylographiés ou par courrier électronique.La version définitive doit être présentée en fichierde courrier électronique ou sur disquettes com-patibles Windows. Prière d’adresser les manuscritsprésentés pour être publiés et d’autres communi-cations sur des questions de rédaction au Bureaude rédaction de l'IPGRI.

Boletín de RecursosFitogenéticos

Objetivos y temasEl Noticiario de Recursos Fitogenéticos publicadocumentos en inglés, francés y español quetratan de los recursos genéticos de plantas útiles,fruto de nuevos trabajos, estudios históricos,revisiones y análisis críticos relacionados con ladiversidad genética, investigaciones etnobotáni-cas y ecogeográficas, estudios de herbarios,actividades de colección, caracterización y eval-uación, documentación, conservación, y prácti-cas en bancos de germoplasma.

DirecciónEl Noticiario de Recursos Fitogenéticos se publi-ca bajo los auspicios conjuntos del Instituto In-ternacional de Recursos Fitogenéticos y la Di-rección de Producción y Protección Vegetal de laOrganización de las Naciones Unidas para laAgricultura y la Alimentación.

DistribuciónEl Noticiario de Recursos Fitogenéticos aparececomo un volumen anual compuesto por cuatronúmeros, que se publican en marzo, junio, septi-embre y diciembre. Se distribuye gratuitamente alas bibliotecas de bancos de germoplasma, facul-tades universitarias y servicios gubernamentales,centros de investigación, etc. que se interesanen los recursos fitogenéticos. También puedenobtener este noticiario las personas que demues-tren necesitar una copia personal.

Tipos de documentosArtículosLos artículos divulgarán los resultados de traba-jos nuevos y originales que contribuyan de modoimportante al conocimiento del tema tratado.Dichos artículos, que deberán tener una longitudrazonable, serán examinados por el Comité deRedacción en cuanto a su pertinencia e idoneidady posteriormente un experto juzgará su contenidoy validez científicos.

Comunicaciones brevesLas comunicaciones breves informarán de modoconciso sobre los resultados de trabajos de in-terés para las personas que se ocupan de losrecursos fitogenéticos. Las comunicacionesbreves incluirán, en particular, resúmenes sobrelas misiones de adquisición de germoplasma.

Otros documentosEl Noticiario de Recursos Fitogenéticos publi-cará otros tipos de informes, como documentosde trabajo, análisis críticos, y documentos queexaminen cuestiones de actualidad relacionadascon los recursos fitogenéticos. El Noticiario pub-licará una reseña de libros así como una secciónde Noticias y Notas. Las propuestas de librospara reseñar y las contribuciones a la sección deNoticias y Notas serán bien acogidas.

PresentaciónLos documentos deben entregarse, incialmente,en forma de texto mecanografiado o a través delcorreo electrónico. La versión final debe presen-tarse como un archivo de correo electrónico o endisquete compatible con el sistema operativoWindows. Los manuscritos para publicar y otrascomunicaciones sobre asuntos relativos a la re-dacción deberán dirigirse a la Oficina de Redac-ción del IPGRI.

Page 84: Plant Genetic Resources newsletter

No. 123, September 2000

Contents

Plant Genetic Resources Newsletter

ArticlesUtilization of germplasm conserved in Chinese national genebanks - a surveyG. Weidong, J. Fang, D. Zheng, Y. Li, X. Lu (China), R.V. Rao (Malaysia), T. Hodgkin (Italy)and Z. Zongwen (China) .......................................................................................................................................... 1

The use of home gardens as a component of the national strategy for the in situ conservation ofplant genetic resources in CubaL. Castiñeiras, Z.F. Mayor, S. Pico and E. Salinas (Cuba) ................................................................................... 9

Ethnobotanical testimony on the ancestors of cassava (Manihot esculenta Crantz subsp. esculenta)A.C. Allem (Brazil) ................................................................................................................................................ 19

Reincorporación del fríjol carauta (Phaseolus lunatus L.) a la agricultura tradicional en el resguardoindígena de San Andrés de Sotavento (Córdoba, Colombia)G.P. Ballesteros, A.G. Torres y M. Barrera (Colombia) ...................................................................................... 23

El conocimiento local y su contribución al trabajo de rescate, conservación y uso de las semillasde Phaseolus y Vigna en las vegas del Río Orinoco, Estado Guárico, VenezuelaA. Bolivar, M. Lopez, M. D'Goveia y M. Gutiérrez (Venezuela) .......................................................................... 28

A network for the management of genetic resources of maize populations in FranceJ. Dallard, P. Noël, B. Gouesnard and A. Boyat (France) ................................................................................... 35

Caracterización por cianogénesis de una colección de trébol blanco (Trifolium repens L.) enPergamino, ArgentinaE.M. Pagano y B.S. Rosso (Argentina) ............................................................................................................... 41

Conservation et valorisation des ressources génétiques fourragères et pastorales du Nord TunisienM. Chakroun et M. Zouaghi (Tunisia) ................................................................................................................... 46

Resistance to powdery mildew in barley (Hordeum vulgare L.) landraces from EgyptJ.H. Czembor (Poland) ......................................................................................................................................... 52

Genotypic variation of Kenyan tomato (Lycopersicon esculentum L.) germplasmS.G. Agong (Kenya), S. Schittenhelm and W. Friedt (Germany) ........................................................................ 61

Evaluation of the biological nitrogen-fixing ability of lupin (Lupinus L.)B.S. Kurlovich, L.T. Kartuzova, B.M. Cheremisov, T.A. Emeljanenko, I.A. Tikhonovich,A.P. Kozhemyakov and S.A. Tchetkova (Russia) .................................................................................... 68

News and Notes ................................................................................................................................................... 78Book Review ........................................................................................................................................................ 78Cyberspace .......................................................................................................................................................... 79